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Abstract

It is common practice to apply gradient-based optimization algorithms to
numerically solve large-scale ODE constrained optimal control problems. Gra-
dients of the objective function are most efficiently computed by approximate
adjoint variables. High accuracy with moderate computing time can be achieved
by such time integration methods that satisfy a sufficiently large number of ad-
joint order conditions and supply gradients with higher orders of consistency. In
this paper, we upgrade our former implicit two-step Peer triplets constructed in
[Algorithms, 15:310, 2022] to meet those new requirements. Since Peer methods
use several stages of the same high stage order, a decisive advantage is their lack
of order reduction as for semi-discretized PDE problems with boundary control.
Additional order conditions for the control and certain positivity requirements
now intensify the demands on the Peer triplet. We discuss the construction of
4-stage methods with order pairs (4, 3) and (3, 3) in detail and provide three
Peer triplets of practical interest. We prove convergence for s-stage methods,
for instance, order s for the state variables even if the adjoint method and the
control satisfy the conditions for order s − 1, only. Numerical tests show the
expected order of convergence for the new Peer triplets.

Key words. Implicit Peer two-step methods, nonlinear optimal control, gradient-
based optimization, first-discretize-then-optimize, discrete adjoints
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1 Introduction

The numerical solution of optimal control problems governed by time-dependent
differential equations is still a challenging task in designing and analyzing higher-
order time integrators. An essential solution strategy is the so called first-discretize-
then-optimize approach, where the continuous control problem is first discretized into
a nonlinear programming problem which is then solved by state-of-the-art gradient-
based optimization algorithm. Nowadays this direct approach is the most commonly
used method due to its easy applicability and robustness. Consistent gradients of
the objective function are derived from control, state and adjoint variables given
by first-order necessary conditions of Karush-Kuhn-Tucker type, and are used in
an iterative minimization algorithm to calculate the wanted optimal control. In
this solution strategy, the unique gain of higher-order time integrators is twofold:
increasing the efficiency in computing time by the use of larger and fewer time
steps and, even more important for large-scale problems, thus reducing at the same
time the memory requirement caused by the necessity to store all variables for the
computation of gradients.

There are one-step as well as multistep time integrators in common use to
solve ODE constrained optimal control problems. Symplectic Runge-Kutta meth-
ods [5, 20, 25] and backward differentiation formulas [1, 4] are prominent classes,
but also partitioned and implicit-explicit Runge–Kutta methods [14, 22] and explicit
stabilized Runge-Kutta-Chebyshev methods [2] have been proposed. However, fully
implicit one-step methods often request the solution of large systems of coupled
stages and might suffer from serious order reduction due to their lower stage order.
This is especially the case when they are applied to semi-discretized PDEs with gen-
eral time-dependent boundary conditions arising from boundary control problems
[18, 23]. In general, further consistency conditions have to be satisfied [11, 19] in
order the achieve a higher classical order for the discrete adjoint variables. Multistep
methods avoid order reduction and have a simple structure, but higher order comes
with restricted stability properties and adjoint initialization steps are usually incon-
sistent approximations. Moreover, the appropriate approximation of initial values
and its structural consequences for the adjoint variables are further unsolved inher-
ent difficulties that have limited the application of higher-order multistep methods
for optimal control problems in a first-discretize-then-optimize solution strategy.

Recently, we have proposed a new class of implicit two-step Peer triplets that
aggregate the attractive properties of one- and multistep methods through the use
of several stages of one and the same high order and at the same time avoid their
deficiencies by their two-step form [16, 17, 18]. The incorporation of different but
matching start and end steps increases the flexibility of Peer methods for the solution
of optimal control problems, especially also allowing higher-order approximations of
the control, adjoint variables and the gradient of the objective function.

The class of s-stage implicit two-step Peer methods was introduced in [26] in
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linearly implicit form to solve stiff ODEs of the form y′(t) = f(y(t)), y0 = y(0),
y ∈ Rm. Later, the methods were simplified as implicit two-step schemes

Yn = (Q⊗ Im)Yn−1 + h(R⊗ Im)F (Yn), n = 0, 1, . . . , (1)

where the constant time step h > 0 will be considered here. An application of (1)
to large scale problems with Krylov solvers was discussed in [3]. The stage solutions
Yn = (Yni)

s
i=1 are approximations of (y(tn+cih))si=0 with equal accuracy and stability

properties, which motivates the attribute peer and is the key for avoiding order
reduction. The off-step nodes c1, . . . , cs are associated with the interval [0, 1] but
some may lie outside. In (1), R ∈ Rs×s is lower triangular and invertible, Q ∈ Rs×s,
Im ∈ Rm×m is the identity matrix, and F (Yn) = (f(Yni))

s
i=1. Note that the stages

Yni can be successively computed for i = 1, . . . , s due to the triangular structure of
R. Several variants of Peer methods have been developed and successfully applied
to a broad class of differential equations, e.g. [9, 15, 21, 24, 27, 28].

The application of Peer methods to optimal control problems requires a couple
of modifications. A first direct attempt in [29] was unsatisfactory, mainly due to the
restricted, first-order approximation of the adjoint variables. In [16], we found that
the general redundant formulation of the above standard Peer method,

(A⊗ Im)Yn = (B ⊗ Im)Yn−1 + h(K ⊗ Im)F (Yn), n = 0, 1, . . . , (2)

with invertible lower triangular matrix A ∈ Rs×s and diagonal matrix K ∈ Rs×s
is admittedly equivalent in terms of the state variables to (1), but surprisingly not
for the adjoint variables with the same coefficients Q,R. The additional degrees of
freedom given by K together with a careful design of a start and end method with
different coefficient matrices laid the foundation for improved Peer triplets with
higher-order convergence. Triplets with good stability properties could be found
[17]. Formulation (2) will also be the starting point in this paper. In contrast to our
former approach in [16, 17], where the control has been eliminated and a boundary
value problem has been solved, we now compute the optimal control in an iterative
procedure, making use of gradients of the objective function.

An important advantage of the state and adjoint approximations Yni ≈ y(tn+cih)
and Pni ≈ p(tn + cih) in the discrete time points tn + cih (see the next Chapter for
the details of the notation) with equal high accuracy is the opportunity to simply
use the discrete control variables

Uni = Φ(Yni, Pni) ≈ u(tn + cih), i = 1, . . . , s, n = 0, 1, . . . , (3)

in a gradient-based optimization algorithm. Although, the function Φ is only im-
plicitly given, the higher order of Yni and Pni is directly transferable to the control
vector Uni. Interpolation in time is easily realizable, the data structure keeps simple.
However, additional order conditions for the control derived from (3) and positivity
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requirements for column sums in the matrix triplet (K0,K,KN ), where K0 and KN

are the matrices for the start and end method, intensify the demands on the Peer
methods in the triplet. The arising bottlenecks in the design caused by stronger
entanglement of all matrices must be resolved by a more sophisticated analysis.

The paper is organized as follows. In Chapter 2, we formulate the optimal control
problem and define its discretization. The gradient of the cost function is derived
in Chapter 3. Order conditions and their algebraic consequences are discussed in
Chapter 4. Two classes of four-stage Peer triplets are studied in Chapter 5 and
Chapter 6 and three triplets of practical interest are constructed. In Chapter 7, we
give a detailed convergence proof for unconstrained controls. Numerical examples
collected in Chapter 8 illustrate the theoretical findings. The paper concludes with
a summary in Chapter 9.

2 The optimal control problem and its discretization

We are interested in the numerical solution of the following ODE-constrained non-
linear optimal control problem:

minimize C
(
y(T )

)
(4)

subject to y′(t) = f
(
y(t), u(t)

)
, u(t) ∈ Uad, t ∈ (0, T ], (5)

y(0) = y0, (6)

where the state y(t) ∈ Rm, the control u(t) ∈ Rd, f : Rm × Rd 7→ Rm, the objective
function C : Rm 7→ R, and the set of admissible controls Uad ⊂ Rd is closed and
convex. Introducing for any u ∈ Uad the normal cone mapping

NU (u) = {w ∈ Rd : wT (v − u) ≤ 0 for all v ∈ Uad}, (7)

the first-order optimality conditions read [11, 30]

y′(t) = f
(
y(t), u(t)

)
, t ∈ (0, T ], y(0) = y0, (8)

p′(t) = −∇yf
(
y(t), u(t)

)T
p(t), t ∈ [0, T ), p(T ) = ∇yC

(
y(T )

)T
, (9)

−∇uf
(
y(t), u(t)

)T
p(t) ∈ NU

(
u(t)

)
, t ∈ [0, T ]. (10)

Under appropriate regularity conditions, there exists a local solution (y, u) of the
optimal control problem (4)-(6) and a Lagrange multiplier p such that the first-order
optimality conditions (8)-(10) are necessarily satisfied at (y, u, p). If, in addition,
the Hamiltonian H(y, u, p) := pTf(y, u) satisfies a coercivity assumption, then these
conditions are also sufficient [11]. The control uniqueness property introduced in [11]
yields the existence of a locally unique minimizer u = u(y, p) of the Hamiltonian
over all u ∈ Uad, if (ŷ, p̂) is sufficiently close to (y, p).
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Many other optimal control problems can be transformed to the Mayer form
C(y(T )) which only uses terminal solutions. For example, terms given in the La-
grange form

CL(y, u) :=

∫ T

0
l(y(t), u(t)) dt (11)

can be equivalently reduced to the Mayer form by adding a new differential equation
y′m+1(t) = l(y(t), u(t)) and initial values ym+1(0) = 0 to the constraints. Then (11)
simply reduces to ym+1(T ).

On a time grid {t0, . . . , tN} ⊂ [0, T ] with fixed step size length h = tn+1 − tn
Peer methods use s stage-approximations Yni ≈ y(tni) and Uni ≈ u(tni) per time
step at points tni = tn+cih, i = 1, . . . , s, associated with fixed nodes c1, . . . , cs. All s
stages share the same properties like a common high stage order equal to the global
order preventing order reduction. Applying the two-step Peer method for n ≥ 1 and
an exceptional starting step for n = 0 to the problem (5)–(6) we get the discrete
constraint nonlinear optimal control problem

minimize C
(
yh(T )

)
(12)

subject to A0Y0 = a⊗ y0 + hK0F (Y0, U0), (13)

AnYn =BnYn−1 + hKnF (Yn, Un), n = 1, . . . , N, (14)

with long vectors Yn = (Yni)
s
i=1 ∈ Rsm, Un = (Uni)

s
i=1 ∈ Rsd, and F (Yn, Un) =(

f(Yni, Uni)
)s
i=1

. Further, yh(T ) = (wT ⊗ I)YN ≈ y(T ), a,w ∈ Rs, An, Bn,Kn ∈
Rs×s, and I ∈ Rm×m being the identity matrix. As a change to the introduction, we
will use the same symbol for a coefficient matrix like A and its Kronecker product A⊗
I as a mapping from the space Rsm to itself. Throughout the paper, ei denotes the
i-th cardinal basis vector and 1l := (1, . . . , 1)T ∈ Rs, sometimes with an additional
index indicating the space dimension.

On each subinterval [tn, tn+1], Peer methods may be defined by three coeffi-
cient matrices An, Bn,Kn, where An is assumed to be nonsingular. For practical
reasons, this general version will not be used. We choose a fixed Peer method
(An, Bn,Kn) ≡ (A,B,K), n = 1, . . . , N − 1, in the inner grid points with lower
triangular A, which allows a consecutive computation of the solution vectors Yni,
i = 1, . . . , s, in (13), (14). Exceptional coefficients (A0,K0) and (AN , BN ,KN ) in
the first and last forward steps are taken to allow for a better approximation in the
initial step and of the end conditions.
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The first order optimality conditions now read

A0Y0 = a⊗ y0 + hK0F (Y0, U0), (15)

AnYn =BnYn−1 + hKnF (Yn, Un), n = 1, . . . , N, (16)

AT
NPN =w ⊗ ph(T ) + h∇Y F (YN , UN )TKT

NPN , (17)

AT
nPn =BT

n+1Pn+1 + h∇Y F (Yn, Un)TKT
nPn, 0 ≤ n ≤ N − 1, (18)

− h∇UF (Yn, Un)TKT
nPn ∈ NUs

(
Un
)
, 0 ≤ n ≤ N. (19)

Here, ph(T ) = ∇yC
(
yh(T )

)T
and the Jacobians of F are block diagonal matrices

∇Y F (Yn, Un) = diagi
(
∇Ynif(Yni, Uni)

)
and∇UF (Yn, Un) = diagi

(
∇Unif(Yni, Uni)

)
.

The generalized normal cone mapping NUs

(
Un
)

is defined by

NUs(u) =
{
w ∈ Rsd : wT (v − u) ≤ 0 for all v ∈ U sad ⊂ Rsd

}
. (20)

If Kn := (κ
[n]
ij ) is diagonal and κ

[n]
ii = 0, then (19) is satisfies automatically for stage

i ∈ {1, . . . , s}. Assuming otherwise kni := eTi K
T
n 1l 6= 0, and defining

Qni :=
1

kni

∑
j

κ
[n]
ji Pnj , 0 ≤ n ≤ N, i = 1, . . . , s, (21)

(19) can be equivalently reformulated as

−kni∇Unif(Yni, Uni)
TQni ∈ NU

(
Uni
)
, 0 ≤ n ≤ N, i = 1, . . . , s. (22)

Note that Qni = Pni, if the matrix Kn is diagonal. A severe new restriction on the
Peer triplet comes from the need to preserve the correct sign in (22) requiring that
kni > 0. Then, we can divide by it and the control uniqueness property guarantees
the existence of a local minimizer Uni of the Hamiltonian H(Yni, U,Qni) over all U ∈
Uad since Qni can be seen as an approximation to the multiplier Pni ≈ p(tn + cih).
Such positivity conditions also arise in the context of classical Runge-Kutta methods
or W-methods, see e.g. [11, Theorem 2.1] and [19, Chapter 5.2].

The need to sacrifice the triangular resp. diagonal form of the matrix coefficients
An,Kn in the boundary steps comes from the fact that the starting steps (15), and
backwards (17) are single-step methods with s outputs. With a triangular form
of A0, AN and K0,KN their first stages (backward for n = N) would represent
simple implicit Euler steps with a local order limited to 2, see Section 5 in [16] for
a discussion.

3 The gradient of the cost function

We first introduce the vector of control values for the entire interval [0, T ]

U = (UT
01, . . . , U

T
0s, U

T
11, . . . , U

T
Ns)

T ∈ Rsd(N+1) (23)
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and let C(U) := C(yh(U)) be the cost function associated with these controls. The
first order system (15)–(19) provides a convenient way to compute the gradient of
C(U) with respect to U . Following the approach in [12], we find

∇UniC(U) =h∇Unif(Yni, Uni)
T(eTi K

T
n ⊗ I)Pn, 0 ≤ n ≤ N, i = 1, . . . , s, (24)

where all approximations (Yn, Pn) are computable by a forward-backward marching
scheme. The state variables Yn are obtained from the discrete state equations (15)–
(16) for n = 0, . . . , N , using the given values of the control vector U . Then, using the

updated values Yn one computes ph(T ) = ∇yC
(
yh(T )

)T
with yh(T ) = (wT ⊗ I)YN

before marching the steps (17)–(18) backwards for n = N, . . . , 0, solving the discrete
costate equations for all Pn.

The gradients from (24) can now be employed in gradient-based optimization
algorithms which have been developed extensively since the 1950s. Many good
algorithms are now available to solve nonlinear optimization problems in an iterative
procedure

U (k+1) :=U (k) +4U (k), k = 0, 1, . . . (25)

starting from an initial estimate U (0) for the control vector. Evaluating the objective
function, its gradient and, in some cases, its Hessian, an efficient update 4U (k) of
the control can be computed. Based on the principle (25), several good algorithms
have been implemented in commercial software packages like Matlab, Mathe-
matica, and others. We will use the Matlab routine fmincon in our numerical
experiments. It offers several optimization algorithms including interior-point [7]
and trust-region-reflective [8] for large-scale sparse problems with continuous
objective function and first derivatives.

Since the optimal control u(t) minimizes the Hamiltonian H(y, u, p) = pTf(y, u),
we may compute an improved approximation of the control by the following mini-
mum principle

U?ni = arg min
u∈Uad

H(Yni, u, Pni), 0 ≤ n ≤ N, i = 1, . . . , s, (26)

if Yni or Pni are approximations of higher-order. We note that the function Φ in
(3) provides the solution in (26), when H is replaced by its discrete approximation
defined by the Peer triplet.

4 Order conditions for the Peer triplet in the uncon-
strained case

We recall the conditions for local order r ≤ s for the forward schemes and order
q ≤ s for the adjoint schemes, see [16, 17]. These conditions use the Vandermonde
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matrices Vq := (1l, c, c2, . . . , cq−1) ∈ Rs×q with the column vector of nodes c =
(ci)

s
i=1 ∈ Rs, and the nonsingular Pascal matrix Pq =

((
j−1
i−1
))

= exp(Ẽq) ∈ Rq×q

where Ẽ =
(
iδi+1,j

)
∈ Rq×q is nilpotent. There are 5 conditions for the forward

scheme and its adjoint method:

A0Vr = aeT1 +K0VrẼr, n = 0, (27)

AnVr =BnVrP−1r +KnVrẼr, 1 ≤ n ≤ N, (28)

wTVr = 1lT, (29)

AT
nVq =BT

n+1VqPq −KT
n VqẼq, 0 ≤ n ≤ N − 1, (30)

AT
NVq =w1lT −KT

NVqẼq, n = N. (31)

We remind that the coefficient matrices from interior grid intervals belong to a
standard scheme (An, Bn,Kn) ≡ (A,B,K), 1 ≤ n ≤ N − 1. The whole triplet
consists of 8 coefficient matrices (A0,K0), (A,B,K), (AN , BN ,KN ).

Next, we focus on the new optimality condition (19) in the unconstrained case
with NU = {0}. It reads stage-wise

∇uf(Ynj , Unj)
T

s∑
i=1

Pniκ
[n]
ij = 0, j = 1, . . . , s, 0 ≤ n ≤ N. (32)

Order conditions are obtained by Taylor expansions, where approximations are re-
placed by exact solutions (y(tn + cih), u(tn + cih), p(tn + cih)) and the (continuous)
optimality condition

∇uf
(
y(t), u(t)

)T
p(t) = 0, t ∈ [0, T ] (33)

is used. Defining the partial sums expq(z) :=
∑

j=0,...,q−1 z
j/j! with q terms, Taylor’s

theorem for the expansion of a smooth function v(t), v ∈ Cq[0, T ], at tnj := tn + cjh
may be written as

v(tn + cih) = expq((ci − cj)z)v|t=tnj +O(hq), z := h
d

dt
, (34)

with some slight abuse of notation. Then, the corresponding expansion of the resid-
uals in (32) for order q + 1 gives

∇uf
(
y(tnj), u(tnj)

)T s∑
i=1

κ
[n]
ij expq

(
(ci − cj)z

)
p(tnj)

!
= O(zq), j = 1, . . . , s. (35)

Lemma 4.1 Let the solution p be smooth, p ∈ Cq[0, T ], and C := diag(c1, . . . , cs)
the diagonal matrix containing the nodes and assume that

(cl−1)TKn − 1lTKnC
l−1 = 0, l = 2, . . . , q, (36)
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for all n = 0, . . . , N . Then, for these n and j = 1, . . . , s holds

s∑
i=1

κ
[n]
ij p(tni)− knjp(tnj) = O(hq), (37)

τUnj :=∇uf(y(tnj), u(tnj))
T

s∑
i=1

p(tni)κ
[n]
ij = O(hq). (38)

Proof: The assumption (36) is obtained from (35) by removing mixed powers in

the conditions
∑s

i=1 κ
[n]
ij (ci − cj)l−1 = 0 with the corresponding equations for lower

degrees. In fact, these condition prove the stronger version (37) which will be needed
below. Of course, (38) is a simple consequence due to (33). �

For the standard method with a diagonal matrix Kn ≡ K, 1 ≤ n < N , the
condition (30) is sufficient for adjoint local order q since (36) is satisfied trivially.
However, for the more general matrices K0,KN required in the first and last forward
steps, it has been shown in [17, Chapter 2.2.4] that additional conditions have to
be satisfied due to an unfamiliar form of one-leg-type applied to the linear adjoint
equation p′ = −J(t)p with J(t) = ∇yf(y(t), u(t))T. These conditions are now
covered by (36) for l=2. In our present context with unknown control, the additional
constraint equation (32) sharpens these requirements and leads to much stronger
restrictions on the design of the whole Peer triplet. As discussed in connection with
(22), we also require positive column sums in the boundary steps and non-negative
ones in the standard scheme,

1lTK0 > 0T, 1lTKN > 0T, 1lTK ≥ 0T. (39)

In the special case of a Peer triplet of FSAL type as constructed in Section 6.2, we
allow eT1K0 = 0T since the corresponding control component U01 can be eliminated.
We note that even in the unconstrained case, NU = {0}, positivity (39) is required
in order to preserve the positive definiteness of the Hesse matrix.

4.1 Combined conditions for the order pair (r, q)

With r, q ≤ s the full set of conditions may lead to practical problems for deriving
formal solutions with the aid of algebraic manipulation software due to huge alge-
braic expressions. Possible alternatives like numerical search procedures will suffer
from the large dimension of the search space consisting of the entries of 8 coefficient
matrices. Fortunately, many of these parameters may be eliminated temporarily by
solving certain condensed necessary conditions first. Afterwards, the full set (27)–
(31) may be more easily solved in decoupled form. The combined conditions will be
formulated with the aid of the linear operator

X 7→ Lq,r(X) := ẼT
q X +XẼr, X ∈ Rq×r. (40)
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We note that the map Lq,r is singular since Ẽr is nilpotent and Ẽre1 = 0 for any
r ∈ N. Hence, the first entry of its image always vanishes(

Lq,r
)
11

= 0. (41)

The combined conditions are presented in the order in which they would be applied
in practice, with the standard scheme (A,B,K) in the first place. In all these
conditions the matrix

Qq,r := V T
q BVrP−1r (42)

plays a central role.

Lemma 4.2 Let the matrices of the Peer triplet (A0,K0), (A,B,K), (AN , BN ,KN )
satisfy the order conditions (27)–(31) with q ≤ r ≤ s. Then, also the following
equations hold,

Lq,r(V T
q KVr) =PT

q V
T
q BVr − V T

q BVrP−1r = PT
q Qq,rPr −Qq,r, (43)

Lq,r(V T
q K0Vr) =PT

q V
T
q BVr − V T

q ae
T
1 = PT

q Qq,rPr − V T
q ae

T
1 , (44)

Lq,r(V T
q KNVr) =1lq1l

T
r − V T

q BVrP−1r = 1lq1l
T
r −Qq,r. (45)

Proof: Considering the cases 1 ≤ n < N first, equation (28) is multiplied by V T
q

from the left and the transposed condition (30) by Vr from the right. This gives

V T
q AVr =V T

q BVrP−1r + (V T
q KVr)Ẽr,

V T
q AVr =PT

q V
T
q BVr − ẼT

q (V T
q KVr).

Subtracting both equations eliminates A and yields (43). Equation (44) follows in
the same way from (27) and (30) for n = 0. The end method has to satisfy three
conditions. Multiplying (28) for n = N again from the left by V T

q and the transposed
end condition (31) by Vr from the right and combining both eliminates AN and gives

Lq,r(V T
q KNVr) = 1lq1l

T
r − V T

q BNVrP−1r = 1lq1l
T
r −Qq,r (46)

since V T
r w = 1l by (29). The third condition for BN is (30) with n = N − 1. It

reduces to BT
NVqPq = ATVq + KTVqẼq = BTVqPq, which means V T

q BN = V T
q B.

Hence, the matrix BN in (46) may simply be replaced by B. �
Since the operator Lq,r is singular, solutions for (43)–(45) exist for special right-

hand sides only. For instance, in (45), (44) the property (41) requires that

1 = eT1Qq,re1 = 1lTB1l and 1lTq a = 1lTB1l = 1. (47)

Also the map X 7→ PT
q XPr − X in (43) is singular, but here, (41) imposes no

restrictions since we always have eT1
(
PT
q XPr − X)e1 = 0. However, many further
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restrictions are due to special structural properties of the matrices V T
q KnVr which

are the arguments of Lq,r. The following algebraic background highlights the hidden
Hankel structure of certain matrices.

A matrix X = (xij) ∈ Rq×r is said to have Hankel form, if its elements are
constant along anti-diagonals, i.e. if xij = ξi+j−1 for 1 ≤ i ≤ q, 1 ≤ j ≤ r. Some
simple, probably well-known, properties are the following.

Lemma 4.3 a) If K ∈ Rs×s is a diagonal matrix, then V T
q KVr has Hankel form.

b) Congruence transformations with Pascal matrices and the operator Lq,r preserve
Hankel form: if X ∈ Rq×r has Hankel form, then also PT

q XPr and Lq,r(X).

c) The operator Lq,r is homogeneous for multiplication with Pascal matrices:

PT
q Lq,r(X) = Lq,r(PT

q X), Lq,r(X)Pr = Lq,r(XPr), X ∈ Rq×r.

Proof: a) For K = diag(κii), we get (ci−1)TKcj−1 =
∑s

`=1 κ``c
i+j−2
` .

b) For X = (ξi+j−1) the explicit expression

eTi PT
q XPrej =

i+j−1∑
k=1

(
i+ j − 2

k − 1

)
ξk

should be well-known and is easily shown with the aid of the Vandermonde identity.
And from Ẽq = (iδi+1,j) it follows that

eTi (ẼT
q X +XẼr)ej = (i+ j − 2)ξi+j−1,

where the factor i+ j − 2 = 0 leads to (41) for i = j = 1.
Assertion c) holds, since Ẽq and Pq = exp(Ẽq) commute. �

4.2 Interdependencies within the Peer triplet

There are striking similarities between the three equations in Lemma 4.2. The
following Lemma presents two direct relations between the 3 matrices K,K0,KN

showing that they are heavily interlocked without contributions from the other co-
efficient matrices An, Bn. As a consequence some of the many free parameters of
the (general) matrices K0,KN may cancel out in certain conditions and will not
contribute to solving them.

Lemma 4.4 From the equations (43)–(45) follow the relations

Lq,r
(
V T
q (K0 −K +KN )Vr

)
=1lq1l

T
r − V T

q ae
T
1 , (48)

Lq,r
(
V T
q K0Vr + PT

q V
T
q KNVrPr

)
=ζqζ

T
r − V T

q ae
T
1 , (49)

with the vectors ζk :=
(
2j−1

)k
j=1

, k ∈ N.

11



Proof: The first identity (48) is a simple linear combination of all 3 conditions. For
the second one, Lemma 4.3 shows by a P-congruence of (45) that

PT
q Lq,r(V T

q KNVr)Pr = Lq,r(PT
q V

T
q KNVrPr) = PT

q 1lq1l
T
r Pr − PT

q Qq,rPr.

Now, its addition to (44) gives (49). �
Since K is diagonal, (48) is a very strong restriction for the sum K0 +KN . Still,

the singularity of the map Lq,r from (40) allows for additional elements from its
kernel in the difference (K0 + KN ) − K. But the one-leg-conditions (36) for the
boundary steps will further restrict the degrees of freedom in K0,KN .

4.2.1 Consequences of the one-leg-conditions

For convenience, the trivial case l = 1 is included in the one-leg conditions (36) for
adjoint order q. Recalling the matrix C := diag(ci), these conditions may be written
as

(cl−1)TKn = 1lTKnC
l−1, l = 1, . . . , q ⇐⇒ V T

q Kn =


1lTKn

1lTKnC
...

1lTKnC
q−1

 ∈ Rq×s. (50)

In particular, the matrix V T
q Kn depends on the row vector 1lTKn of the column

sums of Kn only. The consequences of (50) on the matrices in Lemma 4.4 are far-
reaching. It will be seen that (50) reduces the combined order conditions (44), (45)
for the boundary methods to over-determined linear systems of the column sums
1lTK0, 1lTKN alone. This will lead to bottlenecks in the design of Peer triplets for
q + r > s+ 2. A first simple restriction is shown now.

Lemma 4.5 If a matrix Kn ∈ Rs×s satisfies (50), then the matrices V T
q KnVk and

Lq,k(V T
q KnVk) have Hankel form for any k ∈ N.

Proof: For l ≤ q and k ∈ N, Hankel form follows from (50) by

(cl−1)TKnc
k−1 = 1lTKnC

l−1ck−1 = 1lTKnc
l+k−2.

In fact, V T
q KnVk = V T

q DKVk with the diagonal matrix DK containing the col-

umn sums of Kn. The Hankel property of Lq,k(V T
q KnVk) then is a consequence of

Lemma 4.3. �

Remark 4.1 By this Lemma, the conditions for the end method lead to severe re-
strictions on the standard method through equation (45). Since its left hand side
Lq,r(V T

r KNVr) is in Hankel form, also its right hand side 1lq1l
T
r −Qq,r, has to be so

restricting the shape of B further. In particular it means, that

Qq,r = V T
r BVqP−1q has Hankel form. (51)

12



Then, by Lemma 4.3, also PT
q Qq,rPr and Lq,r(V T

q K0Vr) for the starting method have

Hankel form, which leaves only V T
q a = e1 for the slack variable in equation (44).

Remark 4.2 The Hankel form of all 3 matrices V T
q KnVr in (48) also prohibits

the presence of certain kernel elements of Lq,r in possible solutions, tightening the
connection between K,K0,KN . In fact, it was observed for the method AP4o43p

below that

V T
3 (K0 +KN −K)V4 =

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5 ∗

 ,

is a Hilbert matrix with the exception of the last element.

Due to the one-leg conditions (50) the matrix equations (44), (45) collapse to heav-
ily over-determined linear systems for the column sums 1lTK0, 1l

TKN implying ad-
ditional restrictions for their right-hand sides, in particular for the matrix Qq,r.
Looking at an equation

Lq,r(V T
q KnVr) = Θ := (ϑij) ∈ Rq×r

of the form of (44) or (45), n ∈ {0, N}, and considering element (l, k) of it, with
(50) we get

eTl (ẼT
q V

T
q KnVr + V T

q KnVrẼr)ek

= (l − 1)(cl−2)TKnc
k−1 + (k − 1)(cl−1)TKnc

k−2

= (1lTKn)(l + k − 2)cl+k−3
!

= ϑlk, 1 ≤ l ≤ q, 1 ≤ k ≤ r. (52)

These are q ·r conditions for the only s degrees of freedom in 1lTKn, where the index
j := l + k − 2 lies in the range {0, . . . , q + r − 2}. Obviously, this system is only
solvable if ϑ11 = 0, see (41), and if ϑlk does only depend on l+ k which means that
Θ has Hankel form. For r+ s− 2 > s even more restriction follow. These additional
requirements will be collected farther down for different choices of q and r.

Lemma 4.6 Let (50) hold and assume that the equations (44) and (45) have solu-
tions K0,KN .
a) If q + r ≥ s + 2, then the column sums 1lTK0, 1l

TKN are uniquely determined
by the matrix B of the standard scheme alone. These sums are solutions of the
non-singular linear systems

(1lTK0)VsDs =
(
((c + 1l)l−1)TBcj−l+1

)s
j=1

, (53)

(1lTKN )VsDs =1lT −
(
(cl−1)TB(c− 1l)j−l+1

)s
j=1

, (54)

13



where Ds = diag(1, 2, . . . , s). In particular, solvability requires that the expressions
on the right-hand sides of these equations do not depend on the index l, 1 ≤ l ≤
min{q, j + 1}.
b) For r = s, the column sums may be given by

1lTK0 =(c + 1l)TBVsD
−1
s V −1s , (55)

1lTKN =(1lT − cTBVsP−1s )D−1s V −1s . (56)

Proof: a) Omitting the trivial first equation 0 = ϑ11 in (52), for q + r − 3 ≥ s− 1
the next s cases with 1 ≤ l + k − 2 ≤ s may be combined to the system

1lTKn

(
1, 2c, . . . , scs−1) = 1lTKnVsDs

!
=
(
ϑl,j−l+1

)s
j=1

, (57)

where the index l selects one of several possible choices. Since the matrix VsDs is
nonsingular, solutions are unique, if they exist. Equations (53) and (54) are obtained
with Θ = PT

q V
T
q BVr − e1eT1 and Θ = 1lq1l

T
r − Qq,r, respectively, where (47) implies

ϑ11 = 0.
b) For r=s, the choice l=2 gives a complete row vector of length s in both equations.
�

Remark 4.3 There are practical consequences for the design of Peer triplets. In
the beginning, one may have hoped that positivity 1lTK0 > 0T, 1lTKN > 0T could be
obtained in the final design of the end methods with the aid of the many remaining
degrees of freedom in the matrices K0,KN . However, the Lemma prohibits that.
Instead, for q + r ≥ s+ 2 all row sums are determined by the standard method and
the positivity restrictions may now be included in search procedures for the standard
method alone having fewer degrees of freedom than the whole triplet.

For methods with forward order r = s and adjoint order q = s−1, it holds q+r−2 =
2s−3 > s for s ≥ 4. In this case there are still more requirements for the solvability
of (52) which are discussed for the special case (r, q) = (4, 3) in Section 5.2 below.

5 Four-stage triplets for the order pair (s, q) = (4, 3)

Since it is of practical interest to achieve high orders of convergence, the case r =
s = 4 and q = 3 is the first to be considered. We note that this situation has already
been discussed in [17] for the case that u may be eliminated leading to a boundary
value problem for (y, p) only. The A-stable methods from [17] are not suited for
the use together with a gradient-based optimization method discussed in Section 3,
since some diagonal elements of K are negative. However, the methods AP4o43bdf

and AP4o43dif there have positive column sums satisfying condition (39). Hence,
the latter ones may be used for a gradient-based optimization method and in our
numerical tests, AP4o43bdf will be compared to the new methods derived now which
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satisfy one set of one-leg conditions more, see (36). These stronger requirements on
all methods of the triplet lead to a severe bottleneck in the order conditions: any
appropriate standard method (A,B,K), K = diag(κii), has a blind third stage with
κ33 = 0. This observation is a consequence of equation (45) and Lemma 4.5. The
full set of conditions will be collected at the end of this section.

5.1 Consequences of the Hankel form of Q3,4

In this subsection, it is shown that the restriction κ33 = 0 is a consequence of only
the forward order conditions (28) with r = s = 4 and the q× s = 3× 4-Hankel form
(51) of the matrix

Qq,s = V T
q BVsP−1s = V T

q (AVs −KVsẼs). (58)

With the shift matrices Sq =
(
δi,j−1

)
∈ Rq×q and the projection Ǐq := Iq − eqeTq ,

Hankel form of the matrix (58) is equivalent with

0 = Ǐq(SqQq,s −Qq,sST
s )Ǐs. (59)

Also, column shifts in the Vandermonde matrix have a simple consequence, VqS
T
q =

CVq Ǐq.

Theorem 5.1 a) Hankel form of the matrix (58) is equivalent with the condition

V T
q−1(AC − CA−K)Vs−1 = 0. (60)

b) For q = 3, r = s = 4, equations (58), (59) imply

κ33 = eT3Ke3 = 0.

Proof: Since Ẽr = DrSr = Sr(Dr−Ir) with Dr = diagri=1(i), we have ẼrS
T
r = Dr Ǐr

and CVrẼr = Vr(Dr−Ir). Now, the Hankel condition (59) for the matrix (58) reads

0 =Ǐq
(
SqV

T
q (AVs −KVsẼs)− V T

q (AVs −KVsẼs)ST
s

)
Ǐs

=Ǐq(V
T
q C(AVs −KVsẼs)− V T

q ACVs + V T
q KVsD)Ǐs

=ǏqV
T
q (CAVs −ACVs −K(CVsẼs − VsD))Ǐs

=ǏqV
T
q (CA−AC +K)VsǏs.

Since the matrices Ǐq, Ǐs simply eliminate the last row or column, this equation is
equivalent with the assertion (60).
b) For q = 3, s = 4 condition (60) consists of 6 equations. The commutator [A,C] =
AC − CA is strictly lower triangular since the diagonal of A cancels out. Ignoring
the diagonal, the map A 7→ V T

q−1(AC − CA −K)Vs−1 still has a rank deficiency if
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it is considered as a function of the 6 subdiagonal elements of A only. In fact, there
exists a nontrivial kernel of its adjoint having rank-1 structure. Consider

V3

 c1c2
−c1 − c2

1

 =


0
0

(c3 − c1)(c3 − c2)
(c4 − c1)(c4 − c2)

 =: xR, V2

(
−c4

1

)
=


∗
∗

c4 − c3
0

 =: xL.

Since [A,C] ist strictly lower triangular, the vector [A,C]xR has 3 leading zeros and
the inner product with xL vanishes for any lower triangular matrix A. Hence,

(−c4, 1)V T
2 (AC − CA−K)V3

 c1c2
−c1 − c2

1

 = − xTLKxR

= − (c4 − c3)(c3 − c2)(c3 − c1)κ33

and (60) implies κ33 = 0 for non-confluent nodes. �
Since K is diagonal, the matrix V T

q−1KVs−1 has Hankel form again and (60) is

an over-determined system for the column sums 1lTK = (κ11, . . . , κss). Solutions
may only exist if elements of V T

q−1(AC − CA)Vs−1 within each anti-diagonal have
the same value. For q = 3, s = 4 this leads to the following restrictions on A alone

(c2)TAcj − 2cTAcj+1 + 1lTAcj+2 = 0, j = 0, 1. (61)

Since a 2 × 3 matrix possesses 4 antidiagonals, under assumption (61) the system
(60) reduces to

1lTKV4 =1lT(AC − CA)(1l, c, c2, 0) + cT(AC − CA)c2

⇐⇒ 1lTK =1lT(AC − CA) + βeT4 V
−1
4 ,

where β =cT(AC − CA)c2 − 1lT(AC − CA)c3 = 1lT[C, [A,C]]c2.

Remark 5.1 Since κ33 = 0, the third stage of the standard method uses no addi-
tional function evaluation of f(Yn3, Un3) and it seems that it does not provide any
additional information. In fact, this stage can be eliminated but the resulting method
will be a 3-stage 3-step Peer method.

Remark 5.2 The blind third stage has consequences both for the analysis and the
implementation of the standard Peer method. In the equations (15)–(19) of the Peer
steps it is seen, that there is no coupling between the controls Un of different time
steps. Now, the contribution to the Lagrange function from the third stage of the
standard method in time step n with multiplier Pn3 is given by

. . .+ PT
n3

 3∑
j=1

a3jYnj −
4∑
j=1

bnjYn−1,j

+ . . .
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missing the unknown Un3. Since Un3 does not appear anywhere else it is non-existent
and the unknown Un3 should be discarded as well as the corresponding stage equation
0 · ∇uf(Yn3, Un3)

TPn3 = 0 from (81). This measure will also be used in the analysis
of Section 7.

5.2 Further requirements for the existence of Peer triplets

For q + r − 2 > s, the restriction of Qq,r to Hankel form is not the whole picture
yet. If q + r − 2 = s + 1, which case occurs for r = s = 4 and q = s − 1 = 3,
the system (52) does not possess full rank having more than s columns. The vector
(ψT, 1)T with ψ := −V −1s cs spans the kernel of the extended Vandermonde matrix
Vs+1 = (1l, c, . . . , cs) since it contains the coefficients of the node polynomial ψ̂(t) =
(t− c1) · · · (t− cs) = ts +

∑s
j=1 ψjt

j−1. Rewriting this property in the form of (52),

1lTKn

(
1, 2c, . . . , (s+ 1)cs

)
·D−1s+1

(
ψ
1

)
= 0,

it follows that solutions only exist if also(
ϑl,j−l+1

)s+1

j=1
·D−1s+1

(
ψ

1

)
= 0. (62)

Since r = s, a convenient choice for the indices l here is

(
ϑ21, . . . , ϑ2s, ϑ3s

)
=

{ (
1lT − cTBVsP−1s , 1− (c2)TB(c− 1l)s−1

)
for KN ,(

(c + 1l)TBVs, ((c + 1l)2)TBcs−1
)

for K0.
(63)

We summarize all conditions in the following lemma.

Lemma 5.1 Let r = 4 and q = 3. Then, necessary conditions for the existence
of four-stage Peer triplets satisfying (27)–(31) and (50) are Hankel form of Q3,4 =
PT
3 BV4P

−1
4 as well as

cTBV4P
−1
4 D−14 ψ +

1

5
(c2)TB(c− 1l)3 =

∫ 1

0
ψ̂(t)dt (64)

(c + 1l)TBV4D
−1
4 ψ +

1

5
((c + 1l)2)TBc3 = 0. (65)

Proof: As a first step, we consider the constant term 1lTs+1 in (63). In (62) it gives
rise to the contribution

1lTsD
−1
s ψ +

1

s+ 1
=
∑
j=0

1

j
ψj +

1

s+ 1
=

∫ 1

0
ψ̂(t)dt. (66)

Now, the conditions (64), (65) correspond to the vanishing of the inner products
(62) with the two vectors from (63). �
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Remark 5.3 In practice it was found that the 2 conditions (64), (65) seem to be
equivalent with the 2 equations ∫ 1

0
ψ̂(t)dt = 0, (67)

cTBV4P
−1
4 D−14 ψ +

1

5
(c2)TB(c− 1l)3 = 0, (68)

in conjunction with the many other order conditions.

In general, Peer methods are invariant under a common shift of the nodes, which
means in practice that this shift may be fixed after the construction of some method,
e.g. by choosing cs = 1. However, orthogonality (67) strongly depends on the
absolute positions of the nodes. Still, for

∫ 1
0 ψ̂(t)dt this dependence is only linear

for the node differences and (67) may be easily solved for one of those, e.g. for
d4 = c4 − c2.

5.3 Method AP4o43p

So far, we have only discussed the normal order conditions for the Peer methods
and their adjoints and the way how the conditions from the boundary methods,
including the one-leg-conditions, restrict the shape of the standard method. In
practice, further requirements have to be considered. First, the conditions (28) and
(30) for the pair (r, q) relate to the (local) orders of consistency. In order to also
establish convergence of order O(hr) and O(hq) in [17], the following two conditions
for super-convergence of the forward and adjoint scheme have been added,

1lT
(
Acr −B(c− 1l)r − rKcr−1

)
= 0, (69)

1lT
(
ATcq −BT(c + 1l)q + qKcq−1

)
= 0. (70)

In practice, the super-convergence effect may be observed for a sufficiently fast
damping of secondary modes of the stability matrix only and requires that

|λ2(A−1B)| ≤ γ < 1, γ ∼= 0.8, (71)

where λ2 denotes the absolutely second largest eigenvalue of the stability matrix
B̄ := A−1B of the standard scheme. We note, that the stability matrix B̃T :=
(BA−1)T of the adjoint time steps has the same eigenvalues as B̄. In several nu-
merical tests in [17], the given value γ = 0.8 was sufficiently small to produce
super-convergence reliably and it does so in our tests at the end. Superconvergence
(69), (70) only cancels the leading error terms of the methods. In order to cover
other essential error contributions also the norms

errr :=
1

r!
‖cr −A−1B(c− 1l)r − rA−1Kcr−1‖∞, (72)

err∗q :=
1

q!
‖cq −A−TBT(c + 1l)q + qA−TKcq−1‖∞, (73)
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are monitored as the essential error constants, see [17]. Furthermore, the norm
‖A−1B‖∞ of the stability matrix is of interest since it may be a measure for the
propagation of rounding errors.

Application of the Peer methods to stiff problems requires good stiff stability
properties. A(α)-stability is defined here by the requirement that the spectral radius
%
(
(A− zK)−1B

)
< 1 of the stability matrix of the standard scheme is below one for

z in the open sector of aperture 2α centered at the negative real axis. The adjoint
stability matrix (A − zK)TBT and

(
A − zK)−1B possess the same eigenvalues.

Details on the computation of α can be found in [16], §5.2, the angles for the different
methods are contained in Table 2.

Very mild eigenvalue restrictions for the boundary methods are also taken from
[17]. In order to guarantee the solvability of the stage systems for the first and last
steps we require

µ0 := min
j
<λj(K−10 A0) > 0, µN := min

j
<λj(K−1N AN ) > 0. (74)

A new requirement is the non-negativity condition (39) imposed by the use of a
gradient-based method to update the control vector in (25). Lemma 4.6 has shown
that the column sums of the boundary methods are already fully determined by the
standard method and their positivity 1lTK0 > 0T, 1lTKN > 0T can be included in
the search for it. The missing definiteness of K, see Theorem 5.1, is allowed for
by discarding the vanishing diagonal in (39). In practice, the performance of the
gradient method (25) may suffer badly if the column sums have differing magnitudes.
Hence, the search was narrowed to methods with moderate positive values of the
column sum quotient

csq := max
{maxi |1lTK0ei|

mini 1lTK0ei
,
maxi |1lTKNei|
mini 1lTKNei

}
!
> 0, 1lTK ≥ 0T, (75)

and (39) where 1lTK0, 1l
TKN are determined by the standard method, see (55), (56).

Although there are rather tight restrictions on the column sums of K0,KN , there
still exists a null-space in the conditions for these matrices and it was necessary
to restrict the norms ‖K0‖, ‖KN‖ in addition to (74) in the final search for the
boundary methods.

Without the non-negativity condition several different regions in the parame-
ter space of Peer triplets did exist in [17]. Some of the standard methods found
there have non-monotonic nodes and negative diagonal elements in K. Now, non-
negativity seems to leave only one such region with ordered nodes ci. Hence, we
present only one such method with a nearly maximal stability angle. For easier
reference the full set of conditions is collected in Table 1. We remind that the con-
ditions in line (c) there ensure the existence of the boundary methods and allow for
the construction of the standard method without reference to them.
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Steps forward: r ≤ s = 4 adjoint: q = s− 1 = 3

Start, n = 0 (27) (30), n = 0, (36), (39)

(a) Standard, 1 ≤ n < N (28) (30)
(b) Superconvergence (69) (70)
(c) Compatibility (47), (51)

. . . for r = s = 4: (67), (68)

(d) Last step (28), n = N (30), n = N − 1
(e) End point (29) (31), (36), (39)

Table 1: Combined order conditions for the Peer triplets AP4o43p and AP4o33pa

Method AP4o43p has a stability angle of α = 59.78o with node vector

cT =
( 4657

46172
,
43

97
,
3991

6596
,
21111803999

23798723875

) .
=
(
0.1009, 0.4432, 0.6050, 0.8871

)
.

The node c4 has a rather long representation since it was used to solve condition (67).
The damping factor γ = 0.58 from (71) is well below one, the error constants are
err4 = 0.092/4! ≈ 0.0038 and err∗3 = 0.144/3! ≈ 0.024 and the quotient (75) is csq =
11.0. Further data are collected in Table 2. In order to obtain acceptable properties
for the stability and definiteness (74) of the boundary methods, the matrices A0, AN
have full block size 4, denoted by blksz=4 in Table 3. The coefficients of AP4o43p
are given in Appendix A.1.

6 Four-stage triplets for the order pair (r, q) = (3, 3)

The blind stage in methods of type AP4o43+ seems to limit their stability properties
with stability angles shortly below 60 degrees. Lowering the order of the forward
methods to r=s− 1=q, see Table 1, in order to improve stability properties leaves
more free parameters in the triplet. But the large number of parameters for the
boundary methods and huge algebraic expressions bring the formal elimination of
the 3 original order conditions to its limits. One may circumvent these difficulties
by solving the combined condition (45) formally (with free parameters) for KN first
and then the other conditions in a step-by-step fashion as follows:

solve


L3,3(V T

3 KNV3) = 1l31l
T
3 −Q3,3 for KN

AT
NV3 = w1lT3 −KT

NV3Ẽ3 for AN ,

BT
NV3 = BTV3 for BN .

The column sums 1lTK0, 1lTKN of the boundary methods are still uniquely de-
termined by the standard method through (52) since q + r − 2 = 4 = s. We may
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write such a system with n ∈ {0, N} in the form

R1×4 3 1lTKn(1l, 2c, 3c2, 4c4) =

ϑ12 ϑ13
ϑ21 ϑ22 ϑ23

ϑ31 ϑ32 ϑ33

 . (76)

This system has 4 columns and solutions will exist only if entries on the right hand
side have the same value within each column. This corresponds to the Hankel
form of Θ ∈ R3×3, which means Hankel form of Q3,3 for n = N . Then, Hankel
form of PT

3 V
T
3 BV3 = PT

3 Q3,3P3 for n = 0 follows from Lemma 4.3. Since the
matrix (1l, 2c, 3c2, 4c4) = V4D4 is nonsingular, the row sums 1lTKn are again uniquely
determined by (76). However, the elements of the 4 anti-diagonals on its right
hand side have to come from different rows of Θ now. For instance, the positivity
conditions (39) may be enforced with the representations

1lTKn = (ϑ21, ϑ22, ϑ23, ϑ33)D
−1
4 V −14

!
≥ κ∗1lT, n ∈ {0, N}, (77)

with Θ = PT
3 Q3,3P4 for n = 0 and Θ = 1l31l

T
3 −Q3,3 for n = N . We note that due to

condition (77) the standard Peer method also looses its shift invariance in a milder
form than (67).

Considering the good performance of the triplet AP4o43bdf in [17] and [18] with
a standard method based on BDF4, it is of interest to look for a version with
boundary methods satisfying the additional one-leg-conditions (36) or (50) for q = 3.
According to (51), Hankel form of Q3,r is required now. However, the matrix Q4,4

for the BDF standard method has the Hankel property in its first 4 anti-diagonals
only with eT1Q4,4 = (1, 18 ,

1
96 , 0). Hence, only Q3,3 has Hankel form since it contains

only one element from the fifth anti-diagonal. Now, for a method with q = r = 3,
the column sums of the boundary methods are explicitly determined by the standard
method through (76). Here, for BDF the end method satisfies (77) with κ∗ = 55/576,
but not the starting method since 1lTK0e2 = −21/64 < 0. Hence, no positive triplet
based on BDF exists satisfying the one-leg-condition with q ≥ 3.

6.1 Method AP4o33pa

Although we came very close to A-stability with the reduced forward order to r =
3 = s − 1, no truly A-stable methods could be found. This might be due to the
restriction (71) on the sub-dominant eigenvalue and we suspect that a (formally)
A-stable method might have a multiple eigenvalue 1 if it exists. In fact, with a
rather unsafe restriction |λ2(A−1B)| ≤ 0.9, a method was found with stability angle
89.976o extremely close to A-stability. Slightly relaxing the requirement on the angle
to α = 89.90o, the following almost A-stable method AP4o33pa was constructed. Its
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triplet (r, q) nodes α ‖A−1B‖∞ |λ2| errr err∗q csq

AP4o43p (4, 3) [0.1, 0.9] 59.78o 8.5 0.58 0.0038 0.024 11.0
AP4o33pa (3, 3) [0, 1.41] 89.90o 8.2 0.66 0.050 0.046 33.4
AP4o33pfs (3, 3) [0, 1] 77.53o 16.0 0.46 0.031 0.030 1.72

Table 2: Properties of the 4-stage standard methods of Peer triplets.

Starting method End method

triplet blksz µ0 %(BA−10 ) blksz µN %(A−1N BN ) %(BNA
−1)

AP4o43p 4 4.13 1 4 4.36 1 1.09
AP4o33pa 4 2.03 1 1+3 2.21 1 1
AP4o33pfs 1+3 4.92 1 1+3 1.61 1 1

Table 3: Properties of the boundary methods of Peer triplets.

node vector is given by

cT =

(
46

5253
,
29

51
,
1723

2193
,
17131

12189

)
.
= (0.00876, 0.5686, 0.7857, 1.4054) (78)

with monotonic nodes. It is super-convergent with (69),(70) for r = q = 3 with a
good damping factor |λ2(A−1B)| < 0.66. The error constants are almost equal with
err3 = 0.298/3! ≈ 0.050 and err∗3 = 0.279/3! ≈ 0.046. Further data of this method
are collected in Table 2. All boundary steps are zero-stable but only for the end
method a block structure could be obtained with block sizes blksz=3 + 1. These
data are presented in Table 3. The complete set of coefficients is given in Appendix
A.2.

6.2 FSAL method AP4o33pfs

The different requirements for the higher-order Peer triplet AP4o43p implied that
a blind third stage without evaluation of the function f appears, see Theorem 5.1.
This may have some obscure potential for savings. Possible savings are more obvious
by considering the FSAL property (first stage as last) frequently used in the design
of one-step methods, where the last stage of the previous time step equals the first
stage of the new step. For Peer methods this property has been discussed in [27].
In our formulation (16) it means that

c1 = 0, cs = 1, eT1Kn = 0T, eT1An = a
[n]
11 e

T
1 , e

T
1Bn = a

[n]
11 e

T
s , (79)

implying Yn,1 = Yn−1,s ∼= y(tn), n ≥ 1. A convenient benefit of Peer methods is that,
due to their high stage order, the interpolation of all s stages provides an accurate
polynomial approximation of the solution being also continuous if the FSAL property
holds.
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Since the order conditions for methods of type AP4o33* leave a 10-parameter
family of standard methods, the additional restrictions (79) can easily be satisfied
for (A,B,K). However, some properties of the boundary methods imply further
restrictions on the standard method through (76). Although the matrices K0,KN

in the boundary steps are not restricted to diagonal form, the one-leg conditions
(50) with q = s− 1 request that they are rank-1-changes of diagonal matrices only.
Then, the condition eT1Kn = 0T leaves off-diagonal elements in their first columns
only. However, for matrices of such a form the constraint (32) reads

∇uf(Ynj , Unj)
TPnjκ

[n]
jj = 0, j = 2, . . . , s,

∇uf(Yn1, Un1)
T

s∑
i=2

Pniκ
[n]
i1 = 0.

These are s conditions on Pn2, . . . , Pns which may not always be satisfiable since
∇ufT is evaluated at different places. Hence, the condition eT1Kn = 0T requires
that Kn is diagonal with zero as the first diagonal element. However, the property
Kne1 = 0 also leads to kn1 = 1lTKne1 = 0 and introduces via (76) one additional
restriction on the matrix Q3,3 from the standard method both for K0 and KN . In
condition (77) the first component, being zero, can be deleted since also the control
Un1 is no longer present in (32).

Unfortunately, only in the starting step a diagonal matrix K0 � 0 with κ
[0]
11 = 0 is

possible leading to an exact start Y01 = y0. However, no non-negative triplet seems
to exist with a final FSAL step. Hence, KN is chosen lower triangular having a dense
first column and the first row eT1KN = 1

3e
T
1 leading to a small jump Yn1 − Yn−1,s =

O(h3) at tN only.
Computer searches found the method AP4o33pfs with stability angle α = 77.53o,

having node vector cT = (0, 9
86 ,

321
602 , 1), error constants η3 = 0.187/3! ≈ 0.031,

η∗3 = 0.180/3! ≈ 0.030 and a small damping factor γ = 0.46. More data are given
in Table 2 and Table 3. Of course, the computation of the quotient csq in (75) and
the real part µ0 in (74) was restricted to the nontrivial lower 3× 3 block of K0. The
coefficients of AP4o33pfs are given in Appendix A.3.

7 The global error

Convergence of the Peer triplets for h → 0 will be discussed for the unconstrained
case NU = {0} only. Here, the additional constraint (19), (32) complicates the situ-
ation compared to [16, 17] and we will concentrate on it in the following discussion
since the treatment of the other equations (15)–(18) will be the same as before.
Node vectors of the exact solution are denoted by bold face, e.g., yn =

(
y(tni)

)s
i=1

,

y :=
(
yn
)N
n=0

, and the global errors by checks, e.g., Y̌n = Yn − yn, Y̌ :=
(
Y̌n
)N
n=0

.
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In the error discussion a notational difficulty arises since the right-hand sides of
the adjoint equations already contain a first derivative (∇yf)Tp. In order to avoid
ambiguities with second derivatives, we introduce an additional notation 〈., .〉 for
the standard inner product in Rm which is exclusively dedicated to the product of
the Lagrange multiplier p and the components of the function f = (fi)

m
i=1 or its

derivatives as in

〈p, f〉 =

m∑
i=1

(eTi p)fi, 〈p,∇yf〉 =

m∑
i=1

(eTi p)∇yfi, 〈p,∇uf〉 =

m∑
i=1

(eTi p)∇ufi.

The notation is used particularly for second derivatives, where the matrix∇uu〈p, f〉 =∑m
i=1(e

T
i p)∇uufi is symmetric and a linear combination of Hessian matrices of the

components of f . The notation carries over to compound expressions of a whole
time step, e.g.

〈
KT
nPn,∇UUF (Yn, Un)

〉
= diagj=1,...,s

(〈 s∑
i=1

Pniκ
[n]
ij ,∇uuf(Ynj , Unj)

〉)
. (80)

The discussion of the errors in [16, 17] relied on a contraction argument with
Lipschitz constant O(h) for the nonlinear terms in (15)–(18). However, this is not
possible for the new constraint (32) and we have to use a different argument for this
equation which may be written as〈

KT
nPn,∇UF (Yn, Un)

〉T
= 0 (81)

in our new notation. Here, we remind that by Remark 5.2 the unknowns Un3 and the

corresponding equations for blind stages (κ
[n]
33 = 0, 1 ≤ n < N) should be discarded.

Considering the definition (38) of the local error τUn and that the exact solution
(y(t), u(t), p(t)) satisfies ∇uf(y, u)Tp = 〈p,∇yf(y, u)〉T ≡ 0, see (33), we have

−(τUn )T = 〈KT
nPn,∇UF (Yn, Un)〉 − 〈KT

npn,∇UF (yn,un)〉

= 〈KT
n P̌n,∇UF (yn,un)〉+ 〈KT

npn,∇UF (Yn, Un)−∇UF (yn,un)〉

+ 〈KT
n P̌n,∇UF (Yn, Un)−∇UF (yn,un)〉

= 〈KT
n P̌n,∇UF (yn,un)〉

+ 〈KT
npn,∇UY F (yn,un)Y̌n〉+ 〈KT

npn,∇UUF (yn,un)Ǔn〉

+ 〈KT
npn,∇UF (Yn, Un)−∇UF (yn,un)〉 − 〈KT

npn,∇UY F (yn,un)Y̌n〉

− 〈KT
npn,∇UUF (yn,un)Ǔn〉+ 〈KT

n P̌n,∇UF (Yn, Un)−∇UF (yn,un)〉.
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Hence, in each time step there is an additional equation(
〈KT

npn,∇UY F (yn,un)〉T,∇UF (yn,un)TKn, 〈KT
npn,∇UUF (yn,un)〉T

)
Žn

= −τUn +RUn (Žn), where Žn :=

Y̌nP̌n
Ǔn

 . (82)

The function on its right-hand side is given by

RUn (Ž) = − 〈KT
n P̌n,∇UF (yn + Y̌n,un + Ǔn)−∇UF (yn,un)〉T

− 〈KT
npn,∇UF (yn + Y̌n,un + Ǔn) (83)

−∇UF (yn,un)−∇UY F (yn,un)Y̌n −∇UUF (yn,un)Ǔn〉T.

The important point in this equation is that the matrix of the left-hand side of (82)
is independent of Ž and that the right-hand side (83) has a Lipschitz constant O(ε)
in an ε-neighborhood of the solution as will be shown below.

The analysis in [16, 17] separated the linear h-independent terms of the scheme
(15)–(18) which cause a coupling between unknowns from different time intervals
in some matrix M0 from the h-dependent terms with no coupling between time
intervals. Then, with an explicit representation of M−10 it was shown, that the
resulting fixed point equation had a Lipschitz constant of size O(h) (Lemma 1 in
[17]). Taking now account of the additional unknown U , we write the whole system
for the error Ž in a similar way as

M0Ž =

−τY + hRY (Ž)

−τP + hRP (Ž)

−τU +RU (Ž)

 , (84)

M0 :=

 M11 ⊗ Im 0 0
M21 ⊗∇yyCN M22 ⊗ Im 0

〈KTp,∇UY F (y,u)〉T ∇UF (y,u)TK Ω

 , (85)

where the new last block, being a symmetric block diagonal matrix, was abbreviated
as

Ω := 〈KTp,∇UUF (y,u)〉 = diagn(Ωn), Ωn := 〈KT
npn,∇UUF (yn,un)〉, (86)

since it requires detailed investigation. In order to avoid confusion with the coeffi-
cient K from the standard scheme we denoted the block diagonal matrix of all Kn

by K := diag(K0,K, . . . ,K,KN ). Please note, that the usual order of the variables
y, u, p was changed in order to reveal the triangular form of M0 in (85). We also
note that RY (0) = RP (0) = 0, RU (0) = 0.
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For ease of reading, we recall a few details for M0 from [16]. The index range
0 . . . N of the grid is also used for this matrix and its different blocks. By multiplying
the forward Peer steps (15) and (16) by A−1n and the adjoint steps (18), (17) by A−Tn
the submatrices M11 and M22 become block bi-diagonal matrices with identities Is in
the main diagonal. M11 is lower bi-diagonal with subdiagonal blocks (M11)n,n−1 =
−B̄n := −A−1n Bn, 1 ≤ n ≤ N, and M22 is upper bi-diagonal with super-diagonals
(M22)n,n+1 = −B̃T

n+1 := −(BA−1)T, 0 ≤ n < N . Due to requirement (71) there

exist norms such that ‖B̄n‖ = ‖B̃T
n+1‖ = 1 hold. Hence, all non-trivial blocks of the

inverses M−111 and M−122 have norm one (with the possible exception of one single
block at the boundaries). The third block M21 is very sparse with a rank-one entry
1lwT in its last diagonal s× s-block only due to (17).

Temporarily assuming non-singularity of Ω (which will be considered later on)
the system (84) may be transformed to fixed-point form

Ž = Φ(Ž) := −M−10 τ + M−10

hI hI
I

R(Ž) (87)

with the vectors

τ :=

τYτP
τU

 , R(Ž) :=

RY (Ž)

RP (Ž)

RU (Ž)

 .

Now, the inverse of the fixed matrix M0 may be given in factored form as

M−10 =

 I
0 I

−Ω−1〈KTp,∇UY F (y,u)〉T −Ω−1∇UF (y,u)TK Ω−1

 (88)

·

 M−111 ⊗ Im
−M−122 M21M

−1
11 ⊗∇yyCN M−122 ⊗ Im

0 0 I

 . (89)

Since there is no coupling between the stages of different time steps in R, all Jaco-
bians ∇YR,∇PR,∇UR for each part RY , RP , RU are block diagonal matrices with
blocks of size (sm) × (sm) or (sd) × (sd), since the two-step structure of the Peer
methods is represented by the block bi-diagonal matrices M11,M22. Since every
single s × s-block of the block triangular inverses M−111 ,M

−1
22 in (89) has norm one

according to the discussion following equation (86), the norms of the whole matrices
have magnitude O(N) = O(h−1). However, these inverses multiply only diagonal
block matrices from ∇R in the Lipschitz condition. Hence, a Lipschitz constant of
size O(h) with the first two parts hRY , hRP in (87) could be established in [17]. Of
course, this argument carries over to the additional variable Ǔ here. But the last
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part with RU , lacking the factor h, which is essentially covered by the left factor
(88) of M−10 needs different treatment.

Obviously, boundedness of this factor (88) requires that the block diagonal ma-
trix Ω from (86) has a uniformly bounded inverse. Since p(t) is assumed to be
smooth, Lemma 4.1 shows, that KT

npn = DKnpn + O(hq), where DKn � 0 is the
diagonal matrix with the row sums of KT

n . Hence, D−1Kn
Ωn is a small perturbation of

a block diagonal matrix with blocks being the Hesse matrices ∇uuH(yni,uni,pni) =
〈pni,∇uuf(yni,uni)〉, 1 ≤ i ≤ s, of the Hamiltonian H(y, u, p) = pTf(y, u) at the so-
lution. Now, the control-uniqueness property from [11] assumes that for any t ∈ [0, T ]
the Hamiltonian H

(
y(t), ũ, p(t)

)
has a unique minimum with respect to ũ in small

neighborhoods of u(t). An appropriate condition for this property is the definiteness
of the Hessian

∇uuH
(
y(t), u(t), p(t)

)
� ηId, t ∈ [0, T ], η > 0, (90)

implying bounded invertibility of the Hessian which is not essentially affected by
small perturbations of p(t). In the main theorem below, we will use a slightly weaker
assumption (93), but we will show now that (90) is satisfied for an interesting class
of control problems.

Example 7.1 A common type of optimal control problems has right-hand sides
f(y, u) which depend linearly on u ∈ Rd. Only the objective function is quadratic in
the form (11),

1

2

∫ T

0
(yTΥy + uTWu)dt (91)

with positive definite matrices Υ,W � 0. The transformation to standard form (4)
uses the additional differential equation

y′m+1 =
1

2

(
yTΥy + uTWu)dt, ym+1(0) = 0, (92)

and (91) becomes C(ȳ(T )) = ym+1(T ) with extended ȳT = (yT, ym+1). Also, f̄ , p̄
are extended versions. Since the right-hand side of (92) does not depend on ym+1,
the adjoint equation for the last Lagrange multiplier simply reads p′m+1 = 0 with end
condition pm+1(T ) = 1 yielding pm+1(t) ≡ 1. Hence, 〈p̄,∇uuf̄(y, u)〉 = W � 0 is
definite at the exact solution.

We note, that here even the m + 1-th component of the discrete solution P̄n is
exact. Denoting the stage vector of its m + 1-th component by φn ∈ Rs, one sees
that the first column of (31) simply states AT

NVse1 = AT
N1l = w for r ≥ s − 1

and that the end condition (17) reads AT
NφN = w. Hence φN = 1l is the unique

solution due to the non-singularity of AN . Then, the adjoint recursion (18) reduces
to AT

nφn = BT
n+1φn+1 which leaves the vector 1l unchanged by (30). Hence, φn ≡ 1l
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for n = 0, . . . , N . Since the original right-hand side f is linear in u, condition (19)
depends on u only in the m+ 1-th component of F̄ and its derivative with respect to
U is DKn ⊗W � 0 by (39). We remind that for AP4o43p equations from the third
stage with κ33 = 0 have been removed from the system, see Remark 5.2. Hence, the
corresponding diagonal block in Newton’s method is nonsingular.

For the error estimates below norms are required on three different levels. On
the highest, the grid level, the maximum norm is used for convenience. On the
step level it is essential to use appropriate weighted norms for Y̌n, P̌n such that
‖B̄‖ = ‖B̃T‖ = 1 holds. On the lowest, the problem level, any norm may be
appropriate. If, for instance, (90) is given, the Euclidean norm may be considered
for Ǔni ∈ Rd. However, in the following theorem we use the slightly more general
assumption (93) in an appropriate norm. Since the last node of triplet AP4o33pa

is larger than one, the last off-step node tNs in the grid exceeds T . Hence, the
smoothness assumptions on the solution are required in a slightly larger interval
[0, T ∗] with [0, T ] ⊂ [0, T ∗).

Theorem 7.1 Considering the unconstrained case with NU = {0} let the right-hand
side f of (5) be smooth with bounded and Lipschitz continuous second derivatives
and let the objective function C in (4) be a polynomial of degree less or equal two
and assume

‖〈p̃,∇uuf
(
y(t), u(t)

)
〉−1‖ ≤ ω (93)

for all p̃ with ‖p̃ − p(t)‖ ≤ ε < 1, t ∈ [0, T ∗], T ∗ > T . Assume also that a unique
solution

(
y(t), u(t), p(t)

)
of (8)–(10) exists with y ∈ Cr[0, T ∗] and p, u ∈ Cq[0, T ∗].

Let the Peer triplet satisfy the order conditions from lines (a,c,d,e) of Table 1
with 2 ≤ q ≤ r ≤ s, q < s, and the eigenvalue conditions (71), (74).

Then, for h ≤ h0 the fixed point problem (87) has a unique solution Ž in a
sufficiently small tubular neighborhood of the exact solution

(
y(t), u(t), p(t)

)
of (8)–

(10). The solution Ž satisfies

‖Ž‖ = max{‖Y − y‖, ‖U − u‖, ‖P − p‖} = O(hq−1) (94)

where (Y,U, P ) is the solution of the discrete boundary value problem (15)–(19).

Proof: a) The essential problem is to show that also the last part of the right-
hand side of (87) is a contraction. The explicit form of RUn in (83) consists of
two parts and we will consider Lipschitz differences RUn (Z̃)−RUn (Ẑ) for both parts
separately by using Taylor’s Theorem with integral remainder. Since the following
computations are quite lengthy and F is evaluated with 2 arguments of the same
form, we abbreviate by writing F (Y,U) = F (Z) where F does not depend on P .
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For the contribution in the first line of (83), we get

− 〈KT
n (P̃n − P̂n),∇UF (zn)〉T

+ 〈KT
n P̃n,∇UF (zn + Z̃n)〉T − 〈KT

n P̂n,∇UF (zn + Ẑn)〉T

= 〈KT
n (P̃n − P̂n),∇UF (zn + Z̃n)−∇UF (zn)〉T

+ 〈KT
n P̂n,

∫ 1

0
∇UY F (zn + ξZ̃n + (1− ξ)Ẑn) dξ (Ỹn − Ŷn)〉T

+ 〈KT
n P̂n,

∫ 1

0
∇UUF (zn + ξZ̃n + (1− ξ)Ẑn) dξ (Ũn − Ûn)〉T

= 〈KT
n (P̃n − P̂n),

∫ 1

0
∇UY F (zn + ξZ̃n) dξ Ỹn +

∫ 1

0
∇UUF (zn + ξZ̃n) dξ Ũn〉T

+ 〈KT
n P̂n,

∫ 1

0
∇UY F (zn + ξZ̃n + (1− ξ)Ẑn)dξ(Ỹn − Ŷn)〉T

+ 〈KT
n P̂n,

∫ 1

0
∇UUF (zn + ξZ̃n + (1− ξ)Ẑn)dξ(Ũn − Ûn)〉T .

With appropriate constants Lj this part is bounded by

L1‖P̃n − P̂n‖(‖Ỹ ‖+ ‖Ũ‖) + L2‖P̂n‖(‖Ỹn − Ŷn‖+ ‖Ũn − Ûn‖)
≤L3(‖Z̃n‖+ ‖Ẑn‖)‖Z̃n − Ẑn‖. (95)

In the difference for the remaining term from (83), the constant part 〈KT
npn,∇UF (zn)〉T

cancels out and the others contribute

− 〈KT
npn,∇UF (zn + Z̃n)−∇UF (zn + Ẑn)〉T

+ 〈KT
npn,∇UY F (zn)(Ỹn − Ŷn) +∇UUF (zn)(Ũn − Ûn)〉T

= − 〈KT
npn,

∫ 1

0
∇UY F (zn + ξZ̃n + (1− ξ)Ẑn) dξ (Ỹn − Ŷn)

+

∫ 1

0
∇UUF (zn + ξZ̃n + (1− ξ)Ẑn) dξ (Ũn − Ûn)〉T

+ 〈KT
npn,∇UY F (zn)(Ỹn − Ŷn) +∇UUF (zn)(Ũn − Ûn)〉T

= − 〈KT
npn,

∫ 1

0

(
∇UY F (zn + ξZ̃n + (1− ξ)Ẑn)−∇UY F (zn)

)
dξ (Ỹn − Ŷn)〉T

− 〈KT
npn,

∫ 1

0

(
∇UUF (zn + ξZ̃n + (1− ξ)Ẑn)−∇UUF (zn)

)
dξ (Ũn − Ûn)〉T.

Since the second derivatives are assumed to be Lipschitz continuous also this contri-
bution to the Lipschitz difference of RUn is bounded by L4(‖Z̃n‖+ ‖Ẑn‖)‖Z̃n − Ẑn‖.
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Hence, we have shown that

‖RU (Z̃)−RU (Ẑ)‖ ≤ L̃(‖Z̃‖+ ‖Ẑ‖)‖Z̃ − Ẑ‖. (96)

b) We conclude the proof that (87) is a contractive fixed point problem by showing
that the first factor (88) is bounded uniformly in h ≤ h0. The matrix Ω in its
last block is again a block diagonal matrix with blocks Ωn = 〈KT

npn,∇UUF (zn)〉.
Since pn contains the node values of the smooth solution p(t), the estimate (37) in
Lemma 4.1 shows that

‖KT
npn −DKnpn‖ = O(hq) < ε

for h ≤ h0 where DKn := diagi(1l
TKnei) differs from KT

n in the boundary steps only,
i.e., for n = 0, N . Hence, assumption (93) shows that maxn ‖Ω−1n ‖ ≤ ω and that the
first factor (88) has a fixed upper norm bound.

Recalling now from [17] that the upper part of (87),(
M−111 ⊗ Im

−M−122 M21M
−1
11 ⊗∇yyCN M−122 ⊗ Im

)
·
(
−τY + hRY (Ž)

−τP + hRP (Ž)

)
, (97)

has a Lipschitz constant of size O(h), we see that the whole map, denoted shortly
by Φ, satisfies

‖Φ(Z̃)− Φ(Ẑ)‖ ≤ L(h+ ‖Z̃‖+ ‖Ẑ‖)‖Z̃ − Ẑ‖. (98)

Then, in a zero-neighborhood NZ := {Z : ‖Z‖ ≤ ε} with ε ≤ 1/(6L) and for
h ≤ h1 ≤ ε, the Lipschitz constant in (98) is bounded by 1/2. Now we choose
Z̃ ∈ NZ and Ẑ = 0 where ‖Φ(0)‖ = ‖M−10 τ‖ = O(hq−1). Since q ≥ 2 by assumption,
we may restrict h0 ≤ h1 such that ‖Φ(0)‖ ≤ ε/2 for h ≤ h0, and from (98) follows

‖Φ(Z̃)‖ ≤ ‖Φ(0)‖+ 3Lε‖Z̃‖ ≤ 1

2
ε+ 3Lε2 ≤ ε.

Hence, Φ maps NZ onto itself and is a contraction proving the existence of a unique
fixed point Ž ∈ NZ and the solution Z = z + Ž of the discrete boundary value
problem. Again from (98) follows

‖Ž‖ =2‖Φ(Ž)‖ − ‖Ž‖ ≤ 2‖Φ(Ž)− Φ(0)‖+ 2‖M−10 τ‖ − ‖Ž‖
≤(6εL− 1)‖Ž‖+ 2‖M−10 τ‖ ≤ 2‖M−10 τ‖. (99)

The assertion now follows from ‖M−10 τ‖ = O(hq−1), see Lemma 4.1 in [16]. �
The global error estimate (94) is rather pessimistic and may be improved by con-

sidering the super-convergence conditions (69), (70) and the weak coupling between
the state variable Y and the other two.
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Lemma 7.1 Let all assumptions of Theorem 7.1 hold with the full set of order
conditions from Table 1 for 2 ≤ q ≤ r ≤ s, q < s, and let y ∈ Cr+1[0, T ∗] and
p ∈ Cq+1[0, T ∗]. Then, the solution (Y,U, P ) of (15)–(19) with NUs = {0} also
satisfies

‖Y − y‖ = O(hr + hq+1), ‖P − p‖ = O(hq), ‖U − u‖ = O(hq). (100)

Proof: The improved error estimates for Y and P follow from the super-convergence
effect where the leading error term is canceled with the condition (69), (70) and
a sufficiently fast damping of the remaining modes through assumption (71), see
Theorem 1 in [17]. Hence, we know that ‖Y̌ ‖, ‖P̌‖ = O(hq). The errors Ǔn of the
control variable in different time intervals are independent and (82) may be solved
for Ǔn. There, ‖τUn ‖ = O(hq) by (38). Taking norms we get

‖Ǔn‖ ≤L‖Ω−1n ‖(‖τUn ‖+ ‖Y̌n‖+ ‖P̌n‖+ ‖RUn (Ž)‖) (101)

with some constant L. Since ‖Ω−1n ‖ ≤ ω and RU (0) = 0 it follows from (96) and (94)
that ‖RUn (Ž)‖ ≤ L̃‖Ž‖2 = O(h2q−2). Finally, (101) yields ‖Ǔn‖ = O(hq + h2q−2) =
O(hq) for q ≥ 2. �

Remark 7.1 We inherited the restriction of the objective function C to polynomials
of low degree since we wanted to use the results from [17] on (97) without changes
in details. However, by the technique used in the proof of the theorem for the U -
equations this restriction may be dropped. In fact, more general functions C would
simply add additional terms of the form (95) to the Lipschitz condition of RP and
would be covered by the already existing terms in the overall Lipschitz condition (98)
without touching the principles of the proof.

8 Numerical results

We present numerical results for the Peer triplets AP4o43p, AP4o44pa and AP4o33pfs

and compare them with those obtained for our recently developed triplet AP4o43bdf
from [17, 18] and the symmetric fourth-order two-stage Gauss method [13, Table
II.1.1]. The latter one is implemented along the principles in [11] using intermediate
time points tn + cih for the control variables. The standard method AP4o43bdf

is based on BDF4 and its well-known stability angle is α = 73.35o. It satisfies
the positivity requirements (39) and the additional consistency conditions (36) for
q= 2 which is one order less than for the new Peer triplets. Implicit Runge-Kutta
methods of Gauss type are symplectic making them suitable for optimal control
[13, 25]. However, as all one-step methods they may suffer from order reduction due
to their lower stage order s+ 1 compared to the classical order p=2s.

To illustrate the order of convergence, we first consider two unconstrained prob-
lems with known analytic solutions. The first one is a quadratic problem with a
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mixed term taken from [10, 11] and the second one comes from a method-of-lines
discretization of a boundary control problem for the 1D heat equation [18]. Finally,
we apply our novel Peer methods to an optimal control problem for an 1D semi-
linear reaction-diffusion model of Schlögl type with cubic nonlinearity, which was
intensively studied in [6]. We pick the problem of stopping a nucleation process to
show the potential of higher-order methods.

All calculations have been done with Matlab-Version R2019a on a Latitude 7280
with an i5-7300U Intel processor at 2.7 GHz. We use fmincon with stop tolerance
10−14. If not otherwise stated, we apply the interior-point algorithm as default
choice in fmincon and provide the zero control vector as initial guess.

8.1 A quadratic problem with a mixed term

The first problem is taken from [11]. It was originally proposed in [10, (P2)] and
includes a mixed term y1(t)u(t). We consider

minimize
1

2

∫ 1

0

(
1.25 y1(t)

2 + y1(t)u(t) + u(t)2
)
dt

subject to y′1(t) = 0.5 y1(t) + u(t), t ∈ (0, 1],

y1(0) = 1,

with the optimal solution

y1(t) =
cosh(1− t)

cosh(1)
, u(t) = −(tanh(1− t) + 0.5) cosh(1− t)

cosh(1)
.

The optimal costate can be computed from p1(t) = −0.5(y1(t) + 2u(t)). Introducing
a second component y2(t) and setting y′2(t) = 1.25 y1(t)

2 +y1(t)u(t) +u(t)2 with the
initial value y2(0) = 0, the objective function can be transformed to the Mayer form
C(y(1)) = 0.5 y2(1) with the new state vector y = (y1, y2)

T.
Numerical results for N+1=5, 10, 20, 40 are shown in Figure 1. All Peer methods

show their theoretical order three for the first component of the adjoint variables,
Pni,1. The fourth-order Gauss-2 method drops down to order three due to its lower
stage order three. Order three is also observed for the state variables Yni,1, except for
AP4o43p which achieves its super-convergence order four for the first three runs. For
the Peer methods, the errors of the control vector U as well as the improved control
U? obtained from the post-processing in (26) decrease with order three as expected.
Since AP4o43bdf satisfies the consistency conditions (36) for u with q= 2 only, its
order in U is two, which is nicely seen. However, the third-order approximations
in the first components of (Y, P ) yields order three for U? again. Both methods,
AP4o33pa and AP4o33pfs, fall behind the other ones in terms of accuracy. This is
not surprising since their better stability properties and the dense output feature of
the latter one come with larger error constants.
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Figure 1: Quadratic Problem. Convergence of the maximal control errors ‖Uni −
u(tni)‖∞ (top left), improved control errors ‖U?ni−u(tni)‖∞ (top right), state errors
‖Yni,1−y1(tni)‖∞ (bottom left), and adjoint errors ‖Pni,1−p1(tni)‖∞, (bottom right),
n = 0, . . . , N, i = 1, . . . , s.

8.2 Boundary control of an 1D discrete heat equation

The second problem is taken from [18]. It was especially designed to provide exact
formulas for analytic solutions of an optimal boundary control problem governed by
a one-dimensional discrete heat equation and an objective function that measures
the distance of the final state from the target and the control costs. Since no spatial
discretization errors are present, numerical orders of time integrators can be observed
with high accuracy without computing reference solutions.
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The optimal control problem reads as follows:

minimize
1

2
‖y(1)− ŷ‖22 +

1

2

∫ 1

0
u(t)2 dt

subject to y′(t) = Ay(t) + γemu(t), t ∈ (0, 1],

y(0) = 1l,

with

A =
1

(4x)2


−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −3

 ,

state vector y(t) ∈ Rm, 4x = 1/m, and γ = 2/(4x)2. The components yi(t)
approximate the solution of the continuous 1D heat equation Y (x, t) over the spatial
domain [0, 1] at the discrete points xi = (i−0.5)4x, i = 1, . . . ,m. The corresponding
boundary conditions are ∂xY (0, t) = 0 and Y (1, t) = u(t). The matrix A ∈ Rm,m
results from standard central finite differences. Its eigenvalues λk and corresponding
normalized orthogonal eigenvectors v[k] are given by

λk = − 4m2 sin2
( ωk

2m

)
, ωk =

(
k − 1

2

)
π,

v
[k]
i = νk cos

(
ωk

2i− 1

2m

)
, νk =

2√
2m+ sin(2ωk)/ sin(ωk/m)

, i, k = 1, . . . ,m.

We follow the test case in [18] and prescribe the sparse control

u(t) = −γpm(t), p(t) = δ
(
eλ1(T−t)v[1] + eλ2(T−t)v[2]

)
,

with δ = 1/75, which defines the target vector ŷ through

ŷ(t) = y(T )− δ
(
v[1] + v[2]

)
.

The coefficients ηk(T ) of y(T ) =
∑

i=1,...,m ηk(T )v[k] are given by

ηk(T ) = eλkT ηk(0)− γ2δTv[k]m
2∑
l=1

v[l]mϕ1((λk + λl)T )

where ηk(0) = y(0)Tv[k] and ϕ1(z) := (ez − 1)/z. We will compare the numerical
errors for y(T ), p(0) and u(t) An approximation ph(0) for the Peer method is ob-
tained from ph(0) = (vT⊗I)P0 with v = V −Ts es, es = (0, . . . , 0, 1)T ∈ Rs. Note that,
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Figure 2: Dirichlet heat problem with m = 500 spatial points. Analytic control u(t)
(left) and target function ŷ (right).

compared to [18], we have changed the sign of the adjoint variables, i.e., p 7→ −p, to
fit into our setting. Introducing an additional component ym+1(t) and adding the
equations y′m+1(t) = u(t)2, ym+1(0) = 0, the objective function can be transformed
to the Mayer form

C(y(1)) :=
1

2

(
m∑
i=1

(yi(1)− ŷi)2 + ym+1(1)

)

with the extended vector y(1) = (y1(1), . . . , ym(1), ym+1(1))T. We set m = 500. In
Fig. 2, the analytic control u(t) and the target function ŷ ∈ Rm are shown.

We will now discuss the numerical errors obtained from applying N + 1 = 2k,
k = 4, . . . , 9, time steps. The results are visualized in Fig. 3. As already observed in
[18], the one-step Gauss method of order four suffers from a serious order reduction
to first order in all variables (y, p, u). This phenomenon is well understood and oc-
curs particularly drastically for time-dependent Dirichlet boundary conditions [23].
This drawback is shared by all one-step methods due to their insufficient stage order.
The BDF-based AP4o43bdf shows second order convergence in the control, which
is in accordance with the fact that it satisfies (36) with q=2 only. This also limits
the accuracy of the state and the adjoint at their endpoints to order three and two,
respectively. Thus, the improvement in the post-processed control variables U∗ni is
only marginal and does not increase the order. All new Peer methods satisfy (36) for
q=3 and deliver approximations of the control with order three, except for certain
irregularities in the smallest step. The order of convergence for yh(T ) is three for
AP4o33pa and AP4o33pfs, whereas AP4o43p reaches fourth-order super-convergence
for nearly all time steps. For ph(0), AP4o33pfs shows an ideal order three. The other
two Peer methods vary between order three and five and stagnate at the end when
errors are already quite small. The supposed improvement in U∗ni is not achieved
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Figure 3: Dirichlet heat problem with m = 500 spatial points. Convergence of the
maximal control errors ‖Uni − u(tni)‖∞ (top left), improved control errors ‖U?ni −
u(tni)‖∞ (top right), state errors ‖y(T )−yh(T )‖∞ (bottom left), and adjoint errors
‖p(0)−ph(0)‖∞ (bottom right).

for the Peer methods. Quite to the contrary, AP4o33pf loses two orders of magni-
tude in accuracy, AP4o43p loses one order. We infer that for Peer methods, which
perform close to their theoretical order, the approximation quality of U is nearly
optimal and post-processing is not advisable in general. To summarize, the newly
constructed Peer methods significantly improve the approximation of the control
with increased order three. AP4o43p gains from its super-convergence property and
performs remarkably well for this discrete heat problem.

8.3 Stopping of a nucleation process with distributed control

In our third study, we consider a PDE-constrained optimal control problem from [6,
Chapter 5.4] – stopping of a nucleation process modelled by a nonlinear reaction-
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diffusion equation of Schlögl-type. It reads

minimize J :=
1

2

∫
Q

(Y (x, t)− YQ(x, t))2 dxdt+
α

2

∫
Q
U(x, t)2 dxdt

subject to ∂tY − ∂xxY =Y − kY 3 + U(x, t), (x, t) ∈ Q := (0, L)× (0, T ],

Y (x, 0) =Y0(x), x ∈ (0, L),

∂xY (0, t) = ∂xY (L, t) = 0,

with parameters α=10−6, L=20, T =5, and k = 1/3. The initial condition is

Y0(x) =

{
1.2
√

3, x ∈ [9, 11],

0, else.

The solution Ynat(x, t) for U(x, t) ≡ 0 describes a natural nucleation process with
wavelike dispersion to the left and right. The distributed control U(x, t) should now
be chosen in such a way that the dispersion is stopped at t = 2.5, forcing a stationary
profile Ynat(x, 2.5) for the remaining time interval. Therefore, we set

YQ(x, t) =

{
Ynat(x, t), t ∈ [0, 2.5],

Ynat(x, 2.5), t ∈ (2.5, T ],

in the objective function J . There indeed exists an analytic solution for such a
control,

Ustop(x, t) =

{
0, t ≤ 2.5,

kY 3
nat(x, 2.5)− Ynat(x, 2.5)− ∂xxYnat(x, 2.5), t > 2.5,

since ∂tY (x, t) must vanish for t ≥ 2.5. The authors of [6] proved that the second
derivative ∂xxYnat(x, 2.5) is well defined. The functions Ynat, YQ, and Ustop are
plotted in Fig. 4.

We again use standard finite differences on the shifted spatial mesh xi = (i −
0.5)4x, i = 1, . . . ,m, with4x = L/m to discretize the PDE in space. The objective
function is approximated by a linear spline. This yields, after transforming to the
Mayer form, the discrete control problem

minimize C
(
y(T )

)
= ym+1(T )

subject to y′(t) =Ay(t) +G(y(t), u(t)) =: f(y(t), u(t)), t ∈ (0, T ],

y(0) =

(
(Y0(xi))

m
i=1

0

)
,
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Figure 4: Nucleation process. Ynat for U = 0 (top, left), target function YQ (top,
right) and analytic control Ustop (bottom).

with

(G(y, u))i =

 −ky
3
i + yi + ui, i = 1, . . . ,m,

1

2
((y − yQ)mi=1)

TM(y − yQ)mi=1 +
α

2
uTMu, i = m+ 1,

and the matrices

A =
1

(4x)2



−1 1
1 −2 1

. . .

1 −2 1
1 −1

0


, M =

4x
12


10 2
2 8 2

. . .

2 8 2
2 10

 .

Here, A ∈ Rm+1,m+1, M ∈ Rm,m, u(t) = (U(xi, t))
m
i=1, yQ(t) = ((YQ(xi, t)

m
i=1) and

y(t) ≈ (Y (xi, t))
m+1
i=1 . The total dimension of the discrete control vectors (Unj),
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n = 0, . . . , N , j = 1, . . . , s, is ms(N + 1). We set m= 300 as in [6] and note that
s=4 for our Peer methods. The optimal stopping control Ustop is discretized by

ustop(t) =

{
0, t ≤ 2.5,

ky3Q(2.5)− yQ(2.5)− ÂyQ(2.5), t > 2.5,

where Â = (A)mi,j=1. With grid sizes N ∈ [24, 399] in time the excessive demand of
memory for the full Hessian of the objective function prohibits its use in Matlab’s
fmincon subroutine. However, a closer inspection reveals that

∇UnjUnjC = hα

s∑
i=1

κ
[n]
ij (Pni)m+1M ∈ Rm,m, n = 0, . . . , N, j = 1, . . . , s,

are the only entries yielding a sparse tridiagonal Hessian, see Example 7.1. Fur-

thermore, controls Unj with κ
[n]
ij = 0 for i = 1, . . . , s, are discarded as noted

in Chapter 7. Hence, we pass the sparse Hessian to fmincon and switch to the
trust-region-reflective algorithm, which allows a simple way for its allocation.

Let us now present the results for the stopping problem and compare them to
those documented in [6]. There, the implicit Euler scheme with h = 1/80, i.e.,
400 uniform time steps, has been applied, together with a nonlinear cg method and
different step size rules. Using the optimal control ustop(t) given above in a forward
simulation of the ODE, they found C = 3.4814 · 10−6 as reference value. This nicely
compares to our value C = 3.1651 · 10−6 for AP4o43p applied with the same time
steps. In principle, the optimizer should find a solution close to it when started with
U (0) = ustop evaluated at the time points tn + cih. Computation times and values of
the objective function are collected in Table 4. Remarkably, already for N + 1 = 50
all Peer methods deliver excellent approximations in very short time compared to
70 − 100 seconds reported in [6] for similar calculations. This is a clear advantage
of higher-order methods.

Choosing U (0) = β ustop with β = 0.99, the authors of [6] already discovered slow
convergence and tiny deviations from ustop in the shape of the computed optimal
control, which were clearly visible in their plots. In contrast, all controls computed
by the Peer methods stay close to the overall picture shown in Figure 4 even for
β = 0.95, 0.50, and for 50 times steps. The maximal pointwise control errors range
around 6 · 10−3 and 5 · 10−2, respectively.

As a last (speculative) test we impose box constraints of the form

u(t) ∈ Uad := {u(t) ∈ [L∞(0, T )]m| − 0.5 ≤ ui(t) ≤ 0, i = 1, . . . ,m, t ∈ (0, T )}.

Now the explicitly given optimal control Ustop violates the prescribed bounds with
its minimum value −0.638. We apply AP4o43p with 50 uniform time steps and set
U (0) = ustop. fmincon first restricts the control vector to the admissible set Uad and
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N+1 400 200 100 50

AP4o43p 2.99e-6 3.24e-6 3.91e-6 6.02e-6
CPU time [s] 176 51 17 7

AP4o33pa 3.76e-6 6.49e-6 8.12e-6 1.53e-5
CPU time [s] 163 56 27 16

AP4o33pfs 4.17e-6 5.82e-6 1.10e-5 2.62e-5
CPU time [s] 126 72 30 17

Table 4: Values of the objective function C and computing times for U (0) = ustop
and N + 1 = 400, 200, 100, 50 uniform time steps. The reference value is C =
3.1651 · 10−6.
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Figure 5: Nucleation process with box constraints for the control. Computed
constrained control Uc(t) (top left), state Yh(t) (top right), constraint and uncon-
straint controls at final time t = T (bottom left), and corresponding final states
(bottom right) approximated by AP4o43p with 50 uniform time steps.

after 66 seconds and 142 iteration steps it delivers a solution with C = 0.0323. The
stopping process is still quite satisfactory. Details are plotted in Figure 5. We get
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nearly the same solution for 400 uniform time steps. Interestingly, the restricted
analytic optimal control ûstop ∈ Uad only yields C = 0.0850, which is larger than
that of the Peer solution by a factor of 2.6.

9 Summary

We have upgraded our four-stage implicit Peer triplets constructed in [17] to meet
the additional order conditions and positivity requirements for an efficient use in
a gradient-based iterative solution algorithm for ODE constrained optimal control
problems. Using super-convergence for both the state and adjoint variables, an
A(59.78o)-stable method AP4o43p of the higher order pair (4, 3) was constructed.
Lowering the order for the forward scheme, an almost A-stable method AP4o33pa of
order pair (3, 3) with stability angle α = 89.90o could be found. We also considered
the class of FSAL methods, where the last stage of the previous time step equals
the first stage of the new step, and came up with the A(77.53o)-stable method
AP4o33pfs. A notable theoretical result is that there is no BDF4-based triplet
that improves the second-order control approximation of our recently developed
AP4o43bdf [17] to the present setting. All methods show their theoretical orders
in the numerical experiments and clearly outperform the fourth-order symplectic
Runge-Kutta-Gauss method in the boundary control problem for an 1D discrete heat
equation proposed in [18] to study order reduction phenomena. The new Peer triplets
also perform remarkably well for a PDE-constrained optimal control problem which
models the stopping of a nucleation process driven by a reaction-diffusion equation
of Schlögl-type. In future work, we will equip our Peer triplets with variable step
sizes to further improve their efficiency.
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Appendix

The coefficient matrices which define the Peer triplets AP4o43p, AP4o33pa and
AP4o33pfs discussed above are presented here. We provide exact rational numbers
for the node vector c and give numbers with 16 digits for all matrices. It is sufficient
to only show pairs (An,Kn) and the node vector c = (c1, . . . , cs)

T for AP4o43p and
some additional data for AP4o33pa and AP4o33pfs, since all other parameters can
be easily computed from the following relations:

Bn = (AnV4 −KnV4Ẽ4 +Rn)P4V
−1
4 , a = A01l, w = AT

N1l, v = V −T4 e1,

with the special matrices

V4 =
(
1l, c, c2, c3), P4 =

((j − 1

i− 1

))4
i,j=1

, Ẽ4 =
(
iδi+1,j

)4
i,j=1

.

The matrices R0, RN and R ≡ Rn for 1 ≤ n ≤ N − 1 are slack variables at order
4, they vanish for method AP4o43p (Rn ≡ 0) and are provided for AP4o33pa and
AP4o33pfs only.

A1: Coefficients of AP4o43p

cT =

(
4657

46172
,
43

97
,
3991

6596
,
21111803999

23798723875

)

A0 =


7.666666666666667 −7.952380952380952 6.428571428571429 −1.0

−37.64573385789864 46.51465022124085 −35.34733224501487 5.556742966495919

38.90401308661976 −51.03310294122830 39.84674769118604 −5.987622148721481

−9.132039686863960 14.19615134612322 −13.42624214739033 3.410910572594644



K0 =


0.2201309814534140 −0.001685331083118719 0.03214426130560293 0

0.1111845986702137 0.4311745541022918 −0.1774967804652712 0

−0.1188243074116737 −0.009945644225626329 0.2279954173163067 0

0.02777498546842700 0.002324777899894389 −0.04434040826768050 κ
[0]
44


with κ

[0]
44 = 0.2883852220354272.

A =


2.080437513028435 0 0 0

−6.582767809460944 2.843481487726957 0 0

5.640064091163237 −4.381563545251576 2.010790683327275 0

−1.344827586206897 3.263399731279439 −4.509045955975008 1.980031390369082


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K = diag (0.2523093948412364, 0.4504313304404388, 0.0, 0.2972592747183247)

AN =


2.602941176470588 0.09421300555614037 −1.072906715212599 0.6

−9.770538838886514 3.643517491998914 4.765969638829557 −3.172336041397070

9.121758438719117 −5.324324324324324 −3.193548387096774 3.514071174094508

−2.137018032260198 3.217404548657921 −2.956254337680976 1.067051202531710



KN =


0.2752122060365109 0 0.03076923076923077 0.06493506493506494

−0.07088680624623493 κ
[N ]
22 −0.1699040256986543 −0.3585636905978095

0.07575757575757576 0 0.2750926288014159 0.3832012950339724

−0.01770820812361161 0 −0.04244366487128950 0.1921737961617600


with κ

[N ]
22 = 0.3735422712438619.

A2: Coefficients of AP4o33pa

cT =

(
46

5253
,
29

51
,
1723

2193
,
17131

12189

)

A0 =


−1.157765450537458 4.180419822183092 −3.571237514138118 0.4344668789817266

9.320046415868424 −20.43515251977805 20.53668079758682 −2.660420735071554

−9.502446854904932 18.14294953408145 −17.88837560028214 2.643706254438956

1.573865446847084 −2.968198110625862 2.201646466132119 0.1498151692184390



K0 =


0.1525423728813559 0.06343283582089552 −0.04424778761061947 0

0.2455414494142291 0.3479528534959272 0.2643445483279409 0

−0.2389119757586965 0.3687279250113433 −0.2354279614690257 0

0.03447092342852595 −0.05320115087852647 0.03711064142489613 κ
[0]
44


with κ

[0]
44 = 0.2479535745634692.

A =


0.7073170731707317 0 0 0

−1.458044769359054 2.011111111111111 0 0

0.8963499143698150 −3.446643123594083 2.170212765957447 0

0.08807733909162651 0.3555507383436048 −0.8914986166587666 0.5675675675675676



K = diag (0.2240817025504534, 0.2911518627633785, 0.2558139534883721, 0.2289524811977960)
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R =


0 0 0 −0.2105994034490964

0 0 0 0.1876445792137739

0 0 0 −0.1297946665997080

0 0 0 0.1527494908350306



AN =


0.03570841538693515 0.4969703797836259 0 0

2.797947998593283 −2.717111089179658 1.827587054105035 −0.3120359279234260

−3.797058467469895 4.498208855806741 −2.913725127809472 0.8173416699480771

0.4837073832344139 0.1093148794369315 −0.4021296652058669 0.07527364129327442



KN =


0.2323465386026342 0.08709000303247828 0 0

0.0006578497520678987 −0.2800336616814694 0 0

−0.0006400881985255662 0.5062443715754399 0.32694879378132385 0

0.00009235381026342189 −0.07304242875763006 0 κ
[N ]
44


with κ

[N ]
44 = 0.01004801943170234.

RN =


0 0 0 −0.1751101070505921

0 0 0 0.2296022411517165

0 0 0 −0.5247365005443616

0 0 0 −0.07622773831802632



A3: Coefficients of AP4o33pfs

cT =

(
0,

9

86
,
321

602
, 1

)

A0 =


1.333333333333333 0 0 0

−2.789814648187671 2.243282202070159 0.06686328023669716 0.01646570267735142

4.349477807846901 −6.391186028966211 2.276667661951199 −0.06058221663260115

−6.567438826613935 9.406667237260441 −4.671899050533916 1.788163545558252


K0 = diag (0, 0.2868808051464541, 0.4845433642003949, 0.2814200916147642)

A =


0.7857142857142857 0 0 0

−2.028837530067695 2.203900659027200 0 0

4.063000939519495 −6.340099591541239 2.287165301103365 0

−6.494320028787459 9.394962342878431 −4.615533409449387 1.744047031603003


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K = diag (0, 0.2754665812532002, 0.4295774647887324, 0.2949559539580673)

R =


0 0 0 0

0 0 0 0.156340095159149050

0 0 0 −0.0212049600240154176

0 0 0 −0.135135135135135135



AN =


1 0 0 0

−1.037159659693408 0.4363577782952090 0.6845553714934806 −0.2064640160522880

0.03605110452225963 −0.5660510638564654 −0.1074762596776216 0.7596425122215622

0.001108555171148741 0.1296932855612564 −0.5770791118158589 0.4468215038307258



KN =


0.3333333333333333 0 0 0

−0.3406285072951739 0.1264725806602174 0 0

0.1282327493289677 0 0.5627483658896584 0

−0.03272942952658255 0 0 0.1697266466479663



RN =


0 0 0 0.0463093438915248733

0 0 0 0.191797796516481359

0 0 0 −0.286597642859776972

0 0 0 0.1785714285714285754


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