Shape turnpike for linear parabolic PDE models

Submission Status:in press
  • We introduce and study the turnpike property for time-varying shapes, within the viewpoint of optimal control. We focus here on second-order linear parabolic equations where the shape acts as a source term and we seek the optimal time-varying shape that minimizes a quadratic criterion. We first establish existence of optimal solutions under some appropriate sufficient conditions. We then provide necessary conditions for optimality in terms of adjoint equations and, using the concept of strict dissipativity, we prove that state and adjoint satisfy the measure-turnpike property, meaning that the extremal time-varying solution remains essentially close to the optimal solution of an associated static problem. We show that the optimal shape enjoys the exponential turnpike property in term of Hausdorff distance for a Mayer quadratic cost. We illustrate the turnpike phenomenon in optimal shape design with several numerical simulations.

Download full text files

Export metadata

Metadaten
Author:Lance Gontran, Emmanuel Trélat, Enrique Zuazua
DOI:https://doi.org/https://doi.org/10.1016/j.sysconle.2020.104733
Publisher:Syst. Control. Lett.
Document Type:Article
Language:English
Date of Publication (online):2020/06/22
Date of first Publication:2020/10/27
Release Date:2020/10/27
Volume:142
Subprojects:C03
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.