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Abstract Proceeding from balanced truncation-based parametric reduced order

models (BT-pROM) a matrix interpolation strategy is presented that allows the

cheap evaluation of reduced order models at new parameter sets. The method ex-

tends the framework of model order reduction (MOR) for high-order parameter-

dependent linear time invariant systems in descriptor form by Geuss (2013) by

treating not only permutations and rotations but also distortions of reduced order

basis vectors. The applicability of the interpolation strategy and different variants is

shown on BT-pROMs for gas transport in pipeline-networks.

1 Introduction

Optimization and control of large transient gas networks require the fast simulation

of the underlying parametric partial differential algebraic systems. In this paper we

present a surrogate modeling technique that is composed of linearization around

stationary states, spatial semi-discretization and model order reduction via balanced

truncation (BT). Making use of a matrix interpolation strategy (MIS) in the spirit

of [1, 5] we explore its performance for evaluating the BT-pROMs over a wide

parameter range of different boundary pressures and temperatures. Our developed

variant DTMIS particularly regards possible distortions of the reduced basis vectors.
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2 Modeling Approach for Gas Pipeline-Networks

Proceeding from a nonlinear partial differential algebraic gas network model we

perform linearization and spatial semi-discretization to obtain a parametric linear

time invariant system as basis for MOR.

Modeling. The gas dynamics in a horizontal pipe e can be described by the one-

dimensional isothermal Euler equations in terms of pressure pe and flow rate qe for

space parameter x ∈ [xin
e ,x

out
e ] and time t ∈ [0, tend ],

∂t

(

1

z
pe(x, t)

)

+
RsT

Ae
∂xqe(x, t) = 0, (1a)

∂tqe(x, t)+Ae∂x pe(x, t)+RsT ∂x

(

z
q2

e(x, t)

pe(x, t)

)

=−
RsT

2AeDe

zλ
qe(x, t)|qe(x, t)|

pe(x, t)
(1b)

with pipe length Le, diameter De, cross-sectional area Ae, temperature T , and spe-

cific gas constant Rs. The gas compressibility z and friction λ are empirically given

by AGA and Chen formula, respectively, [4], i.e.,

z(pe,T ) = 1+ 0.257
pe

p⋆
− 0.533

peT
⋆

p⋆T

with critical pressure p⋆ and temperature T ⋆ values depending on the gas type, and

1
√

λ (qe)
=−2log10

[

κe

3.707De

−
5.045

Re
log10

(

1

2.826

(

κe

De

)1.110

+
5.851

Re0.898

)]

with Reynolds number Re(qe) = |qe|De/(ηAe), dynamic gas viscosity η , and pipe

roughness κe. A network of pipelines can then be modeled as a directed graph

G = (E ,N ) where the edges are represented by the pipes e ∈ E (with mathemati-

cally positive orientation from xin
e to xout

e ). The set of nodes N consists of sources

Nin, sinks Nout and branching (neutral) nodes Nneu. At the branching nodes, mass

conservation –known as first Kirchhoff law– and pressure equality in terms of aux-

iliary variables p are imposed as coupling conditions, i.e.,

∑
e∈δ−

v

qe(x
out
e , t) = ∑

e∈δ+
v

qe(x
in
e , t), (1c)

pe(x
in
e , t) = p(v, t), e ∈ δ+

v , pe(x
out
e , t) = p(v, t), e ∈ δ−

v , v ∈ Nneu (1d)

where δ−
v and δ+

v denote the sets of ingoing and outgoing arcs at v∈Nneu, cf. Fig. 1.

As boundary conditions we prescribe the pressure profile at the sources and the flow

rate at the sinks

p(v, t) = fv(t), v ∈ Nin, q(v, t) = fv(t), v ∈ Nout. (1e)
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Fig. 1 Network topology

Fork: G = (E ,N ) with

source Nin = {v1}, sinks

Nout = {v3,v4,v5}, as well as

Nneu = {v2}, δ−
v2
= {e1} and

δ+
v2
= {e2,e3,e4}.

e1

e2

e3

e4

v2v1 v4

v3

v5

System (1) is supplemented with consistent initial conditions obtained from solving

the stationary problem with the boundary conditions (1e) evaluated at time t = 0

Linearization. Expanding around a stationary state y(x, t) = ys(x) + εyt(x, t) +
O(ε2), y ∈ {pe,qe}, that is specified by a certain parameter set p ∈ P ⊂ R

d , the

nonlinear system (1) decomposes in first order into a stationary subsystem

cs
e,1

d

dx
ps

e + cs
e,2

1

ps
e

= 0, e ∈ E , ∑
e∈δ−

v

qs
e(x

out
e ) = ∑

e∈δ+
v

qs
e(x

in
e )

ps
e(x

in
e ) = ps(v), e ∈ δ+

v , ps
e(x

out
e ) = ps(v), e ∈ δ−

v , v ∈ Nneu

ps(v) = fv(0), v ∈ Nin, qs(v) = fv(0), v ∈ Nout

with

cs
e,1 = 1−

RsT

A2
e

zs

(

qs
e

ps
e

)2

, cs
e,2 =

RsT

A2
e

∂pzs(qs
e)

2 +
RsT

2DeA2
e

zsλ sqs
e|q

s
e|,

and a linear transient (correction) subsystem

∂t pt
e + ct

e,1 ∂xqt
e = 0

∂tq
t
e + ct

e,2 ∂xqt
e + ct

e,3 ∂x pt
e + ct

e,4 qt
e + ct

e,5 pt
e = 0, e ∈ E

∑
e∈δ−

v

qt
e(x

out
e , t) = ∑

e∈δ+
v

qt
e(x

in
e , t)

pt
e(x

in
e , t) = pt(v, t), e ∈ δ+

v , pt
e(x

out
e , t) = pt(v, t), e ∈ δ−

v , v ∈ Nneu

pt(v, t) = ( fv(t)− fv(0))/ε, v ∈ Nin, qt(v, t) = ( fv(t)− fv(0))/ε, v ∈ Nout

(2)

with initial conditions yt(x,0) = 0, y ∈ {pe,qe}, and

ct
e,1 =

RsT

Ae

(zs)2, ct
e,2 =

2RsT

Ae

zs qs
e

ps
s

, ct
e,3 = Ae −

RsT

Ae

(

qs
e

ps
s

)2

,

ct
e,4 =

RsT

Ae

(

1

2De

zs |q
s
e|

ps
e

(2λ s + ∂qλ sqs
e)− 2

qs
e

(ps
e)

2

d

dx
ps

e

)

,

ct
e,5 =

RsT

Ae

(

1

2De

λ s |q
s
e|

ps
e

(

∂pzs − zs qs
e

ps
e

)

− 2

(

qs
e

ps
e

)2
d

dx
ps

e

(

∂pzs +
zs

ps
e

)

)

.
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The coefficient functions ct
e, j , j = 1, . . . ,5, depend not only on the stationary state

but also on the model parameters of the pipeline-network and the gas flow. More-

over, note that the flow rate should be regularized before the linearization procedure,

i.e., |qe|= (q2
e +α2)1/2, α small, [7].

Semi-discretization. As spatial discretization for (2) we use a conservative first-

order finite-volume-like method on a staggered grid to obtain small discretization

stencils. Each pipe is distributed in cells of same length where the pressure pt
e and

the mass balance are evaluated at the cell edges and the flow rate qt
e and the mo-

mentum balance at the cell midpoints. Sources and sinks are either located on the

edges or midpoints of a cell, if pressure or flow rate are given as boundary condition.

Neutral nodes are placed at cell boundaries, as suggested in [4]. Function values of

pt
e at a midpoint and qt

e at a cell boundary are interpolated. Note that for readability

the indices t
e are suppressed in the stated scheme for a pipe interior,

d

dt
pi+1/2 =−

c1,i+1/2

∆x
(qi+1 − qi)

d

dt
qi =−

c2,i

∆x
(qi+1/2 − qi−1/2)−

c3,i

∆x
(pi+1/2 − pi−1/2)− c4,iqi − c5,ipi

with pi = (pi+1/2 + pi−1/2)/2 and qi+1/2 = (qi+1 − qi)/2 as well as cell size ∆x.

The resulting linear time invariant system (LTIS) of differential algebraic equa-

tions (DAE) for the pipeline-network is parameter-dependent, Σ(p), p ∈ P ⊂ R
d ,

Σ(p) : E(p)
d

dt
x(t) = A(p)x(t)+B(p)u(t), y(t) = C(p)x(t), (3)

with system matrices E,A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. The states, inputs and

outputs are denoted by x ∈ R
n, u ∈ R

m and y ∈ R
p. The inputs are certainly the

boundary conditions, the outputs are taken here as the flow rates at the sources and

the pressures at the sinks. As in optimization and control the variation of boundary

value profiles (1e) is often of interest, we consider a parameter dependence on the

boundary pressure p(v,0), v ∈ Nin and the temperature T , i.e., p ⊂ R
2. In the fol-

lowing we refer to a sample of Np different parameter settings and denote the local

LTIS associated with pk by Σk, k = 1, . . . ,Np. It is assumed that Σk is stable with

the regular pencil Ak − λ Ek. The stability depends, among others, on the applied

discretization and is ensured for the discretized gas network under consideration.

Note that, whenever possible, we suppress the parameter index k in the explanations

to facilitate the readability.

3 BT-MOR for LTIS in Descriptor Form

In the classical method of balanced truncation for ordinary differential equations

[2, 12], the original model of order n is first transformed into a balanced form,

where the controllability and observability Gramians are diagonally equal. Then, a
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BT-ROM of order r, r ≪ n is obtained by truncating the (n−r) states that are related

to the (n−r) smallest Hankel singular values, i.e., diagonal entries of the Gramians.

Considering the full order model (FOM) of DAEs Σ in (3), a QZ-decomposition

leads to a pencil A−λ E in the generalized real Schur form. By applying a block-

diagonalization [6], Σ can be decoupled into proper and improper subsystems. The

spectra of the proper and improper subsystems are the same as the finite and infi-

nite ones of the whole system. Afterwards, the proper and improper subsystems are

separately transformed into the balanced form. Whereas the standard BT procedure

can be applied to obtain a proper ROM, truncation for the improper subsystem can

not be performed in general. If states related to non-zero small HSVs are neglected,

the improper ROM may have a finite spectrum with non-negative real parts, which

leads to a non-stable inaccurate approximation [8]. In addition, algebraic constraints

of the systems might be violated. For example, in case of the gas networks, some

of the coupling conditions (Kirchhoff’s laws and the pressure equivalence at neutral

nodes) may not hold true which implies physically meaningless results. However,

states related to zero HSVs can be neglected without affecting the system [11].

Thus, a BT-ROM of order r = r f + r∞ is given by

Σr : Er
d

dt
xr(t) = Arxr(t)+Bru(t), yr(t) = Crxr(t) (4a)

Er = WTEV =

[

Ir f

Er∞

]

, Br = WTB =

[

Br f

Br∞

]

, W =
[

Wr f
Wr∞

]

Ar = WTAV =

[

Ar f

Ir∞

]

, Cr = CV =
[

Cr f
Cr∞

]

, V =
[

Vr f
Vr∞

]

with its proper and improper subsystems

Σprop
r :

d

dt
xr f

(t) = Ar f
xr f

(t)+Br f
u(t), yr f

(t) = Cr f
xr f

(t) (4b)

Σ improp
r : Er∞

d

dt
xr∞(t) = xr∞(t)+Br∞u(t), yr∞(t) = Cr∞xr∞(t). (4c)

The applied projections W, V are obviously parameter-dependent, but not orthono-

mal. They build bases of the (parameter-dependent) rank-r subspaces W , V in R
n.

Analogously, Wr f
,Vr f

and Wr∞ ,Vr∞ form bases of rank-r f subspaces Wr f
,Vr f

and

rank-r∞ subspaces Wr∞ ,Vr∞ , respectively. The BT-ROM Σr is stable as long as the

FOM Σ of (3) is stable, [12]. Moreover, since only states related to the improper

zero-HSVs are truncated, the DAE-index is preserved, [11].

An error estimate for the system’s transfer function G in the frequency domain

is related to the (decreasingly sorted) proper HSVs σi, i = 1, ...,n f , [11],

‖G−Gr‖H∞ = ‖Gprop −Gprop
r ‖H∞ ≤ 2

n f

∑
i=r f +1

σi
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with the H∞-norm defined as ‖G‖H∞ = supω∈R ‖G(iω)‖2. Hereby, Gprop and G
prop
r

denote the strictly proper part of G and Gr, respectively. Due to the Paley-Wiener

Theorem, this error estimate also holds in the time domain [2] where the H∞-norm

is regarded as the 2-induced operator norm,

‖y(t)− yr(t)‖2 ≤ ‖G−Gr‖H∞‖u(t)‖2.

4 Interpolation for BT-pROMs

BT-MOR requires the determination of the generalized Schur form and the solving

of generalized time-continuous/-discrete Lyapunov equations. Each requires O(n3)
flops and has O(n2) memory complexity, [2]. Obviously, the computational effort is

so extremely high for a large-scale LTIS that this procedure is not suitable for online

parameter variations. Therefore, we suggest an interpolation strategy in the spirit of

[1, 5].

Once BT-pROMs Σr,k are computed for different parameter settings k = 1, ...,Np,

one could think of efficiently approaching a reduced order model at a new parameter

p by means of matrix interpolation

Σr(p) : Er(p)
d

dt
xr(t) = Ar(p)xr(t)+Br(p)u(t), yr(t) = Cr(p)xr(t) (5a)

Mr(p) =
Np

∑
k=1

αk(p)Mr,k, M ∈ {E,A,B,C} (5b)

where the weighting functions αk are determined by the selected interpolation

method. However, note that in BT, the states of Σk are recombined during the de-

coupling phase in order to be separated with respect to the finite and infinite spectra.

In the MOR phase the states are again recombined such that they can be rearranged

according to the HSVs in decreasing order. States related to the small proper HSVs

and to the zero-valued improper HSVs are truncated until the local reduced systems

Σr,k have the same order r. Thus, the projections Wk, Vk usually span different rank-

r subspaces Wk, Vk in R
n. Consequently, the reduced states xr,k have in general no

common physical interpretation, which implies that a interpolation of type (5) might

not be meaningful.

Generalized rank-r subspace and respective transformation. To make sense

of the interpolation, all local reduced states xr,k are transformed in a generalized

rank-r subspace V̄ . Choosing its basis V̄ requires in general a priori knowledge

about the dynamics of the local ROMs. Different strategies are discussed in litera-

ture. For example, one of the local bases might act as generalized basis V̄ = Vk0
,

k0 ∈ {1, . . . ,Np}, [1]. This is suitable, if all local reduced states lie in the same sub-

space. In case that the local bases are very different, the generalized basis must catch

the most important characteristics of all local ROMs. For this purpose, a Proper Or-

thogonal Decomposition (POD) [10] can be employed [9], i.e.,
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[

V̄ U
]

Σ
[

V̄ U
]T

=
[

V1 · · · VNp

][

V1 · · · VNp

]T
.

The state transformation TV,k maps xr,k in V̄ , i.e., x̄r = TV,kxr,k. A transformation

proposed in [9]

TV,k = (V̄T Vk)
−1 (6)

describes permutations, rotations and length distortions of the basis vectors. Fur-

thermore, it maximizes correlations between each i-th base vectors, i = 1, . . . ,r,

but minimizes correlations between the i-th and i′-th base vectors, i 6= i′ in V̄ and

Vk, where the correlations are defined according to the Modal Assurance Criterion

(MAC) [1]

MAC(V̄i′ ,Vk,i) =
|〈V̄i′ ,Vk,i〉|

2

〈V̄i′ , V̄i′〉〈Vk,i,Vk,i〉
.

However, TV,k of (6) can be singular, if V̄ is orthogonal to Vk. To avoid this crucial

weakness, one seeks state transformations such that the sum of the correlations of

all i-th base vectors in V̄ and Vk is maximized.

Theorem 1. [1, Proposition 4.1.] The optimization problem wrt. the Frobenius

norm ‖ · ‖F

min
RV,k∈O(r)

∥

∥V̄−VkRV,k

∥

∥

2

F

has the unique solution RV,k = UVT , where U and V are the left and right singular

vectors of VkV̄T = UΣVT .

Proof. The first optimality condition together with the uniqueness of the singular

value decomposition yields the result. ⊓⊔

The orthogonal mapping RV,k can handle permutations and rotations of the basis

vectors in Vk wrt. V̄, but cannot capture length distortions. To deal also with distor-

tions, we propose a modification on top of the transformation RV,k.

Theorem 2. Let V̄i′ and Ṽk,i be the i-th column vectors in V̄ and V̄k = VkRV,k. The

optimization problem

min
γV,i≥0

∥

∥V̄i′ − γV,iṼk,i

∥

∥

2

F

has the unique solution

γV,i =
〈V̄i′ , Ṽk,i〉

〈Ṽk,i, Ṽk,i〉
.

Proof. The statement follows from the first optimality condition using the fact that
∥

∥V̄i′ − γV,iṼk,i

∥

∥

2

F
=
∥

∥V̄i′ − γV,iṼk,i

∥

∥

2

2
. The sign γV,i ≥ 0 can be particularly concluded

from Theorem 1. ⊓⊔

Combining Theorem 1 and Theorem 2 we consider the state transformation

TV,k = RV,kDV,k, DV,k = diag(γV,1, . . . ,γV,r). (7)
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Analogously to V̄ , V̄ and TV,k, we construct W̄ , W̄ and TW,k. This step is nec-

essary, since the local left projections Wk contain the local left Hankel singular

vectors related to the local-preserved HSVs in MOR. Similarly to (7), we obtain

TW,k = RW,kDW,k with DW,k = diag(γW,1, . . . ,γW,r). Note that in control theory it is

often made use of the fact that Wk are equal to the right projections V
adj
k of the

adjoint BT-ROM [5], i.e.,

Σ
adj
r,k : ET

r,k

d

dt
x

adj
r,k (t) = AT

r,kx
adj
r,k (t)+BT

r,kyr,k(t), u(t) = BT
r,kx

adj
r,k (t).

Consequently, the BT-ROM associated with the parameter pk, k = 1, ...,Np, is given

with respect to the generalized rank-r subspaces by

Σ̂r,k : Êr,k
d

dt
x̂r,k(t) = Âr,kx̂r,k(t)+ B̂r,ku(t), yr,k(t) = Ĉr,kx̂r,k(t) (8)

Êr,k = TT
W,kEr,kTV,k, Âr,k = TT

W,kAr,kTV,k,

B̂r,k = TT
W,kBr,k, Ĉr,k = Cr,kTV,k, x̂r,k = TV,kxr,k.

Note that the basis change has no influence on the input-output properties of the

system.

Manifold for interpolation. The matrix interpolation (5) performs well, if the de-

pendence of the matrix entries on the parameter p∈P ⊂R
d is accurately described

by the interpolants. For example, the interpolants capture the critical points (wrt. first

and second derivatives) of the functions that describe the behavior of the matrix en-

tries on p. Unfortunately, this requirement is hardly fulfilled by the BT-ROMs (8) as

interpolants. Hence, it may be advantageous to map the matrices into a space where

the dependencies can be approximated as well as possible, to perform the interpola-

tion there and map then the results back to the original space where the BT-ROMs

lie, [1, 3, 5]. In an appropriate space the matrix entries might be regarded as smooth

functions of the parameter by applying the concept of a differential Riemannian

manifold M . There exists a tangent space TM for each matrix M ∈ M .

Let Mk denote a matrix associated to the parameter pk, k = 1, ...,Np with Np

sample size. For the interpolation the lifting of regular matrices Mk into the tangent

space TMk0
of a regular reference matrix Mk0

can be achieved by the logarithmic

mapping which preserves some matrix properties such as symmetric positive defi-

niteness [1]. However, this is only possible if all Mk lie in the neighborhood of Mk0

and Mk have an unique and real logarithm at Mk0
. The last condition is fulfilled

if MkM−1
k0

have a nonnegative spectrum [5]. The inverse at Mk0
is obtained by the

exponential mapping. The corresponding interpolation can be read as

M(p) = exp

(

Np

∑
k=1

ω(p) ln
(

MkM−1
k0

)

)

Mk0

with weight function ω . In case that Mk and/or Mk0
are singular, the interpolation

is performed in the vector space at Mk0
by
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M(p) =
Np

∑
k=1

ω(p)
(

Mk −Mk0

)

+Mk0

according to [1].

The choice of an appropriate reference matrix Mk0
to build the respective tangent

space requires in general a priori knowledge about the dependencies of the local

BT-ROMs on the parameter, which is hard to analyze. In [3] a heuristic selection

criterion is based on the assumption that the entries of the regular Mk lifted in the

tangent space TMk0
depend almost linearly on pk = (pk,1, ..., pk,d)∈R

d . This means

that considering ΓΓΓ k0,k = ln(MkM−1
k0
) the respective (i, j)-th matrix entry is approx-

imated by γ i, j
k0,k

≈ α i, j
k0,0

+∑d
ℓ=1 α i, j

k0,ℓ
pk,ℓ with constant coefficients α i, j

k0,m
. Then, the

normalized least-squares residual of the sample is used as indicator of the param-

eter dependence, and the maximal values over all matrix entries are considered as

selection criterion for the reference parameter pk0
,

k∗0 = argmin
k0

µk0
, µk0

= max
i, j

µ i, j
k0
, µ i, j

k0
=

√

∑
Np

k=1(α
i, j
k0,0

+∑d
ℓ=1 α

i, j
k0,ℓ

pk,ℓ− γ
i, j
k0,k

)2

maxk γ i, j
k0,k

−mink γ i, j
k0,k

.

Alternatively, one could consider the normalized least-squares residual in the origi-

nal manifold

θ = max
i, j

θ i, j, θ i, j =

√

∑
Np

k=1(α
i, j
0 +∑d

ℓ=1 α i, j
ℓ pk,ℓ−m

i, j
k )2

maxk m
i, j
k −mink m

i, j
k

where m
i, j
k denotes the matrix entries of Mk. Comparing θ and µk0

, the interpolation

is performed in the respective tangent manifold if µk0
≤ θ . A similar procedure can

be also done for the case of Mk singular.

Note that in our application of the gas network, the system matrices Âr,k are

regular while Êr,k, B̂r,k and Ĉr,k are singular.

Interpolation of decoupled system. The BT-ROM Σ̂r,k of (8) is in general not

decoupled in proper and improper subsystems (cf. (4)) any more. Hence, any inter-

polated reduced order model is also not decoupled, as the matrix interpolation (5)

preserves the structure of the matrices due to the element-wise performance. If the

algebraic subsystem of the FOM Σ is parameter-invariant, then there is no inter-

change between the proper and improper BT-ROMs wrt. the parameter (involving a

decoupled form of Σ̂r). Hence, the subsystems can be adjusted and interpolated sep-

arately. In case of decoupled Σ̂r, only (r2
f + r2

∞) elementary operations are needed

to approximate the matrix pencil A−λ E, instead of 2(r f + r∞)
2 operation for the

coupled system. This is more amenable to real-time applications. Note that in the

gas networks under consideration the assumption on the FOM holds true, i.e., the

algebraic coupling conditions are parameter-independent.
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Theorem 3. Assume that the algebraic part of the FOM (3) is parameter-invariant.

Then, the proper and improper systems Σ
prop
r,k and Σ

improp
r,k of the BT-ROMs (4), k =

1, ...,Np, can be separately transformed into generalized subspaces W̄ = W̄r f
⊕W̄r∞

and V̄ = V̄r f
⊕ V̄r∞ , which are spanned by W̄r f

, W̄r∞ and V̄r f
, V̄r∞ respectively.

Furthermore, the transformation only requires the mapping of Σprop
r,k and Σ improp

r,k

into V̄ .

Proof. To facilitate the readability we suppress the parameter index k. Assume that

TVr f
, TWr f

are the transformations associated with the proper BT-ROM. According

to (8), the transformed system Σ̂
prop
r is given by

Êr f

d

dt
x̂r f

(t) = Âr f
x̂r f

(t)+ B̂r f
u(t), yr f

(t) = Ĉr f
x̂r f

(t)

Êr f
= TT

Wr f
Er f

TVr f
, Âr f

= TT
Wr f

Ar f
TVr f

, Er f
= Ir f

,

B̂r f
= TT

Wr f
Br f

, Ĉr f
= Cr f

TVr f
, x̂r f

= TVr f
xr f

.

Since Êr f
is regular,

d

dt
x̂r f

(t) = Ê−1
r f

Âr f
x̂r f

(t)+ Ê−1
r f

B̂r f
u(t)

leads to

TVr f

d

dt
xr f

(t) = T−1
Vr f

Ar f
TVr f

xr f
(t)+T−1

Vr f
Br f

u(t).

The same can be shown for the improper BT-ROM in an analogue manner. ⊓⊔

5 Results and Discussion

Proceeding from a sample of BT-pROMs for gas pipeline-networks we demonstrate

the applicability of the matrix interpolation strategy (MIS) for an efficient model

order reduction. In particular, we compare different variants (with and without dis-

tortion treatment, with original and tangent manifold), regarding the outputs of the

interpolated systems.

As test scenario we consider exemplarily the network topology Fork visualized in

Fig. 1 over the time horizon [0, tend ], tend = 48 [h]. Although it is a rather small net-

work consisting only of four pipes, the results are representative for the application.

The pipes e1, ...,e4 have different lengths Le1,...,4 = (16,45,7,38) [km], but same di-

ameter De = 1 [m] and roughness parameter κe = 5 ·10−5 [m]. The last enters with

the dynamical gas viscosity µ = 10−5 [kg/(ms)] in the Chen formula for the fric-

tion λ . The specific gas constant is Rs = 448 [J/(kg K)]. The boundary conditions

(1e) of the gas network given by p(v, t) = p0 + 0.5(1.05p0 − p0)(1− cosπt/tend)
[bar] at v ∈ Nin and q(v, t) = 200 [kg/s] at v ∈ Nout act as inputs, whereas the pres-
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sure p(v, t) at v ∈ Nout and the flow rate q(v, t) at v ∈ Nin are considered as outputs

for t ∈ [0, tend ]. In addition to the boundary pressure p0 ∈ [55,65] [bar], the tem-

perature T ∈ [−20,20] [◦C] is regarded as parameter of the model problem, i.e.,

p = (p0,T ) ∈ P ⊂ R
2. Note that typical values p∗ = 106, q∗ = 10 and t∗ = 102

are used to scale pressure, flow rate and time so that the equation system is numer-

ically easier to solve. The stationary problem is determined as follows: using the

first Kirchhoff law (1c) and the boundary condition, the stationary flow rates of the

pipeline-network are evaluated. Afterwards, the stationary pressure of each pipe is

calculated by solving an initial value problem for e1, . . . ,e4.

In the following the original FOMs are of order n = 35 due to the spatial dis-

cretization with grid size ∆xe1,...,4 = (6.4,15,2.33,12.67) [km]. The BT-ROMs are

chosen to be of order r = 15. The BT-ROMs decouple in proper and improper sub-

systems since the algebraic constraints of the FOM are parameter-independent. We

solve them by means of the MATLAB routine ode15s (with the default values).

Moreover, we use a cubic MIS. Note that the effective choices of the reduced model

order and the interpolation order affect quantitatively, but not qualitatively the ob-

served results. Quantitative improvement might be obtained by adapted more so-

phisticated choices, but this goes beyond the topic of this paper. Focusing on the

matrix interpolation we explore here two exemplary model cases that show differ-

ent parameter-dependent characteristics:

Case I : p0 sampled at {55,59.5,65} and T = 0,

the generalized bases for the proper and improper BT-ROMs are constructed by

using the POD method

Case II: T sampled at {−20,−0.49,20} and p0 = 57.7,

the local bases at T = −0.49 are chosen as generalized bases for the proper and

improper BT-ROMs

We apply four different MIS variants: DMIS and DTMIS operate without and with

distortion treatment on the original manifold, DMMIS and DTDMMIS operate

without and with distortion treatment on the tangent manifold.

The approximation quality of the interpolation methods is presented in terms

of the relative L 2(0, tend)-error in Fig. 2, comparing the output of the interpolated

system with that of the directly computed BT-ROM. In both model cases our pro-

posed handling of length distortions (Theorem 2) shows a clear improvement. The

approximation results are better than the ones achieved with the hitherto existing

matrix interpolation strategy by [5]. The influence of the chosen manifold on the

results depends on the considered case. Whereas the use of the original manifold

seems beneficially in Case I, it is the tangent manifold in Case II. In total, the results

concerning Case II are in size an order better than those of Case I which might be

explained by less differences in the underlying local rank-r subspaces. The larger

the differences of the local rank-r subspaces, the more difficult is the construction

of a generalized subspace (to cover the most important dynamics of the system).

In our application, the interpolation results are very robust for temperature varia-

tions. Changes in pressure, in contrast, might cause instabilities in the interpolated

reduced order models, although the underlying sample of ROMs (interpolants) is
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p in [bar]
55 60 65

10 -5

10 -4

10 -3

10 -2

10 -1

DTDMMIS

DMMIS

DTDMIS

DMIS

yr directly interpolated

T in [°C]
-20 -10 0 10 20

10−5

10−4

10−3

DTDMMIS

DMMIS

DTDMIS

DMIS

yr directly interpolated

Fig. 2 Comparison of different matrix interpolation strategies, relative L 2(0, tend)-error between

the outputs of the interpolated system and the computed BT-ROM. Top: Case I (pressure varia-

tions); bottom: Case II (temperature variations).

stable. This happens for example outside the considered interval [55,65] in Case I.

Developing interpolation techniques that preserve stability is hence topic of recent

research. Considering the performance, the combination of MOR and an interpola-

tion strategy is superior to computing directly a ROM at a new parameter setting,

because the overall computational costs are dominated by the model order reduction

technique. The costs due to our additional distortion handling are marginal.

Figure 2 shows additionally the results for directly interpolated outputs yr,k. As it

is less error-prone, the direct output interpolation is certainly superior to MIS when

only the outputs are of interest. However, optimization and control of transient gas

networks require the input-output behavior for large input/output variations over a

wide range of parameters. For this purpose, knowledge about the system matrices

that belong to the different parameter settings is needed to make possible the cheap

and fast evaluation of many reduced order models by help of MIS.
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6 Conclusion

In this paper we proposed an extension of the matrix interpolation strategy by Geuss

[5] for parametric MOR, regarding length distortions of the reduced order basis vec-

tor. We showed the applicability and especially the improvement of the results for

gas transport in pipeline-networks. The combination of MOR and matrix interpo-

lation allows for the efficient computation of parametric reduced order models and

makes optimization and control of large transient gas networks possible. Thereby,

the underlying model order reduction technique (here balanced truncation) and the

interpolation order that are used are replaceable in view of the desired approxima-

tion quality. We remark that non-stable interpolated reduced order models might oc-

cur, although the sample of interpolants is stable. Thus, the development of stability-

preserving interpolation techniques is addressed in future.
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