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Abstract. We consider nonlinear robust optimization problems with mixed-integer de-
cisions as well as nonconvexities. In detail, we consider cases where objective and con-

straint functions can be nonsmooth and generalized convex, i.e., f◦-quasiconvex or f◦-
pseudoconvex.

We propose an algorithm for such robust optimization problems that does not re-

quire a certain structure of the adversarial problem but only requires that approximate

worst cases are available. As a result, our algorithm finds a robust optimal solution up
to a tolerance. Our method integrates a bundle method into an outer approximation

approach where the bundle method is used for the arising continuous subproblems. We
rely on methods from the literature, namely a bundle method for nonlinear and non-

convex robust optimization problems and outer approximation approaches for quasicon-

vex settings. Our contribution is to combine them to one convergent robust optimization
method that can cope with inexactness of worst-case evaluations.

Further, we propose the gas transport under uncertainties as a relevant application

and demonstrate that generalized convexity is fulfilled for a type of a network structure.

1. Introduction

Robust optimization problems become very challenging when we allow for nonlinearities
and non-convexities in both, decision variables and uncertain parameters, as well as mixed-
integer decisions. So far, there are no general solution approaches for this setting. Our
motivation for the present work is the fact that we have at hand several tools, which we can
combine to one convergent method to tackle this type of problem under some assumptions.
The basis of our approach is to interpret a robust optimization problem as a nonsmooth
optimization problem: Let V (x, u) ≤ 0 be a constraint that is affected by uncertainty in
u, against which we want to be robustly protected, and U an uncertainty set, which is
guaranteed to contain u. The constraint V (x, u) ≤ 0 can then be written as infinitely
many constraints, V (x, u) ≤ 0 for all u ∈ U , and eventually as one nonsmooth constraint,
maxu∈U V (x, u) ≤ 0. Motivated by this, we tackle our rather general class of robust optimi-
zation problems by nonsmooth methods. Further, to address non-convexities in the inner
adversarial problem, i.e., maxu∈U V (x, u), we require only inexact solutions to it. This re-
sults in inexact function evaluations in the outer nonsmooth optimization problem. With
this, we can dispense with stronger linearity or convexity-type assumptions, which we would
need for reformulation approaches such as those presented in, e.g., [4].
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Also relying on nonsmooth optimization methods, [16, 15] proposed a bundle method
for nonlinear robust optimization with non-convexities, inexact worst-case evaluations, and
continuous decisions. With respect to that, we extend the setting here by mixed-integer
decisions, but have to restrict the type of non-convexity. To handle mixed-integer decisions
and hence the resulting nonsmooth mixed-integer nonlinear problem (MINLP), we can use
an outer approximation method. In detail, [7] proposed for the continuous nonsmooth
subproblems a combined method that incorporates a bundle method into an outer appro-
ximation method. In [17, 15], the method by [7] was extended to robust optimization, also
with inexact worst-case evaluations. Since there are outer approximation methods as well
as bundle methods for non-convex settings, a next step is to generalize the method by [7]
to the case of non-convexities, as pointed out in [10]. From [17, 15], we have the extension
of [7] to the setting of robust problems with inexact worst-case evaluations, which can deal
also with non-convex continuous subproblems. Here, we extend this method to generalized
convex settings by incorporating an according outer approximation method. The types of
non-convexities, for which we allow, are f◦-pseudo- and f◦-quasiconvexity. We rely for the
outer approximation method on the algorithms by [5] and [12]. In [5], the authors propose
an outer approximation approach, combined with a feasibility pump, for problems with con-
vex feasibility sets. The method by [12] is a single-tree outer approximation method with
alternative feasibility cuts.

Our contribution is to propose the resulting combined method, to prove its convergence, to
identify and analyze the applicable problem class with respect to the type of non-convexities
and inexactness, and to propose a relevant and suitable application to gas transport on a
certain type of network structure. We contribute to the field of mixed-integer nonlinear
optimization as well as robust optimization. First, our contribution is to propose an outer
approximation method with a concrete method for the continuous subproblems for a non-
convex setting. We hence extend the approach by [7], where a bundle method is incorporated
into an outer approximation method, to a non-convex setting. Second, our approach is more
general in the sense that it applies also to nonlinear robust optimization problems. Hence,
it extends the robust optimization method and setting from [17] to a, in possibly all decision
variables, non-convex setting.

We conclude the introduction by preliminary definitions from the literature, on which
we rely later on. As mentioned above, we use for our nonsmooth and generalized convex
setting the concepts of f◦-pseudo- and f◦-quasiconvexity. We use the following definition
of the generalized directional derivative.

Definition 1.1 ([6]). Let f : Rn → R be locally Lipschitz continuous. The generalized
directional derivative of f at x in direction d ∈ Rn is defined by

f◦(x; d) = lim sup
y→x, t↓0

f(y + td)− f(y)
t

.

With this, we can define the following types of generalized convexity, which are relaxations
of convexity.

Definition 1.2 ([3]). A function f : Rn → R is f◦-quasiconvex, if it is locally Lipschitz
continuous and for all x, y ∈ Rn

f(y) ≤ f(x)⇒ f◦(x; y − x) ≤ 0. (1)

Definition 1.3 ([3]). A function f : Rn → R is f◦-pseudoconvex, if it is locally Lipschitz
continuous and for all x, y ∈ Rn

f(y) < f(x)⇒ f◦(x; y − x) < 0. (2)
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2. Non-convex robust MINLPs via outer approximation

We consider a robust optimization problem with continuous decision variables x ∈ Rnx

and discrete decision variables y ∈ Zny . The constraints of the problem additionally depend
on an uncertain parameter u that is known to lie in an uncertainty set U . We aim for a
solution that is robustly protected againts this uncertainty and write the resulting robust
optimization problem as

min
x,y

C(x, y)

s. t. Vi(x, y;u) ≤ 0, i ∈ [n], u ∈ U
x ∈ X
y ∈ Y ∩ Zny ,

(RO)

where bounds and further linear constraints on the continuous variables are modeled by
X ⊂ Rnx and Y ⊆ Rny , and Y is compact. We require that the functions C and Vi, for
every i ∈ [n], are locally Lipschitz continuous and lower C1. Now we can interpret this
robust optimization problem as a nonsmooth optimization problem: we reformulate the
constraints Vi(x, y;u) ≤ 0, which have to be fulfilled for every i ∈ [n] and u ∈ U , to one
nonsmooth constraint H(x, y) ≤ 0 with

H(x, y) := max
u∈U

V (x, y;u), V (x, y;u) := max
i∈[n]

Vi(x, y;u). (3)

We call this inner problem, i.e., the evaluation of this optimal value function H, the adver-
sarial problem. This problem can be challenging, e.g., when it involves non-convexities. We
allow for this and do not make any further assumptions on its structure. We only require
that for every x, y ∈ Rnx+ny and every given tolerance εH , we have access to an approximate
worst case u with V (x, y, u) ≥ H(x, y)− εH .

With this nonsmooth optimal value functionH, we write the robust optimization problem
(RO) equivalently as the nonsmooth optimization problem

min
x,y

C(x, y)

s. t. H(x, y) ≤ 0

x ∈ X
y ∈ Y ∩ Zny .

(P )

Efficient approaches for such MINLPs are outer approximation methods, which were
originally proposed by [8, 11] for the case of smooth and convex functions, and extended
to nonsmooth settings in [9, 21, 22]. They further have been generalized to quasiconvex
settings in [5, 12].

We follow [12, 22] for an outer approximation method in a non-convex and nonsmooth
setting and aim to solve the problem (P ) based on their methods. To prepare this, we
concretize here the arising subproblems and master problem. In the course of an outer
approximation approach as in [12], we encounter the following subproblems.

First, in every outer approximation iteration K, we solve for a fixed integer solution ŷK
the NLP-relaxation

min
x

C(x, ŷK)

s.t. H(x, ŷK) ≤ 0

x ∈ X.
(NLP (ŷK))
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Second, if the NLP-relaxation is infeasible, we solve the following projection problem for
the fixed integer solution ŷK .

min
x,y

dŷK (y)

s.t. H(x, y) ≤ 0

x ∈ X, y ∈ Y,
(ProjNLP (ŷK))

with dŷK (y) = ∥y− ŷK∥1. Both problems have only continuous variables, but are nonlinear.
We denote the resulting subproblem solution in an outer approximation iteration K by
(xK , yK).

As a master problem, we iteratively solve the following mixed-integer linear problem,
which is a relaxation of the original problem (P ) (see [12]).

min
x,y

C(x, y)

s. t.

(
ξL
ηL

)T (
x− xL
y − yL

)
≤ 0 ∀(xK , yK) ∈ SK

x ∈ X, y ∈ Y ∩ Zny ,

(MPK)

where SK := {(xL, yL) | L ≤ K} is the set of encountered subproblem solutions, and ξL, ηL,
with L ≤ K, define linearized constraints generated at subproblem solutions.

In the following, in Section 3, we elaborate how the subproblems can, despite inexact
worst-case evaluations, be tackled by an existing bundle method. Then, in Section 4, we
concretize our resulting inexact outer approximation approach that incorporates the bundle
method.

3. A bundle method for the subproblems

In every outer approximation iteration, we solve the subproblem (NLP (ŷK)) and/or
the subproblem (ProjNLP (ŷK)) for a fixed ŷK . These subproblems are nonlinear robust
optimization problems with continuous decision variables and we face inexactness in worst-
case evaluations. For this setting, we can use the adaptive bundle method from [16]. The
problems have the general form

min
x∈Rn

f(x)

s. t. vi(x) ≤ 0 ∀i ∈ [n],
(NLP )

where g(x) = maxu∈U v(x, u) = maxi∈[n] vi(x, u) and all functions are locally Lipschitz. We
can apply the adaptive bundle method only to unconstrained problems, so that we consider
the above problem by its penalty formulation minx∈Rn f(x)+ψ[g(x)]+. In detail, the penalty
formulation of the NLP-relaxation (NLP (ŷK)) reads

min
x∈X

C(x, ŷK) + ψH(x, ŷK), (NLPψ(ŷK))

and the penalty formulation of the projection problem (ProjNLP (ŷK)) reads

min
x∈X,y∈Y

dŷK (y) + ψH(x, y) (ProjNLPψ(ŷK))

with dŷK (y) = ∥y− ŷK∥1. The linear constraints that are modeled by X and Y can also be
integrated into the function H, by modeling them as further constraint functions Vi, or be
handled via an additional penalty term with penalty parameter ψX .
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We have assumed that the involved functions are lower C1 and that we have access to an
approximate worst case for every given tolerance (see Section 2). As a natural consequence,
we assume that for every such approximate worst case u(x,y), we have access to the according
function value V (x, y, u(x,y)) and a subgradient g(x,y) ∈ ∂(x,y)V (x, y, ux,y), where ∂(x,y)
denotes a joint subdifferential. When we deal with the first subproblem, (NLPψ(ŷK)), it
suffices for the bundle method to have access to a subgradient with respect to x. With this,
we can apply the adaptive bundle method and rely on the convergence results in [16].

To avoid troubles in the outer approximation algorithm as, e.g., not recognizing feasibility
or infeasibility and then cycling between solving the NLP-relaxation and the projection
problem, we are interested in the relation between solutions to the original subproblems
and to the penalty subproblems. To ensure that solving these penalty problems leads to
solutions of the original problems, we assume f◦-pseudoconvexity of the constraints and
that a constraint qualification holds.

First, we assume that the Cottle constraint qualification holds, which is defined as follows.

Definition 3.1 (CCQ, see, e.g., [3]). The Cottle constraint qualification is fulfilled by the
problem (NLP ) at a feasible point x, if either 0 /∈ ∂g(x) or g(x) < 0.

We note that it implies the Slater CQ (see [3]), whereas the converse does not necessarily
hold in the non-convex case.

Assumption 3.2. If the problem (NLP (ŷK)) is feasible, then it fulfills the CCQ. In the
case of infeasibility, the problem (ProjNLP (ŷK)) fulfills the CCQ.

With this assumption, we can make use of the following result.

Theorem 3.3 ([3]). Let (NLP ) satisfy the CCQ at x∗ with g(x∗) ≤ 0, f : Rn → R be
f◦-pseudoconvex and g : Rn → R be quasiconvex and subdifferentially regular at x∗.Then,
x∗ is a global optimum of (NLP ) if and only if there exists a multiplier λ ≥ 0 such that
λg(x∗) = 0 and

0 ∈ ∂f(x∗) + λ∂g(x∗).

Further, we make the following, stronger assumption on our constraint functions.

Assumption 3.4. The constraint functions Vi(x, y, u), for every i ∈ [n], u ∈ U , are f◦-
pseudoconvex. Further, for every ψ > 0, the objective functions of the penalized problems
are f◦-pseudoconvex.

For example, with the assumption of additively strict monotonicity, f(·) + λḡ(·) is f◦-
pseudoconvex ([3, Theorem 5.7]). Another example would be, for the projection problem,
that the generalized directional derivative of the constraint function has always a norm of
0 or greater than 1.

We obtain in Theorem 3.6 for this case of f◦-pseudoconvex functions an equivalence result
of penalized and original problems. For this, we rely on the following equivalence of critical
points and global minima for f◦-pseudoconvex functions.

Theorem 3.5 ([3, Theorem 5.2]). If a function f : Rn → R is f◦-pseudoconvex, then it has
a global minimum at x∗ ∈ Rn if and only if

0 ∈ ∂f(x∗).

Theorem 3.6. Let the problem (NLP ) be such that it fulfills the CCQ, f is f◦-pseudoconvex
and g is subdifferentially regular and f◦-pseudoconvex. Further, for every Λ > 0, the func-
tion f(x) + Λ[g(x)]+ is f◦-pseudoconvex. Then, there is a λ such that, for all Λ > λ, a point
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x∗ solves (NLP ) if and only if it solves

min
x∈Rn

f(x) + Λ[g(x)]+. (4)

Proof. As f◦-pseudoconvexity implies quasiconvexity [3, Theorem 5.19, Corollary 5.2], the
assertion of Theorem 3.3 also holds for the setting of constraint functions that are not only
quasiconvex but also f◦-pseudoconvex.

Let x∗ be a feasible and optimal solution to (NLP ). Then it also is feasible and optimal
to the problem

min
x∈Rn

f(x)

s. t. g(x) ≤ 0.
(5)

The function g(x) is again f◦-pseudoconvex [3, Theorem 5.6], and due to Theorem 3.3,
there is a λ ≥ 0 such that 0 ∈ ∂f(x∗) + λ∂g(x∗) and λg(x∗) = 0. Further, for the function
ḡ(x) := [g(x)]+, we have that, if g(x) = 0, then ∂ḡ(·) = conv{0, ∂g(x)}. With this, we get
0 ∈ ∂f(x∗) + λ∂ḡ(x∗).

From Theorem 3.5, we obtain that x∗ globally solves the problem minx∈Rn f(x) + λḡ(x).
So does every other optimal solution to (NLP ), and as ḡ(x) ≥ 0 for every x ∈ Rn, this also
holds if we increase the value of λ.

Now let x̂ be an optimal solution to (4) for Λ > λ with λ chosen as before. Hence, we
have f(x̂) + Λḡ(x̂) = f(x∗). If ḡ(x̂) > 0, we obtain

f(x̂) + Λḡ(x̂) > f(x̂) + λḡ(x̂) ≥ f(x∗) + λḡ(x∗) = f(x∗), (6)

which leads to a contradiction, so that ḡ(x̂) = 0. Thus, x̂ is an optimal solution to (5) and
hence to (NLP ). □

Output of the adaptive bundle method We choose approximate values H̃(·, ·) of
H at a final bundle iterate xl (and yl, in the case of the projection problem) such that

H̃(xl, ŷK) = V (xl, ŷK , u
l) or H̃(xl, yl) = V (xl, yl, ul), respectively. As solution, we output

xK := xl and, in the case of the projection problem, yK := yl.
For (NLPψ(ŷK)), we choose within the bundle method subgradients (slx, s

l
y) that fulfill

the property of subgradients in an f◦-quasiconvex setting (see Theorem 1.2), i.e.,

x ∈ Y, y ∈ Y ∩ Zny , H(x, y) ≤ 0⇒
(
slx
sly

)T (
x− xl
y − ŷK

)
≤ 0. (7)

For the output of the adaptive bundle method, we proceed as in [17]. If we have a solution

that we label as feasible, then we obtain an output with H̃(xl, ŷK) = H(xl, ŷK)−εpH ≤ 0 and

cluster points αK ∈ ∂C(xl, ŷK), ξ̃K ∈ ∂̃aH(xl, ŷK), ζK ∈ N(X,xl) with αK+ψξ̃K+ψXζK =
0 for penalty parameters ψ,ψX .

For (ProjNLPψ(ŷK)), we choose within the bundle method subgradients (slx, s
l
y) that

fulfill, analogously to (8),

x ∈ Y, y ∈ Y ∩ Zny , H(x, y) ≤ 0⇒
(
slx
sly

)T (
x− xK
y − yK

)
≤ 0. (8)

Again, we choose the output of the adaptive bundle method analogously to [17]. We obtain

an output with H̃(xK , yK) = H(xK , yK)−εpH ≤ 0 and cluster points αK ∈ ∂dŷK (yK), (ξ̃K , η̃K) ∈
∂̃aH(xK , yK), ζK ∈ N(X × Y, (xK , yK)) with (0, αK)T+ψ(ξ̃K , η̃K)T+ψXζK = 0 for penalty
parameters ψ,ψX .
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When the projection problem is solved with a positive objective value, then we know
from the above equivalence result that the NLP-relaxation is indeed infeasible. Also, when
the NLP-relaxation is solved with a feasible point in the sense that H̃(xl, yl) ≤ 0, then
we directly obtain that the NLP-relaxation is indeed feasible. For the case that the NLP-
relaxation is not solved with a feasible point but the projection problem is solved with
an objective value of zero, we can use the strategies as proposed in [17]: We can label the
solution as feasible with an according tolerance or we can choose the approximation strategy
and tolerances in the bundle method such that an exact solution is obtained.

4. An inexact outer approximation algorithm

We now incorporate the adaptive bundle method from [16] into an outer approximation
method that can handle non-convexities and applies to the problem (P ). In detail, we
elaborate assumptions on the output of a subproblem solver and then present the outer
approximation method. We will see that the assumptions are fulfilled by the output of
the adaptive bundle method as specified in Section 3. This integration of the output of
the bundle method works similar to the integration for the case with stronger convexity
assumptions that has been treated in [17].

In an outer approximation approach, we need to generate cutting planes that are valid for
feasible points of (P ). Instead of convexity assumptions, we require the following property

for approximate subgradients (ξ̃K , η̃K) at iterates (xK , yK) with H(xK , yK) ≥ 0, where K
is an outer approximation iteration.

x ∈ Y, y ∈ Y ∩ Zny , H(x, y) ≤ 0⇒
(
ξ̃K
η̃K

)T (
x− xK
y − yK

)
≤ 0. (9)

This property (9) is fulfilled, e.g., for the following f◦-quasiconvex setting.

Example 4.1. Let Vi(·, ·;u) be f◦-quasiconvex for every i ∈ [n] and every u ∈ U . Then
also V (·, ·, u) for every u ∈ U , and H(·, ·), as defined in (3), are f◦-quasiconvex. With this,
subgradients of H(·, ·) fulfill the property (9) due to f◦-quasiconvexity (see, e.g., [3]). Now
let uK be for an iterate (xK , yK) an approximate worst case with

H̃(xK , yK) = V (xK , yK , uK) ≥ 0, (10)

where (xK , yK , uK) ∈ X×Y ×U . For every (x, y) ∈ X×Y , we have V (x, y, uK) ≤ H(x, y).
If H(x, y) ≤ 0, then we have V (x, y, uK) ≤ 0 and hence V (x, y, uK) ≤ V (xK , yK , uK). From

f◦-quasiconvexity of V (·, ·, uK), it follows that every subgradient (ξ̃K , η̃K) ∈ ∂x,yV (xK , yK , uK)
fulfills the property (9).

As discussed in the previous section, we can expect from the adaptive bundle method
only inexact solutions to the continuous subproblems. For such an output of a subproblem
solution, we make the following assumption. Later in this section, we prove that we can
ensure with this assumption that the outer approximation approach terminates finitely.

Assumption 4.2. At an arbitrary iteration K, the problem (NLP (ŷK)) can be solved with

output (xK , ε
K
H , H̃(xK , yK), ξ̃K , η̃K , ζK) such that xK ∈ X and

∃0 ≤ εpH ≤ ε
K
H : H̃(xK , ŷ) = H(xK , ŷ)− εpH ≤ 0, (11a)

(ξ̃K , η̃K) fulfills (9), ζK ∈ N(X,xK), (11b)

∃ψ,ψX > 0 : 0 = cx + ψξ̃K + ψXζK . (11c)
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If (NLP (ŷK)) is feasible, then it can be solved with H̃(xK , ŷ) = 0.

Further, the problem (ProjNLP (ŷK)) can be solved with output ((xK , yK), εKH , H̃(xK , yK),

αK , ξ̃K , η̃K , ζK) such that (xK , yK) ∈ X × Y and

∃0 ≤ εpH ≤ ε
K
H : H̃(xK , yK) = H(xK , yK)− εpH ≤ 0, (12a)

αK ∈ ∂dŷK (yK), (ξ̃K , η̃K) fulfills (9), ζK ∈ N(X × Y, (xK , yK)), (12b)

∃ψ,ψX > 0 : 0 =

(
0
αK

)
+ ψ

(
ξ̃K
η̃K

)
+ ψXζK . (12c)

We use the output of the adaptive bundle method to generate cutting planes that refine
the relaxation of the original problem by the master problem. In an outer approximation
iteration K, we then obtain the following inexact master problem.

min
x,y

C(x, y)

s. t.

(
ξ̃L
η̃L

)T (
x− xL
y − yL

)
≤ 0 ∀(xL, yL) ∈ SK

x ∈ X, y ∈ Y ∩ Zny .

(M̃PK)

Due to Theorem 4.2, every outer approximation iterate (xK , yK) fulfills property (9), and
we directly infer the following result.

Lemma 4.3. If (x, y) is feasible for (P ), then it is feasible for (M̃PK).

Now we can state the resulting outer approximation method in Algorithm 1.
In order to show finite convergence of the outer approximation method, we now show

that every integer part ŷK of a solution to a master problem (M̃PK), with K an outer
approximation iteration, can occur only once.

Lemma 4.4. In an iteration K of Algorithm 1, if a point (x, ŷL) with L ≤ K and x ∈ X
is feasible for (M̃PK), then C(x, ŷL) > ΘK − εoa.

Proof. We distinguish the two cases that (xL, yL) ∈ SK has been output as a solution to

(NLP (ŷL)) with H̃(xL, yL) ≤ 0 and that it has been output as a solution to (ProjNLP (ŷL)).

i) Let xL be the solution output for (NLP (ŷL)), fulfilling (11) with H̃(xL, yL) ≤ 0. Then,
the cutting plane (

ξ̃L
η̃L

)T (
x− xL
y − yL

)
≤ 0 (13)

is a constraint of (M̃PK) and ŷL = yL. If (x, ŷL) is feasible for (M̃PK), then ξ̃TL (x−xL) ≤ 0.
As x ∈ X, we have ζTK(x − xL) ≤ 0. From (11c), it thus follows that cTx (x − xL) ≥ 0, and
hence cT (x, ŷL)

T ≥ cT (xL, yL)T . The claim follows with cT (xL, ŷL)
T ≥ ΘK .

ii) Let (NLP (ŷL)) be detected to be infeasible. Then, we have in Algorithm 1 a point

(xL, yL) as a solution to (ProjNLP (ŷK)), fulfilling (12). If (x, ŷL) is feasible for (M̃PK),
then (

ξ̃L
η̃L

)T (
x− xL
ŷL − yL

)
≤ 0 (14)
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Algorithm 1 OA for non-convex robust MINLP with inexactness

1: Fix parameter εoa > 0.
2: Choose initial values: y1 ∈ Y, S0 := ∅, θ0 := 0,Θ0 :=∞,K := 0.

3: while M̃PK feasible and θK ≤ ΘK − εoa do
4: Increase K by 1.
5: Solve (NLPψ(ŷK)) , fulfilling Theorem 4.2 and denote the output by

(xK , ε
K
H , H̃(xK , yK), ξ̃K , η̃K , ζK). ▷ bundle

6: if H̃(xK , ŷK) ≤ 0 then
7: yK ← ŷK .
8: SK := SK−1 ∪ {(xK , yK)}.
9: ΘK := min{ΘK−1, C(xK , yK)}.

10: else
11: Solve (ProjNLPψ(ŷK)), fulfilling Theorem 4.2 and denote the output by

((xK , yK), εKH , H̃(xK , yK), αK , ξ̃K , η̃K , ζK). ▷ bundle
12: if dŷK (yK) > 0 then
13: SK := SK−1 ∪ {(xK , yK)}.
14: ΘK := ΘK−1.
15: else
16: Go to line 5 and enforce H̃(xK , ŷ) = 0.
17: end if
18: end if
19: Solve (M̃PK) with value θK and denote the solution’s integer part by ŷK+1.
20: end while
21: if ΘK =∞ then
22: Stop and claim infeasibility.
23: end if
24: Set K∗ ∈ {J | J ≤ K,ΘK = C(xK , yK)}.
25: Return (xK∗ , yK∗).

We make use of (12b)-(12c). From αL ∈ ∂dŷl(yL), we have

αTK

(
x− xL
ŷL − yL

)
= −∥yL − ŷL∥ < 0. (15)

Further, from ζL ∈ N(X×Y, (xL, yL)) and (x, ŷL) ∈ X×Y , we have ζT (x−xL, ŷL−yL)T ≤ 0.
Together with (12c), this results in a contradiction to (14). The point (x, ŷL) is not feasible

for (M̃PK) and the claim holds for this case. □

From the results above, we can infer finite convergence of our outer approximation algo-
rithm.

Theorem 4.5. The outer approximation algorithm Algorithm 1 converges finitely. It either
correctly detects infeasibility of (P ) or it outputs a solution that is εK

∗

H -feasible and εoa-
optimal.

Proof. Follows directly from Theorem 4.3 and Theorem 4.4. □
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5. An example from gas transport

We demonstrate in this section the practical relevance of our setting by the example of
robust gas transport. In detail, we consider the stationary isothermal gas transport problem
with discrete-continuous decision variables [13] under robustly treated uncertainties. In
detail, we allow the demand and physical parameters such as pressure loss coefficients to
be uncertain. Similar and equivalent settings have been treated, e.g., by [17, 15, 16, 2, 1].
Our model is the same as used in [17], but we impose different assumptions on the network
and obtain a setting that is in a sense complementary: In [17], it is assumed that there are
no compressors to control on cycles, which leads to a problem of convex type. Here, we
allow for a compressor on a cycle, but not for any other active elements in the network,
and show that this fits into our pseudoconvex setting. This is not a more general setting
than handled in [17], but we demonstrate that exactly the type of constraint that is missing
there can be covered by our pseudoconvex setting. However, it remains for future research
to combine the two settings. The direct combination of the settings is not covered by the
class of generalized convex problems considered here.

We model a gas network by a directed graph G = V,A) with n nodes, m arcs and an
incidence matrix A ∈ {−1, 0, 1}n×m. Pipes and compressors are modeled by the arcs. We
further denote by state variables q ∈ Rm and π ∈ Rn the flow on arcs and the pressure at
nodes, respectively. Further, we assume the pressure to be fixed at one root node r ∈ V. The
pressure loss on pipes and compressors is modeled by the Weymouth equation, i.e., λaqa|qa|,
with pressure loss coefficients λ, and a linear compressor model with control variables ∆
(cf., e.g., [1]), respectively. With these assumptions, the state variable values are uniquely
determined once the uncertain parameters (demand d, pressure loss coefficients λ) and
control variables are fixed [20]. This relies on the following cycle equation, which has a
unique solution. For this, we divide the set of arcs in basic arcs B ⊆ A that define a
spanning tree and the remaining nonbasic arcs N ⊆ A—one for each fundamental cycle.
The flow q is decomposed accordingly into the sum of basic flow, qB , which is induced by
the demand on the spanning tree and the nonbasic flow, qN , which is the remaining flow on
cycles. Once the nonbasic flow is determined, the basic flow can easily be determined by
solving a linear equation and we write it as qB(qN ). The cycle equation now describes the
pressure loss on the arcs of fundamental cycles, which has to sum up to 0 for every cycle.
Denoting the pressure loss on an arc a by Fa, this reads, for a cycle C ⊆ A with ã ∈ C ∩N ,
with all arcs pointing in the same cyclic direction,

∑
a∈C̃\ã

Fa(∆, qB(qN )) = −Fã(∆, qN ). (16)

In the gas transport problem of controlling the compressor variables, we encounter con-
straints of the form πv ≤ πv(∆; d, λ) ≤ πv for every node v ∈ V. Under robustly treated
uncertainties, this is desired to hold for every possible realization of demands and pressure
loss coefficients. Hence, we encounter in the robust gas transport problem a constraint
function of the form

H(∆) := max
(d,λ)∈U

max
v∈V

max{πv − πv(∆; d, λ), πv(∆; d, λ)− πv} ≤ 0. (17)

We make the following assumption on the network, under which we then show that the
constraint function H is f◦-pseudoconvex.

Assumption 5.1. There is one compressor in the network and it is on a cycle.
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We can write the pressure at a fixed node v ∈ V as the sum of pressure losses on the way
from the root node r to v,

πv(∆; d, λ) = πr +
(
(Â−1

B )TFB
(
∆, qB(qN (∆; d, λ))

))
v
. (18)

The only nonbasic flow value that depends on the value of ∆ is the one on the nonbasic arc
that corresponds to the cycle with a compressor. We denote this arc by ã = (ũ, ṽ) and the

set of arcs on this cycle by C̃. Without loss of generality, we choose for the root node r = ũ
and can assume that ã is the compressor. Further, we can assume that the arcs in C̃ are
oriented such that they point into the same cyclic direction, i.e., no two arcs have the same
vertex as head or as tail, respectively. For every node v, we see from (18) and Theorem 5.1
that the pressure πv depends linearly and monotonically increasing on the flow value qã.

The flow qã is computed by the cycle equation∑
a∈C̃\ã

Fa(∆, qB(qN )) = −Fã(∆, qN ) (19)

⇔
∑
a∈C̃\ã

λaqa(qã)|qa(qã)| = ∆ã. (20)

For fixed ∆ã, this equation then has a unique solution, as mentioned above. Further, due
to the linearity of qB(qã) and the strict monotonicity of the left-hand side with respect to
qB , it follows that qã is strictly monotonically increasing in ∆ã. It follows that πv(∆; d, λ) is
either constant or strictly monotonically increasing in ∆ã. Using [3, Theorem 5.3], we infer
that πv(∆ã; d, λ) and −πv(∆ã; d, λ) are f◦-pseudoconvex in ∆. With [3, Theorem 5.6], it
follows that

max
(d,λ)∈U

max
v∈V

max{πv − πv(∆ã; d, λ), πv(∆ã; d, λ)− πv} (21)

is f◦-pseudoconvex. With this, the constraint (21) and hence (17) fits into our considered
generalized convex setting, which exemplary demonstrates that our setting covers relevant
real-world applications.

6. Conclusion

We proposed in this work a convergent algorithm for mixed-integer nonlinear and non-
convex robust optimization problems, for which no general methods exist. We relied on
assumptions of generalized convexity with respect to the decision variables. Concerning un-
certain parameters and uncertainty sets, we could dispense with any restrictive assumptions
such as concavity but relied on the assumption that approximate worst-case evaluations
are available. We formulated the resulting robust MINLP as a nonsmooth MINLP with
inexactness. For this, we presented an outer approximation approach with an integrated
bundle method and proved convergence of the resulting algorithm. This combined method
also contributes to MINLP methods, since it applies to generalized convex settings and
explicitely addresses the solution of the subproblems.

There are numerous possibilities for further research. Especially, the performance of the
proposed method could be evaluated and improved. A first step would be to identify suitable
test instances and to evaluate the method in practice. Then, the method’s performance
could be improved by various strategies such as, e.g., a single-tree approach for the outer
approximation, recycling of cutting planes or regularization strategies (see, e.g., [19, 18, 7,
14]).
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