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1 Introduction

There are many different mathematical models for individual components of gas net-
works. In the following, we briefly present these models in order to reflect the current
state of research. Exemplarily for gas, different model hierarchies within the isothermal
and the temperature-dependent models are given, including the simplifying assumptions.
We also give a short overview of existing discretization methods for the numerical so-
lution of hyperbolic balance laws. Physical and technical fundamentals of gas networks
are described in particular in [20, Chapter 2]. In this book, further questions on the
evaluation of gas network capacities can be found as well.

2 The Euler Equations

The Euler equations are a system of nonlinear hyperbolic partial differential equations
that describe the behavior of compressible, inviscid fluids. They consist of the continuity
equation, the momentum equation and the energy equation. In addition, the equation
of state applies to real gases. The full Euler equations are (see [5, 24, 39]):

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂

∂t
(ρv) + ∂

∂x
(p + ρv2) = − λ

2D
ρv ∣v∣ − gρ sin(α),

∂

∂t
(ρ(12v

2 + e)) + ∂

∂x
(ρv(12v

2 + e) + pv) = −kw
D
(T − Tw) ,

(TA1)

together with the equation of state for real gases, p = RρTz(p, T ). Here ρ denotes the
density, v the velocity of the gas, T the temperature and p the pressure. Further, g is
the gravitational constant, α is the inclination angle of the gas pipe relative to the level,
λ is the pipe friction coefficient, D is the pipe diameter, kw is the thermal conductivity
coefficient, Tw = Tw(x) is the surface temperature of the pipe wall, R is the gas constant,
and z = z(p, T ) is the compressibility factor. The variable e = cvT + gh denotes the
internal energy (= thermal + potential energy). Here cv is the specific heat and h is the
height above ground. A short derivation of the equations is given e.g. in [2]. Depending
on which model is chosen for the compressibility factor, one can resolve the equation of
state according to the pressure p and insert it into the equations. The conservation or
balance quantities in this system are the density ρ, the mass flux q = ρv, and the total
energy E = ρ(12v

2 + e).

In [15, p. 141] it is described how mixtures can also be modeled. For this purpose,
the system (TA1) is interpreted for the mixture of two components and for the second
component a conservation equation with mass fraction Y is added (the first component
has then fraction 1 − Y ),

∂

∂t
(ρY ) + ∂

∂x
(ρY v) = 0 . (1)

4



This can be formulated in an analogous way for mixtures of more than two components.

There are three characteristics to the equations (TA1) which belong to the eigenvalues
of the Jacobian matrix of the flux function, see [39, table p. 347]. The eigenvalues are

λ1 = v − c , λ2 = v , λ3 = v + c . (2)

Here, c is the speed of sound. It is generally calculated from c2 = ∂p
∂ρ (at constant

entropy). In natural gas, it is about 340ms−1. The first and third characteristic families
are genuinely nonlinear, whereas the second characteristic family is linearly degenerate.
In the linearly degenerate case, contact discontinuities occur. The characteristics are
decisive for how or with which velocity information is transported in the gas and which
boundary conditions may be set in which way. For the isothermal case (T = const.), see
e.g. [12], more generally in [15].

In the following two sections, two parameters of the Euler equations will be explained in
more detail: the compressibility factor z, which enters into the equation of state for real
gases, and the pipe friction coefficient λ.

2.1 Equation of State for Real Gases

The equation of state for ideal gases is

p = RρT. (3)

However, real gases deviate from this equation of state, which requires a correction with
the compressibility factor z = z(p, T ). The equation of state is then

p = RρTz(p, T ). (4)

For ideal gases, we have z = 1. The compressibility factor depends on the chemical
composition of the gas as well as on pressure and temperature. For low pressures and
high temperatures, real gases behave approximately ideal. At higher pressures, real gases
sometimes deviate considerably from the behavior of ideal gases, see Figure 1.

A special model to describe the compressibility factor is used by the American Gas
Association (AGA) (see AGA Report No. 8), which is a good approximation for pressures
up to 70 bar, see for example [2, 36]. It reads

z(p, T ) = 1 + 0.257 p

pc
− 0.533 pTc

pcT
. (5)

Here pc and Tc are the pseudocritical pressure and the pseudocritical temperature, re-
spectively, which in turn depend on the mixture of the gas [2]. For isothermal equations
(T constant), (5) simplifies to

z(p) = 1 + αp with α = 0.257

pc
− 0.533 Tc

pcT
. (6)
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Figure 1: Compressibility factor z of natural gas with standard density ρ0 = 0.776kgm−3,
according to [35].

Another model to describe the real gas factor is the formula of Papay [33], see also [36],

z(p, T ) = 1 − 3.52 p

pc
exp ( − 2.26 T

Tc
) + 0.274( p

pc
)
2
exp ( − 1.878 T

Tc
), (7)

which provides good results up to a pressure of 150 bar.

In [32], different equations of state are considered. Osiadacz and Chaczykowski conclude
that the selection of the equation of state has only a minor influence on the result of
the simulation. In contrast, the pipe friction coefficient, for which there are various
calculation models, has a major influence [32].

2.2 The Pipe Friction Coefficient

In addition to the pipe roughness k (in m), the key parameter in the calculation of the
pipe friction coefficient is the Reynolds number Re. It is calculated from

Re = ρvD

η
. (8)

The dynamic viscosity η depends on the type of fluid and is about 10−5 Pa s for natural
gas [2].

The magnitude of the Reynolds number indicates whether the flow is laminar or turbu-
lent. Below a critical Reynolds number Reu (laminar-turbulent transition), the flow is
laminar. [40] specifies the critical Reynolds number as 2320. In [37] it is described that
the transition from laminar to turbulent flow takes place in a region above a Reynolds
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Figure 2: Moody diagram

number of 2000, which cannot be determined in more detail. If the pipe wall is smooth,
it can be shown that the pipe friction depends only on the Reynolds number for both
laminar and turbulent flow. However, if the pipe wall is fully rough (in fluid mechanical
terms), the pipe friction coefficient λ depends only on the relative pipe roughness k/D.
The dependence of the pipe friction coefficient on the pipe roughness and the Reynolds
number is often shown in the so-called Moody diagram, see Figure 2.

2.2.1 Laminar Flow

Below the critical Reynolds number Reu, the flow is laminar (Hagen-Poiseuille flow).
The velocity profile is parabolic for this flow, see Figure 3. The pipe friction coefficient
λ in this case is calculated from

λ = 64

Re
, (9)

see [37,40]. In the Moody diagram (Figure 2), the pipe friction coefficient in the case of
laminar flow is shown as a green line (curve on the far left).
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Figure 3: Velocity distribution for laminar and turbulent pipe flow

2.2.2 Turbulent Flow

In turbulent flow, the velocity profile is significantly flattened because the layers flowing
side by side constantly mix with each other (see Figure refabb:geschwindigkeitsverteilung).
In this case, a distinction is made between hydraulically smooth, technically rough and
fully rough pipes.

Hydraulically smooth pipe: Here different models exist for the calculation of λ, e.g.
the Blasius correlation

λ = (100Re)−
1
4 , (10)

which, however, is only suitable for Reynolds numbers smaller than 105. Further there
is the approximate formula of Prandtl or Kármán and Prandtl [37]

1√
λ
= 2 log10 (Re

√
λ) − 0.8. (11)

This implicit formula is suitable for all Reynolds numbers in the turbulent range. The
course of the curve is shown in red in the Moody diagram (Figure 2) and marked with
(2).

Technically rough pipe: In the transition region between smooth and fully rough pipe
wall, the law of Colebrook or Colebrook-White

1√
λ
= −2 log10 (

2.5226

Re
√
λ
+

k
D

3.7065
) (12)

is generally used. The pipe friction coefficient is plotted in blue for different values of
k/D in the Moody diagram (Figure 2).

The formula of Chen [7] from 1979

1√
λ
= −2 log10 (

k
D

3.7065
− 5.0425

Re
log10 [

( kD)
1.1098

2.8257
+ 5.8506

Re0.8981
]) (13)
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Figure 4: Moody diagram including Chen’s formula

is an explicit formula that matches Colebrook’s formula very well, see Figure 4. The
values for λ from equation (13) are shown as light blue dotted lines.

Fully rough pipe: For a fully rough pipe, the pipe friction coefficient depends only
on the relative roughness. For this regime, the following formula is used, named after
Prandtl, Kármán and Nikuradze:

λ = [1.14 − 2 log10 (
k

D
)]
−2
. (14)

This explicit formula is obtained by taking the limit of Re → ∞ in equation (12). The
border between technically and fully rough pipe is marked by (4) in the Moody diagram.

2.2.3 Explicit Formulas from Practice

Since implicit formulas for the calculation of the pipe friction coefficient were historically
too elaborate, some simple explicit approximation formulas were established. In [37] a
brief overview of approximate formulas from practice is given and partly their fields of
application are described. In the Moody diagram in Figure 5 the different formulas are
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Figure 5: Moody diagram including formulas from practice

plotted (except the formula of Spitzglass, because here D = 1m was used, so that the
formula of Spitzglass is not applicable).

Formula of Spitzglass (1912):

λ =
4(1 + 3.6

D + 0.03D)
354

. (15)

Only applicable for tubes with maximum diameter 10.95 in (27.8 cm) [37].

Weymouth (1912):

λ = 4

(11.18D1/6)2
. (16)

As can be seen in Figure 5, this equation is suitable for k ≈ 0.005 in the fully rough
regime.
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Panhandle A:

λ = 4

(6.87Re0.07305)2
. (17)

Application: small Reynolds numbers [37].

Panhandle B:

λ = 4

(16.49Re0.01961)2
. (18)

Application: higher Reynolds numbers (than Panhandle A) [37].

Both curves (Panhandle A and B) are below the curve for a hydraulically smooth pipe
in Figure 5.

IGT equation: (from Institute of Gas Technology)

λ = 4

(4.619Re0.1)2
. (19)

This equation is a relatively good approximation for hydraulically smooth pipes at
Reynolds numbers between about 104 and 107 [37].

2.2.4 Summary

The model accepted in practice is that of Colebrook or Colebrook-White (12). This
equation can be applied over the entire turbulent range. All other formulas (especially
from section 2.2.3) are approximations applicable only in a relatively small range, see (5).
In the double-logarithmic scale, the formulas are only tangents to Colebrook’s model, and
only for certain parameters. An exception to this is the explicit formula of Chen (13),
which gives very good results over the entire turbulent range. Thus, in the turbulent
regime, one of the two formulas, the “exact” implicit one of Colebrook-White or the
explicit formula of Chen should be used.

3 Incompressible Navier-Stokes Equations

When studying phenomena on a pipe, the use of incompressible Navier-Stokes equations
is often justified in practice. With a typical flow rate of ∣v∣ ≈ 10ms−1 and c ≈ 340ms−1,
a reference Mach number of M = ∣v∣ /c ≈ 0.03 is obtained. If we now consider the case
M → 0 for the three-dimensional Euler equations and assume that pressure changes have

11



no significant effect on the internal energy, then the addition of viscous terms in the limit
case yields the system

∇ ⋅ v = 0,
∂

∂t
v +∇ ⋅ (v ⊗ v) + ∇p⋆ = 1

2
∇ ⋅ (ν(∇v +∇vT )) + f,

(INS)

where f is a source term. Here v = (v1, v2, v3) is the velocity vector and p⋆ is the
hydrodynamic pressure. The mean kinematic viscosity of natural gas being ν = 13.9 ×
10−6m2 s−1 is very low.

4 Model Hierarchy for Isothermal Euler Equations

In the isothermal case, we assume T = T0, hence the energy equation is omitted. Thus,
the compressibility factor is given as in (6). The isothermal Euler equations are given by

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂

∂t
(ρv) + ∂

∂x
(p + ρv2) = − λ

2D
ρv ∣v∣ − gρ sin(α),

(ISO1)

together with the equation of state p = RρTz(p) with z(p) = 1 + αp as above.

Here the eigenvalues of the Jacobian matrix of the flux function are λ1 = v − c and
λ2 = v + c. Thus, in the subsonic case (∣v∣ < c) one always has a characteristic directed to
the right and a characteristic directed to the left.

4.1 Semilinear Equations

If z(p) = z0 is assumed to be constant, the result is a constant speed of sound c =
√
p/ρ.

Then, the term in the spatial derivative of the momentum equation can be transformed
into

p + ρv2 = p(1 + v2

c2
) . (20)

For small flow rates ∣v∣ ≪ c, Osiadacz [31] suggests to approximate the term in parentheses
by 1. (Alternatively, one can assume that ∂

∂x(ρv
2) is small and continue to calculate with

nonconstant z-factor.) This eliminates the nonlinearity on the left-hand side and results
in a semilinear model:

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂

∂t
(ρv) + ∂p

∂x
= − λ

2D
ρv ∣v∣ − gρ sin(α).

(ISO2)
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In this model, the eigenvalues of the Jacobian matrix of the flux function are λ1 = −c and
λ2 = c (a negative and a positive characteristic).

Another possibility to derive semilinear equations is to study small perturbations on a
fast time scale around a constant density and velocity zero [5, Section 3.2.2]. We set

τ = t

ε
, ρ(x, t) = ρ0 + εβρ1 (x,

t

ε
) , v(x, t) = εβ−1w (x, t

ε
) (21)

with a small ε > 0 and εβ ∶=D/λ. Then, we recover model (M1) from [5]:

∂ρ1
∂τ
+ ρ0

∂w

∂x
= 0,

∂w

∂τ
+ p′(ρ0)

ρ0

∂ρ1
∂x
= −w∣w∣

2
,

(ISO2F)

completed with the gas law p(ρ) = ρTwz(ρ, Tw), where Tw is the wall temperature.
Introducing q0 ∶= ρ0w as a first order approximation around ρ0 to the mass flow, we may
write

∂ρ1
∂τ
+ ∂q0

∂x
= 0,

∂q0
∂τ
+ p′(ρ0)

∂ρ1
∂x
= −q0∣q0∣

2ρ0
.

(22)

This is a well-known model on the fast time scale.

If we follow the scaling approaches in [5] for the friction-dominant case, we obtain the
model (FD1) (= friction dominated) presented there:

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,
∂p

∂x
= − λ

2D
ρv ∣v∣ − gρ sin(α),

(ISO3)

where additionally the gravitational force was neglected in the asymptotic consideration.
The parabolic character of the pressure can be made visible by equivalent transforma-
tions. With α = 0 this results in (model (FD1b) from [5]):

∂p

∂t
= 1

2

√
DRTz0

λ

∂2

∂x2 p
2

√
∣ ∂
∂xp

2∣
,

∂p

∂x
= − λ

2D
ρv ∣v∣ .

(ISO3P)

Typically, the pressure is then specified at both ends. These types of models are also
discussed in the gas literature [31].
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4.2 Algebraic Equations

In the stationary case the time derivatives disappear. Neglecting gravity and using a
constant compressibility factor z = z0, the equations are as follows:

∂

∂x
(ρv) = 0,

∂p

∂x
= − λ

2D
ρv ∣v∣ .

(ISO4)

The flux ρv is thus constant in space (and is given by the boundary condition) and the
second equation can be solved analytically for p (transforming: ρv ∣v∣ = c2ρv∣ρv∣

p ):

p(x) =
√

p2in −
λc2x

D
ρv ∣ρv∣

bzw.

pout =
√

p2in −
λc2L

D
ρv ∣ρv∣ . (ISO4-ALG)

Here L is the length of the pipe with coordinate x ∈ [0, L] and pin and pout are the inlet
and outlet pressure, respectively. If the flow is now represented by the pressure difference
in this case, the so-called Weymouth equation is obtained by solving for ρv.

5 Model Hierarchy for Temperature-Dependent Euler
Equations

For the temperature-dependent models, we want to proceed analogously to the isothermal
models.

5.1 Simplified Nonlinear Equations

Starting from the full Euler equations (TA1), we first assume that for small velocities
the temporal and spatial derivatives of ρv2 and also ρv3 are negligible. This results in
the model

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂

∂t
(ρv) + ∂p

∂x
= − λ

2D
ρv ∣v∣ − gρ sin(α),

∂

∂t
(ρe) + ∂

∂x
(ρve + pv) = −kw

D
(T − Tw) ,

(TA2)
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together with the equation of state p = RρTz(p, T ). In contrast to the isothermal case,
the equation remains nonlinear when these terms are omitted. The total energy E is
now given only by E = ρe (compared to E = ρe + 1

2ρv
2 for the full equations). Also, the

equation of state continues to depend in a nonlinear way on p and T .

If we again follow the scaling approaches in [5] for the friction-dominant case, we obtain
their model (ET3):

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,
∂p

∂x
= − λ

2D
ρv ∣v∣ − gρ sin(α),

∂

∂t
(ρe) + ∂

∂x
(ρve + pv) = −kw

D
(T − Tw) ,

(TA3)

where the gravitational influences were generally neglected in the asymptotic considera-
tion.

To calculate the characteristics, the term ε ∂
∂t(ρv) has to be added in the second equation.

In the limit case ε → 0 the eigenvalues λ1 → −∞, λ2 = v and λ3 → ∞ are obtained, i.e.
one characteristic depending on the flow direction and two characteristics with infinite
propagation velocity.

5.2 Stationary Model

As with the isothermal models, a steady state can be assumed here as well. The resulting
equations are (neglecting gravity):

∂

∂x
(ρv) = 0,
∂p

∂x
= − λ

2D
ρv ∣v∣ ,

∂

∂x
(ρve + pv) = −kw

D
(T − Tw) ,

(TA4)

From the first equation it follows again that ρv is constant in space. However, since
the more complex equation of state, with z = z(p, T ) nonlinear, applies here, the other
two equations cannot directly be solved analytically. For this purpose, further simpli-
fications may have to be assumed, such as a constant compressibility factor. If one
assumes that the compressibility factor is constant, the speed of sound c is also con-
stant and c2 = p/ρ holds. The energy equation can then be simplified using e = cvT
to

∂

∂x
(ρv(cvT + c2)) = −

kw
D
(T − Tw) , (23)
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and since ρv is again constant in space,

∂T

∂x
= − kw

Dcvρv
(T − Tw) . (24)

The complete equations are thus given by

∂

∂x
(ρv) = 0,

∂p

∂x
= − λc2

2Dp
ρv ∣ρv∣ ,

∂T

∂x
= − kw

Dcvρv
(T − Tw) .

(TA4b)

The exact solution of the energy equation is

T (x) = (T (x0) − Tw) ⋅ e−
kw

Dcvρv
(x−x0) + Tw, (25)

and the overall system reads (with x0 = 0 and x = L)

ρv = const.,

pout =
√

p2in −
λc2L

D
ρv ∣ρv∣,

Tout = (Tin − Tw) ⋅ e−
kw

Dcvρv
L + Tw.

(TA4-ALG)

6 Model Hierarchy for Pipe Modeling

The models presented here differ in each case by omitting individual terms or applying
scaling arguments from [5]. In addition, simplified equations of state may be assumed.
Figures 6 and 7 give a brief summary of the simplification steps.

7 Net Modeling

Let G = (V,E) be the graph of the gas net with the nodes V = {v1, n2, . . . , vV } and the
edges E = {e1, e2, . . . , eE} where V = ∣V∣ and E = ∣E∣. For a unique description of the
network equations, we give each edge a fixed orientation, see Figure 8. Correspondingly,
we denote the two nodes belonging to an edge as left node vL and as right node vR
with the convention that the edge is always oriented from the left to the right node. We
consciously avoid the notation vin and vout since the flow direction can change during
the network operation. Positive flow values correspond to flows from the left to the right
node. Negative flow values mean flows from right to left node.
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Euler equations (TA1)

(TA3) ∧= (ET3) [5]

time scaling [5]

(TA2)

stationary model (TA4)

temperature-dependent
algebraic model

(TA4b) resp. (TA4-ALG)

z = const.

∂
∂t
= 0

∂
∂x
(ρv2), ∂

∂x
(ρv3) small

∂
∂t
= 0

Figure 6: Model hierarchy for the temperature-dependent Euler equations

7.1 Incidence Matrices

The assignment of the left and right nodes of an edge to the nodes V can be easily
described by the incidence matrices AL, AR ∈ RV ×E defined as follows.

(AL)ij =
⎧⎪⎪⎨⎪⎪⎩

− 1, if node vi is the left node of the edge ej ,

0, else,

(AR)ij =
⎧⎪⎪⎨⎪⎪⎩

+ 1, if node vi is the right node of the edge ej ,

0, else.
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isothermal Euler
equations (ISO1)

(ISO3) ∧= (FD1) [5]

time scaling [5]

semilinear model (ISO2)

stationary model
(ISO4)

algebraic model
(ISO4-ALG)

z = const.

∂
∂t
= 0

∂
∂x
(ρv2) small

∂
∂t
= 0

Figure 7: Model hierarchy for the isothermal Euler equations

We assume that there are no edges whose left and right nodes are identical, i.e. we do
not allow self-loops. Then it follows for the incidence matrix A ∶= AL +AR that

(A)ij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− 1, if node vi is the left node of the edge ej ,

+ 1, if node vi is the right node of the edge ej ,

0, else.

7.2 Flow Balance Equations

Using the incidence matrices it is easy to formulate the flow balance equations for each
node. Let the i-the component of qL be the flow of the edge ei on the left side and the
i-th component of qR be the flow of the edge ei at the right side, see Figure 8. Then, the
flow balance equations are given by

ALqL +ARqR = 0. (26)
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evL vRe

pL pR

qL qR

Figure 8: Branch flows qL and qR as well as pressures pL and pR at the left and right
nodes of an oriented edge e

The i-th row of the equations system (26) reflects the sum of all incoming flows (with
minus sign) and outgoing flows (with plus sign) at the node vi.

For a simple modeling of supply and demand flows, we use the model of supply and
demand nodes. Correspondingly, we can write the flow balance equations as

ALqL +ARqR = qs (27)

where qs denotes the amount of supplied gas (with plus sign) and extracted gas (with
minus sign) at the network nodes. If a node is neither a supply nor a demand node then
the corresponding component of qs is zero. For the special case that all flows on the
edges are constant (i.e. independent from the position) then we have qL = qR =∶ q and the
flow balance equations read

Aq = qs. (28)

7.3 Pressure Differences

The operation of network elements often depends on the pressure difference between two
nodes. The incidence matrices can be used to easily describe these pressure differences.
First, we can express the vector pL of all left pressures and the vector pR of all right
pressures belonging to the edges (see Figure 8)

pR = A⊺Rp und pL = −A⊺Lp. (29)

where p is the vector of all node pressures. Thus, the pressure differences along all edges
are given by

pR − pL = A⊺Rp +A⊺Lp = A⊺p. (30)

7.4 Network Elements

The next subsections describe the element equations for typical gas network elements.
Note that we introduced pL, pR, qL and qR as vectors of pressures and flows of all edges
of the network. In the following subsections, they are used for the pressures and flows of
the described elements only.
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7.4.1 Pipes

The pipe modeling is described in detail on different modeling levels in Section 2. For
an overview see Section 6.

7.4.2 Valves

Valves are available in various designs and model formulations. The easiest modeling
describes a valve as a switch with two states open and closed. In the open state we have

q ∶= qR = qL, pL = pR. (31)

In the closed state there is no flow, i.e.

q ∶= qR = qL = 0. (32)

7.4.3 Check Valve

Check valves are self controlling valves that allow only one flow direction. They are used
to protect the network against pressure overload and loss of outflow in the event of pipe
breaks [4]. We choose the pipe orientation such that it directs along the allowed flow
direction. Again we have to states: open and closed. If the check valve is open we have

q ∶= qR = qL, pL = pR. (33)

Analogously, we obtain for closed check valves

q ∶= qR = qL = 0. (34)

The control of the check valves can be modeled as follows:

1. If the valve is closed and pL > pR then the valve turns to open state.

2. If the valve is open and qR < 0 then the valve turns to closed state.

7.4.4 Resistances

A resistance is a simple edge element to describe the hydraulic resistance of a device. It
is also used model the pressure loss in network components as for example filter systems.
The pressure loss ∆p = pL − pR can be modeled by (see [14,36])

pL − pR =
ζ

2
ρLv∣v∣ =

ζ

2

q∣q∣
ρLA2

(35)

with q ∶= qL = qR. Here, ζ, v, ρL and A are the pressure loss coefficient, the velocity of
the gas the gas density at the left node (= inflow node) and the pipe cross-section. If the
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real gas factor z0 is assumed to be constant then we have pL = ρLc2 with the constant
speed c of sound. Hence,

pL(pL − pR) = bq∣q∣ (36)

with b ∶= c2

2a2
ζ. If the pressure loss coefficient and/or the pipe cross-section are not known

then the pressure loss is modeled as constant (see [36]):

pL(pL − pR) = sign(q)ξ (37)

with a pressure loss constant ξ.

7.4.5 Controllers with Characteristic Curves

Controller control the flow in dependence on the adjacent pressures and a proportional
opening parameter o, i.e.,

q ∶= qR = qL = f(pL, pR, o) (38)

where f is describes the characteristic curve. One example is the characteristic curve for
Mokveld valves (see [17]):

q ∶= qR = qL = c1(o)
241c2pL(p∗ − 0.148p3∗)√

ρTz
, p∗ =min{1.5, 1.63

c2(o)

√
pL − pR

pL
} (39)

where the coefficients c1(o) and c2(o) depend on the parameter o.

7.4.6 Preheater

The high pressure is reduced at the take-off stations. Gas preheating is required to
prevent impermissible cooling when reducing the pressure (due to the Joule-Thomson
effect). The gas is heated in heat transfer stations so far that the gas temperature is
higher than the dew point of the gas after throttling [4]. The temperature difference
depends on the pressure difference and can be described by [36]

dT
dp
= µJT (p, T ) =

R

c̃p

T 2

p

∂z(p, T )
∂T

. (40)

Here, µJT is the Joule-Thomson coefficient, R is the universal gas constant, c̃p is the
molar heat capacity and z(p, T ) is the real gas factor. The simple approximation by
one implicit Euler discretization step is usually sufficient as model for simulation and
optimization [36]. Then, we obtain

TR − TL

pR − pL
= µJT (pR, TR) =

R

c̃p

T 2
R

pR

∂z

∂T
(pR, TR), (41)

as element equation for the preheater. There, TL and TR are the temperatures at left
and right node of the preheater. Correspondingly, TL is the gas temperature before the
heating and TR is the gas temperature after the heating. The flow value keeps constant
during the heating, i.e., q = qL = qR.
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7.4.7 Compressor

Compressors are required in gas pipelines since the pressure decreases significantly after
approx. 100 to 150 km and the gas flows more slowly due to the friction of the gas flow
on the pipe walls. The compression costs depend on the number of compressors and the
compression ratio. Low compression ratios result in lower energy costs but require more
compressor stations [4]. After compression, the pressure within a gas pipeline is up to
100 bar [23]. The compression is usually described by compressor maps (see Figure 9)
derived from measured values of the enthalpy Had, i.e., the energy needed to compress
one unit of mass of the gas.
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Figure 9: Compressor map of a turbo compressor: Isentropic enthalpy change Had vs.
volume flow Q = q/ρ. The horizontal isolines describe the characteristic curves
with constant speed, i.e., with constant drive. The vertical isolines represent
the characteristic curves with constant efficiency ηad.

It must be ensured that compressors do not operate outside the stability limits of the
map. Otherwise the stress would be too high for the machine and its function could be
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destroyed. The enthalpy change Had depends on the pressure and the temperature and
can be described as [6]

Had = z(pL, TL)TLRs
κ

κ − 1
⎛
⎝
(pR
pL
)

κ−1
κ

− 1
⎞
⎠

(42)

where the isentropic exponent κ depends on pressure and temperature. However, it is
often considered as constant κ = 1.29 in practice [28]. Furthermore, Rs is the specific gas
constant and TL is the temperature at the inflow of the compressor. Correspondingly, pL
and pR are the pressures at the inflow and outflow of the compressor. The temperature
TR at the outflow is given by [6]:

TR = TL (
pR
pL
)

κ−1
κ

. (43)

Combining (42) and the compressor map, the relationship between pressure and flow of
a compressor is given.

For turbo compressors, the compressor map is typically used for quadratic approxima-
tions for the lower, left, upper and right boundary of the compressor map. This gives
rise to the conditions

Had ≥ αi
2Q

2 + αi
1Q + αi

0 i = 1,2,
Had ≤ αi

2Q
2 + αi

1Q + αi
0 i = 3,4.

(44)

Beside turbo compressors also reciprocating compressors are used [34]. Reciprocating
compressors are usually used only for small compressor capacities. For higher compressor
capacities, one uses mainly turbo compressors with gas turbine drive [6].

7.4.8 Cooler

The compression of the gas leads to a temperature increase due to the Joule-Thomson
effect. Therefore gas coolers are used for regulated cooling of the gas within compressor
stations. The temperature decrease can be modeled as [28]

TR = Tc + (TL − Tc) exp(−
k

q
) , (45)

with q = qL = qR. Again, TL and TR are the temperature at the inflow and the outflow
of the cooler. Tc is the temperature of the coolant at the inflow and k is a constant.

7.4.9 Compressor Groups and Compressor Stations

Typical real gas networks contain compressor stations with multiple compressors. An im-
portant special case are simple compressor stations that compress gas along one pipeline
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in a fixed direction. Common simulation software such as SIMONE [26] provides macro
elements describing simple compressor stations. In accordance to the terminology from
the ForNe project [34] we denote them as compressor groups.

A compressor group consists of a number of compressors, one upstream and one down-
stream resistor modeling the cumulative pressure loss in the pipes within the compressor
station, a cooler to prevent overheating and a so-called bypass, which controls the flow
of the gas via a valve without compression, see Figure 10. A compressor group allows
a number of configurations, whereby a configuration specifies how a subset of the com-
pressors is switched. There are series connections of parallel connections of compressors
possible. Each compressor within one configuration is used at most once. Within the
network, a compressor group is modeled by an edge connecting a node vL with a node vR.
In the active case (no bypass mode), the compression direction points from vL to vR.

vL

pre-resistance post-resistance    cooler

vR

M1

M2

M1 M2

M1

M2

bypass

Figure 10: Schematic representation of a compressor group with two compressors, all
theoretically possible configurations of these compressors and the bypass
mode [34]. Depending on the selected configuration, gas flows through ex-
actly one of the dotted paths, i.e., either via the bypass without pressure loss
or via one compressor configuration, whereby the pressure loss in internal pipe
connections is modeled by additional resistances.

In complex gas networks, compressor stations connect several pipelines with each other.
They are used to distribute gas between these pipelines, see Figure 11. A compressor
station can be operated in different routes. A route defines how the gas flows through
the compressor station and which compressors are active. The possible routes are usu-
ally modeled over larger subnetworks that contain valves beside pipes, compressors and
compressor groups [34].

Suitable switching configurations for the valves and compressors can then be used to
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model the possible routes in the real network. Each route corresponds to a fixed state
of each valve (open or closed) and each compressor (open, active, bypass) of the sub-
network. For an overview of further and especially simplified models for compressors and
compressor stations we refer to [16].

7.5 Classes of Network Models

This section provides a list of sample model classes for real gas networks. We start
with the simplest one describing networks with pipes only and using the pure algebraic
ISO4 modeling for pipes. It neglects valves and compressors that belong to all real gas
transport networks (over long distances) but allows a fast and rough approximation of
the flow through the pipe network.

Beside the description of the gas network elements we have to consider the flow balance
equation and the fact that the pressure at each end of a branch element (pipe, valve,
resistor, compressor or compressor group) equals the pressure at the node connected to
the end. Therefore, we use the pipe equations using pressure p and mass flow q instead
of density ρ and velocity v. For that we exploit the state equation

p = RρTz(p)

and the 1D representation of mass flow

q = ∂m

∂t
= ρ∂V

∂t
= ρav

with m being the mass, V being the volume and a being the cross-section of the pipe.
In contrast to the literature we use a lowercase letter a instead of A in order to avoid
misunderstandings with the incidence matrix A. Both equations yield

ρ = p

RTz(p) , ρv = q

a
, v = RT

a

z(p)
p

q. (46)

7.5.1 Pipe Network with ISO4 Modeling

Regarding (46), the stationary pipe equations (ISO4) are given by

∂xq = 0,

∂x(p2) = 2p∂xp = −
c2λ

a2D
q ∣q∣

(47)

with the sound velocity c satisfying c2 = RTz0 for z(p) ≡ z0. We see that q is constant
with respect to space on each pipe and the second equation yields

p2(xR) − p2(xL) = −
c2λ

a2D
q ∣q∣ (xR − xL) (48)
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(a) 4-fold parallel compressed gas flow from
north to south

(b) 3-fold parallel compressed gas flow from
east to south

(c) 2-fold serial compressed gas flow from
east to south

(d) 2-fold parallel compressed gas flow from
north to east and 1-fold compressed gas flow
from north to south

Figure 11: Four routes of a real compressor station that connects one north to south
pipeline with a pipeline directing to east in a T-shaped form.
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with the end points xL and xR of the pipe. Regarding the flow balance equation (28),
the whole network system is then given by

(A⊺Rp)2 − (A⊺Lp)2 = f(q),
Aq = qs

(PNET-ISO4)

with the vector of nodal pressures p = (p1, . . . , pV )⊺, the vector of pipe flows q = (q1, . . . , qE)⊺
and

f(q) =
⎛
⎜⎜⎜
⎝

⋮
− c2jλ

a2jDj
qj ∣qj ∣ (xRj − xLj)

⋮

⎞
⎟⎟⎟
⎠

7.5.2 Pipe Network with ISO2 Modeling

Regarding (46), the pipe equations (ISO2) are represented by

∂t (
p

z(p)) +
RT

a
∂xq = 0,

∂tq + a∂xp = −
λRT

2aD

z(p)
p

q ∣q∣ − ag

RT

p

z(p) sin(α).
(49)

Due to the flow balance equation (28), the whole pipe network is given by

∂tg(p) +Dq∂xq = 0, ∂tq +Dp∂xp = f(p, q),
p(xL, ⋅) = −A⊺Lp̄, p(xR, ⋅) = A⊺Rp̄,
q(xL, ⋅) = qL, q(xR, ⋅) = qR,

ALqL +ARqR = qs,

(PNET-ISO2)

with the vector of nodal pressures p̄ = (p̄1, . . . , p̄V )⊺, the vector of pipe pressures p =
(p1, . . . , pE)⊺, the vector of pipe flows q = (q1, . . . , qE)⊺,

Dq = diag{. . . , RjTj

aj
, . . .}, Dp = diag{. . . , aj , . . .}

and

g(p) =
⎛
⎜
⎝

⋮
p

z(p)
⋮

⎞
⎟
⎠
, f(p, q) =

⎛
⎜⎜
⎝

⋮
−λRjTj

2aD
z(pj)
pj

qj ∣qj ∣ − ajg
RjTj

pj
z(pj) sin(αj)

⋮

⎞
⎟⎟
⎠
.

Notice that xL and xR are also considered as vector of all left and right end points
here. One can apply various discretization approaches in space and time to the network
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equation system (PNET-ISO2) for stable simulation and efficient optimization. One
opportunity is the implicit box scheme [21,22]. Using a two-point discretization yields

1

2
(g(−A⊺Lp̄n+1) + g(A⊺Rp̄n+1)) =

1

2
(g(−A⊺Lp̄n) + g(A⊺Rp̄n)) −∆t D̃q ⋅ (qn+1R − qn+1L ) ,

1

2
(qn+1L + qn+1R ) = 1

2
(qnL + qnR) −∆t D̃p ⋅ (A⊺Rp̄n+1 +A⊺Lp̄n+1)

+ 1

2
∆t (f(−A⊺Lp̄n+1, qn+1L ) + f(A⊺Rp̄n+1, qn+1R )) ,

ALqL +ARqR = qs
(PNET-ISO2-IBOX)

with

D̃q = diag{. . . , RjTj

aj(xRj
−xLj

) , . . .}, D̃p = diag{. . . , aj
xRj
−xLj

, . . .}.

The upper index n denotes the n-th time step with stepsize ∆t. This nonlinear method
was already applied successfully in connection with a piecewise linearization [10]. It is
suitable for stiff as well as for non-stiff source terms. The time stepsize is only weakly
limited by a lower boundary ∆t ≥ ∆x

2c if z(p) ≡ z0, see [21, 22]. We refer here also to
other classical finite volume methods as the Lax-Friedrichs, the vector splitting or the
Godunov method [24]. Such discretizations require equation dependent considerations for
the combined realization of boundary and coupling conditions as well as the use of limiter
approaches. It leads to a significantly more complex structure and the well-known CFL
condition (CFL = Courant-Friedrichs-Levy) that is given as c∆t ≤ ∆x for the (ISO2)
model with z(p) ≡ z0.

In order to handle a possible stiffness of the friction term (and hence more restrictive
limits to the time stepsize), so-called IMEX-Runge-Kutta methods have proven their
value in practice [19]. There, the hyperbolic part is treated explicitly and the reaction
part is treated implicitly. In context of differential-algebraic equations arising from semi-
dscretizations in space implicit as well as semi-explicit methods are common [1].

A stable discretization without a time stepsize limit can be obtained when the spatial
discretization is adapted to the network topology, namely to the topological connection of
supply and demand nodes, and an A-stable time-step method is applied to the resulting
differential-algebraic system of index 1, see [3, 18].

7.5.3 Pipe Networks with Valves

In case of pipe networks with valves we have additional valve flows qv. For pipes modeled
by ISO4 we obtain the following extension of the system (PNET-ISO4):

(A⊺R p)2 − (A⊺L p)2 = f(q),
S(A⊺vRp −A

⊺
vL
p) + (I − S)qv = 0,

Aq +Avqv = qs.
(PVNET-ISO4)
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with S = diag{. . . , sj , . . .}. Here, A = AL + AR and Av = AvL + AvR are the incidence
matrices for pipes and valves, respectively. The switching parameter sj describes the
open/closed state of the valve with number j: In open state we have sj = 1, in closed
state sj = 0. In case of other valve models (check valves for example), one has to adapt
the valve equations appropriately.

In case of an (ISO2) modeling for pipes we obtain the extension of system (PNET-ISO2):

∂tg(p) +Dq∂xq = 0, ∂tq +Dp∂xp = f(p, q),
p(xL, ⋅) = −A⊺L p̄, p(xR, ⋅) = A⊺R p̄,

q(xL, ⋅) = qL, q(xR, ⋅) = qR,
S(A⊺vL p̄ −A

⊺
vR
p̄) + (I − S)qv = 0,

ALqL +ARqR +Avqv = qs.

(PVNET-ISO2)

7.5.4 Pipe Networks with Valves, Resistances, Coolers and Compressor Stations

As described before, real gas networks consist of pipes, valves, resistances, coolers and
compressor stations. Correspondingly, we obtain (in case of ISO4 pipe modeling) the
equation system

Aq +Avqv +Arqr +Alql +Acqc = qs,
(A⊺R p)2 − (A⊺L p)2 = f(q),

S(A⊺vLp −A
⊺
vR
p) + (I − S)qv = 0,

fr(A⊺rLp,A
⊺
rR
p, qr) = 0,

fl(A⊺lLT,A
⊺
lR
T, ql) = 0,

H(qc, u) − d (A⊺cLp,A
⊺
cR
p,A⊺cLT) = 0,

fc(A⊺cLp,A
⊺
cR
p,A⊺cLT,A

⊺
cR
T ) = 0,

+ conditions for routes for compressor stations

(PVCNET-ISO4)
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with

fr(pL, pR, q) =
⎛
⎜
⎝

⋮
pLj(pRj − pLj) − bjqj ∣qj ∣

⋮

⎞
⎟
⎠
,

fl(TL, TR, q) =
⎛
⎜⎜
⎝

⋮
TRj − Tcj − (TLj − Tcj) exp (−

kj
qj
)

⋮

⎞
⎟⎟
⎠
,

fc(pL, pR, TL, TR) =
⎛
⎜⎜⎜
⎝

⋮

TRj − TLj (
pRj

pLj
)

κ−1
κ

⋮

⎞
⎟⎟⎟
⎠
, H(q, u) =

⎛
⎜
⎝

⋮
Hj(qj , uj)

⋮

⎞
⎟
⎠
,

d(pL, pR, T ) =
⎛
⎜⎜⎜
⎝

⋮

z(pLj , Tj)TjRs
κ

κ−1((
pRj

pLj
)

κ−1
κ − 1)

⋮

⎞
⎟⎟⎟
⎠
.

Here, A, Av, Ar = Ar
L +Ar

R, Al = Al
L +Al

R and Ac = Ac
L +Ac

R are the incidence matrices
for the pipes, valves, resistances, coolers and compressors. T represents the vector of
temperatures at the nodes. Tcj is the temperature of the coolant in cooler with number
j. Further, Hj(q, u) is the flow-enthalpy characteristic curve of the compressor with
number j depending on the control u. For compressor groups, one uses subnets as given
in Figure 10. Then, (PVCNET-ISO4) can applied as for a set of single compressors.

8 Discretizations

In the following, we present a brief summary of basic numerical methods and concepts
for the treatment of hyperbolic balance laws. These have to be supplemented by ap-
propriate discretizations of boundary and coupling conditions as well as further network
components like compressors and valves.

The Euler equations (TA1) on a single pipe can be formalized into a system of nonlinear
balance equations of the form

∂tu + ∂xf(u) = g(x,u). (50)

The standard method for solving these equations is the finite volume method. This
method is based on the integral form of the equations above, which are often closer
to the physics of the problem. This offers elegant ways to numerically solve even non-
smooth physical phenomena such as shock waves, contact discontinuities and rarefaction
waves at high precision. Among the best known classical methods are the Lax-Friedrichs
and Godunov methods. The latter uses the solution of local Riemann problems at cell

30



boundaries, which is often replaced in practice by suitable approximations. The Lax-
Friedrichs method, like other finite volume methods, can be regarded as a conservative
finite difference method.

A common strategy is the coupling of high accuracy methods in regions with smooth solu-
tions and TVD or TVB methods (total variation diminishing, total variation bounded) of
lower order in regions with discontinuities. In between, flux and slope limiters mediate, as
for example in MUSCL methods (monotonic upstream-centered scheme for conservation
laws). An excellent summary can be found in the book by LeVeque [24]. Generalizations
of the polynomial reconstructions of solutions across multiple cells used in these meth-
ods lead to the class of ENO and WENO methods (essentially non-oscillatory, weighted
essentially non-oscillatory). An overview with further references can be found in the
monograph by Shu [38]. Solving Riemann problems, especially at junctions in networks,
can become very costly and also prevents a compact notation of a discretization to be used
in optimization. Central methods, originating from work by Nessyahu and Tadmor [30]
that use staggered grids, avoid this difficulty and are easy to implement, especially in 1D.
Among this class are the attractive box methods introduced by Wendroff [41]. In time,
both explicit - which have to satisfy a Courant-Friedrichs-Levy (CFL) condition of the
form △t ≤ c(u)△ x for stability reasons - and implicit methods are used. IMEX-Runge-
Kutta methods allow an explicit discretization of the hyperbolic part and an implicit
discretization of the source g(x,u). Also very popular are SSP-Runge-Kutta and SSP
multi-step (SSP = strong stability preserving) methods [19].

In contrast to finite volume methods, Discontinuous Galerkin methods (DG) [9] do not
require reconstructions, since a higher order polynomial is already used in each cell.
However, this also requires multiple degrees of freedom to be stored and transported
per cell. Classical monotone flow approximations can still be used. DG methods have
excellent stability properties, they can be easily constructed for arbitrary orders, and
they allow simple h-p strategies to improve local approximation properties. Space-time
DG methods have also been developed. We refer to the two review articles by Cheng
and Shu [8] and Ekaterinaris [13] for recent comparisons and numerous further reading.

For convergence studies towards the (physically correct) entropy solution, the so-called
viscous equations are often used:

∂tuε + ∂xf(uε) = g(x,uε) + ε∂xxuε. (51)

These equations are themselves a starting point for further discretizations, which are
derived from the treatment of parabolic differential equations. Adding further terms, e.g.
second derivatives in time, motivates the widely used relaxation methods for hyperbolic
balance equations. An overview of the procedure and convergence results can be found
in [25].

An appropriate choice of discretization method will always depend on the objective for
numerical simulation, such as stability, high accuracy, low computation time, low mem-
ory, certain structure for optimization, complexity of adjoint equations, etc.
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9 Port-Hamiltonian Equations

9.1 Finite Dimension

9.1.1 Ordinary Port-Hamiltonian Equations

Let T be a real interval, let x ∶ T → Rn be the state and let u, y ∶ T →∈ Rm be the input
and output, respectively. The simplest form of a port-Hamiltonian system is

ẋ = (J −R)∇H(x) +Gu,

y = GT∇H(x),
(52)

where

• H ∈ C1(Rn) is a Hamiltonian function (often representing energy);

• J = −JT ∈ Rn,n is the structure matrix ;

• R = RT ≥ 0 ∈ Rn,n is the dissipation matrix ;

• G ∈ Rn,m is the port matrix.

Notably, the following power balance equation (PBE) is satisfied along any solution:

d
dt
H(x(t)) = ∇H(x)T ẋ = −∇H(x)TR∇H(x) + yTu. (53)

The dissipation inequality immediately follows by positive semi-definiteness of R:

d
dt
H(x(t)) ≤ yTu. (54)

These two properties can also be written in integral form:

H(x(t1)) −H(x(t0)) = ∫
t1

t0
(−∇H(x(t))TR∇H(x(t)) + y(t)Tu(t))dt

≤ ∫
t1

t0
y(t)Tu(t)dt.

(55)

9.1.2 Port-Hamiltonian Descriptor Systems

While (52) is useful to grasp the fundamental characteristics of a pH system, we present
here a formulation with far more generality. Let t ∈ T ⊆ R be the time, let x ∶ T → X ⊆ Rn

be the state, and let u, y ∶ T → Rm be the input and output, respectively. Consider the
following system of differential-algebraic equations:

E(x, t)ẋ + r(x, t) = (J(x, t) −R(x, t))e(x, t) + (G(x, t) − P (x, t))u,
y = (G(x, t) + P (x, t))T e(x, t) + (S(x, t) −N(x, t))u,

(56)

together with a Hamiltonian function H ∈ C1(X × T ), where
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• E ∶ X × T → Rℓ,n is the storage flow matrix function (possibly singular or rectan-
gular);

• J,R ∶ X ×T → Rℓ,ℓ are the structure and dissipation matrix functions, respectively;

• G,P ∶ X × T → Rℓ,m are the port matrix functions;

• S,N ∶ X × T → Rm,m are the feed-through matrix functions;

• r ∶ X × T → Rℓ is the time flow function;

• e ∶ X × T → Rℓ is the effort function.

The system (56) is called a port-Hamiltonian differential-algebraic equation (in short
pHDAE) or a port-Hamiltonian descriptor system if the following properties are satisfied:

i) The total structure and total dissipation matrix functions L,W ∶ X ×T → Rℓ+m,ℓ+m,
defined as

L ∶= [ J G

−GT N
] , W ∶= [ R P

−P T S
] ,

satisfy L = −LT and W = W T ≥ 0 pointwise. In particular, J = −JT , N = −NT ,
R = RT ≥ 0 and S = ST ≥ 0.

ii) The flow and effort functions are related to the Hamiltonian by the following:

∇xH(x, t) = E(x, t)T e(x, t),
∂H
∂t
(x, t) = r(x, t)T e(x, t),

for all (x, t) ∈ X × T .

If these conditions are satisfied, then again a PBE and a dissipation inequality hold:

d
dt
H(x(t), t) = ∇xHT ẋ + ∂H

∂t
= −[e

u
]
T

W [e
u
] + yTu, (57)

d
dt
H(x(t), t) ≤ yTu. (58)

It can be shown that any pHDAE can be made autonomous without breaking the struc-
ture. In particular, it can be helpful to write the general autonomous formulation:

E(x)ẋ = (J(x) −R(x))e(x) + (G(x) − P (x))u,
y = (G(x) + P (x))T e(x) + (S(x) −N(x))u,

(59)

with condition (ii) replaced by

ii-a) The flow and effort functions are related to the Hamiltonian by the following:
∇H(x) = E(x)T e(x), for all x ∈ X .

More details can be found in [27].
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9.2 Infinite Dimension

We provide a general formulation for port-Hamiltonian partial-differential equations. The
definitions in this subsection may be imprecise, and have the goal of giving a quick
overview of how things work in infinite dimension. In particular, while the presented
formulations can be applied both to functions with regular and weak derivatives, we will
never consider specific function spaces explicitly. More precise details will be included
in [29].

Let I,T ⊆ R be open intervals of the real line representing space and time, respec-
tively; furthermore, assume that I = (a, b) is bounded. Instead of mapping into finite-
dimensional spaces Rℓ,Rn,Rm, we will consider here function spaces. More precisely, the
state space Z is a linear subspace of a vector space product Zd×Zb, where Zd is a vector
space of functions from I to Rnd , and Zb ≅ Rnb , for some nd, nb ∈ N0. In other words,
z ∈ Z is of the form z = (zd; zb), with zd ∶ I → Rnd and zb ∈ Rnb ; the variable zd represents
quantities that are defined for any point of I, i.e., densities, while zb represents a finite
number of quantities, for example the values at the boundary. Similarly, we have a flow
space F ⊆ Fd × Fb and an effort space E ⊆ Ed × Eb with dimensions ℓd, ℓb, and an input
space U ⊆ Ud×Ub and an output space Y ⊆ Yd×Yb with dimensions md,mb. Furthermore,
we introduce the duality pairing/inner product

eT f = ∫
b

a
ed(x)T fd(x)dx + eTb fb,

yTu = ∫
b

a
yd(x)Tud(x)dx + yTb ub,

for all e = (ed, eb) ∈ E , f = (fd, fb) ∈ F , y = (yd, yb) ∈ Y and u = (ud, ub) ∈ U .

In this context, if J ∶ E → F is a linear operator, we say that J is skew-symmetric
(J = −JT ) if eTJe = 0 for all e ∈ E . Similarly, we say that R ∶ E → F is symmetric
(R = RT ) if e′TRe = eTRe′ for all e, e′ ∈ E ; additionally, R is positive semidefinite (R ≥ 0)
if eTRe ≥ 0 for all e ∈ E , and positive definite (R > 0) if eTRe > 0 for all e ≠ 0.

Furthermore, if G ∶ U → F is a linear operator, we denote by GT ∶ E → Y a linear operator
satisfying (GT e)Tu = eTGu, for all e ∈ E and u ∈ U . In most cases, this operator can
be written in a way that resembles the transpose matrix in the finite-dimensional case,
therefore the notation.

In what follows, we will denote by L(V,W ) the vector space of linear operators from V
to W , for any vector spaces V and W . In addition, we will denote by TZ ≅ TZd × TZb

the tangent bundle of Z; without giving formal definitions, we consider this as the “space
of directions in which z can move in time”, i.e., a vector space that contains the time
derivative of any smooth trajectory z ∶ T → Z.
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9.2.1 Port-Hamiltonian PDAEs

We consider here just the autonomous case, and we also assume that the port operator P
and the feed-through operators S,N all vanish. This will let us keep the notation simple,
and will be sufficient to cover all presented gas pipe models.

Let z ∶ T → Z be the state, let u ∈ U be the input and let y ∈ Y be the output. Consider
the following system of differential-algebraic equations:

E(z)ż = (J(z) −R(z))e(z) +G(z)u,
y = G(z)T e(z),

(60)

together with a Hamiltonian function

H(z) = ∫
b

a
H(zd(x), zb, x)dx,

where

• E ∶ Z → L(TZ,F) is the storage flow operator ;

• J,R ∶ Z → L(E ,F) are the structure and dissipation operators, respectively;

• G ∶ Z → L(U ,F) is the port operator ;

• e ∶ Z → E is the effort function;

• H ∈ C1(Rnd ×Rnb × I,R) is the Hamiltonian density function.

The system (60) is port-Hamiltonian if the following properties are satisfied:

i) J = −JT and R = RT ≥ 0, pointwise;

ii) The flow and effort functions are related to the Hamiltonian by

δH
δz
(z) = E(z)T e(z), ∀z ∈ Z, (61)

where δ
δz is the Fréchet derivative. In other words, we have

∫
b

a
∇zH(zd(x), zb, x)T [

wd(x)
wb
]dx = e(z)TE(z)w,

for all z ∈ Z and w ∈ TzZ.

If these conditions are satisfied, a PBE and a dissipation inequality again hold:

d
dt
H(z(t)) = −e(z)TR(z)e(z) + yTu, (62)

d
dt
H(z(t)) ≤ yTu. (63)

This formulation works well to represent models with vanishing boundary conditions.
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9.2.2 Condensed Port-Hamiltonian PDAEs

When boundary conditions are not vanishing, we will often have

eTJe = (Y e)TUe, ∀e ∈ E ,
for some linear operators U,Y ∶ E → R2. When this happens, we will say that J is a
B-skew-symmetric operator with boundary input and output operators U and Y , respec-
tively. Usually Ue and Y e will depend on the values of ed at the boundary of the domain;
in that sense, they represent exchange of energy through the boundary.

For a simple example, consider the linear operator

J = [ 0 Dx

Dx 0
] ∶ [e1

e2
] ↦ [∂xe2

∂xe1
] .

Then we have

eTJe = [e1
e2
]
T

[∂xe2
∂xe1
] = ∫

b

a
(e1∂xe2 + e2∂xe1)dx =

= ∫
b

a
∂x(e1e2)dx = (e1e2)(b) − (e1e2)(a),

for all e ∶ I → R2 smooth enough1. We can then define Ue ∶= (−e1(a), e1(b)) and
Y e ∶= (e2(a), e2(b)) to have eTJE = (Y e)TUe. Note that the choice of operators U and
Y is not unique.

Consider again the system (60), but this time replace condition (i) with

i-a) J is B-skew-symmetric and R = RT ≥ 0, pointwise.

We call the obtained system condensed port-Hamiltonian, or B-port-Hamiltonian. It can
be shown that the following PBE and dissipation inequality hold:

d
dt
H(z(t)) = −e(z)TR(z)e(z) + yb(z)Tub(z) + yTu, (64)

d
dt
H(z(t)) ≤ yb(z)Tub(z) + yTu, (65)

where ub(z) = U(z)e(z) and yb(z) = Y (z)e(z), with U(z) and Y (z) boundary input and
output operators associated with J , respectively.

A condensed port-Hamiltonian system can almost always2 be completed to a port-
Hamiltonian descriptor system:

[E(z)
0
] ż = [ J(z) 0

−U(z) 0
] [ e(z)

Y e(z)] + [
G(z) 0
0 I

] [ u
ub
] ,

[ y
yb
] = [G(z)

T 0
0 I

] [ e(z)
Y e(z)] .

(66)

1This works for E = C1(I) and F = C(I), but also for Sobolev spaces.
2This will be discussed in greater detail in [29].
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The additional algebraic equation U(z)e(z) = ub usually prescribes some boundary con-
ditions.

10 Flow Models for Networks of Gas Pipes

10.1 The Euler equations (TA1)

The 1-D Euler equations are a system of nonlinear hyperbolic PDEs, that describe the
behavior of compressible, non-viscous fluids:

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(p + ρv2) = −
λ

2D
ρv ∣v∣ − gρ∂xh,

∂tE + ∂x((E + p)v) = −
kw
D
(T − Tw),

(TA1)

together with an equation of state for real gases f(p, ρ, T ) = 0, for x ∈ I = [0, L] and
t ∈ T , where L < ∞ is the length of the pipe and T ⊆ R is the time interval. Here ρ is
the density, v the velocity of the gas, T the temperature and p the pressure. Sometimes
we will denote by m the momentum, which is related to density and velocity by the
formula m = ρv. Furthermore, g is the gravitational constant, h = h(x) is the height
of the pipe, λ is the pipe friction coefficient, D is the pipe diameter, kw is the thermal
conductivity coefficient and Tw = Tw(x) is the superficial temperature of the pipe. The
variable E = ρ(12v

2 + gh + cvT ) is the total energy density, where cv is the specific heat.
Depending on the model chosen for the equation of state, one could solve p as a function of
ρ, T and substitute it in the equations. The first, second and third differential equations
represent conservation of mass, momentum and energy, respectively.

We can rewrite the equations with respect to the state variables z = (ρ, v, T ):

ρt + ∂x(ρv) = 0, (67a)

ρvt + ρ∂x(
1

2
v2 + gh) + px +

λ

2D
ρv ∣v∣ = 0, (67b)

cvρTt + cvρvTx + pvx −
λ

2D
ρv2 ∣v∣ + kw

D
(T − Tw) = 0. (67c)

and express this also as
E(z)ż = J(z)e(z) +G∆T, (68)

37



where ∆T ∶= Tw − T ,

E(z) =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 ρ 0
0 0 cvρ

⎤⎥⎥⎥⎥⎥⎦
, e(z) =

⎡⎢⎢⎢⎢⎢⎣

1
2v

2 + gh + cvT
v
1

⎤⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎣

0
0
kw
D

⎤⎥⎥⎥⎥⎥⎦
,

J(z) =
⎡⎢⎢⎢⎢⎢⎣

0 −Dxρ 0

−ρDx 0 −Dxp − λ
2Dρv ∣v∣ + cvρTx

0 −pDx + λ
2Dρv ∣v∣ − cvρTx 0

⎤⎥⎥⎥⎥⎥⎦
.

Here and in what follows, we use this notation: if a (component of an) operator is written
as T = g1Dxg2, for some functions g1, g2, we interpret T as the operator

Tf = g1Dxg2f ∶= g1∂x(g2f).

In other words, when Dx is present in the notation together with some other function,
it is to be interpreted that the other functions represent multiplication by that function,
and the operators have to be applied in composition order. In particular, J(z) has the
structure of a B-skew-symmetric operator, satisfying

eTJ(z)e = (ρe1e2 + p(z)e2e3)(0) − (ρe1e2 + p(z)e2e3)(L) =

= (ρe2(e1 + p(z)
ρ e3))(0) − (ρe2(e1 + p(z)

ρ e3))(L).

for all z,e ∶ I × T → R3 smooth enough. Let us consider as Hamiltonian function

H(z) = ∫
L

0
E(z(x))dx = ∫

L

0
ρ(1

2
v2 + gh + cvT)dx, (69)

It is easy to check that ∇H(z) = E(z)Te(z), therefore (68) expresses the condensed
port-Hamiltonian system

E(z)ż = J(z)e(z) +Gup,

yp =GTe(z),
(70)

that can be completed to the port-Hamiltonian descriptor system

Ẽ(z)ż = J̃(z)ẽ(z) + G̃u,

y = G̃T ẽ(z),
(71)

where

Ẽ = [E
0
] , J̃ = [ J 0

−U 0
] , ẽ = [ e

Y e
] ,

G̃ = [G 0
0 I

] , u = [∆T
ub
] , y = [yp

yb
] .
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A preferred choice of boundary input and output operators is

U(z)e = [ (ρe2)(0)−(ρe2)(L)
] , Y (z)e =

⎡⎢⎢⎢⎢⎣

(e1 + p(z)
ρ e3)(0)

(e1 + p(z)
ρ e3)(L)

⎤⎥⎥⎥⎥⎦
,

that for e = e(z) become

U(z)e(z) = [ m(0)−m(L)] , Y (z)e(z) =
⎡⎢⎢⎢⎢⎣

(E+pρ )(0)
(E+pρ )(L)

⎤⎥⎥⎥⎥⎦
.

This choice will be helpful for interconnecting multiple gas pipes into a network by us-
ing conservation of momentum. Indeed, in this way we can use the algebraic equation
U(z)e(z) = ub to set boundary conditions for the momentum. The power balance equa-
tion is then

d
dt
H(z(t)) = kw

D
∫

1

0
∆T dx + [v(E + p)]0L. (72)

10.2 Isothermal Model Hierarchy

10.2.1 Isothermal Euler Equations (ISO1)

In the isothermal case we take T (t, x) ≡ T0 and we remove the third equation from the
Euler equations. As a consequence, we get the following system:

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(p + ρv2) = −
λ

2D
ρv ∣v∣ − gρ∂xh.

(ISO1)

Since we are assuming the temperature to be constant, it sounds reasonable to take
as state z = (ρ, v), as total energy density EISO = ρ(12v

2 + gh), and as Hamiltonian
HISO = ∫ L

0 EISOdx. In particular, we have the (Fréchet) derivative

δHISO

δz
= [

1
2v

2 + gh
ρv

] = [1 0
0 ρ
] [

1
2v

2 + gh
v

] =∶ E(z)Te(z). (73)

As previously, it is easy to fit most of the terms in the port-Hamiltonian structure:

E(z)ż + [ 0 Dxρ

ρDx
λ
2Dρ ∣v∣]e(z) + [

0
∂xp
] = 0. (74)

Unfortunately, the ∂xp term does not fit in the (J(z) −R(z))e(z) part, so either we
interpret this term as an additional input, or we need to incorporate it in some different
way.

Suppose that the equation of state determines that the pressure can be written as a
function of the mass (and the constant temperature), i.e., p = p(ρ). If we add to EISO a
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potential term F (ρ) satisfying the second order ordinary differential equation ρF ′′(ρ) =
p′(ρ), one can show that

EISO1(z) = EISO(z) + F (ρ),

HISO1(z) = ∫
L

0
EISO1dx = HISO(z) + ∫

L

0
F (ρ)dx,

δHISO1

δz
= δHISO

δz
+ [F

′(ρ)
0
] = E(z)TeISO1(z).

In particular, we can write the system as

EISO1(z)ż = (JISO1(z) −RISO1(z))eISO1(z), (75)

where

EISO1(z) = [
1 0
0 ρ
] , JISO1(z) = [

0 −Dxρ
−ρDx 0

] ,

RISO1(z) = [
0 0

0 λ
2Dρ ∣v∣] , eISO1(z) = [

1
2v

2 + gh + F ′(ρ)
v

] .

From now on, we omit “ISO1” from the notation: when we write e, we refer to the version
with the F ′(ρ) term. Since J(z) is again a B-skew-symmetric operator satisfying

eTJ(z)e = (ρe1e2)(0) − (ρe1e2)(L), (76)

and clearly R = RT ≥ 0, this is a condensed port-Hamiltonian system (with no extra
input and output). It can then be completed to the port-Hamiltonian descriptor system

Ẽ(z)ż = (J̃(z) − R̃(z))ẽ(z) + G̃ub,

yb = G̃T ẽ(z),
(77)

where

Ẽ = [E
0
] , J̃ = [ J 0

−U 0
] , R̃ = [R 0

0 0
] , ẽ = [ e

Y e
] , G̃ = [0

I
] ,

A preferred choice for boundary input and output operators is

U(z)e = [ (ρe2)(0)−(ρe2)(L)
] , Y e = [e1(0)

e1(L)
] ,

so that for e = e(z) we have

U(z)e(z) = [ m(0)−m(L)] , Y e(z) = [(
1
2v

2 + gh + F ′(ρ))(0)
(1
2v

2 + gh + F ′(ρ))(L)] .
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The algebraic equation U(z)e(z) = ub prescribes the boundary conditions for the mo-
mentum. The power balance equation is then

d
dt
H(z(t)) = − λ

2D
∫

L

0
ρ ∣v∣ v2 dx + [ρv(1

2
v2 + gh + F ′(ρ))]

0

L
.

One can show that F (ρ) solves its defining ODE if and only if it is of the form

F (ρ) = ∬
p′(ρ)
ρ

dρ + c1ρ + c0, (78)

for some constants c1, c0 ∈ R. In particular, one can deduce that ρF ′(ρ) = F (ρ)+p(ρ), up
to an additive constant. Therefore, for a particular choice of c0 ∈ R, the PBE is actually

d
dt
H(z(t)) = − λ

2D
∫

L

0
ρ ∣v∣ v2 dx + [v(E + p)]0L,

which should be preferred because of consistency with (TA1).

We present explicit choices F (ρ), for two commonly used equations of state:

• Suppose that the equation of state is p = RρT (1 + αp), for some constant α. Since
the temperature T ≡ T0 is constant, we can write p as a function of ρ:

p(ρ) = RT0ρ

1 − αRT0ρ
. (79)

A solution of the defining ODE for F (ρ) is then F (ρ) = RT0ρ log p, that conve-
niently satisfies ρF ′(ρ) = F (ρ) + p.

• If the gas is ideal, then p = RTρ, i.e., α = 0. Instead of taking RT0ρ log p as before,
one can also equivalently take F (ρ) = RT0ρ log ρ, which satisfies both the ODE and
the relation ρF ′(ρ) = F (ρ) + p.

10.2.2 Semilinear Model (ISO2)

Assume that the equation of state can be approximated by p = c2ρ for some constant
c > 0; in particular, from now on we will take F (ρ) = c2ρ log ρ and F ′(ρ) = c2(log ρ + 1).
The term in the spatial derivative of the second equation of (ISO1) can then be written
as

p + ρv2 = p(1 + v2

c2
).

For small flow velocity ∣v∣ ≪ c, one can approximate the term in brackets with 1 and get
the following semilinear model:

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂xp = −
λ

2D
ρv ∣v∣ − gρ∂xh.

(ISO2)
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Alternatively, this model can be reached assuming ∂x(ρv2) to be negligibly small; in that
case, no assumption is necessary for the equation of state. If we take as previously E(z) =
1
2ρv

2+ρgh+F (ρ) and H(z) = ∫ L
0 E(z)dx, conservation properties are unfortunately lost.

This happens because the cancellation of the term ∂x(ρv2) breaks the port-Hamiltonian
structure. In fact, the system can now be written as

E(z)ż = [ 0 −Dxρ

−ρDx − λ
2Dρ ∣v∣ +Dxρv

]e(z) (80)

The problem is in the Dxρv entry of the matrix, that can be shown to be indefinite.

One possible solution is to look for a different total energy density (thus a new Hamil-
tonian). When the effect of gravity is negligible, this can be successfully done, but the
dimension and interpretation of energy is different. This will be discussed in more detail
in subsection 10.4.

10.2.3 Semilinear Model (ISO2F)

The model (ISO2F) admits a port-Hamiltonian structure, not with respect to the original
Hamiltonian but with respect to a quadratic Hamiltonian that can be thought of as an
approximation of the original Hamiltonian. We have

⎛
⎝

∂ρ1
∂τ

∂w
∂τ

⎞
⎠
=
⎛
⎝
⎛
⎝

0 − ∂
∂x

− ∂
∂x 0

⎞
⎠
−
⎛
⎝
0 0

0
∣w∣
2ρ0

⎞
⎠
⎞
⎠
⎛
⎝

p′(ρ0)
ρ0

ρ1

ρ0w

⎞
⎠

(81)

and therefore

∂z

∂τ
= (J −R(z))H′(z), H(z) = 1

2
∫

L

0

p′(ρ0)
ρ0

ρ21 + ρ0w2 dx (82)

with z = (ρ1,w)T .

10.2.4 The Friction Dominated Model (ISO3)

One possible solution to restore the port-Hamiltonian structure of (ISO2) is to remove
a second term. If we assume that ∂t(ρv) is small enough, so that it can be neglected, we
get the so-called friction dominated model:

∂tρ + ∂x(ρv) = 0,

∂xp = −
λ

2D
ρv ∣v∣ − gρ∂xh.

(ISO3)

This can be written equivalently as

EISO3ż = (JISO1(z) −RISO1(z))eISO3(z), (83)
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where JISO1(z) and RISO1(z) are the same as in (ISO1), and

EISO3 = [
1 0
0 0
] , eISO3(z) = [

gh + F ′(ρ)
v

] .

This is a condensed port-Hamiltonian descriptor system with associated Hamiltonian
function

HISO3(z) = ∫
L

0
EISO3(z(x))dx ∶= ∫

L

0
(ρgh + F (ρ))dx, (84)

since
δHISO3

δz
= [gh + F

′(ρ)
0

] = EISO3(z)TeISO3(z).

In other words, neglecting ∂x(ρv2) and ∂t(ρv) has the natural consequence of neglecting
the kinetic term of the Hamiltonian too.

Let us omit “ISO3” from the notation, for simplicity. We can complete this system to a
port-Hamiltonian descriptor system in the usual way. The choice of boundary input and
output operators U(z), Y is the same as for (ISO1). In particular, for e = e(z) we have

U(z)e(z) = [ m(0)−m(L)] , Y e(z) = [(gh + F
′(ρ))(0)

(gh + F ′(ρ))(L)] ,

the algebraic equation U(z)e(z) = ub sets the boundary conditions for the momentum,
and the power balance equation is again

d
dt
H(z(t)) = − λ

2D
∫

L

0
ρ ∣v∣ v2 dx + [v(E + p)]0L.

10.2.5 Algebraic Equations (ISO4)

In the stationary case, the other time derivative also disappears. Neglecting gravitation,
we get the algebraic equations

∂x(ρv) = 0,

∂xp = −
λ

2D
ρv ∣v∣ .

(ISO4)

Although the system has stationary dynamics, we can still interpret it as a condensed
port-Hamiltonian descriptor system of the form

0 = (JISO1(z) −RISO1(z))eISO4(z), (85)

with EISO4 = 0, eISO4(z) = (F ′(ρ), v), and all other coefficients defined as in (ISO1),
together with a trivial Hamiltonian HISO4(z) = const.
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Let us omit “ISO4” from the notation, for simplicity. We can complete this system to a
purely algebraic port-Hamiltonian descriptor system

0 = (J̃(z) − R̃(z))ẽ(z) + G̃ub,

yb = G̃T ẽ(z).
(86)

The boundary input and output operators U(z), Y are chosen as in (ISO3). In particular,
for e = e(z) we have

U(z)e(z) = [ m(0)−m(L)] , Y e(z) = [(F
′(ρ))(0)

(F ′(ρ))(L)] ,

the algebraic equation U(z)e(z) = ub sets the boundary conditions for the momentum,
and the power balance equation is

0 = − λ

2D
∫

L

0
ρ ∣v∣ v2 dx + [v(F (ρ) + p)]0L.

Although there is no dynamics involved, the port-Hamiltonian formulation of (ISO4) is
still useful for energy-preserving interconnection.

10.3 Non-Isothermal Model Hierarchy

10.3.1 Simplified Nonlinear Equations (TA2)

Starting from the Euler equations, let us assume that for small velocities the time and
space derivatives of ρv2 and ρv3 are negligibly small. This results in the model

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂xp = −
λ

2D
ρv ∣v∣ − gρ∂xh,

∂tETA2 + ∂x((ETA2 + p)v) = −
kw
D
(T − Tw),

(TA2)

where ETA2 = ρgh + cvρT replaces the total energy density ETA1 = 1
2ρv

2 + ρgh + cvρT .
In other words, the kinetic term has been removed from the total energy, since ρv2 is
neglibly small. With that in mind, we define as Hamiltonian function

HTA2 = ∫
L

0
ETA2(z)dx = ∫

L

0
(ρgh + cvρT )dx. (87)

The Fréchet derivative of HTA2 is then

δHTA2 =
⎡⎢⎢⎢⎢⎢⎣

gh + cvT
0
cvρ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 cvρ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

gh + cvT
0
1

⎤⎥⎥⎥⎥⎥⎦
. (88)
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(TA2) can be rewritten equivalently as

∂tρ = −∂x(ρv),

ρ∂tv = v∂x(ρv) − ∂xp −
λ

2D
ρv ∣v∣ − gρ∂xh,

cvρ∂tT = −ρv∂x(gh + cvT ) − ∂x(pv) +
kw
D

∆T,

(89)

that can be written as the condensed port-Hamiltonian system

ETA2(z)ż = JTA2(z)eTA2(z) +GTA2up,

yp =GT
TA2eTA2(z),

(90)

where up =∆T ,

ETA2(z) =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 cvρ

⎤⎥⎥⎥⎥⎥⎦
, eTA2(ẑ) =

⎡⎢⎢⎢⎢⎢⎣

gh + cvT
0
1

⎤⎥⎥⎥⎥⎥⎦
, GTA2(ẑ) =

⎡⎢⎢⎢⎢⎢⎣

0
0
kw
D

⎤⎥⎥⎥⎥⎥⎦
,

and

JTA2(z) =
⎡⎢⎢⎢⎢⎢⎣

0 0 −Dxρv
0 0 J23(z)

−ρvDx −J23(z) J33(z)

⎤⎥⎥⎥⎥⎥⎦
,

with

J23(z) = v∂x(ρv) − ∂xp −
λ

2D
ρv ∣v∣ − gρ∂xh,

J33(z) = −pvDx −Dxpv,

satisfies

eTJ(z)e = (ρve1e3 + pve3e3)(0) − (ρve1e3 + pve3e3)(L) =

= (ρve3(e1 + p
ρe3))(0) − (ρve3(e1 +

p
ρe3))(L).

Let us omit “TA2” from the notation, for simplicity. We can complete this system to a
port-Hamiltonian descriptor system

Ẽ(z)ż = J̃(z)ẽ(z) + G̃u,

y = G̃T ẽ(z),
(91)

where

Ẽ = [E
0
] , J̃ = [−J 0

−U 0
] , ẽ = [ e

Y e
] ,

G̃ = [G 0
0 I

] , u = [∆T
ub
] , y = [yp

yb
] .
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Our preferred choice of boundary input and output operators is

U(z)e = [ (ρve3)(0)−(ρve3)(L)
] , Y (z)e =

⎡⎢⎢⎢⎢⎣

(e1 + p
ρe3)(0)

(e1 + p
ρe3)(L)

⎤⎥⎥⎥⎥⎦
,

that for e = e(z) becomes

U(z)e(z) = [ (ρv)(0)−(ρv)(L)] , Y (z)e(z) =
⎡⎢⎢⎢⎢⎣

(E+pρ )(0)
(E+pρ )(L)

⎤⎥⎥⎥⎥⎦
,

The algebraic equation U(z)e(z) = ub sets the boundary conditions for the momentum,
and the power balance equation is again

d
dt
H(z(t)) = kw

D
∫

1

0
∆T dx + [v(E + p)]0L. (92)

10.3.2 Further Simplified Nonlinear Equations (TA3)

If one assumes that the time derivative ∂t(ρv) is also neglibly small, then we get the
model

∂tρ + ∂x(ρv) = 0,

∂xp = −
λ

2D
ρv ∣v∣ − gρ∂xh,

∂tETA2 + ∂x((ETA2 + p)v) = −
kw
D
(T − Tw).

(TA3)

One possible condensed port-Hamiltonian formulation results from modifying (TA1):

ETA3(z)ż = JTA1(z)eTA3(z) +GTA1up,

yp =GT
TA1eTA3(z),

(93)

where eTA3(z) = (gh + cvT, v,1) and up = ∆T . Let us omit “TA1” and “TA3” from
the notation, for simplicity. Since J(z) is the same as in (TA1), we can pick the same
boundary operators U,Y . We can then complete this system to a port-Hamiltonian
descriptor system

Ẽ(z)ż = J̃(z)ẽ(z) + G̃u,

y = G̃T ẽ(z),
(94)

where

Ẽ = [E
0
] , J̃ = [−J 0

−U 0
] , ẽ = [ e

Y e
] ,

G̃ = [G 0
0 I

] , u = [∆T
ub
] , y = [yp

yb
] .
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The algebraic equation U(z)e(z) = ub prescribes as usual the boundary conditions for
the momentum, and the power balance equation is again

d
dt
H(z(t)) = kw

D
∫

1

0
∆T dx + [(E + p)v]0L. (95)

10.3.3 Stationary Model (TA4)

As a further step, we can consider the stationary case, where all quantities are assumed
to be constant in time, and gravity has been neglected:

∂x(ρv) = 0,

∂xp = −
λ

2D
ρv ∣v∣ ,

∂x((ETA2 + p)v) = −
kw
D
(T − Tw).

(TA4)

We can assign a (purely algebraic) port-Hamiltonian formulation, by defining a constant
function HTA4 ≡ const. as the Hamiltonian, and modifying (TA3) by replacing E with
the zero matrix. In particular, we can write the algebraic condensed port-Hamiltonian
system

0 = JTA1(z)eTA3(z) +GTA1up,

yp =GT
TA1eTA3(z),

(96)

and pick the same boundary operators U,Y as for (TA1). Let us omit “TA1” and “TA3”
from the notation, for simplicity. We can complete this system to a port-Hamiltonian
descriptor system

0 = J̃(z)ẽ(z) + G̃u,

y = G̃T ẽ(z),
(97)

where

Ẽ = [E
0
] , J̃ = [−J 0

−U 0
] , ẽ = [ e

Y e
] ,

G̃ = [G 0
0 I

] , u = [∆T
ub
] , y = [yp

yb
] .

The algebraic equation U(z)e(z) = ub prescribes as usual the boundary conditions for
the momentum, and the power balance equation is again

d
dt
H(z(t)) = kw

D
∫

1

0
∆T dx + [(ETA2 + p)v]L0 . (98)
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10.3.4 Temperature-Dependent Algebraic Model (TA4b)

In the old model hierarchy, an additional step is provided by taking as equation of state
p = c2ρ. Although this is allows for an explicit solution of the resulting PDAE, nothing
changes from a pH perspective.

10.4 Alternative Port-Hamiltonian Formulations

When neglecting the gravitational term, it can be shown that the models (ISO2), (ISO3)
and (ISO4) admit an alternative port-Hamiltonian formulation.

10.4.1 Alternative Semilinear Model (ISO2b)

Let us consider again the equations defining (ISO2), but this time neglecting the gravi-
tational term:

∂tρ + ∂xm = 0,

∂tm + ∂xp = −
λ

2D
∣v∣m.

(ISO2b)

This system can be equivalently written as

˙̂z = (JISO2b −RISO2b(ẑ))eISO2b(ẑ), (99)

where ẑ = (ρ,m) and

JISO2b = [
0 −Dx

−Dx 0
] , RISO2b(ẑ) = [

0 0

0 λ
2D ∣v∣

] , eISO2b(ẑ) = [
p
m
] .

The operator JISO2b(ẑ) is B-skew-symmetric with

eTJISO2b(ẑ)e = (e1e2)(0) − (e1e2)(L), (100)

while RISO2b =RT
ISO2b ≥ 0. Furthermore, since p(ρ) = c2ρ, if we take as Hamiltonian

HISO2b(ẑ) = ∫
L

0
(c

2

2
ρ2 + 1

2
m2)dx, (101)

we deduce δHISO2b
δẑ = eISO2b(ẑ). Therefore, (99) is a condensed port-Hamiltonian system.

From now on, let us omit “ISO2b” from the notation. Consistently with our previous
choices, we take as boundary input and output operators

Ue = [ e2(0)−e2(L)
] , Y e = [e1(0)

e1(L)
] ,
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so that, for e = e(ẑ),

Ue(ẑ) = [ m(0)−m(L)] , Y e(ẑ) = [p(0)
p(L)] .

If we complete the system to a port-Hamiltonian in the usual way, the additional algebraic
equation Ue(ẑ) = ub prescribes the boundary momentum, and the power balance equation
is

d
dt
HISO2b(ẑ(t)) = −

λ

2D
∫

L

0
∣v∣m2dx + [mp]0L. (102)

10.4.2 Alternative Friction Dominated Model (ISO3b)

Let us consider again the equations defining (ISO3), but this time neglecting the gravi-
tational term:

∂tρ + ∂xm = 0,

∂xp = −
λ

2D
∣v∣m.

(ISO3b)

Instead of deriving the pH formulation inherited from (ISO1), we notice that this can be
written equivalently as

EISO3b ˙̂z = (JISO2b −RISO2b(ẑ))eISO2b(ẑ), (103)

where EISO3b = [ 1 0
0 0 ] and the other coefficients are the same as in (ISO2b). If we take as

Hamiltonian

HISO3b(ẑ) = ∫
L

0

c2

2
ρ2 dx, (104)

then its Fréchet derivative satisfies δH
δẑ = (p,m) = ET

ISO3beISO2b(ẑ). Therefore, (103)
is again a condensed port-Hamiltonian system. The choice of the boundary input and
output operators U,Y can be made in the same way as in (ISO2b). Thus, the additional
algebraic equation that we get when making the system a port-Hamiltonian descriptor
prescribes as usual boundary conditions for the momentum, and we get the same power
balance equation.

10.4.3 Alternative Algebraic Equations (ISO4b)

Let us consider again the equations defining (ISO4):

∂xm = 0,

∂xp = −
λ

2D
∣v∣m.

(ISO4b)
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Without even changing the Hamiltonian HISO4 ≡ const., we notice that this system can
also be written as

0 = (JISO2b −RISO2b(ẑ))eISO2b(ẑ), (105)

which is a purely algebraic condensed port-Hamiltonian system with EISO4b = 0. The
same choice of boundary input and output operators U,Y as in (ISO2b) leads to pre-
scribing boundary conditions for the momentum and to the power balance equation

0 = − λ

2D
∫

L

0
∣v∣m2dx + [mp]0L. (106)

10.4.4 Considerations on the Alternative Formulations

While the presented alternative systems can be useful on their own, one must be careful
when mixing them with the previously introduced standard pH formulations. In fact,
while the Hamiltonians of (TA1), (ISO1), (ISO3), (ISO4), (TA2), (TA3) and (TA4) are
all clearly related and have the same dimension, and the same can be said for (ISO2b),
(ISO3b) and (ISO4b) when considered as their own isolated family, if we compare for
example (ISO1) and (ISO2b), we realize that their Hamiltonians represent different kind
of energies, since the kinetic energy term in the former model is 1

2ρv
2, and in the latter

is 1
2ρ

2v2.

More precisely, one can observe that the alternative pH formulations are closely related to
the acoustic wave equations, that can be obtained from the equation of state, conservation
of mass and conservation of momentum, via linearization. Such linearization is based on
the assumption that condensation (change in density for a given ambient fluid density) is
very small. In other words, that the gas density keeps very close to a constant value ρ0.
To bring the alternative Hamiltonian closer to the physical energy, one possible solution
would be to estimate ρ0 and use e.g. 1

ρ0
HISO2b instead of HISO2b, so that the kinetic term

1
2ρ0

ρ2v2 ≈ 1
2ρv

2 approximates the kinetic energy.

11 Energy-Preserving Interconnection

This section is just a draft, it will be expanded in the future.

Consider a network of gas pipes represented by a graph G = (V,E), where the vertices
V = {v1, . . . , vV } are junctions, and the edges E = {e1, . . . , eE} are pipes. Assume for
simplicity that there is no exchange of temperature with the pipe surface (∆T ≡ 0), and
let us model every gas pipe as a port-Hamiltonian descriptor system:

Ej(zj)żj = (Jj(zj) −Rj(zj))ej(zj) +Gjuj ,

yj =GT
j ej(zj),

(107)
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together with a Hamiltonian function Hj(zj), for j = 1, . . . ,E. We can consider now the
aggregated system

E(z)ż = (J(z) −R(z))e(z) +Gu,

y =GTe(z),
(108)

obtained by stacking the systems in block diagonal form, with z = (z1, . . . ,zE) and
so on. This system is again port-Hamiltonian, with summed-up Hamiltonian function
H(z) = H1(z1) + . . . + HE(zE). The system is still formally not closed, since the input
variables are still inputs, and the relations between quantities at the junctions have not
been introduced yet.

Because of our standard choice of boundary input operator, the input vector u ∈ R2E

contains the momentum at the two ends of each pipe, with the sign chosen so that a
positive momentum corresponds to gas flowing towards the interior of the pipe. The
output vector y ∈ R2E contains a non-signed3 quantity, corresponding to the state of the
gas at the two ends of each pipe, but with a specific formula depending on the model.

Let us consider the special incidence matrix A ∈ RV ×2E , where

Aik = {
+1 if the junction vi is touched by the edge end corresponding to uk,

0 otherwise.

Note that A differs from the usual incidence matrix of a graph (which would be of
dimension V ×E) because each edge is counted once per each end.

Because of conservation of mass, the total gas flow entering a junction must be the
same as the total gas flow leaving the junction; this property is equivalent to Au = 0
(Kirchhoff’s first law). To guarantee conservation of energy in the interconnected system
(i.e., that there is no energy loss at the junctions), we require that the quantity defining
y is continuous along the whole network, i.e., if two output entries ya, yb correspond to
two pipe ends meeting at the same junction, we force ya = yb. Equivalently, if λi denotes
the value of that quantity in the junction vi, for i = 1, . . . , V , we are requesting y = ATλ
(Kirchhoff’s second law).

Adding the new algebraic equation Au = 0, introducing λ ∈ RV as a new variable, and
replacing y with ATλ in the output equation, the aggregate pH system is so transformed:

⎡⎢⎢⎢⎢⎢⎣

E 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ż
u̇

λ̇

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

J(z) −R(z) G 0

−GT 0 AT

0 −A 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

e(z)
u
λ

⎤⎥⎥⎥⎥⎥⎦
, (109)

which together with the aggregate Hamiltonian function H(z) is a dissipative Hamilto-
nian descriptor system, i.e., it has no external ports.

3In the sense that the sign is the same for both ends of the corresponding pipe.
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Note that, for some of the simpler models ((ISO3), (ISO4)), requiring the continuity of
the output-related quantity is equivalent to require the continuity of the pressure. Nev-
ertheless, the condition y = ATλ is necessary to preserve the port-Hamiltonian structure.
On the other hand, for the models with the alternative pH formulation ((ISO2b),(ISO3b),
(ISO4b)), the output-related quantity is exactly the pressure. For the remaining mod-
els ((TA1), (TA2), (TA3), (TA4), and (ISO1)), requiring the continuity of the pressure
would break the conservation of total energy in the system.
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