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Abstract. Bilevel optimization is a very active field of applied mathematics.
The main reason is that bilevel optimization problems can serve as a powerful
tool for modeling hierarchical decision making processes. This ability, however,
also makes the resulting problems challenging to solve—both in theory and
practice. Fortunately, there have been significant algorithmic advances in
the field of bilevel optimization so that we can solve much larger and also
more complicated problems today compared to what was possible to solve two
decades ago. This results in more and more challenging bilevel problems that
researchers try to solve today. This survey gives a detailed overview of one of
these more challenging classes of bilevel problems: bilevel optimization under
uncertainty. We review the classic ways of addressing uncertainties in bilevel
optimization using stochastic or robust techniques. Moreover, we highlight
that the sources of uncertainty in bilevel optimization are much richer than
for usual, i.e., single-level, problems since not only the problem’s data can be
uncertain but also the (observation of the) decisions of the two players can be
subject to uncertainty. We thus also review the field of bilevel optimization
under limited observability, the area of problems considering only near-optimal
decisions, and discuss intermediate solution concepts between the optimistic
and pessimistic cases. Finally, we also review the rich literature on applications
studied using uncertain bilevel problems such as in energy, for interdiction
games and security applications, in management sciences, and networks.

1. Introduction

Bilevel optimization is a rather young field of research that dates back to the
early publications by Bracken and McGill (1973) as well as Candler and Norton
(1977), having its game-theoretic foundations dating back to the seminal works by
von Stackelberg (1934, 1952). While being very powerful modeling tools that allow
to consider hierarchical decision making processes, bilevel optimization models are
also very hard to solve—both in theory and practice. For instance, NP-hardness
(Jeroslow 1985) and strong NP-hardness (Hansen et al. 1992) have been shown in
the 1980s and early 1990s. The intrinsic hardness of bilevel optimization leads to
the fact that, on the one hand, the field has been propelled theoretically first (see,
e.g., the seminal textbook by Dempe (2002) and the more recent book by Dempe,
Kalashnikov, et al. (2015)) but that computational bilevel optimization still has
been in its infancy until the late 2000s. Since then, several innovative works pushed
the computational study of these problems so that we can solve relevant practical
instances of realistic size today; see Kleinert et al. (2021) for a very recent survey on
this and related topics as well as the annotated bibliography on bilevel optimization
by Dempe (2020).

Rather naturally, the operations research, mathematics, engineering, and econo-
mics communities, which all use bilevel optimization to model and solve real-world
problems in their respective fields, started to study more and more complicated
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bilevel problems. These more complicated problems are even harder than “usual”,
e.g., continuous and maybe linear, bilevel problems since they introduce different
aspects that make the resulting problems both more challenging in theory and
practice—among others: (i) mixed-integer aspects, in particular in the lower-level
problem, (ii) nonlinearities and nonconvexities both in the upper- and the lower-level
problem, or (iii) large-scale instances that could not have been solved a few decades
ago.

Additionally, and this leads us to the main topic of this survey, more and more
researchers from all of the above mentioned communities started to study bilevel
optimization problems under uncertainty. In classic, i.e., single-level, optimization,
there have been mainly two paths to address uncertainty in optimization models:
stochastic optimization (Birge and Louveaux 2011; Kall and Wallace 1994) and
robust optimization (Ben-Tal, El Ghaoui, et al. 2009; Ben-Tal and Nemirovski
1998; Bertsimas, Brown, et al. 2011; Soyster 1973). The same two paths have been
followed as well in bilevel optimization starting from the 1990s on.

However, the sources of uncertainty are much richer in bilevel optimization
compared to usual, i.e., single-level, optimization. To make this more concrete, a
linear optimization problem min{c>x : Ax ≥ b} can only be subject to uncertainty
due to uncertainties in the problem’s data c, A, and b. Throughout this survey, we
will denote this setting as data uncertainty. Moreover, bilevel optimization may
be subject to an additional source of uncertainty, which is due to its nature that
combines two different decision makers in one model. Hence, there can be further
uncertainty involved either if the leader is not sure about the reaction of the follower
or if the follower is not certain about the observed leader’s decision. We will denote
this additional type of uncertainty as decision uncertainty. Obviously, decision
uncertainty does not play any role in single-level optimization since only one decision
maker is involved.

Both data as well as decision uncertainty can—and maybe should—be considered
under the wider umbrella of what economists call bounded rationality ; see, e.g.,
Rubinstein (1998) and Simon (1972). In economics, rationality usually means
that the different agents of a system (e.g., the leader and the follower in bilevel
optimization or in a Stackelberg game) act as optimizers, meaning that they all
implement a fully rational decision process that consists in solving an optimization
problem to global optimality while knowing all of the data required to parameterize
the given instance of the problem to be solved. Moreover, in a game-theoretical
context (as bilevel optimization naturally is), a fully rational decision process also
needs to include that the decision of the other players can either be observed or
anticipated perfectly.

This point of view leads to a wider scope for bilevel optimization under uncertainty
than it can be the case for single-level optimization. Besides the classic topic of data
uncertainty, bilevel optimization under uncertainty may cover the following aspects:

(i) The leader may be uncertain about her1 anticipation of the follower’s
rational reaction and, thus, may want to hedge against this uncertainty;
see, e.g., Besançon et al. (2019).

(ii) As an extreme case of the former aspect it may be the case that the upper-
level player knows that the follower will play against her. This is the setting
of a pessimistic bilevel optimization problem, which is rather naturally
connected to the field of robust optimization; see, e.g., Wiesemann et al.
(2013). However, if the level of cooperation or confrontation of the follower

1According to the experimental results collected by the male author of this survey while
assigning work to co-authors during the writing process, we decided to use “her” for the leader and
“his” for the follower throughout the paper.



A SURVEY ON BILEVEL OPTIMIZATION UNDER UNCERTAINTY 3

is not known, this leads to intermediate cases in between the optimistic
and the pessimistic case; see, e.g., Aboussoror and Loridan (1995) and
Mallozzi and Morgan (1996). Rather obviously, this is another realization
of decision uncertainty.

(iii) It can also be the case that the leader can anticipate the rational reaction
of the follower but that the follower is not able to perfectly observe the
leader’s decision. In this case, the follower—if aware of this aspect—usually
tries to hedge against this uncertainty (Bagwell 1995; Beck and Schmidt
2021; van Damme and Hurkens 1997).

(iv) Even if all data and the rational reaction of the follower is known and even
if the leader can, in principle, fully anticipate the optimal reaction of the
follower, it might still be the case that limited intellectual or computational
resources make it impossible that globally optimal decisions are taken.
In contrast, only approximately optimal or heuristic answers of, e.g., the
follower need to be considered, imposing the challenge that the leader does
not know which heuristic or which approximation is applied by the follower.
As a good primer in this context, we refer to the recent paper by Zare,
Prokopyev, et al. (2020).

This list is not comprehensive but should make clear how much more diverse the
sources of uncertainty can be in bilevel optimization as compared to single-level
optimization.

Throughout this survey, we will highlight different aspects of bounded rationality
as it has been roughly discussed above. Most of the papers, but not all of them, that
we will review are concerned with the typical setting of data uncertainty. However,
the interest of the mathematical optimization as well operations research community
in decision uncertainty is growing. The survey thus has two main goals. First, to
almost comprehensively describe the state-of-the-art of bilevel optimization under
uncertainty. Second, to also view the existing research under a bounded-rationality
lens to put the existing literature into a broader (game-theoretic or economic)
context as well as to open doors to future research that maybe would stay locked—or
not even seen—while using a different lens.

The remainder of this survey is structured as follows. In Section 2, we define
the overall problem statement and discuss both data as well as decision uncertainty
using illustrating examples. Afterward, in Section 3, we then discuss the existing
(and mostly theoretical) literature on bilevel optimization under uncertainty along
the lines on how uncertainty is modeled. Thus, we explicitly consider stochastic
bilevel problems, bilevel problems with robust modeling of data uncertainty, bilevel
problems with near-optimal lower-level decisions, limited observability of decisions
of the leader, and the field of intermediate solution concepts between the optimistic
and pessimistic cases. In Section 4, we then review papers on bilevel optimization
under uncertainty that are devoted to specific applications. Here, we focus on
applications from the field of energy, security, management science, and networks.
We close the paper with some concluding words in Section 5, where we also mention
open questions and other possible directions for future research. Throughout the
survey, we assume that the reader is familiar with standard concepts of robust and
stochastic optimization.
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2. General Problem Statement

We study bilevel problems of the general form

“ min
x∈X

” F (x, y) (1a)

s.t. G(x, y) ≥ 0, (1b)
y ∈ S(x), (1c)

where S(x) denotes the set of optimal solutions of the x-parameterized problem

min
y∈Y

f(x, y) (2a)

s.t. g(x, y) ≥ 0. (2b)

We refer to Problem (1) as the upper-level (or the leader’s) problem and to Prob-
lem (2) as the lower-level (or the follower’s) problem. Moreover, the variables x ∈ X
and y ∈ Y are called the leader’s and the follower’s variables, respectively. The
sets X ⊆ Rnx and Y ⊆ Rny can be used to denote integrality constraints. The
objective functions are given by F, f : Rnx × Rny → R and the constraint functions
by G : Rnx × Rny → Rm as well as g : Rnx × Rny → R`. A summary of important
notation used throughout this paper can also be found in Table 1. The quotation
marks in (1a) express the ill-posedness of the bilevel problem in the case that the
lower-level problem does not have a unique solution. To deal with this ambiguity,
it is common to pursue either an optimistic or a pessimistic approach to bilevel
optimization; see, e.g., Dempe (2002). For the ease of presentation, we focus on the
optimistic setting at this point, i.e., we study

min
x,y

F (x, y) s.t. G(x, y) ≥ 0, x ∈ X, y ∈ S(x).

We consider bilevel problems of the above form, which are, however, affected by
various kinds of uncertainty. This setting is relevant for many practical applications
since uncertainty is an important aspect of bounded rationality; see, e.g., Simon
(1972). In this survey article, we mainly distinguish between two types of uncertainty:
data uncertainty and decision uncertainty.

2.1. Data Uncertainty. Data uncertainty arises if, e.g., the lower-level player only
has access to inaccurate or incomplete data. To illustrate this aspect, let us assume
that the right-hand sides of the lower-level constraints are uncertain. For a feasible
leader’s decision x and a specific realization of the uncertainty u, the set of optimal
follower’s decisions is then given by

S(x, u) := arg min
y∈Y

{f(x, y) : g(x, y) ≥ z(u)} ,

where z(u) ∈ R` represents the lower-level right-hand side vector for the given
uncertainty realization u. In mathematical optimization, it is common to use one of
the following two variants to deal with data uncertainty.

(i) Uncertainties are assumed to take values in a given uncertainty set U .
Pursuing a robust approach, we hedge against the worst-case realization of
the uncertainties w.r.t. the leader’s optimal objective function value, i.e.,
we consider

min
x∈X

max
u∈U

min
y∈S(x,u)

F (x, y) s.t. G(x, y) ≥ 0.

Here, we consider the robust optimistic case in which the leader may
influence the follower’s decision in her favor. However, the consideration of
other solution concepts is also possible for uncertain bilevel problems. For
instance, the most conservative situation in which the leader anticipates a
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Table 1. Central Notation.

Sets

X ⊆ Rnx Set of all admissible upper-level decisions
X (x) ⊆ Rnx (Imperfectly) perceived upper-level feasible region
X̄ ⊆ Rnx Upper-level feasible region without coupling constraints
Y ⊆ Rny Set of all admissible lower-level decisions
U Uncertainty set
Ω Finite set of possible scenarios

Variables

x ∈ X Upper-level decision
x̄ ∈ X (x) (Imperfectly) observed upper-level decision
u ∈ U , ω ∈ Ω, z Uncertainty realization
y = y(x) ∈ Y Lower-level response for given x
y(x, u), y(x, ω) ∈ Y Lower-level response for given x and uncertainty realiza-

tion u or ω

Functions

F, f : Rnx × Rny → R Upper and lower-level objective functions
G : Rnx × Rny → Rm Upper-level constraints
g : Rnx × Rny → R` Lower-level constraints
ϕ : X → R Lower-level optimal-value function

Point-to-Set Mappings

Y (x) Lower-level feasible set for given x
S(x) Set of optimal lower-level solutions for given x
S(x, u), S(x, z) Set of optimal lower-level solutions for given x and uncer-

tainty realization u or z
S(x, ε) Set of ε-optimal lower-level solutions for given x with ε > 0

pessimistic follower w.r.t. her objective function as well as her constraints
is given by

min
x∈X

max
u∈U

max
y∈S(x,u)

F (x, y) s.t. G(x, y) ≥ 0 for all y ∈ S(x, u).

Eventually, the application at hand dictates which model is appropriate.
(ii) Adopting a stochastic approach, it is assumed that the uncertainties can

be described by a given probability distribution. Here, we hedge against
uncertainties in a probabilistic sense by optimizing, e.g., the expected value.
In line with all the existing literature on stochastic bilevel optimization
(see also Section 3.1), we focus on the setting without coupling constraints,
i.e., there are no upper-level constraints that explicitly depend on y. Hence,
we solve

min
x

Eu [Φu(x)] s.t. x ∈ X, G(x) ≥ 0

with
Φu(x) := min

y∈S(x,u)
F (x, y).

In both cases, we consider the timing

leader x y uncertainty u y follower y = y(x, u).
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This means that the leader first takes a here-and-now decision, i.e., without knowing
the realization of uncertainty. Then, the uncertainty realizes and, finally, the
follower decides in a wait-and-see manner, taking the leader’s decision as well as the
realization of the uncertainty into account. However, other timings are possible as
well, for instance, if we consider problems of the form

min
x,y

F (x, y)

s.t. G(x, y) ≥ 0, x ∈ X,
y ∈ arg min

ȳ∈Y
{f(x, ȳ) : g(x, ȳ) ≥ z(u) for all u ∈ U} .

This is another robust bilevel optimization problem but this time, the leader takes a
here-and-now decision and the follower also decides before the uncertainty realizes.
The decision of the follower is robust in the sense that it is required to remain
feasible for all possible realizations of the uncertainty. Hence, one considers the
timing

leader x y follower y = y(x) y uncertainty u. (3)
So far, we have discussed the case of lower-level right-hand side uncertainty. Of
course, data uncertainty may also occur at other locations of the problem such as,
e.g., in the upper-level problem’s data or in the objective function of the follower.
The following examples illustrate robust and stochastic approaches to deal with
uncertain data at various locations of the lower-level problem.

Example 1. Let us consider the linear bilevel problem

min
x,y∈R

F (x, y) = x− 4y (4a)

s.t. x− y ≥ −1, (4b)
3x+ y ≥ 3, (4c)
y ∈ S(x), (4d)

where S(x) denotes the set of optimal solutions of the x-parameterized lower-level
problem

min
y∈R

f(x, y) = −0.1y (5a)

s.t. − 2x+ y ≥ −7, (5b)
− 3x− 2y ≥ −14, (5c)
0 ≤ y ≤ 2.5. (5d)

The problem is depicted in Figure 1 (left). The upper- and lower-level con-
straints are represented with dashed and solid lines, respectively. The optimal solu-
tion (x, y) = (1.5, 2.5) of the deterministic bilevel problem (4) and (5) is illustrated
by the thick dot. Suppose now that the lower-level objective function is uncertain. We
follow a robust approach and assume that the follower decides in a here-and-now fash-
ion, i.e., we consider the timing in (3). The uncertain objective function coefficient is
assumed to take values in the uncertainty set U = {−0.1 + ζ : |ζ| ≤ 0.5} = [−0.6, 0.4],
which leads to a modified gradient of the lower-level objective function. This effect
is shown in Figure 1 (right). The optimal solution of the uncertain bilevel problem
is represented by the thick square. In particular, we obtain a completely different
solution than in the deterministic case if we take data uncertainty into account. Let
us further point out that, in this example, we do not have to distinguish between
the optimistic and the pessimistic case since the solution of the (robust) lower-level
problem is unique for every feasible x.
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Figure 1. Both figures show the upper-level constraints (dashed
blue lines), the lower-level constraints (solid black and red lines),
the shared constraint set (yellow area), and the bilevel feasible set
(solid red lines) of the bilevel problem (4) and (5). The deterministic
variant of the problem is depicted on the left and the variant of
the problem that accounts for a robust modeling of an uncertain
lower-level objective function f̃ is given on the right.

Example 2. Consider the linear bilevel problem

min
x,y∈R

F (x, y) = −y s.t. x ≥ 0, y ∈ S(x), (6)

where S(x) denotes the set of optimal solutions of the x-parameterized lower-level
problem

min
y≥0

f(x, y) = y (7a)

s.t. x+ y ≥ 1, (7b)
− x+ y ≥ −1, (7c)
− 2x− y ≥ −4. (7d)

The problem is depicted in Figure 2. The upper- and lower-level constraints are
represented with dashed and solid lines, respectively. The unique optimal solu-
tion (x, y) = (0, 1) of the deterministic bilevel problem (6) and (7) is illustrated by
the thick dot. Suppose now that the right-hand side of Constraint (7c) is uncertain.
We pursue a stochastic approach and assume that the right-hand side b(ω) ∈ R
depends on the scenario ω ∈ Ω = {ω1, ω2} with b(ω1) = −1 and b(ω2) = −1/2. We
further assume that both scenarios have probability p1 = p2 = 1/2. We start by
considering each scenario individually. Note that the realization of ω1 corresponds
to the deterministic setting. Hence, the unique optimal solution for scenario ω1 is
given by (x, y1) = (0, 1). Here and in what follows, we set yi = y(ωi) for i = 1, 2.
The realization of scenario ω2 leads to a parallel shift of the uncertain lower-level
constraint. This effect is shown in Figure 3 (left). It can also be seen that the
solution is not unique anymore if scenario ω2 is considered. Both (0, 1) and (3/2, 1)—
which are illustrated by the thick dot and the thick square, respectively—yield an
optimal objective function value of −1. To hedge against lower-level right-hand side
uncertainty, we optimize the expected value of the upper-level objective function, i.e.,
we solve

min
x,y1,y2∈R

−p1y1 − p2y2 s.t. x ≥ 0, y1 ∈ S(x, ω1), y2 ∈ S(x, ω2). (8)
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Figure 2. The upper-level constraint (dashed blue line), the lower-
level constraints (solid black and red lines), the shared constraint
set (yellow area), and the bilevel feasible set (solid red lines) of the
bilevel problem (6) and (7).

The unique solution for the variant of Problem (6) and (7) with lower-level right-
hand side uncertainty is given by (x, y1, y2) = (0, 1, 1). Despite the consideration of
data uncertainty, the overall bilevel solution does not change significantly compared
to the deterministic setting. However, the following shows that this may not always
be the case.

To this end, we focus on the stochastic modeling of uncertain constraint coef-
ficients in (7c). The constraint coefficients a(ω) ∈ R2 are assumed to depend on
the scenario ω ∈ Ω = {ω1, ω2} with a(ω1) = (−1, 1) and a(ω2) = (−3/2, 1/2). We
further assume that scenario ω1 has probability p1 = 1/3, whereas ω2 has probabil-
ity p2 = 2/3. Again, the realization of scenario ω1 corresponds to the deterministic
setting. Thus, the unique optimal solution for scenario ω1 is given by (x, y1) = (0, 1).
The setting in which scenario ω2 realizes is shown in Figure 3 (right). The unique
optimal solution (x, y2) = (6/5, 8/5) is illustrated by the thick square. Hedging
against data uncertainty by optimizing over the expected value yields the unique
overall stochastic bilevel solution (x, y1, y2) = (6/5, 1/5, 8/5), which can be obtained
by solving the corresponding scenario-expanded formulation (8). In particular, the
solution is attained at a completely different vertex of the bilevel feasible set than in
the deterministic case.

2.2. Decision Uncertainty. Decision uncertainty refers to the case in which the
players may face uncertainties regarding the decision of the other player. For
instance, the follower may lack the ability or the resources to obtain an optimal
solution and, thus, takes a “satisfactory” solution instead of an optimal one. For a
given leader’s decision x, this can be modeled using the set of ε-optimal reactions of
the follower, which is given by

S(x, ε) = {y ∈ Y : g(x, y) ≥ 0, f(x, y) ≤ ϕ(x) + ε} , ε > 0,

where
ϕ(x) := min

y∈Y
{f(x, y) : g(x, y) ≥ 0}

denotes the lower-level’s optimal-value function. The parameter ε quantifies the
follower’s willingness to deviate from his optimal objective function value. As a
consequence of the follower’s ε-optimality, the leader is uncertain about the actual
response of the follower. The aim of the leader may thus be to hedge against the
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Figure 3. Variants of the bilevel problem (6) and (7) with lower-
level right-hand side uncertainty (left) and uncertain lower-level
constraint coefficients (right).

worst-case ε-optimal reaction of the follower, i.e., one studies the problem

min
x∈X

max
y∈S(x,ε)

F (x, y) s.t. G(x, y) ≥ 0 for all y ∈ S(x, ε). (9)

In particular, Problem (9) can be reformulated as a specific instance of the pessimistic
bilevel problem considered by Wiesemann et al. (2013).

Another reason for decision uncertainty may be the follower’s limited capability
to observe the decision of the leader. A reasonable assumption in this context,
however, may be that the follower has an insight into the leader’s scope of action.
One way to account for this type of decision uncertainty is the following modeling.
Let X (x) ⊂ Rnx denote the x-dependent set containing all possible decisions of the
leader, which is assumed to be known by the follower. Clearly, the actual decision x
of the leader belongs to X (x). The follower then takes his decision to hedge against
all possible leader decisions x̄ ∈ X (x), e.g., by pursuing a robust approach that
leads to the bilevel model

min
x,y

F (x, y)

s.t. G(x, y) ≥ 0, x ∈ X,

y ∈ arg min
ȳ∈Y

{
max
x̄∈X (x)

f(x̄, ȳ) : g(x̄, ȳ) ≥ 0 for all x̄ ∈ X (x)

}
with a robustified follower’s objective function and a robustified feasible set of the
lower-level problem.

Example 3. To illustrate some modeling approaches for decision uncertainty dis-
cussed so far, we consider the following example taken from Beck and Schmidt (2021)
and Besançon et al. (2019):

min
x,y∈R

F (x, y) = x− 10y (10a)

s.t. x− 4y ≥ −11, (10b)
− x− 2y ≥ −13, (10c)
x ≥ 0, y ∈ S(x). (10d)
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Figure 4. The upper-level constraints (dashed blue lines), the
lower-level constraints as well as the bilevel feasible set (solid red
lines), and the shared constraint set (yellow area) of the bilevel
problem (10) and (11).

Here, S(x) again denotes the set of optimal solutions of the x-parameterized lower-
level problem, which is given by

min
y∈R

f(x, y) = y (11a)

s.t. 2x+ y ≥ 5, (11b)
− 5x+ 4y ≥ −30, (11c)
y ≥ 0. (11d)

The deterministic bilevel problem (10) and (11) is depicted in Figure 4. Again,
the upper- and lower-level constraints are represented with dashed and solid lines,
respectively, and the optimal solution (x, y) = (1, 3) of the problem is illustrated by
the thick dot. Note that, in the deterministic case, the solid lines also correspond to
the bilevel feasible set. The modeling of an ε-optimal follower leads to a parallel shift
of the upper-level constraints since the leader needs to make sure that her decision
remains feasible for every ε-optimal decision of the follower. Hence, the bilevel
feasible set is reduced as it can be seen in Figure 5 (left) for ε = 0.5. The optimal
solution of the bilevel problem (10) and (11) with an ε-optimal follower is given by
the thick dot.

To illustrate the effect of a follower with limited capability to perfectly observe the
actual decision x of the leader, let us assume that the perceived leader’s decision x̄
belongs to the uncertainty set X (x) = {x+ ζ : |ζ| ≤ 0.5}. Similar to the setting with
an ε-optimal follower, pursuing a robust approach to account for limited observability
reduces the bilevel feasible set as it can be seen in Figure 5 (right). Here, however,
the consideration of limited observability leads to a parallel shift of the lower-level
constraints that explicitly depend on the variable of the leader. The reason is that,
in this setting, the follower makes a decision, which must be feasible for all possible
realizations of the leader’s decision. The optimal solution of the bilevel problem (10)
and (11) with a follower who cannot perfectly observe the actual decision of the
leader is illustrated by the thick square.

To sum up, the consideration of uncertainties in bilevel optimization may impact
the solution of the problem significantly. Moreover, the obtained solution depends on
the specific modeling of uncertainty that is taken into account. Hence, uncertainties
are important to be considered—especially if decision makers are involved who are
subject to bounded rationality.
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Figure 5. Both figures show the shared constraint set (yellow
area) and the bilevel feasible set (red lines) of the linear bilevel
problem (10) and (11) with an ε-optimal follower with ε = 0.5
(left) and the variant of the problem with a follower facing limited
observability (right).

Apart from the aforementioned aspects, there are many other modeling approaches
to account for uncertainties in bilevel optimization for which we provide an in-depth
discussion in the following sections.

3. Different Approaches to Account for Uncertainty

3.1. Stochastic Bilevel Problems. To the best of our knowledge, the first series of
papers on stochastic bilevel problems are the ones by Patriksson and Wynter (1999,
1997); see also Christiansen et al. (2001) for a follow-up paper. Before we review
the stochastic setups discussed in these papers, let us first state the deterministic
problem, which the authors call a “generalized” bilevel optimization problem since
the lower-level is given by a variational inequality problem. To define this, we
consider a bilevel setting in which no coupling constraints are present, i.e., there are
no upper-level constraints that explicitly depend on the follower’s variables. Further,
we consider the function T : X × Rny → Rny and the lower-level feasible set Y (x).
Then, the variational inequality problem is to find a point y∗ ∈ Y (x) such that

T (x, y∗)>(y − y∗) ≥ 0 for all y ∈ Y (x) (12)

holds for a given leader’s decision x ∈ X. In the cited papers, the authors state this
problem in a geometric way by using normal cones. To this end, let Y (x) be convex
for all possible leader decisions x ∈ X. We call a vector v a normal of the convex
set Y (x) at a point ȳ ∈ Y (x) if

v>(y − ȳ) ≤ 0 for all y ∈ Y (x)

holds. The set of such vectors is then denoted by NY (x)(ȳ) and is called the normal
cone to Y (x) at ȳ. Having this notation at hand, we can re-write the variational
inequality (12) as

− T (x, y∗) ∈ NY (x)(y
∗). (13)

For more background on variational analysis we refer the interested reader to
Rockafellar and Wets (1998). Hence, the overall deterministic, generalized bilevel
problem is given by

min
x∈X

F (x, y) s.t. − T (x, y) ∈ NY (x)(y).
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The classic, i.e., non-generalized, bilevel problem is covered since for continuously
differentiable and pseudo-convex lower-level objective functions f as well as non-
empty, closed, and convex lower-level feasible sets Y (x), the minimum principle
ensures that the parameterized variational inequality (13) characterizes the global
optimal solutions of the parameterized lower-level problem

min
y

f(x, y) s.t. y ∈ Y (x)

if one identifies T (x, y) = ∇yf(x, y) and Y (x) = {y ∈ Rny : g(x, y) ≥ 0}.

3.1.1. Risk-Neutral Models. In Patriksson and Wynter (1997), the authors general-
ize traditional two-stage2 stochastic problems to generalized bilevel optimization
problems under uncertainty. They illustrate this novel class of problems using an
example from the field of traffic equilibrium modeling that includes uncertain travel
demands as stochastic parameters. As a solution approach, the authors propose a
descent method that uses sensitivity analysis to obtain derivatives for setting up
search directions, a line-search method (of Armijo-type) to get step sizes, and a
projection onto the feasible set of the upper-level player to obtain a new iterate.

In Patriksson and Wynter (1999), the same authors consider stochastic mathe-
matical programs with equilibrium constraints (SMPECs)—a class of problems that
comprises stochastic bilevel problems if compact optimality conditions such as the
Karush–Kuhn–Tucker (KKT) conditions or the above minimum principle are both
necessary and sufficient for lower-level optimality. We refer the reader to Lin and
Fukushima (2010) for a survey on SMPECs. Given the deterministic setup above,
the stochastic and risk-neutral counterpart reads

min
x∈X

Eω [F (x, y(ω))] , (14)

where for all ω ∈ Ω,

y(ω) ∈
{
y ∈ Rny : − T (x, ω, y) ∈ NY (x,ω)(y)

}
(15)

denotes the solutions of the lower-level variational inequality problem, which is
parameterized by the upper-level decision x and the random variable ω. We
recover the stochastic bilevel problem by identifying T (x, ω, y) = ∇yf(x, ω, y) and
Y (x, ω) = {y ∈ Rny : g(x, ω, y) ≥ 0}. As usual, the random variable ω is defined
on a probability space (Ω,F ,P). The timing covered by the problem given in (14)
and (15) is the following. The leader first takes her decision in a here-and-now
manner, then the uncertainty realizes and, finally, the follower decides based on the
realization of uncertainty and the leader’s decision. Hence, we consider the timing

leader x y uncertainty ω y follower y = y(x, ω) (16)

and the considered stochastic setting is risk-neutral since the expected value is
minimized in the upper-level objective function. The presented theoretical results
in Patriksson and Wynter (1999) are concerned with existence of solutions as
well as convexity and directional differentiability of the (implicitly defined) upper-
level objective function. Finally, a subgradient descent method is sketched that
follows the main ideas already discussed for the special case in Patriksson and
Wynter (1997). Going further, Patriksson (2008a,b) again considers SMPECs
(in the context of equilibrium problems from structural optimization and traffic
assignment problems) and shows that, under some additional assumptions, the
SMPEC solutions continuously depend on the probability distribution used to model
the uncertainty in the lower-level problem. Note that the author calls this continuity

2Here and in what follows, we try to clearly distinguish between “stages” and “levels”, where
“stages” always refer to stages as considered in, e.g., two-stage stochastic optimization, whereas
“levels” are always used in the sense of multilevel optimization, e.g., as in bilevel optimization.
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property “robustness”, which has nothing to do with robustness in the sense of robust
optimization. The papers discussed so far do not contain any numerical results.

In Christiansen et al. (2001), the authors study stochastic bilevel problems for
truss topology optimization problems in which the external load applied to the truss
is uncertain and the random variables are assumed to be discrete and finite. Hence,
a finite set of scenarios is considered. Using classic inf-compactness assumptions, i.e.,
lower semicontinuity and bounded level sets of the upper-level objective function,
existence of solutions is shown. This is extended by an existence result without
requiring inf-compactness. However, additional and problem-specific assumptions
are used such as that the upper-level objective function is quadratic, which then
allows to invoke the classic existence theorem by Frank and Wolfe (1956). As in the
other papers discussed so far, the authors derive further results on the directional
differentiability of the implicitly given upper-level objective function to design a
subgradient method that further exploits parallelization across the scenarios. In
contrast to the papers discussed before, Christiansen et al. (2001) also present a
small numerical case study for a stochastic truss topology optimization problem.

These early results on stochastic bilevel optimization are wrapped up in the
handbook chapter by Wynter (2008). Again, existence of optimal solutions is
discussed for the case of a discrete set of scenarios. Moreover, sufficient conditions
for the convexity of stochastic bilevel problems are given as well. Convexity, however,
is only possible if the upper-level problem does not contain any coupling constraints
and if the objective function of the upper level only depends on the optimal value of
the lower level and not on the follower’s decision itself. As already done in the original
works discussed above, the author also collects sufficient conditions that ensure
that the upper-level objective function is Lipschitz continuous and directionally
differentiable. The handbook chapter closes with a sketch of the subgradient method
from the previously discussed original works.

The above mentioned parallelization techniques are a special case of decomposition
methods that are very prominent in the literature on stochastic optimization; cf.,
e.g., the L-shaped and other Benders-inspired decomposition methods for two- or
multistage stochastic optimization; see, e.g., Birge and Louveaux (2011), Fischetti,
Ljubić, and Sinnl (2016, 2017), Rahmaniani et al. (2018), and Van Slyke and Wets
(1969). These decomposition techniques have also been carried over to the case
of stochastic MPECs. For this, see, e.g., Shapiro and Xu (2008), where scenario
generation techniques are discussed to obtain a finite-dimensional deterministic
equivalent (which is a deterministic MPEC or bilevel optimization problem) with
separate blocks of follower decisions for each realization of the uncertainty. Such
block structures are then exploited by decomposition methods. For an overview of
these methods, we refer the reader to the PhD thesis by Henkel (2014), where a
broad literature review is given w.r.t. what has been published up to 2014. The PhD
thesis itself studies both the classic KKT as well as the optimal-value reformulation
for stochastic bilevel problems with discrete and finite probability distributions.
Based on the KKT approach, an integer-programming based method is designed and
evaluated that also uses problem-tailored decomposition techniques. The numerical
results contain instances with up to 20 scenarios and with up to 20 lower-level
variables.

Rather recently, Bolusani et al. (2020) consider the similarities between multilevel
mixed-integer linear optimization and multistage stochastic mixed-integer linear
optimization with recourse. For the bilevel stochastic setting mentioned above
(with a discrete set of scenarios, a wait-and-see follower, and a risk-neutral leader),
they exploit the block-angular structure of the bilevel deterministic equivalent and
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propose both a Benders-like decomposition as well as a cutting-plane method. These
methods are also implemented in MibS; see Tahernejad (2019).

Note that for a risk-neutral here-and-now follower and with a given set of discrete
scenarios, one can easily turn bilevel two-stage stochastic optimization problems
into their bilevel deterministic counterparts as it is done in two-stage stochastic
optimization. Hence, any general purpose solver for deterministic bilevel problems
(see, e.g., Fischetti, Ljubić, Monaci, et al. (2017) or MibS by Tahernejad et al. (2020),
see https://coin-or.github.io/MibS/) can be used for that purpose.

3.1.2. Bilevel Models with a Quantile Criterion. Another branch of research does
not consider the optimization of an expected value in the leader’s objective function
but studies a quantile criterion that ensures that a certain upper-level objective
function value is not exceeded with a given probability. In different application
contexts, these settings have been considered first in Chen et al. (2007) and Katagiri
et al. (2014) and the first theoretical analysis has been carried out, to the best of
our knowledge, by Ivanov (2014). The mathematical setup is given as follows. The
lower-level solution set is given by

S(x, z) = arg min
y

{
d>y : Dy ≥ z − Cx, y ≥ 0

}
,

where z ∈ Z is a realization of a random vector. For the ease of presentation, we
omit to state the dimensions of all vectors and matrices. With this at hand, the
so-called loss function of the leader is defined as

Φ(x, z) =

{
miny∈S(x,z) c

>
y y, if S(x, z) 6= ∅,

+∞, if S(x, z) = ∅,
and the corresponding α-quantile function reads

Φα(x) = min {ϕ : P(Φ(x, Z) ≤ ϕ) ≥ α} ,
where P(·) is the probability measure induced by the distribution of the random
vector Z. Finally, the bilevel optimization problem with a quantile criterion is given
by

min
x∈X

c>x x+ Φα(x).

The paper first presents theoretical results regarding Lipschitz continuity of the
leader’s loss function. After also proving the continuity of the corresponding quantile
function, an existence result is obtained. Finally, the paper shows that the studied
problem can be reformulated as a single-level mixed-integer linear optimization
problem in the case of a discrete and finite distribution of the random variables. To
this end, the classic linearization technique by Fortuny-Amat and McCarl (1981)
is used, including the choice of sufficiently large big-M values and by introducing
additional binary variables to linearize the KKT complementarity conditions. Finally,
a numerical case study is presented with 2 upper-level and 3 lower-level variables
as well as 4 upper-level and 2 lower-level constraints. The number of considered
scenarios is 25.

The paper by Dempe, Ivanov, et al. (2017) builds on Ivanov (2014) and generalizes
the setting. Again, a stochastic bilevel problem with a quantile criterion is considered
in which the lower-level problem depends on the realization of a random vector and
on the leader’s decision. In contrast to Ivanov (2014), the authors now consider the
so-called “a priori statement” of the problem, meaning that the follower’s decision
variables are chosen from a set of functions depending on random parameters,
whereas the so-called “a posteriori statement” is studied in Ivanov (2014). Hence,
Dempe, Ivanov, et al. (2017) study the timing

leader x y follower y = y(x) y uncertainty ω, (17)

https://coin-or.github.io/MibS/
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which differs significantly from the one in (16) since the follower now also takes
his decision before the uncertainty is realized. In Dempe, Ivanov, et al. (2017),
the leader’s problem can be nonlinear and the follower’s problem is linear in the
follower’s variables. The authors establish a mixed-integer nonlinear single-level
reformulation for the case that the random vector has a finite set of realizations and
propose assumptions under which an optimal solution of the original problem exists.
The numerical case study considers a single academic instance of roughly the same
size as in Ivanov (2014).

In contrast to Ivanov (2014), where only the lower-level feasible set is affected by
randomness, in Ivanov (2018), the setting is studied in which the randomness affects
the objective function of the lower-level problem in a way such that its objective
function is linear for a given realization of uncertainty and a given leader’s decision.
The lower level’s feasible set, however, is both independent of the leader’s decision
as well as of the realization of uncertainty. The leader again minimizes a quantile
function of her loss function depending on the leader’s and the follower’s decision.
It is shown that the lower-level problem has a unique solution (with probability
1) if the distribution is absolutely continuous and if the lower-level’s feasible set is
non-empty and bounded. The loss function is proven to be lower semicontinuous,
which implies that the overall bilevel problem with a quantile criterion has an
optimal solution if the upper-level’s feasible set is non-empty and bounded as well.
The quantile function itself, however, is not continuous. Finally, sample average
approximation is applied and the convergence of its limit points is shown before a
small-scale optimal tax rate problem is considered in a case study.

3.1.3. Convex Risk Measures. The aforementioned models based on a quantile
criterion just discussed can be seen as models that incorporate some kind of risk
measure. In the case of quantiles, these risk measures (such as the value-at-risk;
VaR) are not convex. The key idea of incorporating risk measures in the upper-level’s
objective function of stochastic and linear bilevel problems (such as the quantile
function in the previous section) is also studied in Burtscheidt, Claus, and Dempe
(2020), where the setting of law-invariant, convex, and coherent risk measures is
considered for uncertainties in the right-hand side of the follower’s problem. More
formally, the considered problem is an optimistic parametric bilevel linear problem
of the form

min
x

{
c>x x+ min

y

{
c>y y : y ∈ S(x, z)

}
: x ∈ X

}
with a parameter z and the lower-level solution set mapping

S(x, z) = arg min
y

{
d>y : Dy ≥ z − Cx

}
.

The stochastic bilevel problem is then obtained by assuming that the parameter z =
Z(ω) is the realization of a random vector Z defined on a probability space (Ω,F ,P).
Define now

G = {(x, z) : ∃y with Dy ≥ z − Cx}
to be the set of all upper-level decisions and parameters so that there is a feasible
lower-level solution. Moreover, set

F (x, z) = c>x x+ min
y

{
c>y y : y ∈ S(x, z)

}
as an abbreviation for the upper-level objective function in dependence of the leader’s
decision x and the parameter z. An additional nonanticipativity constraint then
leads us to the timing in (16), i.e., the leader takes a here-and-now decision while
the follower takes a wait-and-see decision. Further, denote the Borel probability
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measure induced by the random vector Z by µZ = P ◦Z−1. With this, it is assumed
that

X ⊆ {x : (x, z) ∈ G for all z ∈ supp(µZ)} ,
i.e., there exists a lower-level feasible point for all possible leader decisions and
all realizations of uncertainty. After fixing properly chosen function spaces and a
suitable risk measure R, the stochastic bilevel problem is given by

min
x

R[F (x, Z(·))] s.t. x ∈ X.

The class of considered risk measures includes, among others, the expected value,
the conditional value-at-risk (CVaR), or a worst-case risk measure. Note that the
latter includes the case of robust and linear bilevel problems. The key results
of the paper are about (local) Lipschitz continuity of the upper-level objective
function. Moreover, differentiability results are given for those risk measures that
are based on expectations. For the case of discrete and finite distributions, equivalent
deterministic bilevel problems are derived for the expectation-based risk measures.
Finally, the MPCC regularization strategy proposed by Scholtes (2001) is applied
to the KKT reformulation of the deterministic equivalent and a convergence result
for the limit points of this regularization approach is proven.

Most of the content presented in Burtscheidt, Claus, and Dempe (2020) can also
be found in the book chapter by Burtscheidt and Claus (2020), where the same
class of problems is considered. The new content given there is about stochastic
dominance constraints. Moreover, equivalent deterministic counterparts are proven
for some of the cases that have not been included in Burtscheidt, Claus, and Dempe
(2020).

In a follow-up paper, Claus (2021a) considers the same risk-neutral setting as
in Burtscheidt, Claus, and Dempe (2020) and the first-order necessary optimality
conditions for the risk-neutral case from the latter paper are accompanied by second-
order sufficient conditions. It was known from Burtscheidt, Claus, and Dempe
(2020) that the expectation functional, i.e., the upper-level objective function in
the risk-neutral case, is continuously differentiable if the underlying probability
measure is absolutely continuous w.r.t. the Lebesgue measure. However, (even local)
Lipschitz continuity of the gradient may fail to hold under the assumptions used in
Burtscheidt, Claus, and Dempe (2020). The main novel assumptions now are the
boundedness of the support and the uniform boundedness of the Lebesgue density of
the probability measure, which ensure (as the main result of the paper) the Lipschitz
continuity of the gradient.

In the paper by Claus (2021c), the overall timing with a leader taking a here-and-
now decision, while the follower reacts in a wait-and-see manner, is kept but the way
how randomness enters the lower-level problem is different. Instead of considering a
stochastic right-hand side, the lower-level’s feasible set is now a fixed polyhedron
but the coefficients of the linear objective function of the follower are affected by
randomness. This still leads to the case that the upper-level objective function
value is a random variable itself that is parameterized by the leader’s decision. The
main result is the development of sufficient conditions for the existence of optimal
solutions for a wide class of risk measures, including the expected value, CVaR,
or the worst-case risk measure that leads to a robust and linear bilevel problem.
The main stepping stone towards this result is the proof of the continuity of the
risk functionals. Surprisingly, these sufficient conditions are the same both for
the optimistic and the pessimistic bilevel problem, which is not the case in the
deterministic setting.

The, up to now, last paper in this row of research is Claus (2021b) in which
the two settings considered so far are combined: randomness in the lower-level’s
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right-hand side as well as in its objective function coefficients. The results of Claus
(2021c) cannot be applied anymore since the extreme points of the lower-level’s
feasible set now depend on the realization of the randomness as well. However,
lower semicontinuity can be achieved for a class of functions derived from convex
risk measures. Further, a continuity result is derived that can also be applied to the
pessimistic case as well. These continuity properties can then, as usual, be used to
obtain existence results under further but classic compactness assumptions. As it is
the case for all other papers discussed so far in this subsection, the paper does not
contain any numerical results.

In Burtscheidt, Claus, Conti, et al. (2021), the same analytical spirit is followed
but is now brought to the field of pessimistic and stochastic bilevel optimization.
Again, continuity results are derived in order to finally obtain an existence result.
After these theoretical developments, the authors study an applied problem from
the field of mechanical shape optimization that is modeled as a pessimistic and
stochastic bilevel problem and also present some numerical results.

3.1.4. Chance Constraints. Up to now, all papers except for Dempe, Ivanov, et al.
(2017) studied the timing in (16). In the case of the other timing (17), fulfilling the
random lower-level constraints cannot be guaranteed almost surely in general but
only with a certain probability. In a natural way, this leads to the use of probabilistic
or chance constraints.

To the best of our knowledge, the first combination of bilevel optimization and
chance constraints is studied in Kosuch et al. (2012). The authors study a standard
linear bilevel problem that is extended by a probabilistic knapsack constraint in the
upper-level problem. The setting is motivated by pricing applications in networks.
For finite probability distributions, the authors first derive a deterministic equivalent
formulation using additional binary variables and big-M constraints. This all takes
place in the upper-level problem and is completely independent of the lower level.
Afterward, the authors apply the classic mixed-integer linear reformulation by
Fortuny-Amat and McCarl (1981), leading to a mixed-integer linear single-level
problem. Based on this reformulation, a so-called min-max scheme is designed with
bounds obtained from suitably chosen Lagrangian relaxations. The authors present
numerical results for up to 1000 lower- and upper-level variables and for up to 100
scenarios.

From a more application-driven point of view, other chance-constrained bilevel
problems have been studied in Pramanik and Banerjee (2012) and Yang, Zhang, et al.
(2009). However, the only paper that we are aware of in which a chance constraint
is considered in the lower-level problem and in which, thus, the timing in (17) is
considered, is Heitsch et al. (2022). There, the chance constraint is shown to be
convex and oracles for function as well as gradient evaluations are provided while the
chance constraint itself cannot be stated in closed form. This setting is considered
as having a convex black-box function in the lower level which is then tackled by an
outer-approximation based cutting-plane method. However, since the lower-level
chance constraint can thus only by satisfied by a prescribed tolerance ε > 0, it does
not seem to be possible to prove anything about the upper-level objective function
value obtained by this method—an issue that is also considered in the recent paper
by Beck, Schmidt, et al. (2022) on continuous but nonconvex lower-level problems.

3.1.5. Knapsack Problems. The first paper on bilevel knapsack problems is Dempe
and Richter (2000), where the authors consider the problem in a purely deterministic
setting. The first paper combining the bilevel knapsack problem with random data
appeared ten years later (Özaltın et al. 2010). The setting is as follows. In the
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lower-level problem, the follower solves the knapsack problem

max
y

d>y s.t. a>y ≤ b(x, ω), y ∈ {0, 1}n, (18)

in which the knapsack’s capacity depends on the scenario ω ∈ Ω and on the scalar
leader’s decision x, where b is a non-decreasing function in x. Moreover, the leader
solves the problem

max
x∈R

Eω
[
c>y y(x, ω)− cxx

]
s.t. x ∈ [x−, x+] ⊂ R, y(x, ω) ∈ S(x, ω) for all ω ∈ Ω,

where S(x, ω) is the set of optimal solutions of the (x, ω)-parameterized problem (18).
Thus, the leader maximizes the value of the items in the knapsack (packed by the
follower) but has different values cy for the separate items, compared to the values d
of the follower. Consequently, we are again in the setting of (16), consider the
risk-neutral case, and the uncertainty is modeled by a finite set of scenarios. The
authors develop necessary and sufficient conditions for the existence of an optimal
solution. Under the additional assumption that the leader’s decision can only take
integer values, the problem is reformulated as a two-stage stochastic program with
binary first- and second-stage decisions that uses the optimal-value function of the
lower-level problem. For evaluating the subproblem of this two-stage stochastic
program, the authors design a so-called branch-and-backtrack algorithm and then,
using this sub-routine, develop a branch-and-cut method to solve the overall problem.
Computational results are reported on 16 randomly generated test instances with
up to 100 items and 200 scenarios.

Very recently, Buchheim, Henke, and Irmai (2022) considered the continuous
bilevel knapsack problem. Here, the lower-level problem is the continuous knapsack
problem

max
y

d(ω)>y s.t. a>y ≤ x, y ∈ [0, 1]n,

which depends on a random variable ω so that the lower-level’s objective function is
uncertain. The upper-level player then solves

max
x∈R

Eω
[
c>y y(x, ω)− cxx

]
s.t. x ∈ [x−, x+],

where y(x, ω) is a solution of the lower-level problem given above, which is param-
eterized by the uncertainty ω and the upper-level knapsack capacity decision x.
Hence, the leader has different values of the items to be packed and the follower’s
values of the items are uncertain for the leader. This models the risk-neutral
case—for a robust consideration of this setup, we refer the reader to Buchheim and
Henke (2022). The authors purely focus on complexity questions. The deterministic
problem is known to be solvable in polynomial time; see, e.g., Dempe, Kalashnikov,
et al. (2015). First, it is shown that the problem stays polynomial-time solvable if
the random variable has finite support, which needs to belong to the input of the
problem together with the corresponding probabilities. If, however, the random
variable has a finite and componentwise uniform distribution, the problem becomes
#P-hard, which is shown by a reduction from #Knapsack.3 The same hardness re-
sult holds true for continuous instead of finite, componentwise uniform distributions.
Moreover, even the evaluation of the upper-level objective function is #P-hard for
these two cases. Since these results all are hardness results in the weak sense, the
authors also derive tailored pseudo-polynomial time algorithms based on dynamic
programming. Finally, an additive approximation scheme is derived for arbitrary
continuous distributions with independent components. Open questions in this field

3The #-symbol indicates that the corresponding counting version of the given decision problem
is considered.
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are the consideration of risk measures other than the expected value as well as the
study of cases in which the uncertain lower-level coefficients are correlated.

3.1.6. General Mixed-Integer Stochastic Bilevel Problems. Except for Özaltın et al.
(2010), where the special situation of a bilevel knapsack problem is studied, no
other general mixed-integer stochastic bilevel problems have been considered until
the paper by Yanıkoğlu and Kuhn (2018) in which a stochastic bilevel problem is
studied with the following properties. The leader decides here-and-now and takes a
binary decision without knowing the follower’s objective function coefficients and
right-hand side. Moreover, the objective function coefficients for the follower’s
variables in the leader’s objective are unknown as well. The uncertainty then reveals
and the follower takes his continuous decision having full information. The main
focus is on the pessimistic setting, i.e., the bilevel problem at hand is given by

min
x∈X

sup
y∈L2

n

c>x x+ Eω
[
cy(ω)>y(ω)

]
s.t. y(ω) ∈ arg min

y′∈Rn

{
d(ω)>y′ : Ay′ ≤ b(x, ω)

}
.

Here, X ⊆ {0, 1}nx and L2
n is the set of all n-dimensional square-integrable functions

of ω. Hence, the risk-neutral setting with the classic timing (16) is considered but
in a rather general setting with randomness both in the upper- as well as in the
lower-level problem. The key results from this contribution are that the authors
develop both primal and dual decision rules to restrict the search space L2

n for the
lower-level answers from the point of view of the leader. Both bounding problems are
equivalent to MILPs that are not significantly harder than the nominal variant of the
original problem. The developed techniques are then applied to a facility location
problem with up to 35 locations. To the best of our knowledge, this paper is the
first one that specifically focuses on stochastic and pessimistic bilevel optimization
problems.

Even more recently, Zhang and Özaltın (2021) consider an even more complicated
setting w.r.t. the decision variables since they consider stochastic integer bilevel
problems, i.e., problems with purely integer variables both at the upper and the
lower level. However, they focus on the optimistic setting while claiming that the
developed techniques also work for the pessimistic case. Moreover, randomness only
appears in the lower-level’s right-hand side and has a discrete distribution with
finite support. Their solution approach is based on the value-function reformulation
and uses an integer complementarity slackness theorem that is extended to bilevel
integer programs. Using these approaches, they finally solve the given class of
problems using a tailored branch-and-bound method, which is tested on bilevel
facility interdiction problems with up to 200 constraints and 400 variables in the
lower level and with up to 50 000 scenarios. It turns out that the approach is
rather insensitive w.r.t. the number of scenarios but is sensitive w.r.t. the number
of random right-hand sides.

3.2. Robust Approaches to Model Data Uncertainty. To the best of our
knowledge, robust approaches to model uncertainties in the context of bilevel
optimization have been much less investigated compared to stochastic approaches.
For an overview of robust optimization techniques for single-level optimization, we
refer the reader to Ben-Tal, El Ghaoui, et al. (2009), Ben-Tal, Goryashko, et al.
(2004), Ben-Tal and Nemirovski (1998), Bertsimas, Brown, et al. (2011), and Soyster
(1973). In robust setups, it is assumed that uncertainties take values in a given
uncertainty set U . In single-level optimization, uncertainty sets are typically modeled
using geometries such as boxes, polyhedra, ellipsoids, or cones. When considered
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in a bilevel setting, however, the literature so far focuses mainly on either box or
polyhedral uncertainty sets.

Chuong and Jeyakumar (2017) study optimistic bilevel problems with linear
constraints and a linear lower-level objective function, while the objective of the
leader is a polynomial. They allow for interval uncertainties in the upper- and
lower-level constraints. Hence, the authors consider the problem

min
x,y

F (x, y)

s.t. Ãi·x+ B̃i·y ≥ ãi for all
(
Ãi·, B̃i·, ãi

)
∈ UL

i , i ∈ [m],

x ∈ Rnx , y ∈ S(x)

with [m] := {1, . . . ,m}. Here, uncertain parameters are emphasized by a tilde, Ãi·
denotes the ith row of the matrix Ã, and S(x) is the set of optimal solutions of the
robust lower-level problem

min
y

d>y

s.t. Cj·x+ D̃j·y ≥ b̃j for all
(
D̃j·, b̃j

)
∈ UF

j , j ∈ [`].

The uncertainty sets on the upper and the lower level are given by UL
i and UF

j ,
respectively. The matrix C is assumed to be certain. To solve the robust counterpart
of the problem, a sequence of single-level nonconvex polynomial relaxations of the
uncertain bilevel problem is introduced, which in turn can be reformulated as a
sequence of semidefinite linear problems. The authors show that the optimal values
of the relaxed problem converge to the robust global optimal value given that the
leader’s objective function is coercive and that the lower-level problem satisfies
Slater’s constraint qualification for every feasible decision of the leader and for every
possible realization of the uncertainty in the lower-level constraints.

Inuiguchi and Sariddichainunta (2016) and Sariddichainunta and Inuiguchi (2015)
consider linear bilevel problems with an uncertain follower’s objective vector lying
in a polytopal uncertainty set U . The uncertainties are modeled in the sense of
strict robustness, i.e., one hedges against the worst-case realization of all uncertain
data. Moreover, the pessimistic approach is considered in case there are multiple
robust follower’s responses. The overall considered problem is thus given by

max
x≥0

c>x x+ c>y y (19a)

s.t. (y, d) ∈ arg min
ȳ,d̄

{
c>y ȳ : (d̄)>ȳ ≥ z(x, d̄), d̄ ∈ U , Ax+Bȳ ≥ a, ȳ ≥ 0

}
(19b)

with
z(x, d) := max

y

{
d>y : Ax+By ≥ a, y ≥ 0

}
. (20)

The maximization problem in (20) denotes the lower-level problem for a given
realization of the uncertain parameter d ∈ U and of the given decision x of the
leader. Moreover, (19b) is used to account for a pessimistic follower as well as for
the worst-case realization of the uncertainty. To solve this type of problem, the
authors propose a vertex enumeration approach that combines the kth best method
(Bialas and Karwan 1984) with a feasibility and a local optimality test to speed up
the verification of global optimality. In the follow-up paper (Sariddichainunta and
Inuiguchi 2017), the authors introduce an inner approximation method for the global
optimality test and assess its efficiency in a computational study on 900 randomly
generated test instances with 5 upper- and up to 10 lower-level decision variables as
well as up to 40 constraints including the ones that describe the uncertainty set.

Uncertainties regarding the lower-level objective function are also considered in
Borrero et al. (2022) in the context of sequential optimistic linear bilevel problems in
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which the leader and the follower interact over multiple time periods. The follower’s
time-invariant objective function coefficients are initially unknown to the leader but
they are assumed to take values in a given uncertainty set. In each time period, the
leader may refine her perception of the uncertainty set by observing the follower’s
optimal response, which in turn is based on the leader’s decision given her current
knowledge of the problem data. Various mechanisms to update the uncertainty set
are proposed, which differ in the amount of information from the follower’s feedback
that is taken into account. The updating process may then characterize the leader’s
policy, which is a sequence of functions that map the information from previous
time periods, i.e., previous upper-level decisions and the observed feedback of the
follower, to a feasible leader’s decision in the current time period. The authors
discuss different policies of the leader that can be interpreted as a robust modeling
of a follower who is also uncertain about his objective function coefficients. Results
on the convergence of the leader’s policies to a full-information solution are provided
for different update mechanisms. Moreover, an upper bound on the number of time
periods necessary for said convergence is established, which is referred to as “time
stability”. In the worst-case, the upper bound may be exponential but the presented
computational results suggest that this bound is rather loose. To illustrate the
performance of the proposed policies, the authors provide numerical experiments
on 20 randomly generated road network instances with a layered topology with 4
layers and 4 nodes per layer. Further, experiments are performed on 3 variants
of the “infiltration network” near the Arizona-Mexico border with a network of
38 nodes and 109 arcs, which has been described in Unsal (2010).

Recently, Zhang, Liu, et al. (2022) are concerned with the existence of solu-
tions of uncertain multi-leader-multi-follower problems that are modeled as Nash–
Stackelberg–Nash games. Uncertainties arise in the objective functions of both the
leaders’ and the followers’ problems as well as in the strategy sets of the followers. In
the considered setting, the leaders first take a here-and-now decision that particularly
influences the description of the uncertainty set. Thus, the authors consider a special
type of decision-dependent uncertainty; see also Lappas and Gounaris (2018) and
Nohadani and Sharma (2018) for general works on decision-dependent uncertainty.
Then, the uncertainty realizes and, finally, the followers decide on their actions
taking the leaders’ decision as well as the realization of uncertainty into account. To
hedge against decision-dependent uncertainties, a worst-case approach is considered.

Buchheim and Henke (2020, 2022) are concerned with complexity questions for the
bilevel continuous knapsack problem in which the leader controls the capacity of the
knapsack and the follower faces uncertainties regarding the profits of the items. The
authors’ main focus is on the pessimistic setting and a worst-case oriented approach
is pursued to account for data uncertainty. Hence, the structure of the considered
problem is similar to the one in (19) and (20). While the deterministic problem can
be solved in polynomial time (Dempe, Kalashnikov, et al. 2015), the complexity
of the robust variant of the problem strongly depends on the considered type of
the uncertainty set. First, the authors show that the robust counterpart remains
solvable in polynomial time for discrete uncertainty sets as well as for interval
uncertainty under the independence assumption, i.e., if the follower’s objective
function coefficients independently take values in given intervals. However, the
problem is NP-hard if the uncertainty set is the Cartesian product of discrete sets.
In particular, this means that replacing the uncertainty set by its convex hull can
significantly change the problem in the bilevel context, which is in contrast to the
situation in single-level optimization. NP-hardness is also shown for the variants of
the problem with polytopal uncertainty sets and uncertainty sets that are defined
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by a p-norm with p ∈ [1,∞). Moreover, even the evaluation of the leader’s objective
function is NP-hard for the latter three cases.

The complexity of robust bilevel combinatorial problems with a linear follower
facing an uncertain objective function is addressed in Buchheim, Henke, and Hom-
melsheim (2021). Again, bilevel problems similar in structure to the one in (19)
and (20) are considered. The deterministic variant of the problem is known to be NP-
easy.4 It is shown that interval uncertainty renders the bilevel problem significantly
harder than the consideration of discrete uncertainty sets. To be more precise, the
robust counterpart can be ΣP2 -hard for interval uncertainty under the independence
assumption, whereas it can be NP-hard for uncertainty sets U with |U| = 2 and
strongly NP-hard for general discrete uncertainty sets. In particular, it is shown
that replacing the discrete uncertainty set by its convex hull may increase the
complexity of the problem at hand, which is in line with the results in Buchheim
and Henke (2020, 2022).

All papers discussed so far deal with data uncertainties in the sense of strict
robustness. Beck, Ljubić, et al. (2022) propose a Γ-robust approach for mixed-integer
linear min-max problems with lower-level data uncertainty. They follow the notion
of Γ-robustness introduced by Bertsimas and Sim (2003, 2004) to account for an
uncertain follower’s objective, i.e., they study the problem

min
x

c>x+ d>y

s.t. Ax ≥ a, x ∈ X ⊆ Znx ,

y ∈ arg max
ȳ∈Y (x)

{
d>ȳ − max

{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆diȳi

}
with Γ ∈ [ny] and the lower-level feasible set Y (x) ⊆ Zny+ . Furthermore, uncertain-
ties in a single packing-type constraint are considered. Two approaches to model
this situation are presented—an extended formulation and a multi-scenario formula-
tion. In particular, the authors establish that the Γ-robust bilevel problem can be
interpreted as a single-leader-multi-follower problem with independent followers in
the case that all of the follower’s variables are binary. A branch-and-cut framework
to solve the robustified bilevel problem is proposed. As an application, the authors
consider the knapsack interdiction problem for which problem-tailored cuts are
provided; see, e.g., Section 4.2. The authors conduct a computational study on
200 robustified knapsack interdiction instances with up to 55 items, which are based
on the nominal instances described in Caprara et al. (2016).

3.3. Lower-Level Near-Optimality. In the classic setting of bilevel optimization,
it is assumed that the leader anticipates an optimal reaction of the follower. In many
practical applications, however, exact solutions of the lower-level problem cannot be
expected. Possible reasons might be that an exact solution cannot be obtained in
a reasonable amount of time or that there is simply no exact solution method to
solve the problem at hand. Hence, the follower will take any “satisfactory” decision
instead of an optimal one, i.e., one considers the set of ε-optimal follower’s decisions

S(x, ε) = {y ∈ Y : g(x, y) ≥ 0, f(x, y) ≤ ϕ(x) + ε} , ε > 0,

for a feasible decision x of the leader. Here, the parameter ε specifies the follower’s
willingness to deviate from his optimal objective function value. Since the leader faces
response uncertainty due to the follower’s near-optimality, this modeling approach
accounts for decision uncertainty w.r.t. the lower-level player. This is in contrast to
the concepts presented in the previous sections that cover data uncertainty.

4A decision problem is NP-easy if it can be polynomially reduced to an NP-complete decision
problem (Buchheim, Henke, and Hommelsheim 2021).
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Different approaches to deal with an ε-optimal follower have been studied in the
literature. Maybe the first appearance of an ε-optimal follower can be found in
Loridan and Morgan (1989), where the ε is used as a regularization parameter in
order to prove existence results for the bilevel problem at hand.

Besançon et al. (2019) consider the effect of near-optimality on the upper-level
constraints by exploiting a robust approach to hedge against deviations from the
optimal reaction of the follower. In this setting, an optimal solution of the overall
bilevel problem is required to remain feasible for all ε-optimal follower’s decisions.
To this end, the leader hedges against the worst-possible reaction of the follower by
considering the problem

min
x,z

F (x, z)

s.t. f(x, z) ≤ ϕ(x), g(x, z) ≥ 0, x ∈ X, z ∈ Y,
min
y
{G(x, y) : y ∈ S(x, ε)} ≥ 0.

Here, the leader controls the variables z that model the follower’s optimal response,
i.e., z ∈ S(x, 0) ⊆ S(x, ε), and the upper-level constraints are protected against
ε-optimal follower’s decisions in a robust way. Based on the Karush–Kuhn–Tucker
(KKT) conditions of the lower-level problem, a single-level reformulation of the
bilevel problem with an ε-optimal follower is provided if the lower level is a convex
problem. Finally, the authors propose a solution method for purely linear near-
optimal robust bilevel problems. The applicability of the proposed method is
assessed in a computational study on 1200 randomly generated linear near-optimal
robust bilevel instances with up to 20 variables and 20 constraints each on the upper
and the lower level.

The complexity of near-optimal robustness concepts is analyzed in Besançon et al.
(2021). The authors not only consider near-optimal robust bilevel problems but
also investigate general multilevel optimization problems with an ε-optimal decision
maker at an arbitrary lower level of the problem. Under suitable assumptions, they
show that the robust modeling of near-optimality at a lower level remains in the
same complexity class as the problem without uncertainty.

Motivated by military and law-enforcement applications, Zare, Özaltın, et al.
(2018) consider bilevel problems with a follower that willingly deviates from his
optimal objective function value to adversely affect the leader. For a feasible
decision x of the leader, the authors define the set of near-optimal follower’s decisions
as

Sα(x) = {y ∈ Y : f(x, y) ≤ αϕ(x) + (1− α)U, g(x, y) ≥ 0} .
Here, U is an upper bound for the lower-level objective function value and α ∈ [0, 1]
denotes the follower’s willingness to deviate from his optimal objective function
value. Note that for α = 1, the set of (exact) optimal decisions of the follower is
considered, whereas any feasible follower’s decision can be chosen by the follower
for α = 0. This notion of near-optimality is considered in the context of pessimistic
bilevel optimization (see, e.g., Liu, Fan, et al. (2020), Tsoukalas et al. (2009), and
Wiesemann et al. (2013)) by introducing the so-called α-pessimistic bilevel problem

min
x∈X

max
y∈Sα(x)

F (x, y).

The authors focus on the case in which (i) there are no coupling constraints and
(ii) the functions F , f , and g are affine. Furthermore, they allow for integer
variables on the upper level. The proposed model accounts for different levels of
conservatism regarding the uncertainty of the follower’s commitment. In particular,
the α-pessimistic bilevel problem includes the standard pessimistic bilevel problem
as well as the min-max problem by either setting α = 1 or α = 0, respectively. As
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an extension of the proposed model, the authors further embed an α-pessimistic
follower into the context of strong-weak bilevel problems; see Section 3.5.

Pita, Jain, Ordóñez, et al. (2009), Pita, Jain, Tambe, et al. (2010), and Pita,
Portway, et al. (2008) address ε-optimal follower’s decisions in the context of Bayesian
Stackelberg games (Conitzer and Sandholm 2006). They consider the setting in
which there is only one leader type, e.g., a security entity, and multiple follower types,
e.g., multiple attacker types. Each follower type may select an ε-optimal strategy and
the actual follower type is unknown to the leader. To hedge against near-optimality
of each follower type, the leader pursues a worst-case oriented approach. Given an a
priori probability distribution over the follower types, the leader then optimizes over
expected values under the worst-case assumption. The authors further combine the
modeling of near-optimal follower types with the concept of limited observability
regarding the leader’s strategy, which is discussed in more detail in the following
section.

In many practical applications, the lower-level problem cannot be solved to global
optimality either because there is no exact solution method available or due to
tractability reasons. Beck, Schmidt, et al. (2022) consider an illustrative example of
a bilevel problem with a continuous but nonconvex lower-level problem for which
only ε-feasible solutions—at least for the nonlinear constraints of the lower-level
problem—can be anticipated. The authors show that such ε-feasible bilevel solutions
can be arbitrarily far away from the overall exact optimal solution of the bilevel
problem.

Zare, Prokopyev, et al. (2020) study the setting in which the follower can choose
any solution method out of a discrete set H of possible options that may include
exact methods, heuristics, or approximation algorithms. The leader knows this
set of potential solution methods but she is uncertain regarding the actual choice
of the follower. To hedge against sub-optimal follower’s decisions that may stem
from the follower’s use of an inexact solution method, the authors propose three
modeling approaches. First, they follow a robust approach by hedging against the
worst-possible choice of the follower’s solution algorithm. The leader then solves
the problem

min
x∈X

max
h∈H

F (x, yh),

where yh denotes the “solution” of the lower-level problem using method h ∈ H. Let
us point out that the proposed model does not contain coupling constraints but
allows for integer upper- and lower-level variables. The second approach follows
to some extent the notion of Γ-robustness, which has been proposed in Bertsimas
and Sim (2003) for single-level optimization. Here, the previous model is adapted
such that the leader only hedges against the Γth least damaging choices of the
solution algorithm for the lower-level problem. The parameter Γ ∈ {1, . . . , |H|} is
used to control the leader’s level of conservatism. In contrast to the aforementioned
modeling approaches, the third model relies on the leader’s prior knowledge about
the probability ph that the follower will use method h ∈ H. Hence, the leader hedges
against lower-level algorithmic uncertainty in a probabilistic sense by optimizing
over the expected value, i.e.,

min
x∈X

Eh
[
F (x, yh)

]
:=
∑
h∈H

phF (x, yh).

The authors provide a detailed discussion of the proposed models for bilevel knapsack
problems with a follower that may choose from an exact cutting plane method
or several greedy approaches. In their computational study, the authors focus
on defender-attacker problems that can be formulated as bilevel knapsack models.
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Numerical results are presented for 32 randomly generated instances with 15 items
in which the follower can choose from an exact method and two greedy heuristics.

Shi et al. (2020) pursue the same idea as Zare, Prokopyev, et al. (2020) and
study bilevel problems with an inexact follower. However, instead of specifying the
available solution methods, the authors exploit the notion of k-optimality to capture
local optimal solutions of the follower. The modeling of a k-optimal follower is then
used to derive valid lower and upper bounds for the original mixed-integer linear
bilevel problem in which the lower level is solved to global optimality. An extensive
computational study on randomly generated instances of the knapsack interdiction
problem, the bilevel vertex cover problem, and the bilevel minimum spanning tree
problem affirms the quality of the proposed bounds.

3.4. Limited Observability. Another approach to account for decision uncertainty
in bilevel optimization considered in the literature is known under the notion of
limited observability. In this setting, the follower may, e.g., not be able to perfectly
observe the leader’s decision due to cognitive limitations and the leader thus faces
follower’s response uncertainty. This aspect plays a significant role for many practical
applications—especially in defender-attacker scenarios; see Section 4.

To the best of our knowledge, uncertainties regarding the observability of the
upper-level decision are first addressed in Bagwell (1995) and van Damme and
Hurkens (1997). The authors consider Stackelberg games involving noise in the
follower’s observation of the leader’s strategy. It is shown that the leader’s first-mover
advantage is completely lost for pure-strategy equilibria of the “noisy Stackelberg
game”. Nevertheless, a mixed-strategy equilibrium may exist for which the outcome
converges to the outcome of the Stackelberg game under perfect observability.

Following a different approach to account for limited observability of the leader’s
decision, Pita, Portway, et al. (2008) are concerned with Bayesian Stackelberg games
in which the leader’s decision x̄ that is perceived by the follower may deviate from
the actual leader’s strategy x by a bounded observation error δ. A discrete set of
observation errors—which is known in advance—specifies the strategies of the leader
the follower might observe. As the follower assumes that x̄ is the strategy the leader
actually plays, the follower’s response is thus based on x̄ instead of x. The leader
then hedges against the worst-possible reaction of the follower due to his erroneous
observation. In particular, the authors model limited observability for the setting
in which there is only one leader type, e.g., a security entity, and multiple follower
types, e.g., multiple types of attackers. The leader does not know the actual follower
type but has prior knowledge on the probability distribution over the follower types
and thus optimizes over expected values. Pita, Jain, Ordóñez, et al. (2009) and
Pita, Jain, Tambe, et al. (2010) provide an extension of the previous approach by
using anchoring theory (Kelly et al. 2006; Tversky and Koehler 1994) to model the
follower’s limited capability of observing the actual decision of the leader. Given
that—due to limited observability—the follower does not have any information on
the actual decision of the leader, the follower tends to assign an equal probability,
i.e., a uniform distribution, to each feasible leader’s strategy. The more information
is revealed to the follower, e.g., via further observations, the more the follower relies
on his perception of the leader’s strategy. Hence, the perceived decision of the
leader x̄ is represented as

x̄i = α
1

N
+ (1− α)xi, i ∈ [nx], (21)

where N denotes the number of pure strategies available to the leader and α ∈ [0, 1]
indicates how much weight the follower leaves on the uniform distribution. To
be comprehensive, let us further mention that the discussed articles provide an
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additional extension by combining the concept of limited observability of the leader’s
decision with near-optimal decisions of the follower.

A similar setting as in Pita, Jain, Ordóñez, et al. (2009), Pita, Jain, Tambe, et al.
(2010), and Pita, Portway, et al. (2008) is considered in Yin and Tambe (2012). In
contrast to the literature discussed so far, however, they model the perceived leader’s
decision x̄ as a linear perturbation of the actual leader’s decision x, i.e., x̄ = F>x+f ,
where F and f have appropriate dimensions and are assumed to follow some known
continuous distribution. Moreover, the authors allow for data uncertainty and a
noisy execution of the leader’s strategy. A branch-and-cut method to solve this type
of Bayesian Stackelberg game is proposed that incorporates Benders decomposition
and heuristic branching rules. The method is assessed using 30 Stackelberg games
with randomly generated utility matrices, 5 pure strategies per player, and up to
200 follower types.

Due to the vast amount of publications on limited observability in the context
of Bayesian Stackelberg games or, more generally, Stackelberg security games, the
literature discussed so far is far from being comprehensive. Hence, we refer the
interested reader to Jain et al. (2010), Kar et al. (2018), Kiekintveld et al. (2011),
Paruchuri, Pearce, Marecki, et al. (2008), Paruchuri, Pearce, Tambe, et al. (2007),
Pita, Jain, Ordóñez, et al. (2009), Pita, Jain, Tambe, et al. (2010), Pita, Portway,
et al. (2008), Sinha et al. (2018), Yin, Jain, et al. (2011), and Yin and Tambe (2012),
as well as to the references therein.

Beck and Schmidt (2021) consider limited observability regarding the upper-level
decision for bilinear bilevel problems. The authors assume that the perceived leader’s
decision x̄ only takes values in a given polyhedral uncertainty set

X (x) = {x+ Pζ : Hζ ≥ h},
where x denotes the actual decision of the leader and P , H, h as well as the
perturbation vector ζ have appropriate dimensions. The leader hedges against
follower’s response uncertainty due to limited observability by pursuing a worst-case
oriented approach. A single-level reformulation of the robustified bilevel problem is
obtained by exploiting the KKT conditions of the lower-level problem. In particular,
it is shown that the robustified bilevel problem remains in the same problem class
as the problem without taking limited observability into account. Moreover, an
ex-post relation between the modeling of limited observability and robust bilevel
problems with an uncertain right-hand side of the lower level is established.

Korzhyk et al. (2011) consider a game in extensive form to model limited observ-
ability. To this end, nature is introduced as an additional player in the game. The
game then proceeds as follows. Based on a given probability distribution, nature
first determines whether the follower can perfectly observe the leader’s decision or
not. Second, the leader selects a probability distribution over her set of pure strate-
gies without knowing the decision made by nature. Finally, the follower responds
optimally after possibly observing the leader’s decision depending on nature’s choice.
The authors propose a method that alternates between solving Nash and Stackelberg
games in each iteration. Upper bounds on the number of iterations to obtain an
equilibrium are provided.

In Karwowski et al. (2020), limited observability of the leader’s strategy is again
modeled using anchoring theory. The authors extend the approach proposed in
Pita, Jain, Ordóñez, et al. (2009) and Pita, Jain, Tambe, et al. (2010) to account
for multiple time steps by considering multi-step extensive-form games. In this
setting, a fixed number of leader-follower games is played successively and, in each
round of the game, the perceived leader’s strategy takes the form in (21). This leads
to nonlinearities which cannot be tackled by classic solution methods. Hence, the
authors propose to simplify this modeling of limited observability by assuming that



A SURVEY ON BILEVEL OPTIMIZATION UNDER UNCERTAINTY 27

only the leader’s decision in the last round of the game cannot be perfectly observed
such as to avoid nonlinear terms. This modeling of limited observability is embedded
in three state-of-the-art MILP methods as well as two other methods (Monte-Carlo
sampling and an evolutionary algorithm) for solving sequential Stackelberg games,
whose performance is assessed in a computational study on 25 warehouse games
with up to 7 time steps.

Lu et al. (2015) introduce a novel notion of robustness for bilevel problems with
upper- and lower-level decision uncertainty. In their modeling, the perceived leader’s
and follower’s decisions are assumed to take values in a small neighborhood around
the actual strategies. They pursue a robust approach in the sense that an optimal
solution of the bilevel problem must be feasible for all possible realizations of the
uncertainty. In contrast to traditional robustness concepts (Ben-Tal, El Ghaoui,
et al. 2009; Bertsimas and Sim 2003), however, they do not follow a worst-case
oriented philosophy. Instead, they hedge against uncertainties by either optimizing
mean objective function values or by optimizing the relative deviations from the
(exact) optimal objective function values w.r.t. a predefined tolerance.

Finally, Molan and Schmidt (2022) consider one of the extreme cases of limited
observability and assume that the leader does not know the optimization problem of
the follower at all but tries to learn the best-response function based on past data
regarding the outcomes of the same bilevel game. The authors use a neural network
to learn the best-response function and apply a tailored Lipschitz optimization
approach to solve the resulting optimization problem that contains the input-output
mapping of the trained neural network as a constraint.

3.5. Intermediate Solution Concepts in Between the Optimistic and the
Pessimistic Case. In general, the bilevel problem as defined in (1) and (2) is
ill-posed if the lower-level problem does not have a unique solution. To overcome
this issue, it is common to pursue either the optimistic or the pessimistic approach
to bilevel optimization; see, e.g., Dempe (2002). The optimistic (or strong) approach
corresponds to the setting in which the leader and the follower fully cooperate.
Thus, the follower chooses his solution such as to favor the leader w.r.t. the leader’s
objective function value, i.e., the leader considers the problem

min
x∈X

min
y∈S(x)

F (x, y) s.t. G(x, y) ≥ 0.

In the pessimistic (or weak) setting, the follower aims to harm the leader by selecting
the worst-possible reaction in terms of the leader’s objective function value. The
leader thus considers the problem

min
x∈X

max
y∈S(x)

F (x, y) s.t. G(x, y) ≥ 0.

In particular, the pessimistic bilevel problem is a special case of a robust problem
in which the set S(x) is interpreted as the uncertainty set. In the literature, the
optimistic approach is predominantly used. However, the general pessimistic setting
has gained increasing attention recently; see, e.g., Aboussoror and Mansouri (2005),
Aussel and Svensson (2019), Tsoukalas et al. (2009), Wiesemann et al. (2013), and
Zheng, Wan, Sun, et al. (2013) or the recent surveys in Liu, Fan, et al. (2020, 2018)
and the references therein. Nevertheless, the optimistic and the pessimistic approach
represent two extreme situations regarding the follower’s level of cooperation, which
may be inappropriate for certain applications, e.g., if the leader is uncertain regarding
the level of cooperation of the follower. The resulting necessity for intermediate
solution concepts is, e.g., tackled by so-called strong-weak bilevel problems. This
modeling approach allows for a partial cooperation of the follower by considering
a convex combination of the leader’s objective functions in the optimistic and the



28 Y. BECK, I. LJUBIĆ, AND M. SCHMIDT

pessimistic setting. So far and to the best of our knowledge, intermediate solution
concepts have only been considered in the literature for bilevel problems without
coupling constraints, i.e., one considers the problem

min
x∈X̄

{
β min
y∈S(x)

F (x, y) + (1− β) max
y∈S(x)

F (x, y)

}
with X̄ := {x ∈ X : G(x) ≥ 0} and G : Rnx → Rm. Here, the parameter β ∈ [0, 1]
can be interpreted as the follower’s probability of cooperation and is used to adjust
the leader’s level of conservatism. Note that for β = 1, the optimistic setting is
considered, whereas for β = 0, this modeling corresponds to the standard pessimistic
bilevel problem.

Among the first works that address intermediate solution concepts in between
the optimistic and the pessimistic case are Aboussoror and Loridan (1995) and
Mallozzi and Morgan (1996). In Mallozzi and Morgan (1996) the following two
cases are distinguished. First, the authors consider the case in which the set of
optimal follower’s decisions is discrete, i.e., S(x) = {y1(x), . . . , yk(x)}. It is assumed
that the leader has prior knowledge on the likelihood that the follower will choose
a certain solution and model this setting in a stochastic sense by optimizing over
expected values. Hence, the authors consider the problem

min
x∈X

k∑
j=1

pj(x)F (x, yj(x)),

where pj(x) denotes the probability that the follower chooses yj(x). Second, more
general reaction sets S(x) of the follower are considered which are assumed to be
Lebesgue measurable with non-zero measure. In this case, the leader assigns a
probability measure µx(y) on S(x) for every feasible upper-level decision x ∈ X.
The authors then consider the problem

min
x∈X

∫
S(x)

F (x, y) dµx(y).

For both cases, illustrative examples and comparisons of the obtained results with
the pessimistic formulation are provided.

Sufficient conditions for the existence of solutions of strong-weak bilevel problems
in finite-dimensional spaces are established in Aboussoror and Loridan (1995).
The authors show that a sequence of ε-optimal solutions converges to an optimal
solution of the original problem under sufficient conditions. Similarly, existence
results for the variant of the problem in infinite-dimensional spaces are provided
in Aboussoror, Adly, et al. (2017). In particular, and in contrast to the techniques
used in Aboussoror and Loridan (1995), no convexity assumptions are required to
establish these existence results.

It is well known that bilevel problems are intrinsically hard to solve. Even
linear (optimistic) bilevel problems are strongly NP-hard; see, e.g., Hansen et al.
(1992). Since the consideration of a pessimistic follower adds another level to
the problem formulation, pessimistic bilevel optimization—and thus strong-weak
bilevel optimization—is expected to be even more challenging. When it comes to
developing solution methods, the literature so far focuses on the easiest instantiations
of intermediate bilevel formulations, namely linear strong-weak bilevel problems. Cao
and Leung (2002) propose a penalty-based approach for this type of problem. They
reformulate the strong-weak problem as a classic linear bilevel problem which can be
tackled using standard solution approaches, e.g., by solving the KKT reformulation.
To obtain an optimal intermediate solution, however, the resulting problem needs
to be solved for all possible values of the exogenous parameter β, which models
the follower’s level of cooperation. This issue is addressed in Zheng, Wan, Jia,



A SURVEY ON BILEVEL OPTIMIZATION UNDER UNCERTAINTY 29

et al. (2015). The authors provide a method that avoids the “enumeration” over
all β ∈ [0, 1] to determine the critical points of the optimal-value function of
the leader.

A relaxation-and-correction scheme to solve the linear strong-weak bilevel problem
is presented in Zeng (2020). The author proposes a relaxation of the original
problem by including two sets of variables and constraints of the follower—one for
the optimistic and one for the pessimistic case—and relaxing the optimality of the
pessimistic follower. The original problem is thus reduced to a single-leader-multi-
follower problem with two independent followers. Using the KKT conditions of
each of the lower-level problems, a single-level reformulation is obtained, which can
be solved by state-of-the-art solvers. Afterward, the optimality of the pessimistic
follower’s solution is ensured via a correction step.

All the mentioned approaches so far take the follower’s level of cooperation β as a
parameter that is specified by the leader in advance. Jia, Wan, et al. (2011) introduce
the concept of considering the follower’s level of cooperation as a decision-dependent
random function β(x) of the leader’s variables x. Salas and Svensson (2020) follow
this approach in the context of multi-leader-multi-follower problems. In this setting,
the classic optimistic and pessimistic approaches are ill-defined since the cooperation
of the followers with one of the leaders may result in non-cooperation or partial
cooperation with another leader. To overcome this issue, the authors assume that
each leader i has a “belief” βi regarding the followers’ choice. The belief assigns a
probability measure to an optimal solution of the followers for each feasible leaders’
decision x ∈ X. Hence, the followers’ response is a random variable that follows the
decision-dependent probability distribution βi(x). Each leader then hedges against
uncertainties regarding the followers’ response by optimizing over expected values.
The authors provide results on the existence of optimal solutions for this setting.

Jia and Zheng (2013) consider another intermediate solution concept that allows
the leader to make side-payments to the follower. In this setting, the leader willingly
gives up a portion of her optimal objective function value to offer an incentive for
the follower to cooperate, i.e., one considers the problem

max
x,y,β

βF (x, y)

s.t. f(x, y) + (1− β)F (x, y) ≥ ϕ̄(x),

x ∈ X̄, y ∈ S(x), β ∈ [α, 1]

with the lower-level optimal-value function

ϕ̄(x) := max
y∈Y
{f(x, y) : g(x, y) ≥ 0} .

Here, β ∈ [α, 1] determines how much of the leader’s optimal objective function
value is given to the follower as a side-payment. The parameter α ∈ [0, 1] can be
interpreted as a minimum allocation proportion. In particular, β is understood as
a variable of the problem, which is optimized in the proposed procedure. For the
linear formulation of the problem, the authors present a solution method that relies
on a penalty-based reformulation and that exploits strong duality.

4. Applications

In this section, we review different areas of application in which bilevel optimiza-
tion under uncertainty is used. We start with energy applications in Section 4.1,
discuss the large field of interdiction problems in Section 4.2, and end in Section 4.3
with a discussion of applications from management science.
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4.1. Energy. There is a rather large amount of research papers in which uncertain
bilevel optimization is applied to the field of energy research. Before we review the
separate contributions in detail, let us first briefly summarize the main commonalities
of the research in this area.

(i) In the majority of papers, a linear or bilinear setting is considered. If a
bilinearity is present, it usually consists of the mix of an upper- and a
lower-level variable so that the lower-level problem stays a parameterized
linear problem for which compact optimality certificates such as the strong
duality or the KKT theorem are available.

(ii) Except for Heitsch et al. (2022), see also Section 3.1.4, all papers consider
the timing in (16), i.e., the leader takes her decision here-and-now, then
the uncertainty realizes, and the follower afterward takes a wait-and-see
decision.

(iii) The vast majority of papers considers a stochastic setup and only a few
papers also include robustness aspects. The considered stochastic setting
is usually given by a discrete and finite probability distribution that allows
for stating the deterministic equivalent.

4.1.1. Power Markets, Contracting, and Networks. An important application of
bilevel optimization in the field of electricity is the optimization of retailer problems.
Maybe the earliest application of uncertain bilevel optimization in this area is
Carrión et al. (2009), where the authors consider stochastic bilevel optimization for
determining optimal retailer trading strategies in future markets. Here, the retailer
acts as the leader and takes her here-and-now decisions under uncertainty regarding
future pool prices, the clients’ demands, and the prices of the rivaling retailers. The
clients act as the follower in a wait-and-see manner. Risk aversion in the upper-level
is modeled using a weighted sum of the expected value and the CVaR. Moreover,
stochasticity is covered by using a finite set of scenarios, which can additionally be
reduced in size by exploiting further scenario reduction techniques as, e.g., discussed
in Growe-Kuska et al. (2003). This allows to consider the deterministic equivalent,
which has a linear lower-level problem (in the follower’s variables) so that the classic
KKT approach with big-M reformulations à la Fortuny-Amat and McCarl (1981)
can be applied. The remaining bilinearities that are all products of prices and
quantities are then linearized using duality theory.

In Askeland et al. (2020), the authors also consider a retailer’s problem but
try to figure out how to use stochastic bilevel optimization to design electricity
network tariffs to incentivize flexible end-users (so-called prosumers) to adapt their
consumption patterns. To this end, the upper level determines the tariff at the
planning stage and the curtailment of load at the operational stage while the lower
level models end-users of electricity, which can either be consumers or prosumers.
Thus, the lower-level problem models the operational decisions. Uncertainty is again
modeled via a finite scenario set and the classic KKT reformulation is used to obtain
a single-level optimization problem in which the nonlinear KKT complementarity
constraints are tackled via SOS-1 techniques.

A related setting is considered in Fanzeres, Street, et al. (2015), where the authors
study a hybrid approach by mixing stochastic and robust optimization to determine
optimal energy supply contracting strategies. A single-level reformulation is obtained
via strong duality and, as before, stochasticity is modeled using a finite number of
scenarios.

Another important application of bilevel optimization in the field of power markets
is to determine the optimal bidding strategy of a strategic generator in wholesale
electricity markets; see, e.g., Fampa et al. (2008). There, the authors consider
the classic setup in the sense that the strategic generator is the upper-level player.
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However, the lower-level problem does not cover a Nash equilibrium problem to
model the rival’s behavior at the market but models the (unknown) actions of the
competitors using a finite set of scenarios with exogenous probabilities. In this setup,
the upper level maximizes the expected profit of the strategic generator while in
the lower-level problem, a market clearing is determined that minimizes the overall
system costs. After some reformulations, the model at hand has a large similarity
to bilevel models considered for optimal taxation of goods and services such as
discussed in, e.g., Brotcorne et al. (2000) and Labbé, Marcotte, et al. (1998). A
tailored heuristic is proposed that is motivated by the latter papers and to solve
the problem to global optimality, the KKT reformulation is used including binary
decompositions of integer variables to linearize the occurring nonlinearities.

In Haghighat (2014), the same overall question is tackled but with a transmission-
constrained economic dispatch model in the lower level. Again, uncertainty enters
the model in order to capture the unknown offers of the rivals and the market
demand. In contrast to Fampa et al. (2008), however, uncertainty is handled
using the Γ-robust approach (Bertsimas and Sim 2004). After deriving the robust
counterpart using duality-based techniques of continuous robust optimization, a
single-level reformulation is obtained by using the classic KKT approach and
further nonlinearities are handled via big-M constraints and relaxation-linearization
techniques (Sherali and Adams 1990). Finally, a hybrid model is presented that also
takes stochasticity into account by a finite number of scenarios in order to model
uncertain quantity offers of rival generators.

Ambrosius, Egerer, Grimm, and Weijde (2020) and Ambrosius, Egerer, Grimm,
and van der Weijde (2022) consider multilevel optimization models for electricity
markets that tackle the situation in which investment decisions have to be taken
subject to uncertainty w.r.t. the future network congestion management regime such
as nodal or zonal pricing.

All papers discussed so far in this section model stochasticity by considering
finite scenario sets and by writing down the deterministic equivalent. For large
scenario sets, this leads to large-scale single-level reformulations that might be
hard to solve even for state-of-the-art commercial solvers. This is especially the
case for modeling strategic investment decisions that need to incorporate a large
planning horizon and, thus, very large scenario sets. This issue is considered in
Kallabis et al. (2020), where the authors tackle this situation using a rolling-horizon
approach. Here, the strategic investment by the generator is part of the upper level,
whereas the lower level includes the decisions of the market operator that clears the
market in order to maximize welfare for given consumer demands, given installed
generation capacities, and given price bids of the producers. The investment process
is split into multiple stages so that wait-and-see decisions can be modified over
time. The rolling-horizon approach is then applied to an MPEC that is obtained
by the deterministic equivalent for given scenario trees of electricity demand and
by using KKT conditions for the lower level as well as SOS-1 techniques to tackle
KKT complementarity conditions.

In another very recent contribution (Zeng, Dong, et al. 2020), the optimal
configuration of electricity vehicle charging stations and the corresponding pricing
schemes are studied. These two decisions are modeled in the upper level and the
lower-level problem comprises the actual charging decisions of plug-in electric vehicle
owners. The lower-level objective function is of min-max type and, thus, models
a robust setup. The classic KKT reformulation leads to a single-level problem
with a max-min-max structure in the objective, which is then solved using the
column-and-constraint generation method developed by Zeng and Zhao (2013).
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Furthermore, Kovacevic and Pflug (2014) survey bilevel modeling of electricity
swing option pricing. The authors carefully develop their model, which leads to
a stochastic and dynamic multistage bilevel problem. The survey also discusses
solution techniques—in particular for bilinear swing option problems.

4.1.2. Gas Market and Further Energy Applications. Besides applications in the
power sector, there are also other energy sectors that have been modeled using
uncertain bilevel optimization problems. For instance, in U-tapao et al. (2016),
the authors set up a bilevel model for optimizing wastewater treatment plans by
deciding on the size of compressed natural gas (CNG) filling stations and their
locations. The lower-level problem consists of many downstream markets including
agriculture, CNG transportation, residential natural gas, and electricity markets.
Each downstream market is modeled by its own KKT conditions plus suitably
chosen market clearing conditions. Uncertainties stem from, e.g., fuel or electricity
prices and are modeled using a finite set of scenarios. It is assumed that there is no
correlation between these uncertain aspects—which is, what the authors admit, a
simplification. The overall setting leads to an SMPEC, which is reformulated as a
mixed-integer linear problem via SOS-1 techniques.

Another branch of research on the European natural gas market started rather
recently with the modeling paper by Grimm et al. (2019). There, a four-level
model of the so-called European entry-exit gas market system is developed and
it is shown that this system can be reduced to a bilevel problem under suitable
economic assumptions such as perfect competition. The upper level then consists of
the decisions of the transmission system operator (TSO) whereas the lower-level
problem models the long- to short-term market behavior of gas buyers and sellers.
Due to the EU regulation, the upper-level problem contains a robust constraint so
that the overall problem of the TSO can be seen as a special case of an adjustable
robust problem (Ben-Tal, El Ghaoui, et al. 2009; Ben-Tal, Goryashko, et al. 2004);
see, e.g., Labbé, Plein, Schmidt, and Thürauf (2021) for an in-depth discussion of
this relationship. The overall model is rather challenging; see Labbé, Plein, and
Schmidt (2020), Labbé, Plein, Schmidt, and Thürauf (2021), Schewe et al. (2020),
and Thürauf (2022) for complexity studies and Böttger et al. (2021), Plein et al.
(2021), and Schewe et al. (2022) for solution techniques and numerical results. Let
us finally remark that the paper by Heitsch et al. (2022), which we already discussed
in Section 3.1.4, also considers this bilevel problem with additional uncertainties in
the lower-level problem that are modeled using a chance constraint.

4.2. Interdiction, Defender-Attacker, and Security Applications. Interdic-
tion problems are a special class of bilevel optimization problems in which the leader
(who acts as a defender) aims at preventing adversary activities of the follower (who
acts as an attacker). They are typically used for identifying vulnerabilities of a
system when it comes to potential disruptions (being accidental or intentional) to
its infrastructure. Interdiction problems follow the common structure of bilevel
problems without coupling constraints, namely

max
x∈X̄

{
min
y∈Y

f(x, y) : g(x, y) ≥ 0

}
,

where the set X̄ = {x ∈ X : G(x) ≥ 0} describes feasible interdiction policies.
Let Ny denote the assets that can be interdicted by the leader. Decisions of
the leader and the follower are linked through constraints g(x, y) ≥ 0, which are
typically given as yi ≤ Ui(1 − xi) for all i ∈ Ny. Here, Ui is the default available
capacity of asset i (if not interdicted). Interdiction actions (modeled by variables
xi) can be discrete (in which case the assets are made unavailable for the follower)
or continuous (if the capacity of the asset is modified, based on the intensity of
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interdiction). If the interdiction affects only the objective function of the follower,
then their nominal objective function value determined as

∑
i∈Ny diyi is modified

by adding a bilinear term
∑
i∈Ny δiyixi to it, where δi represents the cost increase

for each asset interdicted by the leader. For a comprehensive survey on interdiction
problems, we refer to Smith and Song (2020) and Section 6 in Kleinert et al. (2021).
Interdiction problems on networks are the most frequently studied problem variants
in which the leader controls the network resources (nodes, edges) by eliminating
them, reducing their capacities, or increasing the costs of their usage.

In more realistic settings of defender-attacker games, either party may not have
complete information about their opponent’s strategy or about the underlying
conditions such as the network topology, arc or node costs, or their capacities.
Hence, interdiction problems under uncertainty are gaining increasing attention of
the bilevel optimization community. Also, for these problems, we can distinguish
between wait-and-see followers (who observe the leader’s decision and the realization
of random variables), which is determined by the timing as in (16), and here-and-now
followers (who—as customary—observe the leader’s decision but need to deal with
parameter uncertainty in the second stage of the lower-level problem), which is the
timing given in (17).

Early examples of interdiction problems under uncertainty include the stochastic
shortest path interdiction introduced by Israeli (1999) or the stochastic maximum-
flow interdiction studied by Cormican et al. (1998).

4.2.1. Stochastic Interdiction Problems (SIPs). In SIPs, the uncertainty can be
in costs or capacities as well as in the effect of interdiction, i.e., an interdicted
resource can be partially or completely destroyed only with a certain probability. It
is commonly assumed that the underlying probability distribution of the random
variables is known to the leader, who is a risk-neutral decision maker and is thus
optimizing the expected value of the opposite of the follower’s objective function.
For the example given above, the SIP variant is given by

max
x∈X̄

Eω

min
y∈Y

∑
i∈Ny

(di + δi(ω)xi)yi

 , (22)

where the actual value of δi(ω) is revealed to the follower before he makes his
decision. If the uncertainty is in the asset cost after the interdiction, then δi(ω)
typically represents the increase of cost in scenario ω. On the other hand, if the
uncertainty is in the effect of interdiction, a binary random vector s̃i is associated
to each asset i ∈ Ny. The value of s̃i is equal to one with probability pi (indicating
that the interdiction attempt of this asset is successful) or zero with probability
1− pi (otherwise). It is typically assumed that separate interdiction attempts are
independent and that each asset can be interdicted at most once. In this case, for
a given δi representing the increase of the asset cost after interdiction, we have
δi(ω) = δis̃i(ω), where ω represents a possible scenario realization.

Two main approaches to model the uncertainty are adopted in the literature: (i)
sample average approximation (SAA) or (ii) sequential approximation (SA). SAA
allows to transform the original two-stage (or multi-stage) stochastic problem into
its deterministic equivalent while guaranteeing a certain quality of the obtained
solution for a sufficiently large number of scenarios; see Kleywegt et al. (2002) for
further details. On the other hand, SA starts with a small set of discrete scenarios
for which valid lower and upper bounds for the original problem are derived. These
scenarios are then iteratively refined by partitioning the uncertainty space until a
sufficiently small gap between lower and upper bounds is obtained.
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Both SAA and SA allow to transform the original problem into its deterministic
interdiction counterpart with a potentially large number of discrete scenarios ω ∈ Ω.
For problem (22), its deterministic equivalent is given as

max
x∈X̄

∑
ω∈Ω

pω

min
yω∈Y

∑
i∈Ny

(di + δi(ω)xi)y
ω
i

 , (23)

where yω refers to lower-level variables representing the optimal response of the
follower in scenario ω. The latter bilevel problem can then be reformulated as a
single-level MI(N)LP using common techniques for interdiction problems such as
dualization or a strong-duality-based reformulation (if the lower level problem is
convex for a given choice of x and ω) as well as penalization (otherwise). More
details on these reformulation techniques can be found in recent surveys by Kleinert
et al. (2021) and Smith and Song (2020). Due to the large number of scenarios
involved, the employment of sophisticated decomposition techniques is indispensable
in order to develop computationally effective methods. Bailey et al. (2006) consider
a generalization of SIPs in which the leader acts as an interdictor, and the follower’s
decision making process is modeled using a Markov decision process (MDP). As
in SIPs, we are given a finite set of discrete scenarios, however, for each (discrete)
choice of the leader and for each scenario realization, the follower is solving an MDP.
The authors propose a Benders decomposition approach under the assumption that
transition probabilities in the MDP are not affected by the decisions of the leader.

In the following, we review some of the most studied applications of stochastic
interdiction problems in networks.

Stochastic Shortest Path Interdiction: In this setting, the leader wishes to interdict
arcs of a given network by increasing their cost within a limited interdiction budget
so that the shortest path between two distinct nodes s and t in the resulting network
is maximized. In his PhD thesis, Israeli (1999) assumes that the success of an
interdiction attempt is uncertain and, hence, the original deterministic max-min
objective function is replaced by maximizing the expected length of the shortest
path over all possible interdiction decisions. This corresponds to Model (23) in
which binary interdiction variables are associated to arcs of the network, the set X̄
models all feasible interdictions under a given knapsack-like budget constraint, and
the set Y models all s-t paths in the given network. The author points out that
single-level reformulations can be derived following reformulation methods proposed
by Israeli and Wood (2002) for the deterministic shortest path interdiction. However,
the major difficulty arises from the exponential number of possible scenarios and
the author proposes several SA-based methods to deal with them.

Nguyen and Smith (2022) study a variant of this problem in which the base arc
cost di ≥ 0 introduced above is not known to the leader, whereas the cost increase
δi ≥ 0 caused by interdiction is certain. The leader assumes that the base cost values
are uniformly distributed within given (arc-specific) intervals, whereas the follower
acts in a wait-and-see manner. As customary, the leader maximizes the expected
shortest path cost attainable by the follower. Nguyen and Smith (2022) develop an
SA approach inspired by the work of Cormican et al. (1998) with bounds derived
using Jensen’s inequality. The authors also provide several algorithmic strategies
for accelerating the convergence of their exact approach. Computational results are
provided for randomly generated networks with up to 20 nodes.

Held et al. (2005) consider a class of network interdiction problems introduced by
Hemmecke et al. (2003) in which the network topology is uncertain and probabilities
of each possible network configuration scenario ω ∈ Ω are provided as data: If an arc
is not available in a given scenario, its cost is given by di(ω) =∞ and, as customary,
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δi(ω) ≥ 0 denotes the cost increase in case of arc interdiction in scenario ω. In this
setting, the leader wishes to maximize the probability of sufficient disruption, e.g.,
to maximize the probability that the shortest path length in the interdicted network
is above a given threshold value 1 > ϕ > 0. The problem is stated as

max
x∈X̄

P

 min
y∈Y (ω)

∑
i∈Ny

(di(ω) + δi(ω)xi)y(ω)i ≥ ϕ

 .

The authors show that the latter problem can be decomposed by scenarios and
solved in a cutting-plane fashion using the method of Riis and Schultz (2003). A
computational study is conducted on networks with up to 110 nodes and considering
up to 100 scenarios. In a similar setting studied by Song and Shen (2016), dubed
risk-averse shortest path interdiction, the sufficient disruption is imposed in form of
a chance constraint over a discrete set of scenarios. The leader controls interdiction
variables x and minimizes the interdiction cost subject to

∑
ω∈Ω pωzω ≥ 1− ε. Here,

the binary variable zω is set to one if and only if the follower’s shortest path in
scenario ω is above the threshold ϕ, i.e.,

min
y∈Y (ω)

∑
i∈Ny

(di(ω) + δi(ω)xi)y(ω)i ≥ ϕzω.

The authors propose several families of valid inequalities and develop a branch-and-
cut algorithm based on scenario decomposition. In this work, computational results
are provided for small grid graphs with up to 64 nodes and for two transportation
networks with up to 44 nodes. In both cases, up to 1000 scenarios are considered.

Stochastic Maximum Flow Interdiction: Cormican et al. (1998) investigate the case
of minimizing the expected maximum s-t flow in a given network by removing
some arcs (or reducing their capacities), assuming that the effect of interdiction is
uncertain. More precisely, the interdiction success of each arc is assumed to be an
independent binary random variable such that a successful interdiction (which can
be performed with some known probability) leaves the arc with no capacity. They
also introduce other variants of the problem in which both interdiction success and
arc capacities are random or in which multiple interdictions per arc are allowed. The
authors apply SA based on classic bounding techniques in stochastic optimization
and gradually refine the set of discrete scenarios until obtaining a sufficiently small
optimality gap. Janjarassuk and Linderoth (2008) apply a duality-based MILP
reformulation, combined with SAA and Benders decomposition, and implement
a distributed algorithm. The authors obtain significant speed-ups compared to
previous techniques, which is due to a successful combination of decomposition,
sampling, parallel computing, and heuristics. They conduct a computational study
on grid graphs with up to 400 nodes and consider between 50 and 5000 scenarios.

Lei et al. (2018) consider a variant of the problem with uncertain interdiction
effects in which the follower, after observing the leader’s interdiction action and
before the uncertainty is revealed, can add additional arc capacities to mitigate
flow losses. The authors study risk-neutral and risk-averse approaches to model
the leader’s behavior, i.e., they incorporate the expectation, left-tail, and right-
tail CVaR for evaluating maximum flows under uncertainty in the leader’s and
follower’s objectives. The resulting bilevel or trilevel mathematical models are
reformulated into single-level MILP formulations and, using an SAA approach, are
applied to real-world network instances. Their instances are derived from SNDlib
(see sndlib.zib.de) and contain 100 scenarios. Finally, Atamtürk et al. (2020)
assume that arc capacities are uncertain and that their mean values along with the
covariance matrix are known to the leader. The leader removes a subset of arcs from
the network while minimizing the VaR of the maximum flow on the resulting network

sndlib.zib.de


36 Y. BECK, I. LJUBIĆ, AND M. SCHMIDT

for a given confidence level. The authors propose a heuristic procedure based on
successive quadratic optimization embedded in a bisection search. Computational
results are reported for a set of grid networks with q × q nodes (created in a similar
way as in Janjarassuk and Linderoth (2008)) with q ranging between 20 and 100.

Maximum Reliability Path Interdiction: In this family of problems, the origin and
the destination node chosen by the follower may be uncertain. The leader installs
sensors at some arcs of the network and the follower seeks to find a path in the
resulting network that maximizes the probability of remaining undetected. The
probabilities of being detected with and without sensors installed are known to both
players. The problem is, e.g., relevant for preventing nuclear smuggling activities
between two countries by placing sensors at their borders (Morton et al. 2007; Pan,
Charlton, et al. 2003; Pan and Morton 2008). The leader installs sensors within
a limited budget so as to minimize the expected value of the maximum reliability
path over all possible source-target choices of the follower. When the probabilities
of traversing interdicted arcs are all strictly positive and the follower’s source-target
choice is known, one can obtain a deterministic shortest-path interdiction problem
with a logarithmic transformation; see Morton (2011) and Towle and Luedtke
(2018). Morton et al. (2007) and Pan and Morton (2008) propose step inequalities
to exploit the relationships between evasion probabilities associated with different
paths. Sullivan et al. (2014) use the problem transformation in a bipartite network,
provide polyhedral results for a single-scenario, i.e., the deterministic, case, and
show how these can be exploited in a multi-scenario setting. The problem can
also be reformulated as a two-stage stochastic problem and Bodur et al. (2017) use
this reformulation for assessing novel generic ideas to strengthen Benders cuts by
exploiting integrality of the first-stage variables. Towle and Luedtke (2018) provide
an alternative path-based reformulation and develop a branch-and-cut algorithm
that is based on supermodular cuts from Nemhauser et al. (1978) and Ahmed and
Atamtürk (2011). The latter approach is shown to be the new state-of-the-art w.r.t.
the set of instances considered in the previous literature. These instances are built
from a network with 783 nodes as well as 2586 arcs and 456 scenarios are considered.
A generalization of this problem with applications in cyber security is studied by
Ertem and Bier (2021). Lunday and Sherali (2012) study the problem setting in
which the source-target pair is known to the leader, however, there are multiple
interdiction resources that can be employed and the impact of their combination
can be nonlinear.

Michalopoulos et al. (2015) assume that, in addition to the above uncertainties,
the leader is uncertain about the interdiction budget as well. Hence, a three-stage
stochastic interdiction approach is proposed in which the leader starts by forming a
priority list and assigning an appropriate number of interdiction locations to each
priority level. After the budget is revealed, the leader installs sensors at the highest
priority locations until the budget is exhausted. Finally, in the third stage, the
follower solves the maximum-reliability path problem. A tabu search heuristic is
used to solve this challenging problem.

Contrary to the above assumption that the follower’s path is deterministic,
once the source-target pair and the interdicted arcs are revealed, Collado et al.
(2017) assume that the path chosen by the follower remains uncertain to the leader.
This setting corresponds to a decision uncertainty caused, e.g., by the uncertainty
regarding the follower’s criterion for choosing his path through the network or by
random influences encountered by the follower while traversing the network. Hence,
the follower’s path choice is known to the leader only in terms of a probability
distribution reflecting her beliefs. The authors propose a risk-neutral and a risk-
averse modeling approach while assuming that the leader deploys her resources
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(modeled using continuous interdiction variables) before and after discovering the
source chosen by the follower. The authors employ a mean-upper semideviation risk
measure for the risk-aversion approach. The risk-averse problem is approximated
and reformulated as a single-level LP model.

4.2.2. Robust Interdiction Problems. There is much less literature available for
interdiction problems in which there is no assumption on the distribution of the
uncertain parameters. Chauhan (2020) studies maximum-flow interdiction with
interval uncertainty w.r.t. arc capacities and consumption of resources required to
interdict an arc. Following the Γ-robust modeling approach (Bertsimas and Sim
2004), the leader assumes that only a limited number of arcs can be subject to
uncertainty, both w.r.t. interdiction budget and arc capacities. It is a wait-and-see
setting in which the follower observes arcs removed by the leader and a realization
of the uncertain arc capacities for the remaining ones. The leader seeks for an
interdiction strategy that protects her from the worst-case outcome in which the
capacity of Γ arcs is the largest possible. An MILP formulation is proposed along
with three heuristics based on Lagrangian relaxation, Benders decomposition, and a
combination of the two.

Nikoofal and Zhuang (2011) consider defender-attacker problems with applications
in counter-terrorism. The leader and the follower have different perceptions regarding
the valuation of the damage caused by attacking given targets. The leader searches
to minimize the damage caused by the follower, however, the follower’s valuation
of targets is unknown and it is assumed to belong to bounded intervals. Using
the Γ-robust approach, the authors assume that the total scaled deviation of the
uncertainty parameters cannot exceed a given threshold Γ and the corresponding
robustness constraint is added at the upper level. In a follow-up article, Nikoofal and
Zhuang (2015) study the trade-off between disclosure of the defense strategy by the
leader (which corresponds to a Stackelberg game) versus secrecy (which corresponds
to a simultaneous game), assuming in both cases that the leader only knows intervals
to which the attacker’s valuation of targets belongs. Their results show that the
leader’s benefit by making the first move, i.e., by playing the Stackelberg game,
is only considerable if the follower and the leader share a similar valuation of the
targets. Thus, the optimal defense allocation in a simultaneous game provides a
better protection against uncertainty in the follower’s valuation of targets.

Gillen et al. (2021) study the spread of cascading behavior in a social network
using a linear threshold (LT) model with a given set of activated nodes. In the
cascading LT model, new nodes are getting activated if the sum of arc weights of
their already activated neighbors is above a given threshold value. In the defender-
attacker problem studied by Gillen et al. (2021), the leader tries to fortify some nodes
by increasing their influence threshold within a limited budget in order to reduce the
total number of activated nodes at the end of the propagation process. The follower’s
problem models the propagation process and the authors assume that the arc weights
(modeling the influence of a node to its neighbors) are subject to interval uncertainty.
The authors use a Γ-robust approach to deal with uncertainty and develop an
iterative procedure in which the problem is solved on a subgraph using a cutting-
plane procedure. The subgraph is then expanded and the procedure is repeated until
the convergence criteria are met. A computational study is conducted on a selection
of real-world networks from the SNAP library (see https://snap.stanford.edu)
with some of them containing more than 200 000 nodes.

Beck, Ljubić, et al. (2022) propose a generic branch-and-cut framework for solving
min-max mixed-integer optimization problems with a Γ-robust uncertainty modeling
in the lower level. The follower takes decisions after observing the action of the
leader and before facing the uncertainty, i.e., the timing (17) is assumed. The

https://snap.stanford.edu
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follower aims to hedge against a subset of deviations of uncertain parameters and
the lower-level problem contains discrete variables. Two cases of interval uncertainty
are studied: in the coefficients of the lower-level’s objective function and in the
coefficients of a single packing-type constraint. Two generic reformulations as a
single-level MILP are proposed and problem-tailored cuts have been derived for
the Γ-robust variants of the knapsack interdiction problem. These cuts assume
that Γ-robust follower sub-problems satisfy a downward monotonicity property,
which arises in many packing-type applications. In this context, these cuts are a
generalization of what has been proposed in Fischetti, Ljubić, Monaci, et al. (2019)
for the deterministic knapsack interdiction problem.

4.2.3. Other Interdiction Problems with Incomplete or Asymmetric Information.
Bayrak and Bailey (2008) study a shortest path network interdiction problem
with asymmetric information in which the follower has inaccurate or incomplete
information while the leader has complete knowledge of the network. Hence, the
perceived arc costs and their increase caused by interdiction are different for the
two players. Therefore, the objective functions of the leader and the follower do not
coincide, and the problem assumes a structure of a more general bilevel optimization
problem with a convex lower-level model. The authors propose a reformulation as a
single-level MILP and demonstrate in their computational study that asymmetric
information allows to obtain improved interdiction policies compared to those using
symmetric information.

Pay et al. (2018) consider a stochastic shortest path interdiction problem with
incomplete risk preferences of the leader. As customary, there is uncertainty in the
arc costs and in the interdiction effect on each arc and, after the interdiction, the
follower reacts in a wait-and-see fashion. A finite set of scenarios is used to model
uncertainty realizations. Contrary to previous studies, the authors assume that the
leader is risk-averse and that there exists a utility function that summarizes her risk
preferences but that her knowledge about this function is incomplete. To this end,
the authors propose two ways to deal with this ambiguity: (i) to use historical data
and pairwise comparison of lotteries to fit a piecewise concave utility function and
run the stochastic interdiction model afterward, or (ii) to integrate utility estimation
within the optimization model. The latter leads to a robust approach (originally
proposed in Armbruster and Delage (2015) and Hu and Mehrotra (2015)) in which
the leader searches for an interdiction strategy that maximizes her utility in a robust
fashion, i.e., by considering an infimum over the function space of all possible utility
functions u ∈ U consistent with leader’s preferences:

max
x∈X

inf
u∈U

E

u
min
y∈Y

∑
ω∈Ω

pω
∑
i∈Ny

(di + δi(ω)xi)yi

 .
A single-level MILP reformulation for this problem is proposed and solved using
a branch-and-cut procedure. Computational results are reported for small grid
networks with up to 49 nodes and up to 1000 scenarios.

Sequential shortest path interdiction games with asymmetric information have
been studied in a series of papers by Borrero et al. (2019, 2016) and Yang, Borrero,
et al. (2021). In the sequential decision making setting proposed by Borrero et al.
(2016), there is a repeated interaction between the leader and the follower. At each
period, the leader attacks the follower by interdicting a subset of assets with the goal
of maximizing the cumulative follower’s costs over the given time period. The leader
has incomplete knowledge concerning the structure and arc costs in the network,
with only lower and upper bounds on the arc costs being available. The leader learns
about the network and arc costs trough sequential interdiction actions (thanks to the
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optimal responses of the follower) and dynamically adapts her interdiction strategy.
The leader observes the chosen path along with its cost in order to possibly update
her strategy in the following iteration. The authors introduce the concept of “policy
time-stability”, representing the number of learning iterations needed for the leader
to reach the same interdiction strategy as if she would have complete information.
Two policies (a greedy and a pessimistic one) are proposed and studied from the
theoretical and computational perspective. A computational study is carried out on
randomly generated uniform graphs with 40 and 50 nodes. The results have been
later generalized in Borrero et al. (2019), where general interdiction problems are
considered such that the leader does not know all of the follower’s resources and
constraints and the follower’s cost coefficients are assumed to belong to a polyhedral
uncertainty set. Three types of follower’s feedback are studied: standard (the leader
observes the value of the follower’s objective only), value-perfect (cost coefficients
of the follower’s activity are revealed, too), and response-perfect (the full decision
vector of the follower is revealed to the leader). For their computational study, the
authors use knapsack interdiction instances with up to 15 items.

In a follow-up article, Yang, Borrero, et al. (2021) also study the sequential shortest
path interdiction problem with incomplete information. Contrary to Borrero et al.
(2016), where the feedback includes the shortest path chosen by the follower, in
Yang, Borrero, et al. (2021), this feedback is limited to the length of the chosen
path. In terms of policy time stability, the authors show that, in the worst case,
the number of iterations of the proposed greedy interdiction policies is exponential
and that convergence in polynomial time is possible if more information is provided
through the feedback. Computational experiments are conducted on layered graph
networks with between 3 and 10 layers as well as 7 nodes in each layer. Finally,
more general two-player sequential games are studied in Borrero et al. (2022), see
also Section 3.2.

4.3. Management Science. In this last part of this section, we review applications
of uncertain bilevel optimization in the fields of networks, supply chains, facility
location, and finance.

Networks: Toll pricing in networks is a bilevel optimization problem in which the
leader sets the tolls for road segments of a transportation network so that the revenue
raised from tariffs is maximized. The leader anticipates that user flows are assigned
to cheapest paths in the resulting network; see Brotcorne et al. (2000), Labbé,
Marcotte, et al. (1998), and Labbé and Violin (2016). Alizadeh et al. (2013) consider
a two-stage stochastic toll pricing problem in which the leader faces uncertainties
regarding travel demand and travel costs. These uncertainties are modeled through
a discrete set of scenarios. The first-stage decision of the leader is to set the tariffs
while maximizing the expected revenues. The tariffs set in the first stage can be
modified within a pre-defined interval in the second stage once the uncertainties are
revealed. The authors show how to reduce the problem to its deterministic bilevel
equivalent and conduct a sensitivity analysis w.r.t. the constraints linking the tariffs
at the first and the second stage. Gilbert et al. (2015) consider another stochastic
variant in which the users choose their paths according to a discrete choice model.
The followers namely choose a path that minimizes their disutility, which, besides
the arc costs and tolls, contains an additional additive component unknown to
the leader. This unobserved term is assumed to have a logistic distribution. The
authors provide two heuristics derived from approximations of the logit revenue
function. In her PhD thesis, Violin (2014) studies the toll pricing problem with
interval uncertainty considering travel demand or the cost of toll-free paths. She
applies Γ-robust models to some cases whose deterministic counterparts can be
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solved in polynomial time, e.g., pricing on a single arc, the single commodity case,
or the application of a unit toll. Dokka et al. (2016), see also Dokka et al. (2017),
study the toll pricing problem under uncertainty on non-toll costs. For the leader,
the distribution of non-toll costs is unknown but, based on historical information,
she assumes that the distribution is fixed and belongs to a set of non-negative
distributions. The followers observe the toll rates and use the full knowledge of
non-toll data (in a wait-and-see fashion) to choose the shortest paths in the resulting
network. The authors consider a single follower case and model the uncertainty using
the concept of distributional robustness; see, e.g., Goh and Sim (2010). For this
highly complex problem, they provide mathematical formulations and heuristics for
networks with multiple parallel source-target arcs and networks with a polynomial
number of source-target paths.

In the literature, robust optimization is frequently applied to the hazmat network
design problem. Given an existing road network, the deterministic hazmat network
design problem asks for selecting the road segments that should be closed for hazmat
transport so as to minimize the total risk. Here, each commodity has its own arc risk,
which is taken into consideration if the arc is used in the resulting transportation
network. Hence, the problem can be seen as a bilevel problem in which the leader
selects the road segments to be closed while the followers, i.e., the hazmat carriers,
solve shortest path problems with different source-target pairs. Moreover, it is
assumed that there are no congestion effects in the resulting network. Longsheng
et al. (2017) propose a robust approach to model generalized bounded rationality
in route choice behavior modeling. They test their concept on the robust hazmat
network design problem in which robust optimization models the uncertainty in
the cost of shortest paths of the lower-level problems. The uncertainty models the
bounded rationality of lower-level decision makers caused by their perception error.
Among others, polyhedral and ellipsoidal uncertainty sets are considered and an
exact method based on cutting planes is proposed. A similar problem is studied by
Xin et al. (2015), however, it is assumed that the arc risks are subject to interval
uncertainty instead, whereas the arc lengths are deterministic and known to both
players. The leader searches for a subset of road segments to block so that the
maximum regret w.r.t. path risks over all commodities is minimized. The authors
propose a heuristic approach and test it using a case study of the road network of
the Guangdong province in China. Arguing that the minimax regret approach of
Xin et al. (2015) is too conservative, Sun et al. (2015) use Γ-robustness to deal with
arc risk uncertainties. Two cases are considered in which Γ corresponds to (i) the
overall number of arcs that are subject to uncertainty or (ii) the number of arcs
which are subject to uncertainty for all shipments. The authors provide single-level
reformulations and a Lagrangian heuristic. In related works, Berglund and Kwon
(2014) and Liu and Kwon (2020) consider a combined facility location and hazmat
network design problem. They assume interval uncertainty w.r.t. transportation
demands and arc risks and adopt the Γ-robust approach. The leader minimizes
a linear combination of fixed facility opening cost and the worst-case arc risk
exposure. The followers choose the routes that minimize the transportation cost to
the nearest hazmat facility. A single-level MILP formulation and a genetic algorithm
are proposed in Berglund and Kwon (2014). Liu and Kwon (2020) develop an
exact method based on cutting planes combined with Benders decomposition. In
this latest computational study, the authors consider a road network of the city of
Ravenna with 110 nodes and 143 arcs.

Attack graphs, represented by trees or directed acyclic graphs, are frequently
used to model vulnerabilities of a system. In such a network, nodes represent
attack states and arcs correspond to the transition of states fulfilled by attack
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activities; see, e.g., Bhuiyan (2018) and further references therein. Zheng and Albert
(2019) use an attack graph with completion times on its arcs to model applications
for infrastructure protection planning, e.g., to mitigate cyber-security or supply
chain attacks. The leader, who acts as the defender, implements policies and
invests in cyber-infrastructure security, whereas multiple adversaries try to exploit
vulnerabilities of the system to carry out attacks as soon as possible. An attack
corresponds to a “project” whose fastest completion time is associated with a critical
path in the attack graph. In their setting, arc delay times (imposed by interdiction
activities) are uncertain, the followers act in a wait-and-see manner, and the leader
deploys limited resources to impose delays on the arcs so that the total weighted
expected completion time of all adversarial attacks is maximized. After considering
a finite set of discrete scenarios and dualizing the lower-level problem, the resulting
max-max problem is decomposed using a Lagrangian heuristic approach based on
subgradient optimization. Another more general Stackelberg game on attack graphs
is studied by Letchford and Vorobeychik (2013) and a risk-averse approach based
on a CVaR model is studied by Bhuiyan (2018).

In telecommunication industry, bilevel optimization can be used to model hi-
erarchical decision making between a network operator (the leader) and virtual
operators (the followers). Audestad et al. (2006) study the problem in which the
network operator solves the pricing problem so as to maximize her profit or the
market share. The leader decides on the capacity leased to the virtual operators
and sets the prices for these capacities as well as for the service to the customers.
The followers maximize their own profit function after observing the decisions of
the leader. The authors describe a two-stage stochastic bilevel optimization model
in which the uncertainty of customer demands is modeled with a discrete set of
scenarios. Once the customer demand is revealed, the leader has a possibility to
extend the service and to change the pricing decisions. Additional results, including
a Lagrangian optimization method for finding locally optimal solutions, are provided
in the PhD thesis of Werner (2004). DeMiguel and Xu (2009) consider stochastic
multi-leader-follower games with demand uncertainty and use it to model compe-
tition in the telecommunication industry. The leaders only know the distribution
of the demand, whereas the followers have information on the exact realization of
uncertainty. The leaders compete in a Cournot setting and each leader searches
for a Stackelberg solution w.r.t. her followers. The followers compete in a Cournot
fashion with all leaders and the other followers. The authors show the existence
and uniqueness of an equilibrium for the considered stochastic model and propose
a solution approach based on sample average approximation. We refer to Hu and
Fukushima (2015) for further studies on multi-leader-follower Stackelberg games.

Supply Chains and Facility Location: Multi-period facility location interdiction with
stochastic resource constraints is studied by Zhang and Özaltın (2021). The problem
is modeled as a stochastic bilevel problem with integer variables at both levels and a
branch-and-bound procedure is proposed, see Section 3.1.6 for further details. Ryu
et al. (2004) consider supply chain optimization in which the upper-level problem
is a plant planning problem and the lower-level problem is a distribution network
problem with stochastic demands. A similar problem but in a multi-objective setting
is investigated by Roghanian et al. (2007). Yeh et al. (2015) use bilevel optimization
to model timber supply chains in which the harvesters decide first on the quantity
to be harvested and the manufacturers decide later on how much to utilize. The
authors study a problem of investing in biofuel production under uncertainty and
model it as a two-stage stochastic problem in which, for each realization of uncertain
parameters, the second stage is the aforementioned bilevel problem. In Su and
Geunes (2013), a Stackelberg game is considered between a single-supplier and a
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Figure 6. Papers per year as cited in this survey

multi-retailer supply chain under asymmetric demand information. The supplier
sets price discounts first (in a multi-period setting) under uncertainty concerning the
retail-store demand. After the actual demand of each store is revealed, individual
store order quantities are determined in each period. The goal of the supplier is to
determine the pricing strategy that maximizes her expected payoff while anticipating
the store order quantities.

Finance: Yan et al. (2014) consider a stochastic approach to supply chain financing
under demand uncertainty. Fanzeres, Ahmed, et al. (2019) investigate a revenue-
maximizing strategic bidding problem with uncertainty concerning the competitors’
bidding strategy. A two-stage robust optimization model with equilibrium constraints
is proposed and reformulated as a bilevel problem with equilibrium constraints. After
deriving a single-level reformulation, the authors implement a column-and-constraint
generation approach.

5. Possible Directions for Future Research

Although the study of bilevel optimization problems under uncertainty started
rather recently in the 1990s, there already has been substantial work in this field;
see, e.g., Figure 6, which shows the number of papers per year cited in this survey.

Nevertheless, there are very many topics still open for future research. In this
last section of the survey, we thus sketch a few of these potential future research
topics.

(i) For the stochastic approach to address data uncertainty, only a few works
exist (see, e.g., Carrión et al. (2009) and Kovacevic and Pflug (2014))
that go beyond the risk-neutral case for nonlinear bilevel models. This
leaves a wide open space for future research combining risk-averse modeling
(such as using the CVaR as in the papers mentioned above) for nonlinear
models. Except for some interdiction problems, nonlinear bilevel models
under uncertainty are only rarely discussed in the literature and most of
the research on stochastic bilevel optimization so far focuses on the linear
case. The reason, most likely, is that even nonlinear bilevel optimization is
an extremely challenging field and the combination of such nonlinearities
with further uncertainty considerations makes such problems even more
hard to study and solve.
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(ii) For stochastic setups, there have been some works that algorithmically
exploit (quasi-)block structures. However, apart from Held et al. (2005)
and Song and Shen (2016) who study special interdiction problems, most
of these works consider the risk-neutral case. Hence, the field of structure-
exploiting algorithms for risk-averse bilevel models contains many possible
directions for future research as well.

(iii) It seems that there is only little research (see, e.g., Adasme et al. (2013)
and Dokka et al. (2016)) that combines distributional robustness (Goh and
Sim 2010) and bilevel optimization although both fields, standalone, are
very active fields of research today. However, since both fields on their own
are already very difficult, their combination will be even more challenging.

(iv) The literature on stochastic bilevel optimization is rather theoretical. There
is (again, to the best of our knowledge) no general computational paper in
this field besides those that consider specific applications and that almost
all use the deterministic equivalent as the main algorithmic workhorse.

(v) Robust approaches to account for uncertainties in the context of bilevel
optimization are still in their infancy. So far, most works focus on the
strictly or Γ-robust case. Hence, the consideration of other robustness
concepts such as light robustness (Fischetti and Monaci 2009) or adjustable
robustness (Ben-Tal, Goryashko, et al. 2004) may be reasonable directions
for future research.

(vi) In robust setups, uncertainties are predominantly modeled using either
interval or polyhedral uncertainty sets. This leaves room to study other
uncertainty set geometries and, in particular, models with discrete uncer-
tainty sets.

(vii) We are not aware of any work that considers intermediate solution concepts
between the optimistic and the pessimistic approach for bilevel problems
with coupling constraints. Moreover, and to the best of our knowledge,
solution methods for strong-weak bilevel problems have only been considered
for the linear case.

(viii) Almost all papers on uncertain bilevel optimization consider the timing in
which the uncertainty realizes after the decision of the leader has been taken
and before the follower decides. Although some first works (Beck, Ljubić,
et al. 2022; Heitsch et al. 2022) have been published on the alternative
timing given in (17), this setup still is a rather open field—in particular in
the case of chance constraints as part of the lower-level problem.

(ix) There are only a few papers (Salas and Svensson 2020; Zhang, Liu, et al.
2022) that started to pave the way for the study of decision-dependent
uncertainties. This is, however, another completely open field of research.

(x) Finally, there are no well-curated collections of instances in the field of
bilevel optimization under uncertainty, which would, of course, help the
community a lot when it comes to developing and testing novel algorithmic
ideas.
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