
Staircase Compatibility and its Applications
in Scheduling and Piecewise Linearization

Andreas Bärmann1, Thorsten Gellermann2,
Maximilian Merkert3 and Oskar Schneider4

1Andreas.Baermann@math.uni-erlangen.de
2Thorsten.Gellermann@math.uni-erlangen.de
3Maximilian.Merkert@math.uni-erlangen.de

4Oskar.Schneider@fau.de

6th September 2016

Lehrstuhl für Wirtschaftsmathematik
Department Mathematik

Friedrich-Alexander-Universität Erlangen-Nürnberg
Cauerstraße 11, 91058 Erlangen, Germany

Abstract

We consider the clique problem with multiple-choice constraints (CPMC) and
characterize a case where it is possible to give an efficient description of the convex
hull of its feasible solutions. This case, which we call staircase compatibility, gener-
alizes common properties in applications and allows for a linear description of the
integer feasible solutions to (CPMC) with a totally unimodular constraint matrix
of polynomial size. We derive two such totally unimodular reformulations for the
problem: one that is obtained by a strengthening of the compatibility constraints
and one that is based on a representation as a dual network flow problem. Fur-
thermore, we show a natural way to derive integral solutions from fractional solu-
tions to the problem by determining integral extreme points generating this frac-
tional solution. We also evaluate our reformulations from a computational point
of view by applying them to two different real-world applications. The first one is
a problem in railway timetabling where we try to adapt a given timetable slightly
such that energy costs from operating the trains are reduced. The second one is
the piecewise linearization of non-linear flow problems on a gas network. In both
cases, we are able to reduce the solution times significantly by passing to the theo-
retically stronger formulations of the problem.

Keywords: Clique Problem, Multiple-Choice Constraints, Total Unimodularity,
Compatibility Graph, Scheduling, Piecewise Linearization

Mathematics Subject Classification: 90C27 - 90C57 - 90C35 - 90C90

1

Andreas.Baermann@math.uni-erlangen.de
Thorsten.Gellermann@math.uni-erlangen.de
Maximilian.Merkert@math.uni-erlangen.de
Oskar.Schneider@fau.de

1 Introduction
Compatibility structures are prevalent in many combinatorial optimization problems.
In fact, they arise whenever the choice of one solution element implies the choice of
other elements – in the sense of an inequality of the form

x ≤
n

∑
i=1

yi,

with binary variables x and yi for i = 1, . . . , n ∈ N. Such compatibilities are the core
of the clique problem, which consists in finding a clique of a certain size in a given
undirected graph.

In thiswork, we consider the combination of compatibility constraints togetherwith
another frequently-ocurring structure, namely so-called multiple-choice constraints:

n

∑
i=1

xi = 1,

where the xi are binary variables for i = 1, . . . , n ∈ N. These constraints are present
whenever there is a partition of the set of eligible elements into subsets, such that it is
required to choose exactly one element from each subset.

Altogether, this leads to a problem that can be classified as a clique problem with
multiple-choice constraints (CPMC). While this problem is obviously NP-hard in gen-
eral, we want to investigate here a special case where it is solvable in polynomial time.
This is possible for a restriction of the compatibility graphs to graphs with a certain
compatibility structure which we call staircase compatibility. For clique problems ex-
hibiting this special structure, we will be able to state efficient binary programming
(BP) formulations of which we can show that the corresponding constraint matrix is
totally unimodular.

In order to demonstrate that there is great benefit from studying this structure, we
present two very distinct real-world applications which are special cases of (CPMC)
under staircase compatibility. There first one is a problem in railway timetablingwhich
is a special case of the project scheduling problem. The second application arises in
the context of piecewise-linear approximation of nonlinear functions in gas routing.
In both cases, the resulting model reformulations are already known (see Möhring
et al. (2001) and Correa-Posada and Sánchez-Martín (2014) respectively). However, our
notion of staircase compatibility provides a common, more general framework to study
the underlying clique problem with multiple-choice constraints. In particular, we are
able to show that the derived integrality results hold for a wider class of compatibility
graphs.

We begin with the definition of staircase compatibility in Section 2, which is accom-
panied by a first discussion of its presence in project scheduling problems and flow
problems with piecewise-linear objective function as well as similar structures in the
literature. Following that, we derive two totally unimodular BP formulations for the
clique problem with multiple-choice constraints in the case of staircase compatibility
in Section 3. The second of these two reformulations takes the form of a dual network
flow problem. It will give rise to a very natural way of generating heuristic solutions
from fractional solutions to the problem by determining the integral extreme points
which generate this fractional solution. In Section 4, we present our computational

2

results for the two application mentioned above, showing that the better understand-
ing of their structure directly translates into vastly shorter solution times. Finally, in
Section 5, we summarize the findings of this paper and give possible directions for an
extension of our results.

2 Staircase Compatibility
In the following, we define the clique problem with multiple-choice constraints as it is
considered here aswell as the notion of staircase compatibility. Wewill see later that the
presence of such staircase structures in the problem allows for an efficient description
of the convex hull of its feasible solutions.

Definition 2.1 (The Clique Problem under Multiple-Choice Constraints). Consider a
finite basic set S together with a partition S =

⋃m
i=1 Si of S into m disjoint subsets S1, . . . , Sm

as well as a with a symmetric relation

R ⊆ (S× S) \
m⋃

i=1

(Si × Si).

Two elements s ∈ Si, t ∈ Sj are said to be compatible if and only if (s, t) ∈ R holds. The
clique problem under multiple-choice constraints (CPMC) is then given by the task to

chose exactly one element from each subset Si, (rule 1)

such that the selected elements are pairwise compatible.

The clique problem under multiple-choice constraints amounts to finding a clique
in the undirected graph G = (S, R) whose nodes are the elements of S and whose
arcs connect exactly the pairwise compatible elements in S, such that exactly one ele-
ment from each subset in the partition of S is chosen. We call G the compatibility graph
associated with relation R.

In this work, we focus on a special case of (CPMC) with a certain “connectedness”
structure in the underlying compatibility relation:

Definition 2.2 (Staircase Relations). Let each subset Si in the partition of S be an ordered set
according to a total order <i, which allows us to denote the elements of Si by si,1, . . . , si,ni with
ni = |Si|. In the following, we omit the index i and simply write < whenever no confusion is
possible. We then call a symmetric relation R on S a staircase relation if two conditions hold.
The first condition states the connectedness of the compatible choices for a given element:

(a, bk1) ∈ R ∧ (a, bk3) ∈ R ⇒ (a, bk2) ∈ R, (rule 2a)

whenever a ∈ Si, bk1 , bk2 , bk3 ∈ Sj, bk1 < bk2 < bk3 . The second condition forces some kind of
monotonic behavior of R:

(al1 , bk2) ∈ R ∧ (al2 , bk1) ∈ R ⇒ (al1 , bk1) ∈ R ∧ (al2 , bk2) ∈ R (rule 2b)

for al1 , al2 ∈ Si, bk1 , bk2 ∈ Sj, al1 < al2 , bk1 < bk2 .

3

The choice of the term “staircase relation” becomes clear when considering the ad-
jacency matrix of the compatibility graph corresponding to such a relation: each sub-
matrix that describes the compatibility between the elements of two subsets of the par-
tition is a staircase matrix if its rows and columns are ordered according to the <i (see
Fourer (1984) for an extensive compilation of the properties of staircase matrices).

Note that we assume in this article that each element of a subset Si in the partition
of S has as least one element in each of the remaining subsets with which it is com-
patible. Otherwise, this element may be eliminated as it cannot belong to a feasible
selection. Note also that in this case (rule 2b) implies (rule 2a).

The above definitions prepare us to consider the problem of interest in this paper:
if the relation R in the setting of Definition 2.1 is a staircase relation, we call the arising
special case of (CPMC) the clique problem with multiple-choice constraints under staircase
compatibility (CPMCS). Before we present interesting applications and a further dis-
cussion of this problem, we give an example which is taken up again in Section 3.

Example 2.3. Consider the following example:
a1

a2

a3

b1

b2

b3

b1 b2 b3

a1 1 1 0
a2 0 1 1
a3 0 1 1

It shows the compatibility graph for (CPMCS) as well as the corresponding adjancency matrix
for a certain staircase relation R on the set S = S1 ∪ S2 with S1 = {a1, a2, a3} and S2 =
{b1, b2, b3}. We see that removing edge {a2, b2}would destroy (rule 2a) (and also (rule 2b), see
above), while removing {a3, b3} would destroy (rule 2b). Any selection {a, b} with (a, b) ∈ R
would be feasible for (CPMCS).

2.1 Two Applications of (CPMCS)
In the following, we give two example applications (CPMCS) may arise from. In both
examples, the project scheduling problem and interval compatibilities in path flows, it
is a possible way to characterize the set of feasible solutions.

Project Scheduling Let m tasks j = j1, . . . , jm be given. Each task has to be carried out
at exactly one time slot, where we assume a discrete set Tj = {tj,1, . . . , tj,nj} of possible
execution times to be given thatmaydiffer for different jobs. Additionally, pairs of tasks
may have precedence restrictions requiring one of them to start in a predefined time
window relative to the other (if no relation is given, they may be done in any order, or
possibly in parallel). This problem is called the project scheduling problem with precedence
constraints. For further information and examples, see Schwindt and Zimmermann
(2015) and the references therein.

4

The following is a possible formulation for the above scheduling problem:

find x (1a)
s.t. xk − xl ≤ d̄k,l 1 ≤ k < l ≤ m (1b)

xk − xl ≥ d̄k,l 1 ≤ k < l ≤ m (1c)
xj ∈ Tj j = 1, . . . , m (1d)

for some d̄k,l, ¯
dk,l with k = 1, . . . , m and l = k + 1, . . . , m.

We can model this problem as (CPMCS) as follows: each subset Si represents a
job ji, where the elements in each subset are identified with the possible execution
times {tj,1, . . . , tj,nj}. Consequently, the subsets come with an obvious chronological
ordering. For different jobs jk, jl with k 6= l, we have

(tk,ik , tl,il) ∈ R⇔
¯
dk,l ≤ tk,ik − tl,il ≤ d̄k,l

It is easily seen that (rule 2a) is satisfied due to the convexity of the relative time win-
dow defined by d̄k,l and ¯

dk,l. Furthermore, violating (rule 2b) would contradict the
temporal ordering. Therefore, R as defined here is a staircase relation.

Interval Compatibilities in Path Flows Let a path network consisting of m edges
e1, . . . , em be given. Each edge has an interval for the feasible flow on the edge which
furthermore is subdivided into ni subintervals, i = 1, . . . , m. This scenario appears as
a substructure in network flow problems where the flow has been piecewise linearized
(see Section 4.2 for more details; cf. also Liers and Merkert (2015)). The task is to de-
scribe the set of feasible combinations of flow intervals.

It represents a special case of (CPMCS) as can be seen as follows: define S as the
set of all intervals, where subset Si includes all intervals belonging to edge i of the
path. As those intervals are obtained from subdividing a larger interval, a canonical
ordering is available. Intervals belonging to different (not necessarily adjacent) edges
are compatible if and only if it is possible for the path flow to satisfy the bounds of both
intervals. If the demand of all intermediate nodes of the path is zero, this is true if
and only if they have nonempty intersection. Nonzero demands on path nodes can be
reduced to this case by simple interval arithmetic which amounts to shifting intervals
appropriately. An important observation is that the resulting relation R completely
describes the problem, as a set of intervals is guaranteed to be compatible altogether if
each pair of intervals is compatible (which is basicallyHelly’s Theorem in dimension 1).
Finally, R is a staircase relation, where (rule 2a) follows from the fact that intervals are
convex, and (rule 2b) can easily be seen to hold from the way intervals can be sorted
for each network edge.

Relation to General (CPMCS) The set of staircase relations that may originate from
one of the two special cases of (CPMCS) forms a strict subclass of general staircase re-
lations as defined in Definition 2.2. Intuitively, this is explained by the fact that most
applications – including the two above – allow for some “transitivity reasoning”, i.e.
the compatibilities between subsets S1 and S2 together with those between S2 and S3
restrict the possible compatibilities between S1 and S3. However, according to the def-
inition, both (rule 2a) and (rule 2b) only consider two subsets at a time. The following
gives an example for a compatibility graph that does not originate from either of the
two special cases mentioned above.

5

Example 2.4. Consider the following compatibility graph G belonging to an instance of Prob-
lem (CPMCS) with three subsets A = {a1, a2, a3}, B = {b1, b2, b3} and C = {c1, c2, c3}, each
of which has three elements. Note that there is another copy of partition A in the figure below
to represent the compatibilities with partition C in order to highlight the symmetric structure
of the example.

a1

a2

a3

b1

b2

b3

c1

c2

c3

a1

a2

a3

Suppose G was obtained from an instance of Model (1). Then we could identify each par-
tition with a job and each element of the partition with a possible execution time. We denote
by dA,B := d̄A,B − ¯

dA,B the length of the time window between jobs A and B and similarly for
the other relations. As (a2, b2) ∈ R, but (a2, b1) /∈ R, (a2, b3) /∈ R, we can conclude that
dA,B is less than the time difference between b1 and b3, by slight abuse of notation denoted by
b3− b1 > dA,B. Due to c2 being connected to all nodes in B, the time window of length dB,C has
to include b1 as well as b3 and hence dB,C ≥ b3− b1, implying dB,C > dA,B. As the instance is
symmetric, we can repeat this argument to obtain dA,C > dB,C and dA,B > dA,C, which leads
to the contradiction dA,B < dB,C < dA,C < dA,B.

Similar reasoning shows that G also cannot be obtained from an instance of interval compat-
ibilities on a path flow network (as it is described above): the argument is completely analogous,
but uses the diameter of the intervals belonging to a2, b2, c2 instead of dA,B, dB,C, dA,C.

Moreover, the situation is no different if we do not assume the ordering of the elements within
each partition to be given. This is because there is no other ordering that makes R a staircase
relation apart from reversing all partition orderings.

3 Structural Properties
The problem (CPMCS) introduced in the previous section can be modelled as a mixed-
integer program (MIP) in a straightforward fashion. We introduce a variable xs ∈ {0, 1}
for each element s ∈ S which takes a value of 1 if this element is chosen and 0 if not.
A vector x is then a feasible selection if and only if it is a solution to the following
feasibility problem:

find x

s.t. ∑
s∈Si

xs = 1 (∀Si ∈ S) (2a)

xs ≤ ∑
t∈Sj :

(s,t)∈R

xt (∀Si ∈ S)(∀s ∈ Si)(∀Sj ∈ S , j > i) (2b)

x ∈ {0, 1}|S|, (2c)

where S denotes the given partition consisting of subsets S1, . . . , Sm, m ∈ N. Multiple-
Choice Constraints (2a) ensure that exactly one element of each subset in S is chosen,
while Compatibility Constraints (2b) enforce the pairwise compatibility of the chosen

6

elements according to the relation R: choosing an element s from one subset Si implies
that we have to choose one of the elements compatible to s in each of the remaining
subsets Sj. Integrality Constraints (2c) finally restrict variables x to take binary values.
Note that Constraints (2b) for two subsets Si, Sj are redundant if (s, t) ∈ R for all s ∈ Si
and t ∈ Sj.

Remark 3.1. It is easy to find examples where Constraints (2c) are actually needed as Con-
straints (2a) and (2b) are not sufficient to ensure integrality of the solution. For the instance
presented in Example 2.3, Model (2) reads:

find x
s.t. x1 + x2 + x3 = 1

x4 + x5 + x6 = 1
x1 ≤ x4 + x5

x2 ≤ x5 + x6

x3 ≤ x5 + x6

x ∈ {0, 1}6.

It allows for the fractional solution (0, 1
2 , 1

2 , 1
2 , 0, 1

2) if x ∈ {0, 1}6 is relaxed to x ≥ 0 (ob-
serve that x ≤ 1 is redundant). This solution is easily checked to be an extreme point of the
corresponding polyhedron.

Obviously, the polytope underlying Model (2) is not integral. However, we will see
now that a small adaption leads to a totally unimodular description of the feasible set.
We introduce the notation min(s, Sj, R) for some s ∈ Si ∈ S and some Sj with j 6= i to
denote theminimal element in Sj which is compatible to s. Likewise, max(s, Sj, R) shall
denote the maximal such element in Sj. Consider then the feasibility problem given by

find x

s.t. ∑
s∈Si

xs = 1 (∀Si ∈ S) (3a)

∑
u∈Si :
u≥s

xu ≤ ∑
t∈Sj :

t≥tmin(s,Sj)

xt (∀Si ∈ S)(∀s ∈ Si)(∀Sj ∈ S , j 6= i) (3b)

x ∈ {0, 1}|S|. (3c)

It uses the same set of variables as Model (2) as well as the same multiple-choice con-
straints to enforce (rule 1). However, it features new compatibility constraints whose
left-hand side arises by summing all xu for u ∈ Si with u > s onto the left-hand side
of the old compatibility constraint corresponding to element s ∈ Si and some Sj with
j 6= i. Its right-hand side arises by taking the old right-hand side and adding all vari-
ables xt for t ∈ Sj and t > max(s, Sj, R). Furthermore, this newmodel also incorporates
compatibility constraints for subsets Si and Sj with i < j. In the following, we show
that the two models are in fact equivalent.

Proposition 3.2. The respective feasible sets of Models (2) and (3) coincide.

7

Proof. We begin by showing that each feasible solution to Model (2) is also feasible
for Model (3). To see this, consider an element s of a subset Si and its corresponding
compatibility constraint (2b) with the elements of another subset Sj, which reads

xs ≤ ∑
t∈Sj :

(s,t)∈R

xt.

By summing up these constraints for all elements u ≥ s, we obtain

∑
u∈Si :
u≥s

xu ≤ ∑
u∈Si :
u≥s

∑
t∈Sj :

(u,t)∈R

xt = ∑
t∈Sj

|{u ∈ Si | u ≥ s, (u, t) ∈ R}| · xt,

using (rule 2b). Due to (rule 2a), all coefficients for variable xt with min(s, Sj, R) ≤ t ≤
tj,nj on the right-hand side of this inequality are exactly those which are non-zero, i.e.
1 or greater. As its left-hand side can at most take a value of 1 due to the multiple-
choice constraint for subset Si, all coefficients on the right-hand side greater than 1 can
be reduced to 1 without changing the set of integer solutions fulfilling the inequality.
This exactly yields Compatibility Constraints (3b), which proves that the feasible set of
Model (2) is included in that of Model (3).

To prove the opposite inclusion, consider the case of a feasible solution toModel (3)
which violates some Compatibility Constraint (2b) of Model (2). That would mean,
we have selected two elements s ∈ Si and t ∈ Sj with (s, t) /∈ R. In other words,
either t < min(s, Sj, R) or t > max(s, Sj, R) holds due to (rule 2a). Assuming i < j, the
first case can be ruled out, as a corresponding selection would violate Compatibility
Constraint (3b) for element s and subset Sj. So let t > max(s, Sj, R). According to
Compatibility Constraint (3b) for element t and subset Si, we have s > min(t, Si, R)
and thus s > max(t, Si, R) because of (rule 2a). Now, as (s, max(s, Sj, R)) ∈ R and
(t, max(t, Si, R)) ∈ R, we find (s, t) ∈ R according to (rule 2b), which is a contradiction.
Consequently, we have shown that each feasible solution to Model (3) is feasible for
Model (2).

Note that similar as in the above proof, it can be shown that Compatibility Con-
straint (3b) for subsets Si, Sj with j < i is redundant to the corresponding constraint for
j > i if max(s, Sj, R) = tnj,Sj .

Remark 3.3. Continuing the discussion of Example 2.3, we consider Model (3) for the associ-
ated problem instance:

find x
s.t. x1 + x2 + x3 = 1

x4 + x5 + x6 = 1
x1 + x2 + x3 ≤ x4 + x5 + x6

x2 + x3 ≤ x5 + x6

x3 ≤ x5 + x6

x4 + x5 + x6 ≤ x1 + x2 + x3

x5 + x6 ≤ x1 + x2 + x3

x6 ≤ x2 + x3

x ∈ {0, 1}6.

8

This feasibility problem no longer allows for the fractional solution (0, 1
2 , 1

2 , 1
2 , 0, 1

2) if relaxed to
an LP. In fact, it can be checked that the corresponding polyhedron is integral.

Generalizing the observation of Remark 3.3, we now show that the underlying poly-
hedron of Model (3) is always integral.

Theorem 3.4. The constraint matrix of Model (3) is totally unimodular.

Proof. In our proof, we use the following equivalent characterization of total unimod-
ularity:

A matrix A is totally unimodular, i.e. each square submatrix of A has de-
terminant 0, +1 or −1, if and only if each collection of columns of A can be
split into two parts, such that the sum of the columns in one part minus the
sum of the columns in the other part is a vector with entries in {0,+1,−1}
only (see Ghouila-Houri (1962) and (Schrijver, 1998, Theorem 19.3 (iv), p.
269)).

We begin by showing the total unimodularity of the constraint matrix of Model (3) for
the case of Example 2.3. Wewill then see that the idea behind the proof directly extends
to the general case. Observe that the constraint matrix has a very special structure:

S1 S2 ∑alt,S1
+ ∑alt,S2 ∑

1 1 1 0 0 0 1 + 0 1
0 0 0 1 1 1 0 + 1 1
1 1 1 −1 −1 −1 1 + −1 0
0 1 1 0 −1 −1 0 + 0 0
0 0 1 0 −1 −1 1 + 0 1
−1 −1 −1 1 1 1 −1 + 1 0
−1 −1 −1 0 1 1 −1 + 0 −1
0 −1 −1 0 0 1 0 + 1 1

,

where we have left out the submatrices I and −I for the variable bounds, as they have
no effect on total unimodularity. When computing the alternating sum of the columns
corresponding to the elements of subset S1, going backwards and starting with a posi-
tive sign in the last column, we observe that this yields a column vector that only con-
sists of entries in {0,+1,−1}. The same holds for the columns corresponding to the
elements of subset S2. For the rows corresponding toMultiple-Choice Constraints (3a),
exactly one of the two column vectors contains an entry +1 and the other one an en-
try 0. For the rows corresponding to Compatibility Constraint (3b) for the elements of
S1, the S1-column vector contains either a +1 or a 0 and the S2-column vector either
a −1 or a 0, and vice versa for the elements of S2. Thus, when adding the two col-
umn vectors, the result is a new column vector whose entries are in {0,−1,+1} only.
This property still holds when forming a submatrix by deleting individual columns
of the constraint matrix due to the staircase structures in the compatibility constraint.
Therefore, we have shown the total unimodularity of the matrix.

Now, when considering an arbitrary instance to Model (3), we can use the same
strategy as above. Given an arbitrary subset of the columns of the constraint matrix,
we partition it according to partition of S and compute the m column vectors arising
when summing the columns in such a partition in a backwards fashion (exploiting

9

the ordering of the subsets Si), starting with a positive sign for the last element. For
the rows belonging to the multiple-choice constraints, exactly one resulting column
vector will have an entry of 1, the other an entry of 0. As each row belonging to the
compatibility constraint corresponds to the elements of exactly two subsets, atmost one
column vector will have an entry+1, and at most one column vector will have an entry
−1. The other entries will be 0. As a result, when summing all the column vectors,
the result will be a column vector with entries in {0,−1,+1} only. This concludes the
proof.

In many cases, totally unimodular constraint matrices correspond to problems de-
fined on a network. More precisely, the matroid formed by a totally unimodular con-
straint matrix can be decomposed intomatroids that are graphic, cographic, or isomor-
phic to the specialmatroid R10 (on the decomposition of regularmatroids, see Seymour
(1980)) – which is neither graphic nor cographic and rarely occurs in practical applica-
tions. Thus, it is natural to ask the question whether the constraint matrix of Model (3)
is graphic or cographic (i.e., the linear matroid obtained from the matrix is a graphic
or cographic matroid), in which case (CPMCS) is equivalent to a network flow prob-
lem or a dual network flow problem (“potential problem”) respectively. The reader not
familiar with those notions of matroid theory may consult Oxley (2006).

Theorem 3.5. The constraint matrix of Model (3) is cographic.

Proof. We show this by transforming Model (3) into a dual network flow problem.
Given a graph G = (V, A), such a problem is of the form

min cTπ

s.t. πj − πi ≤ dij (∀ a = (i, j) ∈ A) (4a)

π ∈ R
|V|.

To obtain this form, we use the following variable transformation: let

yi,j :=
ni

∑
k=j

xi,k (∀i = 1, . . . , m)(∀j = 1, . . . , ni).

Note that this transformation is bijectivewith xi,j = yi,j− yi,j+1 if j < ni, and xi,ni = yi,ni .
Stating Model (3) in terms of the y-variables, we see that both sides form telescope
sums, leaving only one variable on each side. Thus, Compatibility Constraint (3b) for
two subsets Si and Sl and some j ∈ Si now reads

yi,j − yl,min(j,Sl ,R) ≤ 0,

which has the form of (4a). Constraints (rule 1) translate to

yi,1 = 1 (∀ i = 1, . . . , m). (5)

This also implies upper bounds on the x-variables. Their lower bounds can be ex-
pressed via

yi,j+1 − yi,j ≤ 0 if j < ni, and − yi,ni ≤ 0 (∀i = 1, . . . , m). (6)

G is simply defined to have a vertex for every y-variable and an arc (i, j) if and only
if there is a constraint yj − yi ≤ 0.

10

Remark 3.6. The y-variables have the following interpretation: yi,j = 1 means: “from Si,
pick an element with index j or greater”. This is very similar to the Incremental Method
for linearizing a univariate function. Furthermore, the above transformation is well-known
from this context (Vielma (2015)), where it is used to connect the Incremental Method to, for
example, the Convex Combination Method, and vice versa. We can also recognize (6) as a
filling condition.

The following example illustrates the transformation of (CPMCS) to a dual network
flow problem. It will also show that the constraint matrix is not graphic in general.

Example 3.7. Let S be partitioned into three subsets A = {a1, a2, a3}, B = {b1, b2, b3} and
C = {c1, c2, c3}. Let R be given by the following compatibility graph. Note that each pair of
subsets behaves as in Example 2.3.

a1

a2

a3

b1

b2

b3

c1 c2 c3

As described in the proof of Theorem 3.5, Compatibility constraints (3b) transform into
Inequalities (3), e.g. considering node a2 together with subset B, the corresponding inequality

xa2 + xa3 ≤ xb2 + xb3

in terms of the y-variables now reads
ya2 ≤ yb2 .

More generally, using the notation from the proof of Proposition 3.2, for every element s ∈ Si
and every subset Sj, j 6= i we have

ys ≤ ymin(s,Sj,R).

Due to (6), there are additional constraints ordering the y-variables within each subset. There-
fore, by the proof of Theorem 3.5 we can formulate the given instance of (CPMCS) as a dual
network flow problem on the following directed graph (arcs may be read as implications).

11

a1

a2

a3

b1

b2

b3

c1 c2 c3

The example shows that the constraint matrix of Model (3) is not graphic in general, as this
would require the above graph to be planar. However, this is not the case, as, for example, it has
K3,3 as a subgraph using nodes {a2, b2, c2} and {a3, b3, c3}.

As the constraint matrix is totally unimodular, we are guaranteed that each frac-
tional point is the convex combination of integral solutions. Next, we will show how to
find such a convex combination. In the case where (CPMCS) forms a substructure of a
more complex problem, this may be useful for constructing a heuristic, as the integer
points spanning a fractional solution are candidates for good feasible solutions.

The following is an easy way to obtain integral solutions from a fractional one. It
generalizes thewell-known fact that for dual network flowproblems, rounding all com-
ponents up or rounding all component down preserves feasibility.

Definition 3.8. Let ŷ be a solution to (CPMCS), and let λ ∈ (0, 1] be some threshold value.
We define ŷλ to denote the integer point obtained from rounding all components of ŷ according
to the following rule:

ŷλ,i =

{
1 if ŷi ≥ λ
0 if ŷi < λ

,

and say that ŷλ is obtained from λ-rounding ŷ.

It is easy to see that ŷλ is also a solution to (CPMCS), for all λ ∈ (0, 1]. The key
observation is that every operation that does not change the relative ordering of the
yij (and also does not violate the 0− 1-bounds), preserves feasibility, as dij = 0 in (4a)
whenever there are two variables present in the constraint.

Theorem 3.9. Let ŷ be a solution to (CPMCS). Then ŷ is a convex combination of the integral
solutions

{ŷλ | λ ∈ {ŷi, i = 1, . . . , |S|}}.

Proof. Let Λ := {ŷi, i = 1, . . . , |S|} denote the set of values occurring in ŷ. We denote
them by λ1, . . . , λ|S| and assume they are ordered increasingly, i.e. λi ≤ λj whenever
i ≤ j. We claim that

ŷ =
|S|

∑
k=1

(λk − λk−1)ŷλk , (7)

12

where λ0 is interpreted as 0. Indeed, the i-th component of ∑|S|k=1(λk−λk−1)ŷλk is equal
to

|S|

∑
k=1

(λk − λk−1)ŷλk,i
Def. 3.8
= ∑

k:λk≤ŷi

(λk − λk−1)1

telescope sum
= max

k:λk≤ŷi
λk − λ0︸︷︷︸

=0

= ŷi.

Furthermore, we have

λk − λk−1 ≥ 0 for all k = 1, . . . , |S|,

and also
|S|

∑
k=1

(λk − λk−1) = λ|S| − λ0 = 1,

since (5) implies 1 ∈ Λ, and therefore λ|S| = 1. Thus, Equation (7) describes ŷ as a
convex combination of {ŷλ | λ ∈ Λ}.

4 Computational Results
In this section, we compare the efficiency of the three MIP formulations for (CPMCS)
we have discussed previously: the first, naive compatibility formulation (2), the to-
tally unimodular compatibility formulation (3) and the formulation as a dual network
flow problem. We do this by evaluating them on real-world benchmark instances aris-
ing from two different applications: energy-efficient railway timetabling and piecewise
linearization of the physical flow constraints on gas networks. We will see that passing
from the original to the unimodular formulation already brings a significant computa-
tional advantage, but that the sparsity of the dual-flow formulation allows for the best
results by far. Our computational study thus immediately shows two more things:
staircase structures are present in real-world application problems and their exploita-
tion is very beneficial in terms of computation time.

4.1 Computational Results for Energy-Efficient Timetabling
The first example for a successful exploitation of staircase compatibilitywepresent here
is a problem in railway timetabling. The aim is to take a preliminary timetable which
is currently in the planning phase (typically towards the end) and to use the remaining
degrees of freedom to allow for a reduction of the energy costs of the involved train op-
erating companies (TOCs). This is possible by taking into account that a big consumer
of electricity (as a TOC undoubtedly is) typically has an electricity contract consisting
of two price components: the overall energy consumption and the maximum average
power consumption over all 15-minute intervals in the billing period. In the special
case of a German TOC, the electricity provider charges the collective consumption of
all the trains operated by this TOC. This is done by summing up their individual power
consumption profiles asmeasured by the electricitymeters in the locomotives and com-
puting both the area under the resulting curve (i.e. the total energy consumption) as

13

well as the maximum 15-minute average. Both values are multiplied with some cost
factor and summed to obtain the final electricity bill. One possibility for optimization
via timetabling now lies in adjusting the departure times of the trains in the stations. A
train generally drawsmost powerwhile accelerating. Thus, high peaks in consumption
can be avoided if too many simultaneous departures are desynchronized, which can
be used to decrease the price componet based on peak consumption. In many cases,
this effect can already be achieved via small shifts in the departure times and is thus
an interesting trade-off to be’considered: the power-based price component typically
makes up for 20–25 % of the energy bill.

We illustrate the effect of this optimization in Figure 1. It shows the power con-

Figure 1: Power consumption profile of timetabling instanceWürzburg before (left) and
after (right) optimization

sumption profile before and after optimization for one of the benchmark instances in-
troduced later (Würzburg) on a sample day. The curves in red show the power con-
sumption in each second, while the blue curves show their consecutive 15-minute av-
erages. As stated, the TOC is charged proportionally to the highest such average over
the billing period (typically one year). According to the official price sheet by DB En-
ergie GmbH for 2016, the cost factor is 120.83 e per kW and year, such that the demon-
strated reduction from 87 to 80 MW in peak consumption equals an annual cost saving
of around 850, 000e (and this is a rather small instance). Note that the energy recuper-
ated from braking trains is refunded separately and not offset against the power drawn
from the power supply. Thus, we can assume that the consumption profile is always
non-negative.

In the following, we give a statement of the problem in terms of staircase compati-
bility and present our computational study on problem instances of different sizes.

The Problem as a Special Case of (CPMCS) We consider a given initial timetable in
which each departure time of a train from a stationmay be shiftedwithin some interval
around the current departure time. We assume that the travel times of the trains on the
tracks as well as the corresponding power consumptions are fix. Furthermore, we as-
sume that the temporal order of the trains passing a certain trackmaynot be changed by
the optimization and that all connections between different trains in a station must be

14

preserved in order to maintain the structure of the original timetable as far as possible.
Assuming a fixed order of the trains on each track, we also know the safety distances to
respect between each consecutive pair of trains. The problem is now to find an adjusted
timetable that minimizes the maximum average power consumption.

In order to state this problem in terms of (CPMCS), we need to define the basic set S
and the compatibility relation R. Let D be the set of all trains, Vd the set of all stations
from which train d ∈ D departs Ad the tracks it uses. Let furthermore Jdv ⊆ T denote
the set of all feasible departure times for train d ∈ D from station v ∈ Vd within a given
planning horizon T. We choose S to be the set of all triples (r, v, j) of a train d ∈ D and
its feasible departure times j ∈ Jdv from some of its stations v ∈ Vd. It is then natural
to choose the partition S =

⋃
(d,v):d∈D,v∈Vr Sdv, where Sdv are all feasible triples (d, v, j)

for some fixed d and v. A feasible timetable is then made up of a selection of exactly
one element from each subset Sdv:

∑
j∈Sdv

xdv
j = 1 (∀d ∈ D)(∀v ∈ Vd).

To be feasible, this selection has to respect several further constraints which are stated
in the following. The travel time for a train d ∈ D to pass a track a = (v, w) ∈ Ad on
a journey between two stations v, w ∈ Vd is Γda, and at after arriving at startion w it
has to stop for a minimum time of cdv. For each pair of consecutive trains (d1, d2) on a
track between to stations v and w, as given by a set Lvw, we have to keep to a minimum
headway time of sd1d2vw. Finally, for each station v ∈ ⋃d∈D Vd where a pair of trains
(d1, d2)meets such that the time that passes between the arrival of d1 and the departure
of d2 is at least ρd1d2v and at most θd1d2v, as given by a set Uv, this property has to be
preserved in the new timetable to maintain the possibility to change between the two
trains.

The relation R stating the compatibility between two elements r1 = (d1, v1, j1), r2 =
(d2, v2, j2) ∈ S is now given by

R = R1 ∩ R2 ∩ R3.

Here, relation R1 models the compatibility according to the minimum stopping times:

R1 =
{
(r1, r2) ∈ S× S | d1 = d2 =: d, v1 = v2 =: v ∈ Vd, (v, w) =: a ∈ Ad,

j2 ≥ j1 + Γda + cdw
}

,

relation R2 models the compatibility according to the minimum headway times:

R2 =
{
(r1, r2) ∈ S× S | v1 = v2 =: v ∈ Vd, (v, w) := a ∈ Ad1 ∩ Ad2 , (d1, d2) ∈ Ld1d2a,

j2 ≥ j1 + sd1d2a + min(Γd1a − Γd2a, 0)
}

and relation R3 models the compatibility according to the connection times:

R3 =
{
(r1, r2) ∈ S× S | (v1, v2) ∈ Ad1 , (d1, d2) ∈ Uv2 ,

j2 ≥ j1 + Γd1a + ρd1d2v ∧ j2 ≤ j1 + Γd1a + θd1d2v
}

.

15

It is easy to check that each of the three relations R1, R2 and R3 is a staircase relations
on S. Likewise, it is easy to check that the intersection of any number of staircase
relations is again staircase. Consequently, R is a staircase relation on S, which allows
us to to formulate the set of feasible selections according to each of the three models
derived in Section 3.

What is left to define is the objective function. Let pdat ≥ 0 be the consumption
of train d when passing track a = (v, w) ∈ Ar at point 0 ≤ t ≤ Γda after departure.
Comnsequently, if train d departs from station v at time j, the consumption at point
t ∈ T is given by:

p̄dat
j =

{
max(pdat, 0), 0 ≤ t− j ≤ Γd

a
0, otherwise.

Let I = {1, 2, . . . , m} be the set of the m consecutive 15-minute (= 900-second) inter-
vals in T (where the last interval may actually be somewhat shorter). The total energy
consumption of a train d ∈ D on track a ∈ Ar within an averaging interval i ∈ I
when choosing departure time j ∈ Jdv is then given by edai

j = 1
2(p̄da,900i

j + p̄da,900(i+1)
j) +

∑900i+1≤t≤900(i+1)−1 p̄dat
j (we consider the consumption p as a piecewise-linear function

over time). The average power consumption over an interval i ∈ I by all trains d ∈ D
depending on the chosen departure times is then given by

zi(x) =
1

900 ∑
d∈D

∑
a=(v,w)∈Ad

∑
j∈Jd

v

edai
j xdv

j .

This leads to the following opptimization problem to minimize the highest of these
averages:

min
x∈X

max
i∈I

zi(x),

where X is the set of all feasible timetables. For this set X, we can now chosen between
one of the three models for staircase compatibility derived in Section 3. Note that this
timetabling problem is NP-hard even if all trains only have one track and m = 2 as this
case can easily be reduced to the subset sum problem (cf. (Garey and Johnson, 1979,
SP13)).

Computational Comparison of the Models for (CPMCS) We now present a com-
putational study that compares the different formulations for staircase compatibility
considered before as a part of the timetabling problem introduced above. We do this
on real-world instances derived from the 2015 timetable for the German passenger traf-
fic operated by our industry partner Deutsche Bahn AG (DB). We complemented this
data by power consumption profiles based on height data of the stations as well as
simplified speed profiles taking into account train characteristics. An example is de-
picted in Figure 2 which shows an assumed speed profile for an ICE-3 on a journey of
30 minutes in Figure 2a and the corresponding power profile on a track with an up-
wards inclination in Figure 2b. The minimum headway times we chose are based on
(Pachl, 2016, Table 5.4) by rounding up the given values to full minutes.

Altogether, we have created 30 instances of different sizes, each for a planning hori-
zon of 18 hours (4am to 10pm). These contain 18 local instanceswhich contain all trains
passing a certain station in Germany, 1 Fernverkehr instance covering the German long-
distance traffic, 10 regional instances which contain all short-distance trains circulating

16

(a) Speed profile (b) Power consumption profile

Figure 2: Example profiles for an ICE-3 on a 30minutes journey climbing an inclination

in a given region of Germany, as well 1 Deutschland instance covering all German DB
passenger trains. Each instance contains those parts of the journeys of the involved
trains which fall within the planning horizon. The allowable shift in departure time
was uniformly chosen to be ±3 minutes around the current departure time. The sizes
of the created instances, the computation times of the three different models as well as
the achieved savings in peak power consumption are shown in Table 1. Here, NA de-
notes the naive formulation (2), TU stands for the totally unimodular formulation (3),
and DF represents the formulation as a dual network flow problem. The result is very
clear: Formulation DF is by far the best way to formulate the compatibilities as it leads
to the fastest solution times on all but one instance. In many cases, the benefit is very
significant. Most notably, for the Germany-wide instanceDeutschland the computation
time could be decreased from somewhat more than 3 hours to under 3 minutes – a
factor of more than 60. The table also shows that the computation time of Formula-
tion TU is usually between the solution times required for Formulations NA and DF.
This shows the general benefit of passing to a totally unimodular description of the set
of feasible timetables. However, the sparsity of Formulation DF leads to much lower
node solution times in the branch-and-bound tree and is therefore vastly superior. We
remark here that the stated reduction of about 4 % in peak power consumption for the
Germany-wide instance would allow for cost savings of several million euros per year.
More detailed information on the problem can be found in Bärmann et al. (2015).

4.2 Computational Results for Piecewise Linearization of Path Flows
Our second example for a staircase compatibility structure originates from piecewise
linearization of a nonlinear network flow problem. In gas network optimization, in
addition to a classical network flow problem for the mass flow, pressure has to be con-
sidered as well. Therefore, pressure variables are introduced for network nodes and
additional constraints describe the nonlinear pressure loss along pipes. (Pfetsch et al.,
2015, Equation (7)) give a commonly used algebraic approximation of the underlying
physics. For a constant compressibility factor (see (Pfetsch et al., 2015, Equation (20))),
the reduction in squared pressure ∆p2 on a pipe is a nonlinear univariate function of
the flow q on that pipe, given by

∆p2 = λq|q|,

17

Computation time [s]
Instance #Trains #Trips NA TU DF Saving [%]

Zeil 42 764 78.59 8.71 0.91 14.11
Bayreuth Hbf 69 329 1.16 0.96 0.27 22.67
Passau Hbf 75 1048 447.66 65.06 7.81 13.57
Jena Paradies 78 1109 353.71 11.57 2.35 12.05
Lichtenfels 113 1659 1307.67 137.49 19.82 16.45
Erlangen 142 2978 6185.18 2593.09 28.17 16.27
Bamberg 210 3659 7434.75 83.55 24.06 13.51
Aschaffenburg Hbf 245 3480 16.43 16.28 2.67 13.24
Kiel Hbf 298 2145 117.83 17.63 2.63 11.68
Leipzig Hbf (tief) 372 6828 5.44 12.72 1.57 5.43
Würzburg Hbf 373 4486 − 15614.77 1417.03 7.67
Dresden Hbf 422 6964 7932.98 173.49 23.75 6.53
Ulm Hbf 469 5753 647.74 76.24 7.52 11.36
Stuttgart Hbf (tief) 628 11612 1655.78 1185.40 11.55 1.03
Berlin Hbf (S-Bahn) 642 16146 26.76 77.09 10.57 3.03
Hamburg-Altona(S) 722 12391 609.79 210.54 13.35 1.31
Frankfurt(Main)Hbf 728 8687 3569.75 394.19 47.95 9.66
Nürnberg Hbf 952 12236 26039.74 30.06 3.18 5.62

Fernverkehr 671 7214 536.31 32.78 7.34 5.04

S-Bahn Hamburg 1209 17562 1305.85 315.20 24.61 2.59
Regio Nord 1477 13434 311.23 42.67 8.49 12.46
Regio Nordost 1495 16543 3974.56 97.17 15.41 15.75
Regio Hessen 1547 25135 52.37 82.42 16.63 5.51
Regio Südwest 1864 24244 399.49 47.21 13.07 12.48
Regio Südost 2361 32009 914.66 94.63 34.23 8.61
Regio BW 2385 30227 8535.13 277.87 28.95 13.73
S-Bahn Berlin 2584 53449 93.16 1153.95 345.81 1.42
Regio Nordwest 2828 47130 68.00 127.45 31.71 5.05
Regio Bayern 3560 49371 693.92 221.26 48.04 11.03

Deutschland 21981 316318 11847.46 3292.64 176.48 4.23

Table 1: Computational results for the three problem formulations for the energy-
efficient timetabling problem

18

for some λ > 0.
In order to deal with those nonlinearities, a common and successful approach con-

sists of constructing piecewise linearizations or relaxations of the involved nonlinear
functions (see Figure 3), which makes the problem accessible to general purpose MIP
solvers. It involves subdividing the feasible set into several intervals and introducing
binary variables that indicate which interval the argument value is in. For a detailed
description of the this technique, see Geißler et al. (2012).

q

q|q| ∼ ∆p2

Figure 3: Illustration of a piecewise linear relaxation (dotted parallelograms) of a uni-
variate nonlinear function.

It should be mentioned that gas network optimization problems usually contain
additional challenges connected with the operation of active elements such as valves
and compressors. However, as the substructure we are interested in can be motivated
just from passive networks, we do not want to go into detail here and instead refer the
reader to the literature, e.g. Koch et al. (2015).

For constructing a piecewise linear approximation, i.e. for modelling a piecewise
linear function, several useful formulation methods are known. For now, we assume
that we use a method where there is a binary variable zI for each interval I = [lI , uI]
with the meaning

zI = 1 ⇒ qa ∈ [lI , uI], (8)

as is true, for example, for the Multiple-Choice Method (MCM) (Jeroslow and Lowe
(1984)) as well as for the Convex-Combination Method (CC). For a single piecewise linear
function, MCM leads to locally ideal formulations, i.e. their linear relaxation is equal to
the convex hull of feasible points. The basic version of CC is not locally ideal; however,
a locally ideal improved variant is proposed in Padberg (2000). However, the situation
is different when we consider multiple nonlinear functions that influence each other:
in general, the formulation loses its desired property of being ideal.

For a network that is a path of length k, we can regain a complete description in
the context of staircase compatibility. This is also covered as a special case in Liers

19

and Merkert (2015), though using different reasoning. We have already seen in Sub-
section 2.1 that this represents a special case of (CPMCS).

Computational Comparison of theModels for (CPMCS) Wewill also test the impact
the different formulations for staircase compatibility have on instances arising from
piecewise linearized network flow problems. We use the following setting for our test
instances: given a network, for all arcs a we have real-valued flow variables qa that have
to satisfy flow conservation and demand satisfaction equations

∑
a∈δ+(v)

qa − ∑
a∈δ−(v)

qa = dv

for all network nodes, where dv denotes the given demand for node v.
Furthermore, for each arc a we have several possible intervals Ia,1, . . . , Ia,na for the

arc flow, where na denotes the number of intervals belonging to arc a. Intervals belong-
ing to the same arc arise from subdividing a larger interval such that they intersect in
at most a point and come with a natural ordering. Let za,j denote binary indicator vari-
ables for using the j-th interval on arc a. Lower and upper bounds of an interval Ia,j are
denoted by la,j and ua,j respectively. Only one interval per arc can be active – and at least
one has to. Therefore, the corresponding z-variables are connected by the constraint

na

∑
j=1

za,j = 1,

which represents (rule 1).
For implementing (8), the Multiple-Choice Method is used. Recall that a piecewise

linear approximation of a univariate function f of q modelled by MCM on a connected
domain [l, u]with breakpoints B1 = l, B2, . . . , Bk, Bk+1 = u is obtained for lai = Bi, uai =
Bi+1, i = 1, . . . , k. We create a “copy” qi of the arc flow q for every interval and ensure
(8) by the constraints

lizi ≤ qi ≤ uizi ∀ i = 1, . . . , k,

where arc indices of the z-variables are omitted for better readability as we only con-
sider a single arc. Then, q and f (q) can be expressed as follows:

q =
k

∑
i=1

qi, f (q) =
k

∑
i=1

f (Bi)zi + (qi − Bizi)
f (Bi+1)− f (Bi)

Bi+1 − Bi
.

Those constraints constitute our polyhedron of interest. The underlying network is
given by the topology of a real-world gas network by the German gas network operator
Open Grid Europe (OGE) consisting of 592 nodes and 623 arcs. As the network is not
a path, there is no complete description available. However, (CPMCS) is present as a
substructure, e.g. at each induced path of degree-two nodes in the network. 224 nodes
have degree two and there are 128 paths of degree-two-nodes, which amounts to an
average length of 2.75. The longest of those paths has length 8. In the following, we
want to test the effect of using our improved formulations of (CPMCS) in those places.

In order to do this, we first identify all suitable subpaths of degree-two nodes in the
network, construct the corresponding compatibility graphs and precompute the uni-
modular formulation of Model (3) for each of the detected subpaths. This description
is quadratic in the length of the path and linear in the number of intervals per arc. We

20

do not add all those constraints right from the start as in practice many of them are re-
dundant. Instead, we use a separation callback at every 50th branch-and-bound node
that finds all violated inequalities and adds them to the model. The callback is called
at most 100 times.

For all test instances additional input data is generated at random. This includes the
vector d of demands aswell as the initial arc capacities c. Capacities were scaled in such
a way that feasibility of all instances is guaranteed. We then chose a random partition
of the interval [−ca, ca] into a given constant number of intervals for each network arc.
This number varies across different instance sets and is meant to roughly represent the
accuracy of the linearization. The objective function is constructed by drawing integer
coefficients for the z-variables. This is done uniformly at random from the interval from
0 to twice the number of intervals per arc, with the restriction that there is an upper
bound on the resulting “slope” of the objective function. As the generation of instances
includes randomness, we always generated sets of five instanceswith the same number
of intervals per arc. The solution times given in the following are always (geometric)
averages over five instances each. If only a subset of the five instances was solvable
within the time and memory limitations, the average is taken over this subset only. In
any case we also state the number of instances that could be solved.

The computational experiments have been performed on a queuing cluster of Intel
Xeon E5-2690 3.00 GHz computers with 25 MB cache and 128 GB RAM, running Ver-
sion 7 of Debian GNU/Linux. Our implementation uses the C++-API of Gurobi 6.0.0.
For large numbers of intervals per arc, we encountered numerical difficulties on the
test set. These numerical issues are already observed in the standard formulation. To
overcome this, we increasedGurobi’s parameterNumericFocus to the value of 3 in order
tell to the solver to be more careful regarding numerical issues. As a result, we did not
observe numerical difficulties for any of the instances any more. However, this choice
results in longer running times. Apart from that, we use Gurobi’s standard param-
eter settings, except for turning on PreCrush for our cutting plane methods, which is
mandatory if we want to add user cuts. Each job was run on 4 cores and with a time
limit of 40 hours CPU-time.

intervals MCM MCM + TU-paths
per arc solved CPU[s] solved CPU[s]

3 5 66.63 5 73.13
4 5 4 943.87 5 468.66
5 5 9 001.10 5 1 627.76
6 2 31 384.31 3 10 089.66
7 1 103 191.92 2 122 299.54
8 0 ∞ 0 ∞

Table 2: Number of instances solved and average solution times for instances on a gas
network topology with 592 nodes and a varying number of intervals per arc

As can be seen from Table 2, adding constraints from the TU formulation of the
(CPMCS)-substructures (i.e. paths of degree-two nodes) improves the runtime of the
solver considerably for most test sets. This effect increases with a growing number of
intervals per arc, resulting in a total of 2 more instances that can be solved within the

21

time limit.
Next, we want to apply the dual-flow formulation. Note, however, that the trans-

formation used to obtain this formulation and to prove Theorem 3.5 in the present con-
text of piecewise linearization is well-known for connecting the Incremental Method
to methods using (8), as already mentioned in Remark 3.6. This suggests using the
Incremental Method as a linearization method.

Let us quickly recall the Incremental Method (or δ-Method), first introduced in
Markowitz and Manne (1957): let an interval [l, u] for the flow value and breakpoints
B1 = l, B2, . . . , Bn, Bn+1 = u be given. We have continuous [0, 1]-variables δi, and the
constraint

q = B1y1 +
n

∑
i=1

(Bi+1 − Bi)δi

together with the filling condition constraints yi ≥ δi, i = 1, . . . , n and δi ≥ yi+1, i =
1, . . . , n− 1, δn ≥ 0. A piecewise-linear function f of q can then be written as

f (q) = f (B1)y1 +
n

∑
i=1

(f (Bi+1)− f (Bi))δi.

The Incremental Method is widely used in practice and has proved very useful in
the context of gas networks, see e.g. Correa-Posada and Sánchez-Martín (2014). Like
MCM, it leads to locally ideal formulations, but of course also only in case of a single
arc. In the following, we compare the standard formulation with and without adding
constraints from the totally unimodular dual-flow formulation (which naturally uses
the binary y-variables of the Incremental Method).

intervals INC INC + TU-paths
per arc solved CPU[s] solved CPU[s]

4 5 5.61 5 6.10
5 5 13.73 5 10.50
6 5 141.02 5 41.96
7 5 197.94 5 68.49
8 5 1424.02 5 195.95
9 5 1144.44 5 857.59
10 5 25506.75 5 837.45
12 3 85712.83 5 3048.45
15 0 ∞ 5 44275.51
20 0 ∞ 1 824.18
25 0 ∞ 0 ∞

Table 3: Number of instances solved and average solution times for instances on a gas
network topology with 592 nodes and a varying number of intervals per arc, using the
Incremental Method

The results can be found in Table 3. Using the Incremental Method reduces the
overall runtime by a large factor, such that instances up to 12 intervals per arc (20 with
the TU formulation on paths) can now be solved. This agrees with Correa-Posada and
Sánchez-Martín (2014), where a recent in-depth computational study for piecewise-
linear functions in the context of gas network optimization sees the IncrementalMethod

22

coming out on top, outperforming the Multiple-Choice Method by several orders of
magnitude for some test sets. It also gives an additional argument for the dual-flow for-
mulation, as its variables seem to suit solvers well in this context. Providing the solver
with the TU-formulation on paths again increases the performance of the solver signif-
icantly. For further related computational experiments see Liers and Merkert (2015).

The results of this subsection show that the TU-formulation can have a large benefit,
not only if the feasible set – as in the last subsection – can be described as (CPMCS) as
a whole, but also if (CPMCS) is present as a substructure.

5 Conclusion
In this paper, we introduced the notion of staircase compatibility, which generalizes
compatibility structures known from different areas of application, such as project
scheduling and piecewise linearization. We showed that the convex hull of feasible
solutions of the clique problem with multiple-choice constraints can be described by
a totally unimodular constraint matrix of polynomial size if the compatibility graph
is given by a staircase relation. Furthermore, we showed that the constraint matrix is
cographic, which yields a dual-flow formulation for the problem.

For two example applications, where (CPMCS) is present as a substructure, we
showed that using unimodular formulations for (CPMCS) represents a significant im-
provement over a naive formulation and can vastly reduce solution time.

With these insights, future research may aim to identify (CPMCS) within more ap-
plications or even automatically in general MIPs in order to do a reformulation. Con-
nected to this is the questionwhether – or inwhich cases – staircase compatibility struc-
ture can be recognized from a compatibility graph if the partitioning is not given. This
might also be interesting from a graph theoretic point of view.

Acknowledgements
We gratefully acknowledge the computing resources provided by the group ofMichael
Jünger in Cologne. In particular, we thank Thomas Lange for his technical support.
We also thank Rodrigo Alexander Castro Campos, Sergio Luis Pérez Pérez, Gualberto
Vazquez Casas and Francisco Javier Zaragoza Martínez for our fruitful discussions
on the topic. Furthermore, we acknowledge financial support by the BMBF under
grant 05M13WEE. Moreover, we thank the EnCN for support within research focus
Simulation, Project TP6, and the DFG for their support within Projects A05, B06, and
B07 in CRC TRR 154.

References
Bärmann, A., Martin, A., and Schneider, O. (2015). Optimal balancing of the power
consumption of trains in a railway network via timetabling. In Proceedings of CASPT
2015.

Correa-Posada, C. M. and Sánchez-Martín, P. (2014). Gas network optimization: A
comparison of piecewise linear models. Optimization Online.

23

Fourer, R. (1984). Staircase matrices and systems. SIAM Review, 26(1):1–70.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York.

Geißler, B., Martin, A., Morsi, A., and Schewe, L. (2012). Using piecewise linear func-
tions for solving MINLPs. In Lee, J. and Leyffer, S., editors, Mixed Integer Nonlin-
ear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications,
pages 287–314. Springer New York.

Ghouila-Houri, A. (1962). Caracterisation des matrices totalement unimodu-
laires. Comptes Rendus Hebdomadaires des Séances de 1’Académie des Sciences (Paris),
254(1):1192–1194.

Jeroslow, R. G. and Lowe, J. K. (1984). Modelling with integer variables. In Korte,
B. and Ritter, K., editors, Mathematical Programming at Oberwolfach II, volume 22 of
Mathematical Programming Studies, pages 167–184. Springer Berlin Heidelberg.

Koch, T., Hiller, B., Pfetsch, M., and Schewe, L., editors (2015). Evaluating Gas Network
Capacities. MOS-SIAM Series on Optimization.

Liers, F. and Merkert, M. (2015). Structural investigation of piecewise linearized net-
work flow problems. Technical report, FAU Erlangen-Nürnberg.

Markowitz, H. M. and Manne, A. S. (1957). On the solution of discrete programming
problems. Econometrica, 25(1):pp. 84–110.

Möhring, R. H., Schulz, A. S., Stork, F., and Uetz, M. (2001). On project schedulingwith
irregular starting time costs. Operations Research Letters, 28(4):149–154.

Oxley, J. G. (2006). Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford Uni-
versity Press, Inc., New York, NY, USA.

Pachl, J. (2016). Systemtechnik des Schienenverkehrs: Bahnbetrieb planen, steuern und sichern.
Springer Vieweg.

Padberg, M. (2000). Approximating separable nonlinear functions via mixed zero-one
programs. Oper. Res. Lett., 27(1):1–5.

Pfetsch,M. E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola,
J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt,
M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M. C., Vigerske, S.,
and Willert, B. M. (2015). Validation of nominations in gas network optimization:
Models, methods, and solutions. Optimization Methods and Software, 30(1):15–53.

Schrijver, A. (1998). Theory of Linear and Integer Programming. John Wiley & Sons Ltd.

Schwindt, C. and Zimmermann, J., editors (2015). Handbook on Project Scheduling (Vol.
1 + Vol. 2). Springer.

Seymour, P. (1980). Decomposition of regular matroids. Journal of Combinatorial Theory,
Series B, 28(3):305 – 359.

Vielma, J. P. (2015). Mixed integer linear programming formulation techniques. SIAM
Review, 57(1):3–57.

24

	1 Introduction
	2 Staircase Compatibility
	2.1 Two Applications of (CPMCS)

	3 Structural Properties
	4 Computational Results
	4.1 Computational Results for Energy-Efficient Timetabling
	4.2 Computational Results for Piecewise Linearization of Path Flows

	5 Conclusion

