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Physics informed neural networks have been recently proposed and offer a new promising 
method to solve differential equations. They have been adapted to many more scenarios 
and different variations of the original method have been proposed. In this case study we 
review many of these variations. We focus on variants that can compensate for imbalances 
in the loss function and perform a comprehensive numerical comparison of these variants 
with application to gas transport problems. Our case study includes different formulations 
of the loss function, different algorithmic loss balancing methods, different optimization 
schemes and different numbers of parameters and sampling points. We conclude that 
the original PINN approach with specifically chosen constant weights in the loss function 
gives the best results in our tests. These weights have been obtained by a computationally 
expensive random-search scheme. We further conclude for our test case that loss balancing 
methods which were developed for other differential equations have no benefit for gas 
transport problems, that the control volume physics informed formulation has no benefit 
against the initial formulation and that the best optimization strategy is the L-BFGS 
method.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Natural gas networks [4] transport gas over very large distances from multiple sources to multiple consumers to satisfy 
the gas demand. There are various elements in the gas network that control the gas flow such as compressors, valves or 
resistors. Crucially, compressors consume gas itself. Finding the most efficient operation while satisfying the demand is a 
non-trivial task. This is not only true in practice, but also if one considers the formulation of this task as a mathemati-
cal optimization problem. To solve this problem, one needs to bring together different disciplines and techniques such as 
modeling, simulation and optimization. One important element is the simulation of the gas flow in the network. Here, nu-
merical methods exist to simulate gas flow with a very high accuracy [6,1]. However, the simulation task is one part of the 
optimization procedure and usually many simulations with varying controls are required to solve the optimization problem. 
Therefore, the reduction of the simulation cost is key to efficiently solving the optimization problem.

One well understood approach for gas network simulations is to apply methods that are adaptive in space, time and, 
most importantly, in the models applied to describe the gas flow [1]. Regarding the last point, depending on the dynamics 
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of the gas flow, one can use different models which trade accuracy for simplicity. Gas flow in a single pipe is usually 
modeled by a system of conservation laws in one space dimension, that is

ut + F (u)x = 0 , (x, t) ∈ [0, L] × [0, T ] (1)

for a state vector u(x, t) and flux function F (u) [7, Chapter 14]. The full Euler equations are the most accurate model. Here, 
we have

ue =
⎛
⎝ ρ

ρv
ρE

⎞
⎠ , Fe(ue) =

⎛
⎝ ρv

ρv2 + p
v(ρE + p)

⎞
⎠ , p = (γ − 1)

(
ρE − 1

2
ρv2

)
, (2)

where ρ is the density, v the velocity, E the energy and p the pressure. For natural gas, one usually assumes γ = 1.4.
However, under certain conditions and especially when considering a pipeline system, one can assume that the gas has 

constant entropy. Then one can apply the isentropic Euler equations with

uise =
(

ρ
ρv

)
, F ise(uise) =

(
ρv

ρv2 + p

)
, p = κργ , (3)

where κ depends on the initial entropy. Advancing this idea further, one derives a hierarchy of gas models. Applying simpli-
fied models whenever possible can reduce the simulation time significantly. Still, there is a need for further improvements 
to handle real large-scale gas networks and more complex scenarios such as optimization.

A further possibility to speed up the simulation is to gear the numerical scheme more closely towards the concrete gas 
simulation task and utilize the fact that the simulations only differ in the control of the gas network. The result of this 
procedure is called a reduced method and one prominent example is the reduced basis method. Unfortunately, the reduced 
basis method is not well suited for the transport nature of the gas flow. In general, it is very challenging to build a reduced 
method for gas flow tasks since an enabling underlying structure is unknown. For recent developments, see for example 
[3]. Here, we want to explore a novel route to build a reduced method for gas flow tasks. We will apply physics informed 
neural networks (PINNs) for the approximation of gas flow models. The application of PINNs in this context has some key 
advantages which we outline as follows.

1. As briefly mentioned above, finding the right representation of a reduced method to approximate the solution of a 
transport problem is challenging and an open problem. Since neural networks can approximate continuous functions 
arbitrarily well, one can expect that the optimization procedure finds a representation that is accurate enough to create 
gas flow schedules in nearly real-time.

2. By applying machine learning techniques, a physics informed approach has been proposed in [13] and has shown 
its success in approximating solutions of differential equations. In contrast to the reduced basis methods, the physics 
informed approach incorporates directly the differential equation itself and specific precomputed solutions are not nec-
essary to obtain the reduced model.

3. Neural networks can easily be extended to realize an additional control vector as input, see for example [8].

In this paper we focus on a specific application which we simulate with PINNs: PDE models of the gas flow in pipes. Our 
work contributes to the task of designing efficient simulation techniques for these models, which are a crucial building block 
for the simulation of complex gas networks. Whereas many ideas and techniques presented in this work are transferable to 
other PDE systems and thus applications, the investigation of such generality is beyond the scope of this article.

PINNs are a quite recent and very active research field and many extensions to the original method have been proposed 
in the literature. An optimal standard procedure to obtain PINNs for gas flow tasks has not been established yet. For our 
exploration it is critical to investigate how the different proposed extensions perform for gas flow in a pipe and understand 
what results in terms of accuracy can be expected. Due to the lack of comparisons between the extensions, this is not yet 
clear.

The objective of this present study is to perform a comprehensive numerical comparison between many of these ex-
tensions to close this knowledge gap. This includes two formulations of the loss function which are minimized over the 
parameter space of the neural network to obtain the approximation. One formulation is based on the differential form of 
the conservation law (1) and the other one is based on the integral form of the conservation law. Both formulations differ 
in the way the initial and boundary data are treated. In the case of the differential form this leads to a multi-objective 
optimization problem. In our case study we include recently proposed extensions that add weights that are determined 
during the training process into the loss function to balance the objectives. We further include, as a baseline, the original 
physics informed formulation as well as a random-search procedure to determine the weights.

We evaluate the performance of these approaches with respect to accuracies achieved for two gas flow benchmark 
problems varying in the model complexity as well as their initial and boundary conditions.

The loss function formulation, the weights in the loss function and the loss balancing methods constitute a subset of a 
larger number of hyperparameters required to train a neural network. In addition, we also include more hyperparameters 
into our case study: different minimization strategies, the number of layers of the network, the number of neurons per 
2
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layer, and the number of sampling points in the loss function. Whereas this is not exhaustive it provides important insight 
into a relevant subset of hyperparameters for our application.

This article is structured as follows. In the next section, we define two test problems as benchmarks. In Section 3, we 
describe how physics informed neural networks can be used to approximate gas flow by introducing both loss function 
formulations. In Section 4 we present the loss-balancing extensions. We give details and compare the outcome of the 
different approaches applied to the two benchmark problems in Section 5. Finally, in Section 6, we state our conclusions.

2. Two test problems for gas transport in a pipe

Throughout this article, we will consider two test problems for one pipe and use the full and the isentropic Euler 
equations shown above in (2) and (3), respectively.

Problem 1 (Euler equations). For this problem, we consider the full Euler equations on the domain (x, t) ∈ [0, 1] ×[0, 2]. That 
is, the solution ue should fulfill (1) with F = Fe and u = ue. To complete this problem, we consider discontinuous initial 
data and constant Dirichlet boundary data as in [9]. We extract them from the exact solution

ρ(x, t) =
{

1.4 if x < 0.5 + 0.1t ,

1.0 if x > 0.5 + 0.1t ,
v(x, t) = 0.1 , p(x, t) = 1.0 . (4)

The boundary condition should be satisfied at the left (x = 0) and right boundary (x = 1) by each component of the state 
vector.

The initial discontinuity in the density is transported in time. As a consequence, the main features of the solution 
strongly depend on the initial values — a fact which has to be identified by the neural network.

Problem 2 (Isentropic Euler equations). For this problem, we consider the isentropic Euler equations. That is, the solution uise

should fulfill (1) with F = F ise and u = uise on the computational domain (x, t) ∈ [0, 4] ×[0, 2]. We take an initial state with 
constant density and no-flow,

ρ(x,0) = 2 and ρv(x,0) = 0 for x ∈ [0,4] . (5)

Now gas is extracted at the right boundary and thus the flow is increased. In addition, the density remains constant at the 
left boundary, yielding the boundary conditions

ρ(0, t) = 2 and ρv(4, t) = 0.1t for t ∈ [0,2] . (6)

We compute a highly resolved reference solution for this problem with the implicit box method [6] on a very fine mesh. 
Here, the dynamics of the solution depends on the boundary data, which forms another challenge for the neural network.

3. Approximating gas flow with neural networks

3.1. Neural networks

To approximate the gas flow, we design a (deep) neural network

h(x, t; θ) = (hn ◦ σ ◦ hn−1 ◦ ...σ ◦ h2 ◦ σ ◦ h1)(x, t) , (7)

where σ = tanh is the activation function, and hi(zi) = Ai zi + bi with z1 = (x, t)ᵀ are affine transformations. The neural 
network is parameterized by the weights Ai and biases bi of its n layers. Then, let θ = (A1, b1, A2, b2, ..., An, bn) be all 
trainable parameters of the neural network.

The number of parameters of the neural network is determined by the number of neurons k in the hidden layers and 
the number of layers n. We assume that all hidden layers have the same number of neurons k and thus have A2, ..., An−1 ∈
Rk×k . The sizes of A1, An are accordingly chosen to match the size of the input and output, respectively.

Ideally, the neural network h predicts directly the state vector ue or uise, respectively. However, neural networks might 
not preserve the positivity of the density. This needs to be considered to avoid nonphysical approximations.

For Problem 1, if the neural network predicts ρ , ρv , ρE , we cannot rule out divisions by zero to compute v = (ρv)/ρ . 
This is not only a theoretical problem, but shows up in the implementation. In the case of the full Euler equations, it is 
possible to proceed as follows. The neural network predicts the approximations ρ , v and p. Based on these quantities and 
using the equation of state, all the remaining quantities can be derived with well defined computations. More formally, we 
set the output of the neural network to⎛

⎝ρ
v
p

⎞
⎠ := h(x, t; θ) . (8)
3
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Then, based on the output of the neural network, we can define the approximation of the state vector ue and an altered 
flux function F e

ue(h) =
⎛
⎝ ρ

ρ · v
ρE

⎞
⎠ , F e(h) =

⎛
⎝ ρ · v

ρ · v2 + p
v

(
ρE + p

)
⎞
⎠ with ρE = p

γ − 1
+ 1

2
ρ · v2 . (9)

The crucial aspect of this approach is that with the neural network output (8) the state vector and flux of the full Euler 
equations can be evaluated faithfully (no divisions by zero) even if the neural network approximation of the density is zero 
or negative.

For Problem 2, as before, we cannot rule out a division by zero to compute v when using the state vector (ρ, ρv)ᵀ as 
neural network output. Additionally, the equation of state requires a positive density. Therefore, an analogous procedure as 
for Problem 1 is not possible. Here, we ensure a positive approximation of the density by considering the following neural 
network output(

ln(ρ)

ρv

)
:= h(x, t; θ) (10)

and obtain a positive approximation of the density by ρ := exp(ln(ρ)). Now we can derive the approximation of the state 
vector uise and the altered flux function as follows

uise(h) =
(

ρ
ρv

)
, F ise

(
h
) =

(
ρv

ρ · v2 + p

)
with p = κργ , v = ρv

ρ
. (11)

Eventually, the parameters θ are determined by a nonlinear optimization procedure such that ue and uise approximate 
the gas flow as close as possible. That is, we consider minθ L(θ), where the loss function L(θ) encodes the conformance 
to the conservation law (1) as well as the initial and boundary conditions. Crucially, the nonlinear optimization methods 
require a starting point. We use the Glorot initialization [2] which is based on randomness to compute the starting point 
for θ .

In the next subsections, we will introduce two different realizations for the loss function L. The derivation is the same 
for both problems. Therefore, we will drop the subscripts ‘e’, ‘ise’ and proceed with F , u, and u, which covers both cases.

3.2. Physics informed neural networks

As indicated before, we formulate the search of the neural network that approximates the solution of the differential 
equation as an optimization problem. Here, we explain the physics informed approach that was introduced in [13]. It is 
based on the differential form of the conservation law (1). The key building blocks are the squared residuals �eq(x, t), �i(x), 
�lb(t) and �rb(t), which enforce the differential equation, the initial condition, the left boundary condition and the right 
boundary condition at certain points (x, t), respectively.

The residual of the conservation law (1) at (x, t) with respect to the network parameters θ is defined by

�eq(x, t; θ) = ∥∥ut
(
h(x, t; θ)

) + F x
(
h(x, t; θ)

)∥∥2
2 . (12)

Note that the derivatives are computed by automatic differentiation. The remaining residuals are defined in a in similar way 
and depend on the considered problem. For example, the residual for the initial condition of Problem 2 is

�i(x; θ) =
(
ρ(x,0; θ) − 2

)2 +
(
ρv(x,0; θ) − 0

)2
. (13)

The residuals are used as an indicator for the distance between the approximation and the exact solution. Thus, all should 
be minimized with respect to their domains. Therefore, we consider integrated residuals (squared L2-norms)

Leq = 1

vol(Deq)

∫
Deq

�eq dx dt , Li = 1

vol(Di)

∫
Di

�i dx , (14)

Llb = 1

vol(Dlb)

∫
Dlb

�lb dt , Lrb = 1

vol(Drb)

∫
Drb

�rb dt , (15)

with Deq = [0, L] × [0, T ], Di = [0, L] and Dlb = Drb = [0, T ]. The integrals are normalized by the volume of the respective 
domain.

Our solution should minimize all integrals. This yields the multi-objective optimization problem

min
(

Leq(θ), Li(θ), Llb(θ), Lrb(θ)
)

. (16)

θ

4
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This problem is not yet numerically solvable. Before, we need to address two things. First, we need to convert the multi-
objective problem into a single-objective problem. For this, we will build the sum of the objectives. Second, we need to 
discretize the integrals. Here, we use the Monte Carlo integration method and obtain in the case of Leq the approximation

Leq(θ) := 1∣∣Deq
∣∣ ∑

(x,t)∈Deq

�eq(x, t; θ) ≈ Leq(θ) (17)

for a finite randomly selected set Deq ⊂ Deq . From another viewpoint, Leq computes the mean of the squared residuals. 
In addition, we define the approximations Li(θ), Llb(θ) and Lrb(θ) in the same way for randomly selected finite sets Di ⊂
Di , Dlb ⊂ Dlb and Drb ⊂ Drb . In our implementation, the randomly selected sets are determined by the Latin Hypercube 
sampling scheme.

The authors in [13] state two advantages by using the Monte Carlo method. First, the computational complexity does 
not scale with the dimension of the domain. However, this advantage comes at a very high price in terms of a very slow 
rate of convergence. Second, the choice of random points should prevent that the optimizer learns the solution on a regular 
grid and thus prevents generalization beyond the grid. This line of thought is carried over from observations that have been 
made for other machine learning tasks.

Replacing the integrals with the approximations results in the optimization problem

min
θ

Ldif = Leq(θ) + Li(θ) + Llb(θ) + Lrb(θ) . (18)

We use the subscript ‘dif’ to denote the loss function with respect to the differential form of the conservation law. This 
optimization problem has been originally proposed in [13]. Since then, numerous extensions have been proposed in the 
literature. Most of them are concerned with the conversion from the multi-objective optimization problem into the single-
objective optimization problem. By building the sum of the objectives Leq , Li , Llb , Lrb we use constant weights which are 
determined in the derivation such that the respective volumes of the objectives are neglected. In a more general setting, 
one does consider the weighted sum of the objectives. Then, the weights are additional degrees of freedom and affect the 
optimization process. We will discuss this in more detail in Section 4. However, before that we will derive an alternative 
formulation that circumvents this issue.

3.3. Control-volume physics informed neural networks

While the derivation in the previous subsection is based on the differential form of the conservation law (1), we can 
derive another objective function based on the integral form of the conservation law. This method was first proposed in 
[12] and has the advantage that the initial and boundary conditions are naturally included. Consequently, the problem of a 
multi-objective optimization problem is alleviated.

The starting point is the space-time flux function

G(u) = (
F (u) u

)
. (19)

Then, by the divergence theorem and for sufficiently smooth u, u fulfills the differential form of the conservation law (1) if 
and only if u fulfills the integral form of the conservation law

0 =
∫
ω

div(x,t)G
(
u(x, t)

)
dx dt =

∫
∂ω

G
(
u(x, t)

) · �n dS (20)

for all ω ⊂ [0, L] × [0, T ] with piecewise smooth boundary ∂ω, where �n denotes the outward-facing normal vector on ∂ω.
The idea is to verify that the integral in (20) vanishes on finitely many control volumes ω. To this end, we choose a 

finite partition ω1, . . . , ωnω of [0, L] × [0, T ]. Again, to avoid undefined computations, we need to define a space-time flux 
which operates directly on the output of the neural network h

G(h) = (
F (h) u(h)

)
. (21)

In contrast to the original PINN approach, initial and boundary values enter in a natural way. We augment the neural 
network output by these values and denote the resulting function by h̃(x, t; θ). For example, for Problem 1 we define⎛

⎝ ρ̃
ṽ
p̃

⎞
⎠ =: h̃(x, t; θ) with ṽ(x, t; θ) =

⎧⎪⎨
⎪⎩

0.1 if t = 0 ,

0.1 if x = 0 or x = 1 ,

v(x, t; θ) otherwise .

(22)

For the remaining quantities ρ̃, p̃ and for Problem 2, we can proceed in the same way. Now we can formulate the optimiza-
tion problem
5
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min
θ

Lint(θ) =
nω∑
i=1

⎛
⎜⎝∫

∂ωi

G
(

h̃(x, t; θ)
)

· �n dS

⎞
⎟⎠

2

. (23)

Here, the subscript ‘int’ denotes the loss function with respect to the integral form of the conservation law. As before, the 
integrals in the loss function need to be discretized. In contrast to the physics informed approach, the authors in [12] suggest 
a deterministic integration scheme. This is beneficial since we have lowered the integration domain by one dimension and 
thus reduced the complexity. In addition, this approach has no derivatives in the loss function. Therefore, the evaluation of 
Lint does not require automatic differentiation and is therefore computationally more efficient than the evaluation of Ldif for 
a similar amount of control points. Further, the mesh ω1, . . . , ωnω is one additional degree of freedom of this approach.

In our numerical tests in Section 5, we will compare two different quadrature strategies: a deterministic Gaussian-
Legendre quadrature with three points and a stochastic Monte Carlo quadrature with five points. We will also consider 
rectangular and triangular meshes.

In summary, the physics informed approach and the control volume physics informed approach are two different ap-
proaches for the same problem. In Section 5, we will compare both approaches. We will also consider different optimization 
schemes – a topic that we have still not discussed in this section. Beforehand, in Section 4, we will take a closer look at the 
issue of different weights in the physics informed approach.

4. Algorithmic balancing of loss weights

From an optimization standpoint, the physics informed optimization problem (16) is a multi-objective optimization prob-
lem. That is, we try to minimize multiple competing objectives Leq , Li , Llb , Lrb simultaneously. Building the sum of the 
competing objectives is just one way to get a single-objective optimization problem. In a more general way, one builds 
a weighted sum of the competing objectives. That is, we introduce weights λ = (λeq, λi, λlb, λrb) ≥ 0 for every competing 
objective and consider the optimization problem

min
θ

Lw-dif(θ) = λeq Leq(θ) + λi Li(θ) + λlb Llb(θ) + λrb Lrb(θ) . (24)

The subscript ‘w-dif’ denotes the loss function with respect to the differential form of the conservation law with additional 
weights. The weights determine the importance of the individual terms. One can trade off one objective for another ob-
jective. The different optimal loss values for every tuple of weights (λeq, λi, λlb, λrb) define a manifold R4 → R – the so 
called Pareto front. That is, one does not get one optimal solution, but a family of solutions which are optimal with respect 
to different tradeoffs. The Pareto front has been analyzed in the context of physics informed neural networks for concrete 
examples in [14].

Choosing the solution with the lowest error from the Pareto front is challenging. This can be attributed to the fact that 
the weights affect the minimization of the residuals, but eventually we want to achieve the lowest error. The effect of the 
weights on the errors depends on the relationship between residuals and errors. It is only poorly understood.

Aside the theoretical challenges, we can observe practical advantages by choosing different weights. For our problems, 
we can try to make an educated guess to determine which objectives are more important than others. For example, for 
Problem 1, it is very important to approximate the discontinuous initial data, since the underlying hyperbolic equation 
transports the information along the characteristic curves and the directions of the curves depend on the initial data. 
Therefore, one needs to make sure that the source of the characteristics (and thus information) is approximated well. This 
effect is illustrated in Fig. 1. Here, we train the same initial model using the same sample points with the L-BFGS method 
but with different weights λ. We observe that increasing the weight of Li decreases the error of v and p.

This small example shows that choosing weights matters for our test problems. But guessing the weights is not generally 
applicable. Changing the initial or boundary conditions can alter the direction of the characteristics.

The positive effect of the weights has been also described in the literature and multiple procedures have been proposed 
to algorithmically determine the weights in a beneficial way. We will review them in the following subsections. Further, we 
will perform numerical tests with these methods in Section 5 to find the most reliable way to approximate our two test 
problems with a neural network.

4.1. Gradient-based methods

Gradient-based methods for the determination of the weights λ were proposed in [16] and a modification was studied 
in [5]. While in [5] the authors focused on the incompressible Navier–Stokes equations, in [16] the authors studied a wider 
range of equations including the Helmholtz equation, the Klein-Gordon equation and also the incompressible Navier-Stokes 
equations. The authors in [16] take for each objective Leq , Li , Llb , Lrb the gradient with respect to the parameters θ into 
account and consider the distribution of the gradients entries.

The Glorot initialization scheme [2] ensures that the initial mean of these distributions is close to zero and it can be 
observed to stay close to zero during the optimization procedure [2,16]. On the other hand, the variance of these distribu-
6
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Fig. 1. A comparison between the errors of two models trained to solve Problem 1 with different weights λ. On the left-hand side the standard weights 
are used and on the right-hand side the weight λi is increased. The models are trained with the L-BFGS method, the same initial model and the same 
sampling points Deq, Di , Dlb, Drb . (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

tions depends on the concrete objective can vary greatly during the optimization process. This gives rise to the following 
considerations.

If the variance of a distribution is closer to zero, the elements of the gradient are more insensitive with respect to the 
parameters θ and the objective has less influence in the optimization step. On the other hand, if the variance is larger, there 
are more derivatives that are very sensitive to the parameters θ and the objective has a strong influence in the optimization 
step. Therefore, the idea is to use the weights λ to scale the distributions such that every objective is equally treated by the 
optimization procedure. This prevents that one of the objectives is prioritized during the optimization process. Such uneven 
distributions are seen in [16] as an indication of an imbalanced loss function. This interpretation is closely related to how 
initialization schemes for neural networks work.

In the resulting methods, the weights are updated throughout the optimization process to adapt to the changing dis-
tributions. The distribution of ∇θ Leq(θ) is the reference distribution and the other distributions are scaled to be similar. 
Thus λeq = 1 remains constant. For the remaining weights, the authors in [5] consider μ(|∇θ L(θ)|), where μ(v) denotes the 
mean of a vector v , for every objective L = Leq, Li, Llb, Lrb as the defining attribute for the respective distribution and define 
the intermediate weights

λ̂i = μ(|∇θ Leq(θ)|)
μ(|∇θ Li(θ)|) , λ̂lb = μ(|∇θ Leq(θ)|)

μ(|∇θ Llb(θ)|) , λ̂rb = μ(|∇θ Leq(θ)|)
μ(|∇θ Lrb(θ)|) . (25)

These values change rapidly during the optimization process and are thus smoothed out. This is done through a convex 
combination of the old and intermediate weights λ̂ with respect to an α ∈ (0, 1). Thus, the weights are updated according 
to

λi ← (1 − α)λi + αλ̂i , λlb ← (1 − α)λlb + αλ̂lb , λrb ← (1 − α)λrb + αλ̂rb . (26)

This update can take place in every iteration of the optimization process. However, it is also possible to do it at a lower 
frequency.

The mean of the absolute value μ(|·|) is the mean absolute deviation of a distribution with zero mean, which is closely 
related to the variance of the distribution. In [16] the authors move away from this viewpoint and propose a different 
strategy to define the intermediate weights. Namely, they consider the maximum absolute value of ∇θ Leq(θ) and define
7
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λ̂i = max(|∇θ Leq(θ)|)
μ(|∇θ Li(θ)|) , λ̂lb = max(|∇θ Leq(θ)|)

μ(|∇θ Llb(θ)|) , λ̂rb = max(|∇θ Leq(θ)|)
μ(|∇θ Lrb(θ)|) . (27)

For further reference, we call the definitions in (25) the avg-avg weights and the definitions in (27) the max-avg weights. 
Usually, the weights λeq, λi, λlb, λlb are initialized with 1. In [16] α = 0.9 and in [5] α = 0.1 is set. We will test both values, 
which results in four strategies in total, in our numerical examples.

4.2. Magnitude-based method

A magnitude-based method is introduced in [15] and has been developed for linear elliptic PDEs. The authors are 
concerned with inherent scaling issues of the underlying differential equation and propose a method called magnitude 
normalization. The strategy is summarized by the authors as follows: “Each loss functional is normalized by the magni-
tude of the terms that comprise it”. It was developed for linear boundary values problems. However, we seek to adapt the 
strategy for our nonlinear initial boundary value problem. The main components are the magnitudes meq(x, t), mi(x), mlb(t)
and mrb(t) that are analogously defined to �eq(x, t), �i(x), �lb(t) and �rb(t). The goal is that the fraction of objective and 
magnitude, e.g., �eq/meq , stays roughly the same. For example, we define for the isentropic Euler equations

meq(x, t; θ) = (|ρt(x, t)| + |(ρv)x(x, t)|)2 + (|(ρv)t(x, t)| + |px(x, t)| + |(ρv2)x(x, t)|)2
(28)

and for the left boundary condition of Problem 1

mlb(x; θ) = (|1|)2 + (|0.1|)2 + (|1|)2
. (29)

The other magnitudes can be derived in a similar way. Then we can integrate the magnitudes over their respective domains, 
resulting in Meq(θ), Mi(θ), Mlb(θ) and Mrb(θ) analogously to (14). Next, we discretize these integrals with the Monte Carlo 
quadrature rule in the same way as in (17), and arrive at Meq(θ), Mi(θ), Mlb(θ) and Mrb(θ). Here, we use the same sample 
points as before.

Eventually, we define the weights as the inverse of the magnitudes,

λeq = 1

Meq(θ)
, λi = 1

Mi(θ)
, λlb = 1

Mlb(θ)
, λrb = 1

Mrb(θ)
. (30)

The magnitudes depend on the neural network parameters θ and therefore the weights λ change throughout the opti-
mization process. In contrast to the gradient-based methods, the authors do not recommend smoothing of the weights. In 
our implementation, we will update the weights at a specific frequency. This is not entirely consistent with the proposed 
approach of [15]. Here, the weights are updated only at certain events.

4.3. Attention-based method

The next method we consider is the attention-based mechanism that was introduced in [10] and tested there with 
the Allen-Cahn equation. In contrast to the previous methods, this method integrates the weights into the optimization 
process and does not determine the weights based on the solution. For the original method, the authors propose to weight 
every sampling point in Deq , Di , Dlb , Drb and thus changing their importance. However, this significantly increases the 
computational complexity and, for the sake of comparison, we adapt this method for problem (24).

We consider Lw-dif(θ, λ), the objective function of the problem (24), with λ = (λeq, λi, λlb, λrb). Now the weights λ should 
penalize the objectives with the highest values. That is achieved by maximizing the loss function Lw-dif with respect to λ
while minimizing the loss function with respect to θ . Consequently, we consider the saddle point problem

min
θ

max
λ

Lw-dif(θ, λ) . (31)

The solution of this problem can be approximated by a gradient descent method with the update

θ ← θ − ∇θ Lw-dif(θ, λ) and λ ← λ + ∇λLw-dif(θ, λ) . (32)

At the start, we initialize the weights with λ = (1, 1, 1, 1).

4.4. Random-search

In order to put the previous methods into perspective, we also perform an additional random-search. That is, we draw a 
fixed number of random tuples (λeq, λi, λlb, λrb) and run the training process for each weight tuple. For both test problems 
we draw 20 random tuples from the cube [1, 5] × [1, 5] × [1, 5] × [1, 5] using the Latin-Hypercube sampling strategy.

After the training process, we choose the weights and parameters with the minimal loss value Ldif and refer to this result 
as rnd-search-min. For comparison, we refer to the result with the highest loss value Ldif as rnd-search-max.
8
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5. Numerical tests

In this section, we want to compare the different methods. In particular, we consider the physics informed approach and 
the different weighting methods in Subsection 5.1. Further, we investigate the control volume physics informed approach in 
Subsection 5.2. In the last subsection, we report on results for different sizes of neural networks (measured in the number 
of parameters) and different numbers of sampling points.

Our main measure for the comparison will be the relative L2-error of the different methods. We measure the error with 
respect to the output of the neural network and the reference solution. In case of Problem 1 we consider the error of ρ , v , 
p and in case of Problem 2 the error of ρ , ρv . For example, the error of ρ is defined by

error ρ =
√∑

(x,t)∈Derr

(
ρ(x, t) − ρ(x, t; θ)

)2

√∑
(x,t)∈Derr

(
ρ(x, t)

)2
(33)

for a finite set Derr ⊂ [0, L] ×[0, T ]. The remaining errors are defined in the same way. For Problem 1, the set Derr contains 
50 000 random points, and for Problem 2, Derr contains the grid points of the numerically computed reference solution.

For the first two subsections, we will use a neural network with n = 4 layers and k = 27 neurons. Further, we use fixed 
amounts of sampling points, namely for

Problem 1 , |Deq| = 6 400 , |Di| = 320 , |Dlb| = 160 , |Drb| = 160 and

Problem 2 , |Deq| = 6 400 , |Di| = 160 , |Dlb| = 160 , |Drb| = 320 .
(34)

The choices are justified by the numerical results in Subsection 5.3 and will be further investigated there. Also note the 
emphasis on the challenging initial data for Problem 1 and the right boundary data for Problem 2.

As mentioned above, the initial parameters of the neural network as well as the sampling points are randomly chosen. 
Therefore, different runs of the same test will produce different results. We take this into account in our experiments and 
run every test five times. Then we report the mean and the standard deviation of the relative L2 errors. Crucially, for the 
same run, we use the same (randomly chosen) initial neural network and the same (randomly chosen) sampling points 
across all tests. This eliminates the influence of the randomness between the different tests and ensures a fair comparison.

5.1. Comparison of different weighting methods

In this subsection, we want to compare the different weighting methods. That is, the methods reviewed in Section 4 to 
algorithmically determine the weights λeq , λi , λlb and λrb for problem (24). For the gradient- and magnitude-based methods, 
the weights will be updated every 10th iteration. We will optimize the parameter of the neural network (or in the case of 
the attention method, the parameter and the weights λ) with the standard Adam method. Further, we use an initial learning 
rate (step size) of 0.01 and, to ensure convergence, we use an exponentially decaying learning rate that decays the learning 
rate by a factor of 0.9 every 1000 steps. We run the method for 30 000 steps.

Table 1 shows the results for Problem 1 and Table 2 for Problem 2.
The results of the rnd-search-min method show that there is a clear advantage in using specific weights in the loss 

function. This is strictly the case for Problem 2. For Problem 1, we see a notable decrease in the errors of ρ and v by using 
the rnd-search-min weights instead of the baseline weights. However, for the error of p this is not the case.

Among the dynamic weighting methods, which are the gradient-, magnitude-, and attention-based methods, the 
attention-based approach has the best results for both problems. But, there is a noticeable gap between these results and 
the rnd-search-min results. In the case of Problem 2, the gradient- and magnitude-based methods produce worse results. In 
the case of Problem 1, these methods perform better, but not as good as the baseline weights. Here, the good results of the 
avg-avg method with α = 0.1 are noteworthy. In summary, the dynamic weighting methods are not able to achieve results 
as good as the rnd-search-min method.

Fig. 2 shows the selected weights of the different methods of the first run. Since the loss function can be scaled ar-
bitrarily, the weights of the different methods cannot be compared directly. However, the weights determined by the 
gradient-based methods should be emphasized since they are orders of magnitudes larger than the weights determined 
by the other methods. Here, only the avg-avg weights for Problem 1 have a reasonable range and thus may explain the 
favorable results. Also, for the attention-based approach for Problem 1 the weights of the initial data and for Problem 2
the weights of the right boundary data are the largest. Thus, the approach realizes the aforementioned importance of the 
initial data for Problem 1 and the right boundary data for Problem 2. However, this does not lead to better results than 
the usage of the baseline weights. Lastly, the weights of the magnitude-based method are almost constant throughout the 
optimization procedure. However, this fixed choice is not beneficial.

5.1.1. L-BFGS optimization
In addition to the Adam method, the L-BFGS method is very popular to optimize physics informed neural networks 

[13,9,15,10]. In this subsection, we want to take a closer look at the benefit of the L-BFGS method.
9
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Table 1
Results of the different weighting methods for Problem 1. The baseline test uses λ = (1, 1, 1, 1). Bold numbers 
refer to the two smallest values in each column.

loss Ldif error ρ error v error p

baseline 1.6e−5 ±1.4e−5 6.6e−3 ±7.2e−4 1.2e−3 ±3.2e−4 5.4e−5 ±1.6e−5

rnd-search-min 1.6e−6 ±8.7e−7 5.7e−3 ±7.2e−4 6.0e−4 ±5.6e−4 8.1e−5 ±2.3e−5

rnd-search-max 1.1e−4 ±4.4e−5 8.1e−3 ±1.0e−3 3.0e−3 ±2.8e−3 1.5e−4 ±8.9e−5

max-avg α = 0.1 4.0e−1 ±1.9e−1 8.3e−2 ±4.0e−3 8.0e−2 ±2.5e−2 3.6e−2 ±9.2e−3

max-avg α = 0.9 3.7e−2 ±1.1e−2 7.3e−2 ±7.6e−3 3.1e−2 ±1.0e−2 3.7e−2 ±6.2e−3

avg-avg α = 0.1 5.5e−4 ±1.7e−4 1.8e−2 ±2.5e−3 1.8e−3 ±4.5e−4 2.9e−4 ±1.2e−4

avg-avg α = 0.9 4.4e−3 ±1.9e−3 5.3e−2 ±1.4e−2 8.8e−3 ±6.4e−3 1.2e−3 ±8.2e−4

magnitude 7.6e−3 ±8.3e−4 6.7e−2 ±3.8e−3 3.2e−2 ±7.8e−3 4.2e−3 ±1.2e−3

attention 2.7e−4 ±1.2e−4 1.3e−2 ±2.3e−3 2.4e−3 ±4.3e−4 2.6e−4 ±9.4e−5

Table 2
Results of the different weighting methods for Problem 2. The baseline test uses λ =
(1, 1, 1, 1). Bold numbers refer to the two smallest values in each column.

loss Ldif error ρ error ρv

baseline 2.5e−6 ±1.4e−6 4.3e−4 ±2.1e−4 2.4e−2 ±1.2e−2

rnd-search-min 1.0e−6 ±3.3e−7 2.2e−4 ±4.6e−5 1.2e−2 ±2.1e−3

rnd-search-max 5.2e−6 ±7.6e−7 7.5e−4 ±1.2e−4 3.9e−2 ±1.5e−2

max-avg α = 0.1 1.8e−2 ±2.7e−3 3.0e−2 ±5.1e−3 2.0e0 ±1.8e−1

max-avg α = 0.9 2.3e−2 ±4.7e−3 3.1e−2 ±6.3e−3 2.0e0 ±2.0e−1

avg-avg α = 0.1 2.5e−3 ±2.0e−3 5.2e−3 ±1.6e−3 9.1e−1 ±5.9e−1

avg-avg α = 0.9 7.0e−3 ±1.3e−3 1.6e−2 ±6.6e−3 1.7e0 ±1.2e−1

magnitude 1.2e−4 ±1.7e−5 3.9e−3 ±3.3e−4 2.1e−1 ±1.9e−2

attention 1.0e−5 ±3.2e−7 9.5e−4 ±8.1e−5 5.4e−2 ±5.3e−3

Fig. 2. Visualization of the weights of all methods for both problems from the first (of five) run as used during the Adam optimization algorithm (with 
learning rate decay). For the dynamic weight balancing methods the weights change during the course of the optimization. The figure shows the range in 
which 90 percent of the weights are located. It further shows the mean value of the weights. For the other methods the mean value is the only value used 
during the optimization procedure. Note that due to the different magnitudes of the weights, some data are outside of the axis.

First, we optimize the neural network only by the L-BFGS method. Second, we optimize the neural network by a hybrid 
optimization scheme of the Adam and the L-BFGS method. This combination is often proposed in the literature and we test 
it as well. Here, we proceed as follows. We start by optimizing the neural network with the Adam method for (again) 30 000
steps and change the weights λ according to the used weighting method. Next, we only optimize the parameters θ by the 
L-BFGS method. The weights λ are constant throughout the L-BFGS method and keep their last assigned value. Importantly, 
we use no learning rate decay for the Adam method, since then the subsequent L-BFGS optimization is inhibited and barely 
improves the results. The L-BFGS method has a no fixed step size and stops if the method has converged. For the stopping 
criterion, we require a gradient tolerance of 10−7.
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Table 3
Results of the different weighting methods for Problem 1 optimized first by the Adam method and then by the L-BFGS method. The results with 
the suffix ‘only lbfgs’ are only optimized by the L-BFGS method. The last column contains the average number of iterations the L-BFGS method 
needed to converge. Bold numbers refer to the two smallest values in each column.

loss Ldif error ρ error v error p Iterations

baseline only lbfgs 1.0e−5 ±1.0e−5 6.2e−3 ±5.9e−4 6.7e−4 ±3.7e−4 1.1e−4 ±6.2e−5 8095.6 ±2018.6

baseline 9.6e−5 ±1.1e−4 1.0e−2 ±4.7e−3 1.1e−3 ±7.4e−4 5.0e−5 ±3.2e−5 378.8 ±415.5

rnd-search-min only lbfgs 1.4e−6 ±9.0e−7 5.8e−3 ±3.0e−4 3.1e−4 ±1.2e−4 5.3e−5 ±2.6e−5 8515.6 ±1017.7

rnd-search-min 1.1e−6 ±4.0e−7 6.9e−3 ±3.6e−3 9.4e−4 ±6.9e−4 4.0e−5 ±3.4e−5 1120.6 ±1188.7

rnd-search-max only lbfgs 3.8e−5 ±1.8e−5 7.6e−3 ±9.4e−4 1.3e−3 ±6.0e−4 1.3e−4 ±3.8e−5 7078.2 ±1575.3

rnd-search-max 1.1e−4 ±6.8e−5 1.1e−2 ±3.5e−3 1.5e−3 ±9.9e−4 4.8e−5 ±1.8e−5 276.4 ±220.3

max-avg α = 0.1 3.5e−1 ±1.9e−1 8.7e−2 ±5.2e−3 6.8e−2 ±3.3e−2 1.5e−2 ±3.5e−3 277.2 ±478.1

max-avg α = 0.9 8.4e−3 ±1.3e−2 3.3e−2 ±1.2e−2 1.9e−2 ±2.5e−2 2.8e−3 ±2.3e−3 11411.4 ±2935.1

avg-avg α = 0.1 4.5e−5 ±8.6e−5 6.2e−3 ±2.0e−3 4.8e−4 ±4.3e−4 1.1e−4 ±1.4e−4 3201.2 ±1658.2

avg-avg α = 0.9 3.0e−6 ±3.5e−7 5.6e−3 ±2.9e−4 2.2e−4 ±6.0e−5 4.2e−5 ±7.8e−6 8083.2 ±1179.1

magnitude 4.0e−4 ±1.4e−4 1.6e−2 ±2.5e−3 3.2e−3 ±1.5e−3 1.5e−4 ±7.2e−5 9920.4 ±1213.7

attention 5.9e−6 ±4.4e−6 6.0e−3 ±3.7e−4 1.0e−3 ±4.3e−4 7.8e−5 ±2.9e−5 5734.2 ±2257.8

Table 4
Results of the different weighting methods for Problem 2 optimized first by the Adam method and then by the L-BFGS 
method. The results with the suffix ‘only lbfgs’ are only optimized by the L-BFGS method. The last column contains the 
average number of iterations the L-BFGS method needed to converge. Bold numbers refer to the two smallest values in 
each column.

loss Ldif error ρ error ρv Iterations

baseline only lbfgs 3.9e−7 ±8.1e−8 1.5e−4 ±7.3e−6 8.5e−3 ±5.5e−4 4734.8 ±1448.0

baseline 7.4e−7 ±5.9e−7 1.7e−4 ±6.1e−5 9.5e−3 ±3.5e−3 1162.2 ±1188.3

rnd-search-min only lbfgs 2.4e−7 ±8.5e−8 1.3e−4 ±1.7e−5 7.4e−3 ±9.6e−4 5560.6 ±2194.0

rnd-search-min 1.4e−7 ±3.8e−8 1.3e−4 ±1.0e−5 7.4e−3 ±5.8e−4 2524.6 ±972.0

rnd-search-max only lbfgs 1.2e−6 ±1.4e−7 2.7e−4 ±2.8e−5 1.5e−2 ±1.6e−3 2772.8 ±452.5

rnd-search-max 1.3e−5 ±1.5e−5 9.7e−4 ±8.4e−4 5.6e−2 ±5.0e−2 130.0 ±127.6

max-avg α = 0.1 8.8e−3 ±2.0e−3 2.1e−2 ±9.6e−3 1.9e0 ±1.2e−1 30.6 ±38.3

max-avg α = 0.9 3.9e−3 ±4.5e−3 7.5e−3 ±5.7e−3 1.0e0 ±8.3e−1 916.2 ±1136.5

avg-avg α = 0.1 4.8e−3 ±6.2e−3 1.7e−2 ±1.9e−2 8.2e−1 ±6.1e−1 346.0 ±528.4

avg-avg α = 0.9 1.5e−4 ±9.6e−5 3.7e−3 ±1.2e−3 2.1e−1 ±6.6e−2 1396.8 ±730.6

magnitude 2.6e−5 ±1.3e−5 1.7e−3 ±3.7e−4 9.6e−2 ±2.0e−2 3808.8 ±1959.0

attention 8.5e−7 ±1.2e−6 2.2e−4 ±1.5e−4 1.2e−2 ±8.5e−3 3429.2 ±1650.5

The results for Problem 1 and 2 are given in Table 3 and 4, respectively.
For the second test problem, the best results are obtained by the rnd-search-min method. Again, we can conclude that 

different weights can decrease the overall errors. For this problem we cannot observe an advantage in first using the Adam 
procedure. In our test setup, the L-BFGS method usually required less time than the hybrid approach despite taking more 
L-BFGS iterations to converge. The hybrid optimization scheme improves the errors of the dynamic weighting methods in 
comparison to only using the Adam routine. However, none of the methods show an advantage against the best weights 
determined by the rnd-search-min scheme.

These findings can be applied to the first test problem with some restrictions. Again, the lowest errors are achieved by 
the rnd-search-min method. However, the lowest approximation error of the pressure p is obtained by running the Adam 
method first. But then, the errors of the density ρ and the speed v are larger. There seems to be a trade-off between the 
different quantities and the gradient-based avg-avg method with α = 0.9 handles this challenge very well.

In summary, for our test problems, it seems to be a reasonable choice to only use the L-BFGS method with some fixed 
weights. This method is easier to use and produces very good as well as reliable results very fast. Finding these fixed weights 
is expensive. The random-search has the greatest computational cost, but the effort can be justified if the best results are 
required and can be controlled by the number of samples. There might be an advantage in using the gradient-based avg-avg 
instead. But this comes with an increased computational cost of running the Adam method first and this has only worked 
for one of two test problems.

Also see Fig. 3 that shows the best and worst weights found by the random-search method. It illustrates the different 
choices made by the random procedure in every run, highlights the complexity of the underlying search problem and thus 
the challenges the algorithmic balancing methods have to overcome.
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Fig. 3. The figure shows the best (rnd-search-min) and worst (rnd-search-max) weights found by the random-search method for every run optimized only 
by the L-BFGS method. Note that every run uses a different list of randomly selected weights. Therefore, a direct comparison between the different runs is 
impossible.

Table 5
The results of the control volume physics informed approach for Problem 1. The iterations column contains the average number of iterations the L-BFGS 
method needed to converge. Bold numbers refer to the two smallest values in each column.

mesh quadrature optimizer loss Lint error ρ error v error p Iterations

rect

Gaussian

Adam 1.3e−6 ±1.8e−6 1.8e−2 ±4.0e−4 1.3e−3 ±8.4e−4 3.3e−4 ±1.5e−4

Hybrid 3.5e−7 ±2.4e−7 1.7e−2 ±2.2e−4 6.6e−4 ±3.0e−4 1.7e−4 ±8.2e−5 964.8 ±1566.7

L-BFGS 1.8e−7 ±4.8e−8 1.8e−2 ±5.2e−4 4.0e−4 ±1.1e−4 8.3e−5 ±1.8e−5 2695.4 ±999.7

random

Adam 1.9e−5 ±4.0e−6 3.6e−2 ±3.5e−3 3.4e−3 ±8.6e−4 6.2e−4 ±1.4e−4

Hybrid 1.4e−5 ±2.7e−6 3.5e−2 ±1.5e−3 2.2e−3 ±5.7e−4 3.8e−4 ±1.2e−4 434.4 ±844.8

L-BFGS 6.8e−6 ±1.5e−6 3.7e−2 ±1.3e−3 1.7e−3 ±3.1e−4 2.1e−4 ±5.2e−5 7446.0 ±1895.0

trig

Gaussian

Adam 1.5e−6 ±1.8e−6 2.0e−2 ±3.7e−4 1.3e−3 ±5.6e−4 3.5e−4 ±9.5e−5

Hybrid 1.4e−6 ±1.9e−6 2.0e−2 ±6.1e−4 1.0e−3 ±2.6e−4 2.5e−4 ±8.3e−5 85.8 ±109.7

L-BFGS 2.8e−7 ±4.3e−8 2.0e−2 ±2.4e−4 7.0e−4 ±1.5e−4 1.3e−4 ±4.0e−5 2330.0 ±879.0

random

Adam 3.2e−5 ±8.1e−6 4.8e−2 ±2.8e−3 4.6e−3 ±5.9e−4 6.7e−4 ±1.0e−4

Hybrid 2.3e−5 ±5.7e−6 4.8e−2 ±2.5e−3 4.0e−3 ±7.1e−4 5.1e−4 ±1.2e−4 994.8 ±1804.5

L-BFGS 1.7e−5 ±2.8e−6 4.8e−2 ±4.2e−3 3.4e−3 ±4.8e−4 3.6e−4 ±5.2e−5 5782.8 ±2028.2

5.2. Control volume approach

In this subsection, we look into the results of the control volume physics informed approach. To discretize the objective 
of the optimization problem (23), we use two integrations methods: the deterministic Gauss-Legendre rule with three points 
and a random Monte Carlo quadrature with five points. Further, we use a rectangular and a triangular mesh to partition the 
computational domains into control volumes wi used in (23). To enable a comparison with the physics informed approach, 
we choose the sizes of the meshes such that the number of quadrature points approximately equals the number of sampling 
points.

Again, we optimize with the Adam method alone (with a learning rate decay), the hybrid approach (Adam without 
learning rate decay first and then L-BFGS), and just the L-BFGS method. The optimizers use the same configurations as 
before.

The results are shown in Table 5 for Problem 1 and in Table 6 for Problem 2. Interestingly, for both problems the 
deterministic quadrature rule produces the best results. This is in contrast to the general belief that random methods work 
better in the machine learning context. Unfortunately, the results of the control volume approach are worse than those of 
the standard physics informed approach. The method is only able to achieve competitive results for the first test problem 
and the variables v and p. In the remaining cases, the errors are significantly larger.

An explanation could be that the physics informed approach uses derivative information and the control volume ap-
proach does not. This makes the computational complexity of the control volume approach cheaper. However, the results 
suggest that this is accompanied by a loss of accuracy. Consequently, the restriction that we use roughly the same amount 
of quadrature points as the amount of sample points might favor the physics informed approach.
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Table 6
The results of the control volume physics informed approach for Problem 2. The iterations column contains the average number 
of iterations the L-BFGS method needed to converge. Bold numbers refer to the two smallest values in each column.

mesh quadrature optimizer loss Lint error ρ error ρv Iterations

rect

Gaussian

Adam 3.2e−6 ±3.4e−7 9.2e−4 ±8.3e−5 5.3e−2 ±4.0e−3

Hybrid 3.2e−6 ±3.2e−7 1.0e−3 ±7.3e−5 6.1e−2 ±5.5e−3 35.2 ±35.0

L-BFGS 1.4e−6 ±9.1e−7 5.1e−4 ±2.0e−4 3.0e−2 ±1.1e−2 1532.0 ±730.5

random

Adam 4.6e−6 ±3.8e−7 9.5e−4 ±6.8e−5 5.4e−2 ±3.6e−3

Hybrid 4.6e−6 ±3.5e−7 1.0e−3 ±5.9e−5 6.1e−2 ±4.4e−3 16.6 ±21.7

L-BFGS 3.3e−6 ±1.0e−6 6.7e−4 ±2.1e−4 3.9e−2 ±1.3e−2 1103.6 ±403.9

trig

Gaussian

Adam 3.6e−6 ±3.5e−7 1.1e−3 ±1.0e−4 6.3e−2 ±5.6e−3

Hybrid 3.4e−6 ±2.1e−7 1.1e−3 ±5.2e−5 6.6e−2 ±4.9e−3 58.8 ±46.3

L-BFGS 9.7e−7 ±4.8e−7 5.0e−4 ±1.3e−4 3.0e−2 ±7.2e−3 1946.0 ±548.6

random

Adam 9.6e−6 ±4.0e−7 1.3e−3 ±9.0e−5 7.2e−2 ±5.1e−3

Hybrid 9.5e−6 ±3.6e−7 1.4e−3 ±8.0e−5 7.8e−2 ±6.0e−3 6.4 ±3.0

L-BFGS 8.8e−6 ±1.5e−6 1.1e−3 ±1.5e−4 5.7e−2 ±8.9e−3 926.6 ±479.7

Table 7
Number of sampling points and sizes of the neural networks, n layers and k neurons, used in 
the scaling test for Problem 1 and Problem 2.

Test case Problem 1 / Problem 2 Problem 1 Problem 2

|Deq| |Dlb | n k # Parameter |Di | |Drb| |Di | |Drb|
1 400 10 2 20 ≈ 100 20 10 10 20

2 800 20 2 40 ≈ 200 40 20 20 40

3 1600 40 3 18 ≈ 400 80 40 40 80

4 3200 80 3 26 ≈ 800 160 80 80 160

5 6400 160 4 27 ≈ 1600 320 160 160 320

6 12800 320 5 32 ≈ 3200 640 320 320 640

5.3. Scaling model and parameter sizes

While for traditional numerical PDE methods there is a one-to-one match between the conditions and the degrees of 
freedom, this is not the case for physics informed neural networks. The number of sampling points as well as the number 
of neural network parameters should be increased simultaneously, but it is very much unclear how this relationship should 
be exactly. This is partly attributed to the fact that there is always an optimization error and the conditions, which are 
encoded in the loss function, are not satisfied at any sampling point.

Despite the lack of theoretical evidence, there is still a decision to be made. Until now we have used fixed numbers 
of parameters and sampling points for the neural network. In this subsection, we will validate this choice and compare 
different possibilities.

Our comparison is based on a simple scaling scheme. That is, we consider six test cases and every test case corresponds 
to one refinement level. From one to the next test case we double the amount of parameters of the neural network as well 
as the sampling points. Then, we study the relative error improvement between the test cases. To increase the number of 
parameters of a neural network, we increase the number of layers, i.e., make the neural network deeper, as well as the 
number of the neurons, i.e., make the neural network wider. In Table 7 the used sizes are shown. The network size and 
the number of sample points that are used in the previous subsections correspond to the fifth test case. The error is again 
measured by the averaged relative L2 error of five runs. The neural networks are optimized by using the physics informed 
approach (18) and the L-BFGS method. The results are shown in Fig. 4.

For both problems the error decreases over the first five test cases. In the sixth test case the error increases. Hence, the 
choice we have made in (34), which corresponds to the fifth test case, is justified by these results. Therefore, the results in 
Subsection 5.1 and 5.2 are most likely the best we can expect.

In addition, we can make the following observations. In every level, we double the number of parameters and sampling 
points, but the error is not halved in consequence. This suggests a sub-linear convergence rate and leads to the unfortunate 
situation that disproportionately more computing effort has to be invested for more accurate results. Further, the errors 
of Problem 2 decrease more consistently than the errors of Problem 1. This might be due to the fact that the underlying 
conservation law of Problem 2 is simpler or the discontinuous initial data of Problem 1 poses special problems.
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Fig. 4. Results of the scaling test for Problem 1 (left) and Problem 2 (right).

We were not able to decrease the error of this method arbitrarily low. This is certainly desirable but has not been 
described in the literature yet. First promising theoretical results for certain kinds of differential equations in [11] show 
that the error is composed of the quadrature error, the error that occurs by considering the approximations Leq , Li , Llb , Lrb
instead of Leq , Li , Llb , Lrb , as well as the training error, the value of the residuals Leq , Li , Llb , Lrb . Consequently, if both errors 
can be decreased arbitrarily low, then the resulting approximation error can be arbitrarily low, too. While the quadrature 
error can be easily controlled by adding more sampling points, this is not true for the training error that stems from the 
optimization error. Therefore, a reasonable explanation for Fig. 4 is that the error is dominated by the quadrature error 
for the first few refinement levels and can therefore be decreased by increasing the number of sampling points. However, 
once the optimization error dominates the overall error, there is no further improvement possible. Hence, there is further 
research necessary to transfer the promising theoretical findings into practical results.

Finally, we have also evaluated the errors of all numerical results in this section with the maximum norm. Although the 
errors were slightly higher, we could not find any significant differences in the results.

6. Conclusion

In this article we have carried out a comprehensive case study on physics informed neural networks for gas transport 
problems. We have provided an objective comparison between different approaches to obtain a neural network that ap-
proximates the gas flow for two test problems. Our goal is to provide knowledge on how to effectively obtain these neural 
networks and what results can be expected in this specific use case. We want to use this knowledge to develop reduced 
order methods, i.e. PINNs, that avoid redundant computations, are fast for similar simulations and can maintain a high ac-
curacy. This is important because these models and their approximate solutions form the building blocks for gas network 
simulations and, as a consequence, for gas network optimization and optimal control. Highly efficient approximation meth-
ods of suitable accuracy for gas flow in a pipe are therefore crucial to further the state-of-the-art in these more complex 
gas network settings.

One main difficulty of the original physics informed approach is the multi-objective training problem that needs to be 
solved to obtain the approximation. The individual objectives arise from separately enforcing the differential equation, the 
initial and boundary data. The single objective loss function for the training problem is obtained by forming a weighted 
sum of the individual terms. This translates the difficulty to the selection of these weights such that the individual terms in 
the loss function are suitably balanced. Dealing with this issue has been one central point of our case study. Here, our tests 
show that choosing appropriate weights in the physics informed loss function is very important to obtain a neural network 
with the lowest error. Our best weights have been determined by a random-search scheme that randomly chooses a list of 
weights, trains one neural networks for every chosen weight and then selects the neural network with the lowest training 
error. This procedure, however, is very computationally expensive and since the weights are problem dependent, it must be 
repeated when the problem changes.

A number of strategies (loss balancing methods) have been proposed in the literature to dynamically determine these 
weights during the training process. Such strategies have been applied successfully, with improvements over the original 
physics informed approach, but for different differential equations than in our case study. These methods usually have a 
small computational overhead compared to the original method. We have tested several of these strategies, but none of the 
14



E.L. Strelow, A. Gerisch, J. Lang et al. Journal of Computational Physics 481 (2023) 112041
obtained solutions of our test problems were better and most of them were significantly worse than the solution determined 
by the random-search scheme and the original physics informed method. This leads to the important conclusion that these 
methods do not work on a general class of differential equations and that gas transport problems may pose own unique 
challenges which are not recognized by these methods. We also suggest that future work on loss balancing methods should 
include a comparison with a random-search scheme.

Additionally, we have tested the control volume physics informed approach – a formulation based on the integral form 
of the conservation law. This approach has some theoretical advantages over the original physics informed approach as well 
as the loss balancing extensions. Here, by considering the integral form, one can lower the integration dimension and also 
avoid automatic differentiation in the loss function as well as the aforementioned problem of determining weights. These 
advantages come along with an increased implementation overhead. However, and this is another important conclusion, in 
our test cases this method is outperformed by the original physics informed formulation based on the differential form. 
Additionally, in these tests deterministic quadrature rules have performed better than the random Monte Carlo quadrature 
rule.

We have also considered three different training procedures including the Adam method, the L-BFGS method and a 
hybrid of both. We conclude in our tests that the L-BFGS alone has produced the best results with the fewest iterations. 
However, in combination with algorithmic weighting methods we have observed a few cases which benefit from the hybrid 
scheme.

If we take all conclusions of our case study into account, we recommend the original physics informed approach trained 
by the L-BFGS method to obtain the best approximation of gas flow problems in a pipe by a neural network. If the compu-
tational budget allows, we strongly suggest to perform a random procedure to determine optimal loss balancing weights.

One of the biggest strength of physics informed neural networks is the flexibility to adapt the method easily for different 
use cases or exchange building blocks in the implementation such as the optimization method or the quadrature rule. Here, 
case studies like this one are very important to give rise to the most promising paths forward. Our tests show that to obtain 
highly accurate approximations we need to solve the optimization problem in the training phase with a very high accuracy 
and also that more accurate quadrature rules provide better results. However, in traditional machine-learning tasks one 
avoids to solve the training problem with a high accuracy to avoid an overfit. Our observations therefore show new research 
directions for PINNs that divert from traditional machine-learning.

We see two further research directions for PINNs which can lead to progress for our particular application of gas trans-
port in a pipe but also for a more general problem setting. First, are there specific properties of hyperbolic conservation 
laws which limit the applicability of the considered loss-balancing methods and if so how to overcome these barriers? Sec-
ond, can we identify which PINN extensions work particularly well with which PDE problems and understand why? Both of 
these directions aim at a deeper understanding of the connection between the underlying physics, as encoded in the PDE, 
and its representation within the neural network.
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