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Abstract

We propose a method to solve linear generalized Nash equilibrium problems (LGNEPs). For this
purpose, a reformulation of the LGNEPs as piecewise linear problems is considered. This requires
the calculation of all vertices for a special kind of unbounded convex polyhedra. Then the active
signature method for constrained abs-linear problems can be used to determine the Nash equilibria.
We analyse the computational effort for the resulting solution procedure. This includes also the
verification of suitable optimality conditions. Finally, we present and analyse numerical results for
some test problems.

1 Introduction and problem formulation

The task to solve optimization problems with piecewise linear objective functions arises in many appli-
cations. This includes train time tabling [12], the solution of local piecewise linear approximation, see,
e.g., [25], and the training of deep neural networks with the Rectified Linear Unit (ReLU) as activation
function [15, 32]. In this paper we concentrate on linear generalized Nash equilibrium problems (LGNEP)
as an application. LGNEPs arise when players solve linear systems and share at least one constraint, for
example, in transportation problems. In [30], the authors presented an approach to reformulate LGNEPs
as piecewise linear problems with linear constraints.

So far, there is only a limited number of algorithms to solve such constrained nonsmooth optimization
problems available. Possible approaches comprise for example quasi-Newton methods originally designed
for smooth tasks [3] or bundle methods with various parameters to determine [26]. For a recent overview
of these methods see [1]. They all have in common that they do not exploit the structure that is
available in the nonsmooth setting. This is partly due to the lack of computationally tractable optimality
respectively stationarity conditions. To overcome these challenges, for the unconstrained case optimality
conditions that can be verified in polynomial time for a large set of piecewise smooth functions, the
so-called abs-smooth functions, were derived in [19]. In [20, 22], Hegerhorst-Schultchen and Steinbach
extended these optimality conditions to the constrained case by reformulating the inequality constraints
as equality constraints using slack variables. Furthermore, it has been shown that each abs-smooth
nonlinear optimization problem has an equivalent formulation as mathematical program with equilibrium
constraints (MPECs) [21]. In the same paper, an equivalence of the corresponding regularity conditions
was shown. These papers focus on optimality conditions and no algorithm to solve such problems was
proposed.

For unconstrained optimization problems with piecewise linear objective functions, the so-called Ac-
tive Signature Method (ASM) for determining local minima has been proposed in [16]. This approach
explicitly builds on the nonsmooth structure to verify corresponding optimality conditions that can be
verified in polynomial time even if the target function is nonsmooth as shown in [19]. An extension of this
algorithm, i.e., the Constrained Active Signature Method (CASM), for the piecewise linear constrained
case is presented in [24], however, without stating the optimality conditions explicitly. In the present
paper, we will derive these optimality conditions directly for the problem class considered here providing
an alternative proof for the piecewise linear case in comparison to [20, 22].

The structure of the paper is as follows. The remained of this section is dedicated to a more detailed
introduction of GNEPs. In the next section, we introduce the mathematical formulation of LGNEPs
and summarize the analysis for reformulating them as piecewise linear optimization problems. For the
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actual solution of these problems, i.e., to describe the corresponding feasible set, one has to determine
the vertices of a pointed polyhedron, which is an NP-hard problem. Therefore, we examine the effort
to find these vertices using a heuristic version of the Double Description Method [13] in Section 3. The
optimality conditions employed by CASM are described in Section 4. Numerical results for the solution
of the resulting piecewise linear problems are discussed in Section 5. Finally, a conclusion and an outlook
are given in Section 6.

A situation where several competing players try to optimize their objective functions over strategy
sets that are independent of the decisions of the remaining players is referred to as (classical) Nash
equilibrium problem (NEP). A generalization of this problem formulation is given by the setting when
the strategy sets of one player may depend on the decisions of the other players. Such dependencies arise
for example when players share a common budget or commonly use specific infrastructure and lead to
so-called GNEPs. More detailed information on GNEPs can be found in [8] and [11].

The numerical solution of GNEPs is still challenging. Therefore, a wide variety of approaches was
already proposed. One possibility is the use of penalty terms. In [9], Facchnei and Kanzow presented a
method in which the GNEP is reduced to single penalized and nonsmooth NEP. The idea of penalty terms
was also considered in [10, 14]. Nonsmooth reformulations of GNEP based on a regularized Nikaido-Isoda
function were investigated, for example in [5, 6] such that a nonsmooth, possibly constrained optimization
problem has to be solved. Furthermore, there are also approaches to solve the GNEP based on KKT
optimality conditions [7]. Here, concatenating KKT conditions for the optimization problems of each
player are merged into a KKT-like system, where one has to handle the complementarity conditions
appropriately. Merit functions and interior-point-based methods are used for this purpose. However, up
to now, there is no off-the-shelf solution algorithm for (L)GNEPs. This might be due to the fact that the
resulting optimization problems are NP-hard as can be concluded from the reformulation as piecewise
linear optimization problem presented below.

2 Formulating LGNEPs as piecewise linear Functions

To propose an alternative solution method, we assume in the present paper that the cost functions and
the constraints of all players are linear. An LGNEP consists of players ν ∈ {1, . . . , N} which control
decision vectors xν ∈ Rnν for N,nν ∈ N and n := n1 + . . . + nN . Each player ν tries to solve the
linear optimization problem

Qν(x
−ν) : min

xν∈Rnν
⟨aν , xν⟩

s.t. Aνxν +Bνx−ν ≤ cν ,

to find a x := (xν , x−ν) ∈ Rn, such that for each ν ∈ {1, . . . , N}, xν is a global minimum of Qν(x
−ν),

where x−ν ∈ Rn−nν are the decisions made by the other players. For each player, the matrices
Aν ∈ Rmν×nν , Bν ∈ Rmν×(n−nν) and vectors aν ∈ Rnν , cν ∈ Rmν are given, with mν ∈ N. Each player
has a decision set defined by

Xν(x
−ν) := {xν ∈ Rnν |Aνxν ≤ cν −Bνx−ν}

and

dom Xν := {x−ν ∈ Rn−nν |Xν(x
−ν) ̸= ∅}.

In the whole paper we assume that for any ν ∈ {1, . . . , N} and x−ν ∈ dom Xν , Qν(x
−ν) is solvable.

Example 2.1. We consider an LGNEP with two one-dimensional players x1, x2. That is n1 = n2 = 1
and N = n = 2. Both players share the constraints

A1x1 +B1x2 =

 −1
2
− 1

2

x1 +

 1
2

− 3
4

−1

x2 ≤

 1
1
1

 = c1 = c2 .

Hence, the dimensions are given by m1 = m2 = 3 and A2 = B1, B2 = A1. The target functions are
defined by a1 = −2, a2 = 3.

2



In [30], the reformulation of an LGNEP as an optimization problem with a piecewise linear target
function and linear constraints is presented. For this purpose, the authors introduce a global extension
of the so-called gap function as piecewise linear concave function given by

V̂ (x) :=

N∑
v=1

min
oν∈Oν

(
⟨aν , xν⟩+ ⟨oν , cν −Bνx−ν⟩

)
, (2.1)

where Oν is the finite and nonempty set of all vertices of the pointed polyhedron [30]

Zν := {oν ∈ Rmν |aν + (Aν)T oν = 0, oν ≥ 0}. (2.2)

As shown in [30], all global minima of V̂ (x) that are contained in the closed convex set

W := {x ∈ Rn|xν ∈ Xν(x
−ν) , ∀ν = 1, . . . , N}

= {x ∈ Rn|Aνxν ≤ cν −Bνx−ν , ∀ν = 1, . . . , N}
(2.3)

are exactly the solutions of the LGNEP. Furthermore, it was proven in the same paper that a global
minimizer x∗ always has the function value V̂ (x∗) = 0. Since the function V̂ (x) is piecewise linear and
concave on the set W , all solutions of the minimization problem lie on the boundary of W . Furthermore,
it can be deduced from this formulation that the solution of a LGNEP is NP-hard. Thus, one can not
expect an efficient solution approach.

Example 2.2. The polyhedra of Example 2.1 are given by

Z1 = {o1 ∈ R3| − 2 +

(
−1 2 − 1

2

)
o1 = 0 , o1 ≥ 0} = {o1 ∈ R3|AZ2

o1 ≤ bZ2
},

Z2 = {o2 ∈ R3|3 +
(
1

2
− 3

4
− 1

)
o2 = 0 , o2 ≥ 0} = {o2 ∈ R3|AZ2

o2 ≤ bZ2
} .

where

AZ2
=


−1 0 0
0 −1 0
0 0 −1

−1 2 − 1
2

1 −2 1
2

 , bZ2
=


0
0
0
2

−2

 ,


−1 0 0
0 −1 0
0 0 −1
1
2 − 3

4 −1

− 1
2

3
4 1

 , and bZ2
=


0
0
0

−3
3


For those polyhedra one can determine the sets of vertices as

O1 = {(0 1 0)
⊤} and O2 = {(0 0 3)

⊤
, (0 4 0)

⊤} .

yielding the target function

V̂ (x) = −2x1 +
15

4
x2 + 4 +min{3

2
x1, 1− 8x1}.

Figure 1 shows the feasible set W and Figure 2 the target function V̂ (x) together with the set where
V̂ (x) = 0. The red line indicates the points on the boundary of W , i.e., the set of solutions of the
LGNEP given by the line segment [( 2

19 ,−
20
19 ), (5, 12)].

In conclusion one obtains the optimization problem

min
x∈Rn

V̂ (x)

s.t. x ∈ W.
(2.4)

with a piecewise linear target function and linear constraints. For the computation of the original LGNEP
one faces two challenges. First, one has to calculate all vertices of Zν to obtain an explicit formulation of
V̂ (x). As described in the next section in more detail, this is an NP-hard problem. For this reason, we
propose to use a heuristic and analyze its performance in the context of LGNEPs. It should be noted that
this procedure does not need any boundedness of the sets Zν or X as often assumed in other publications.
However, a drawback is the higher effort required to calculate the vertices of Zν . Secondly, one has to
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Figure 1: Feasible set W Figure 2: Target function V̂ (x)

solve the resulting piecewise linear problems with constraints. For this purpose, next we introduce a
specific formulation of piecewise linear functions and analyse corresponding optimality conditions for
such optimization problems in Section 4.

It follows from [29, Prop. 2.2.2] in combination with the reformulations

max(x, y) =
1

2
(x+ y + |x− y|) and min(x, y) =

1

2
(x+ y − |x− y|) for x, y ∈ R (2.5)

that every continuous piecewise linear function can be represented in the so-called abs-linear form as
introduced in a slightly different form already in, e.g., [16, 17, 18]. Since we want to incorporate constraints
in a consistent way, we adapt the abs-linear form slightly and consider the abs-linear form given by

y = d+ a⊤x+ b⊤z , (2.6a)

z = c+ Zx+Mz + L|z| , (2.6b)

with x ∈ Rn as arguments, z ∈ Rs the switching variables, called switching vector, and constants d ∈ R,
a ∈ Rn, b, c ∈ Rs, Z ∈ Rs×n, L,M ∈ Rs×s, where the last two matrices are assumed to be strictly lower
triangular requiring that zi only depends on switching variables zj with 1 ≤ j < i. Here, and throughout,
|z| denotes the component-wise modulus of a vector z. Eq. (2.6b) is called switching system.

The abs-linear form can be generated in an automated fashion using extended algorithmic differen-
tiation (AD) as provided for example by the tool ADOL-C [34]. Hence, it is important to note that it
is not necessary to reformulate the global extension of the gap function (2.1) in an abs-linear form to
apply the algorithm proposed in this paper. The advantage of the abs-linear form is that it provides a
lot of structure to solve piecewise linear optimization problems. Using the signatures of the switching
vector (2.6b), it is possible to decompose Rn into polyhedra [19], using the signature vector given by

σ(x) ≡ (sgn(z1(x)), . . . , sgn(zs(x))) ∈ {−1, 0, 1}s ,

where the set on the right-hand side comprises all possible signature vectors. The corresponding signature
matrix is given by Σ(x) = diag(σ(x)). A signature vector σ(x) is called definite, if no component vanishes,
i.e., σ(x) ∈ {−1, 1}s. This situation is denoted by 0 /∈ σ(x). Otherwise, it is called indefinite.

When allowing also piecewise linear constraints as generalization to the linear constraint given by
Eq. (2.3) one obtains a constrained abs-linear optimization problem (CALOP) as introduced in [23, 24]

min
x∈Rn,z∈Rs

a⊤x+ b⊤z

s.t. 0 = g +Ax+Bz + C|z| ,
0 ≥ h+Dx+ Ez + F |z| ,
z = c+ Zx+Mz + L|z| ,

(CALOP)

where g ∈ Rm, h ∈ Rp, A ∈ Rm×n, B, C ∈ Rm×s, D ∈ Rp×n and E,F ∈ Rp×s. Since the constant d in
the abs-linear formulation (2.6a) does not change the optimal point, it has been dropped. For later use,
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The target function f()

−2 2

−2

2

σ = (1, 1, 1)

σ = (−1, 1, 1)

σ
=
(1
, 1
,−

1)

σ
=
(−
1, 1,−

1)

σ =
(1,

−1,
1)

σ =
(−1,−1, 1)

σ
=
(1
,−
1,
−1

)

σ
=
(−
1,−

1,−
1)

x1

x2

Polyhedra that belong to the corresponding
definite signature vectors

Figure 3: Illustration of the unconstrained case from Example 2.3

we define

f : Rn × Rs → R, (x, z) 7→ a⊤x+ b⊤z , (2.7)

G : Rn × Rs × Rs → Rm, (x, z, |z|) 7→ g +Ax+Bz + C|z| ,
and H : Rn × Rs × Rs → Rp, (x, z, |z|) 7→ h+Dx+ Ez + F |z| .

For the constrained optimization problem (CALOP), the functions G and H may or may not depend
on the value |zs| as illustrated in the next example. Therefore, we denote the total number of all switching
variables zi that occur as arguments in an evaluation of the absolute value in the target function or in
the constraints by s̃ ≤ s and assume that they are located in the first s̃ switching variables. If this is not
the case, the abs-linear form of (CALOP) can be adapted such that s̃ ∈ {s− 1, s}.

Example 2.3. Let the function f(x1, x2) = max{0, x1 − |x2|} be given. This nonsmooth nonconvex
function is illustrated on the left-hand side of Fig. 3. Using the reformulation of the max-function given
in Equation (2.5), we obtain

f(x1, x2) =
1

2

(
x1 − |x2|+

∣∣− x1 + |x2|
∣∣) ,

which can be converted into the following abs-linear form, see Equation (2.6):

z =

z1
z2
z3

 =

 x2

−x1 + |z1|
− 1

2 |z1|+
1
2 |z2|


=

0
0
0

+

 0 1
−1 0
0 0

(
x1

x2

)
+

0 0 0
0 0 0
0 0 0

z1
z2
z3

+

 0 0 0
1 0 0
− 1

2
1
2 0

|z1|
|z2|
|z3|


y = 0 +

(
1
2 0

)(x1

x2

)
+
(
0 0 1

)z1
z2
z3

 = f(x, z) .

If we consider this function as objective of an unconstrained optimization problem, the polyhedra resulting
from definite signature vectors are shown in Fig. 3, where we used the corresponding signature vectors as
labels for the polyhedra. The blue lines mark the arguments that cause the nonsmoothness and the light
blue lines correspond to the last component of the switching vector that does not lead to any nonsmoothness
in the target function. Now, we add the constraint

|z3| =
∣∣∣∣−1

2
|x2|+

1

2

∣∣∣− x1 + |x2|
∣∣∣∣∣∣∣ ≤ 2

that can be formulated as

H(x, z, |z|) = −2 +
(
0 0

)(x1

x2

)
+
(
0 0 0

)z1
z2
z3

+
(
0 0 1

)|z1|
|z2|
|z3|

 ≤ 0
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=
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1,−

1,−
1)

x1

x2

Figure 4: Polyhedra for the definite signature vectors in the constrained case of Ex. 2.3.

to obtain a constrained optimization problem of the form (CALOP). Then, |z3| contributes explicitly to
the evaluation of the abs-linear constraint.

Fig. 4 shows for the constrained situation the polyhedra resulting from the definite signature vectors
using the corresponding σ as label. In comparison to the unconstrained case, further kinks are added
resulting in more polyhedra. The red area represents the feasible set.

3 Calculation of the Vertices

To derive an explicit formula for V̂ (x), first one has to calculate the vertices of the pointed convex
polyhedra Zν for each ν ∈ {1, . . . , N}. Since each polyhedron Zν is pointed, it must contain at least one
vertex [30]. Furthermore, it follows from the finite set of constraints describing the set Zν that there can
only be a finite number of vertices. Therefore, the task of computing Oν is well posed. The determination
of all required vertices may require a high computational effort. On the other hand, it has to be performed
only once, since it is independent of the value of the optimization variable x. Hence, this calculation can
be done a-priori before the optimization process is started. In this section, we will analyze one possible
algorithm to compute the sets Oν and investigate this computational complexity in detail.

So far, there is no method known that can calculate all vertices of an arbitrary unbounded convex
polyhedron of the form

P = {x ∈ Rd| Ax ≤ b} (3.1)

in polynomial time. Therefore, we rely on the Double Description Method (DD-method) [27] with im-
provements proposed in [13]. The general complexity of the DD-method in terms of the sizes of inputs
and their properties is difficult to predict. Bremner [2] proved that there is a class of polyhedra for
which the DD-method has exponential complexity, a behavior that we also observe in our numerical
experiments. This is due to the fact that the intermediate polytopes encountered by the algorithm can
become very complex relative to the original polyhedron. Additionally, the algorithm is known to be very
sensitive with respect to the permutations of the rows of the matrix A. Therefore, the improvements in
[13] are based on rearrangements of the rows of A including heuristic approaches to do so to improve the
performance of the DD-Method. These heuristics did also occur in our experiments.

For our numerical tests, we used a publicly available Python implementation of the DD-method [33].
Due to the complexity results for the DD-method mentioned above, we explicitly investigate the cost of
the DD-method for the LGNEP problem and therefore examine polyhedrons of the form (2.2). Since the
DD-method requires a problem formulation of the form (3.1), we reformulated (2.2) into

Zν =

oν ∈ Rmν

∣∣∣∣∣∣
 −Iν

(Aν)⊤

−(Aν)⊤

 oν ≤

 0
−aν

aν

 ,

where Iν ∈ Rmν×mν is the identity matrix. This reformulation yields mν+2nν inequalities for each player
xν . In the remainder of this section, we investigate the compute time of the DD-method for this special
case of inequalities and matrices. Hence, we only consider one player of the LGNEP with the suitable
polyhedron formulation for the DD-methods.
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Figure 6: Effort with growing mν

For the numerical experiments, the entries of Aν are chosen to be random numbers in the interval
[-1,1]. Due to this construction, the sets Zν often appear to be empty for nν > mν , since then more
possible contradictory inequalities than variables given appear. We distinguish between the number of
optimization variables nν of player ν and the number of constraints mν for player ν.

First, we fix mν to be equal to 5, 10 and 15 and increase nν , where for the underlying LGNEP, this
number nν corresponds to the space dimension of the player ν. Due to the heuristic approach in the
algorithm, we use the average value from 15 runs for each dimension to obtain an average run time for
an increasing number of optimization variables nν . As can be seen from Figure 5, there are still some
fluctuations visible, but one can clearly see a trend very similar to a linear growth as soon as nν gets
significantly larger than mν . For nν < mν each graph shows an exponential growth with respect to nν

which corresponds to the theoretical effort of the DD-Method.
Figure 6 shows the computing time depending on mν for a fixed value nν to be either 5, 10 or 20.

Two main observations can be made. First, and most obviously, one observes that the effort grows
exponentially with respect to mν . This is clearly due to the non emptiness of the sets Zν and therefore,
finding vertices remains a well posed problem for growing mν and the exponential growth of the DD-
Method can be verified. Furthermore, we found that the fluctuation of the runtime is not as strong as
for varying nν . Therefore, it was not necessary to take the average of several values. These fluctuations
seam to correspond with the emptiness of the sets Zν .

One can see the advantage obtained by using the heuristic approach of the DD-Method in [13] by
the fact that the effort for the special case in this paper is significantly lower than expected effort of the
nonheuristic DD-Method. But there also accrue some problem formulations in our case which do not
benefit from this approach. Hence, there might be an exponentially growing effort to find all vertices.
As a conclusion, one finds that for the explicit formulation of the globalized gap function, there is a
fast-growing computation effort both in the number of constraints for the players and the number of
optimization variables.

4 Necessary and sufficient optimality conditions for constrained
abs-linear problems

In this section, we derive optimality conditions for the constrained optimization problem (CALOP) as
defined above and show that they can be verified in polynomial time at a given point. This extends
directly the optimality conditions derived in [17] for the unconstrained abs-linear case. For the more
general class of abs-smooth problems optimality conditions that can be verified in polynomial time were
already derived in [20, 22]. However, since we restrict ourselves to the class of abs-linear functions and
admit both z and |z| as arguments for all functions, we prove the optimality conditions directly for
our formulation considered in this paper instead of showing the equivalence of our problem statement
to the problem formulation used in [20, 21, 22]. This approach has the advantage that the optimality
conditions derived here can be directly used in CASM and no further adaptation is needed. Furthermore,
the more general formulation with z and |z| as arguments for all functions may allow additional structure
exploitation like sparsity in the algorithm.
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In Section 2, we already illustrated the polyhedra that result from the abs-linear form. Now, we
formalize them in the following way:

Definition 4.1 (Feasible (extended) signature domain). Let an optimization problem of the form (CALOP)
be given. For a fixed signature vector σ ∈ {−1, 0, 1}s, we define

Fσ≡

x ∈ Rn

∣∣∣∣∣∣
G(x, z(x),Σz(x)) = 0,
H(x, z(x),Σz(x)) ≤ 0,
sgn(z(x)) = σ,

⊂Fσ≡

x ∈ Rn

∣∣∣∣∣∣
G(x, z(x), |z(x)|) = 0,
H(x, z(x), |z(x)|) ≤ 0,
Σz(x) = |z(x)|

 .

The set Fσ is called feasible signature domain and Fσ the feasible extended signature domain.

In a similar way as we introduced the signature vector for kinks, we define a vector containing the
signs of the inequality constraints.

Definition 4.2 (Signature vector, signature matrix of inequality constraints). Let a point x ∈ Rn be
given that fulfills the equality and inequality constraints of (CALOP). We define the signature vector of
the inequality constraints as

ω(x) ≡ sgn(H(x, z, |z|)) ∈ {−1, 0}p .

The jth inequality constraint is called active if ωj(x) = 0 and inactive otherwise. The signature matrix
of the inequality constraints is denoted by Ω(x) = diag(ω(x)). Furthermore, I ≡ I(x) collects the indices
of the active inequality constraints at x. The projection onto the active components of H(x) is defined as
PI ≡ (e⊤i )i∈I ∈ R|I|×p with ei denoting the ith unit vector of appropriate size.

Next, we prepare the formulation of optimality conditions that can be verified in polynomial time.
For this purpose, we introduce the following notations:

Definition 4.3 (Active switching variables). A switching variable zi is called active at x if zi(x) = 0.
The active switching set α(x) collects all indices of switching variables that are active at x occur as
arguments of the absolute value, i.e.,

α(x) ≡ {i ∈ {1, . . . , s̃} | zi(x) = 0} .

The projection onto the active components of z(x) is defined as Pα ≡ (e⊤i )i∈α ∈ R|α|×s with ei denoting
the ith unit vector of appropriate size.

For each fixed signature vector σ ∈ {−1, 0, 1}s, we obtain from (CALOP) the smooth optimization
problem

min
x∈Rn,z∈Rs

a⊤x+ b⊤z (4.1a)

s.t. 0 = g +Ax+Bz + CΣz , (4.1b)

0 ≥ h+Dx+ Ez + FΣz , (4.1c)

z = c+ Zx+Mz + LΣz , (4.1d)

0 = (Is − |Σ|)z , 0 ≤ Σz . (4.1e)

Next, we consider an optimal point of this smooth optimization problem:

Definition 4.4 (Feasible signature optimal point). Let an optimization problem of the form (CALOP)
be given. Consider a fixed signature vector σ ∈ {−1, 0, 1}s. A minimizer xσ ∈ Fσ of the optimization
problem (4.1) is called feasible signature optimal point of the constrained optimization problem (CALOP).

To derive the optimality conditions, we define

Z̃ = (Is −M − LΣ)−1Z and c̃ = (Is −M − LΣ)−1c . (4.2)

Then one can combine Eqs. (4.1d) and the left equality of (4.1e) to one equality constraint and obtains
the following optimization problem that is equivalent to the one stated in Eq. (4.1)

min
x∈Rn,z∈Rs

a⊤x+ b⊤|Σ|z (4.3a)

s.t. 0 = g +Ax+B|Σ|z + CΣz , (4.3b)

0 ≥ h+Dx+ E|Σ|z + FΣz , (4.3c)

0 = |Σ|z − c̃− Z̃x , 0 ≤ Σz . (4.3d)
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Since we consider only linear constraints, one has for the optimization problem (4.3) that the set of
feasible directions at x coincides with the tangent cone at x, see [28, Lem. 12.7]. In this case, no further
constraint qualification is needed to ensure the existence of Lagrange multipliers, but their uniqueness
is not guaranteed. Our goal is to derive optimality conditions that can be verified in polynomial time.
Hence, any dependence on the signature vectors that would lead to a combinatorial complexity in 2s in the
worst case must be avoided. Therefore, we have to ensure that the Lagrange multipliers are unique, see
also [18]. For this reason, we adapt the kink qualification LIKQ introduced in [19] for the unconstrained
case and in [22] for general constrained nonsmooth nonlinear optimization problems. Since we focus in
this paper on the piecewise linear case, LIKQ can be specified in a matrix-based representation.

In the unconstrained case, LIKQ requires the full rank of PαZ̃, i.e., the active Jacobian of the reformu-
lated switching system. To derive a similar result for the constrained case, we analyze the optimization
problem (4.3) for a fix signature vector σ and a corresponding feasible xσ in more detail. Due to the
continuity of all involved functions and the relation Σz = |z|, the components zi, i /∈ α, of the vector z
as determined by Eq. (4.3d) will not drop to zero in an open neighborhood U(xσ) of xσ. In combination
with the identity Σz = Σ|Σ|z, in U(xσ) the optimization problem (4.3) is then equivalent to

min
x∈U(xσ)

a⊤x+ b⊤|Σ|(c̃+ Z̃x) (4.4a)

s.t. 0 = g +Ax+B|Σ|(c̃+ Z̃x) + CΣ(c̃+ Z̃x) , (4.4b)

0 ≥ h+Dx+ E|Σ|(c̃+ Z̃x) + FΣ(c̃+ Z̃x) , (4.4c)

0 = Pα(c̃+ Z̃x) . (4.4d)

Definition 4.5 (Active Jacobian). Consider for the constrained optimization problem (CALOP) and a
given signature vector σ ∈ {−1, 0, 1}s a point xσ that is feasible for the problem given by Eq. (4.4). The
active Jacobian at xσ is given by

Jσ ≡

 A+B|Σ|Z̃ + CΣZ̃

PI(D + E|Σ|Z̃ + FΣZ̃)

PαZ̃

 ∈ R(m+|I|+|α|)×n .

Now, the required kink qualification can be stated for the setting considered here:

Definition 4.6 (LIKQ (constrained case)). Let a constrained optimization problem of the form (CALOP)
and a signature vector σ ∈ {−1, 0, 1}s be given. We say that the Linear Independence Kink Qualification
(LIKQ) holds at a feasible point xσ if the active Jacobian Jσ at xσ has full row rank m+ |I|+ |α|.

Next, we show that the optimality of a feasible signature optimal point can be verified in polynomial
time extending the results given in [17] to the constrained case.

Theorem 4.6.1 (Necessary and sufficient optimality conditions). Let a constrained optimization problem
of the form (CALOP) and a signature vector σ ∈ {−1, 0, 1}s be given. Assume that xσ is feasible signature
optimal for (CALOP) and that LIKQ holds at xσ. Then xσ is a local minimizer of (CALOP) if and only
if there exist unique Lagrange multipliers δ ∈ Rm, 0 ≤ ν ∈ Rp and λ ∈ Rs, such that

0 = a⊤+b⊤|Σ|Z̃+δ⊤(A+B|Σ|Z̃ + CΣZ̃) + ν⊤(D+E|Σ|Z̃+FΣZ̃)−λ⊤P⊤
αPαZ̃ , (4.5)

0 = b⊤|Σ|+ δ⊤ (B|Σ|+ CΣ) + ν⊤ (E|Σ|+ FΣ) + λ⊤|Σ| (4.6)

and

|Pα(b+B⊤δ + E⊤ν + λ)| ≤ Pα(C
⊤δ + F⊤ν − L̃⊤λ) (4.7)

with L̃ given by

L̃ = (Is −M − LΣ)−1L .

Proof. First, let xσ be a local minimizer of (CALOP). Since xσ is feasible signature optimal for the
signature vector σ, xσ is a minimizer of the optimization problem (4.4). Then, we obtain from KKT
theory that there exist unique Lagrange multipliers δ ∈ Rm, ν ∈ Rp

+ and λ̌ ∈ R|α| associated with the
equality constraint (4.4b), the inequality constraint (4.4c) and the reformulated switching system (4.4d)
such that

0 = a⊤ + b⊤|Σ|Z̃ + δ⊤(A+B|Σ|Z̃ + CΣZ̃) + ν⊤(D + E|Σ|Z̃ + FΣZ̃) + λ̌⊤PαZ̃ .
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Hence, together with δ ∈ Rm and 0 ≤ ν ∈ Rp, each vector λ ∈ Rs such that λ̌ = −Pαλ fulfills Eq. (4.5).
As introduced before, ω = ω(xσ) denotes the signature vector of the inequality constraints. Then,

it is necessary and sufficient for local minimality that (xσ, z(xσ)) is a minimizer of f(., .) as defined in
Eq. (2.7) on all feasible extended signature domainsF σ̃ with definite σ̃ ≻ σ, where σ̃ ⪰ σ holds if

σ̃jσj ≥ σ2
j for j = 1, . . . , s .

Any such σ̃ ≻ σ can be written as σ̃ = σ + γ with γ ∈ {−1, 0, 1}s structurally orthogonal to σ such that
for Γ ≡ diag(γ) we have the matrix equations

Σ̃ = Σ + Γ and ΣΓ = 0 = |Σ|Γ . (4.8)

Then we can express z(x) = zσ̃(x) for x ∈ Pσ̃ as

zσ̃(x) = zσ+γ(x) = (Is −M − LΣ− LΓ)−1(c+ Zx) = (Is − L̃Γ)−1(c̃+ Z̃x) . (4.9)

Since xσ must be a minimizer of the objective also on F σ̃, it solves the smooth optimization problem

min
x∈Rn,z∈Rs

a⊤x+ b⊤ (|Σ|+ |Γ|) z (4.10a)

s.t. 0 = g +Ax+B (|Σ|+ |Γ|) z + C(Σ + Γ)z , (4.10b)

0 ≥ h+Dx+ E (|Σ|+ |Γ|) z + F (Σ + Γ)z , (4.10c)

0 = (Is − L̃Γ)z − c̃− Z̃x , (4.10d)

0 ≤ PαΓz . (4.10e)

Then, we obtain from KKT theory that there exist Lagrange multipliers δ ∈ Rm, 0 ≤ ν ∈ Rp, λ ∈ Rs

and 0 ≤ µ ∈ R|α| associated with the equality constraint, the inequality constraint, the reformulated
switching system and the sign conditions such that

0 = a⊤ + δ⊤A+ ν⊤D − λ⊤Z̃ and (4.11)

0 = b⊤ (|Σ|+ |Γ|) + δ⊤ (B (|Σ|+ |Γ|) + C(Σ + Γ))

+ ν⊤ (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ⊤
(
Is − L̃Γ

)
− µ⊤PαΓ .

(4.12)

Since the optimization problem (4.10) is linear, these conditions together with the feasibility of the
variables and the complementarity condition are necessary as well as sufficient for xσ to be a minimizer.
Multiplying the last equation from the right by |Σ|Z̃, we obtain with the identity Σ = Σ|Σ| and Eq. (4.8)

0 = b⊤|Σ|Z̃ + δ⊤ (B|Σ|+ CΣ) Z̃ + ν⊤ (E|Σ|+ FΣ) Z̃ + λ⊤|Σ|Z̃ . (4.13)

Adding this equality to Equation (4.11) and exploiting

Is = |Σ|+ P⊤
α Pα (4.14)

yields

0 = a⊤+b⊤|Σ|Z̃+δ⊤(A+B|Σ|Z̃+CΣZ̃)+ν⊤(D+E|Σ|Z̃+FΣZ̃)−λ⊤P⊤
α PαZ̃ .

Hence, it follows that the Lagrange multipliers δ ∈ Rm, ν ∈ Rp, λ ∈ Rs fulfill Eq. (4.5) with λ̌ = −Pαλ.
Due to the kink qualification LIKQ, one also has that the vectors δ ∈ Rm and ν ∈ Rp as well as the
components Pαλ ∈ R|α| are determined uniquely. The remaining components of λ ∈ Rs can be obtained
by multiplying Eq. (4.12) this time only with |Σ| from the right yielding

0 = b⊤|Σ|+ δ⊤ (B|Σ|+ CΣ) + ν⊤ (E|Σ|+ FΣ) + λ⊤|Σ|

and thus Eq. (4.6). To derive the third condition (4.7), we multiply Eq. (4.12) from the right by ΓP⊤
α .

Using

P⊤
α Pα = ΓΓ = |Γ| and PαP

⊤
α = I|α| (4.15)

and µ ≥ 0, it follows that

−(b⊤ + δ⊤B + ν⊤E + λ⊤)ΓP⊤
α = (δ⊤C + ν⊤F − λ⊤L̃)ΓΓP⊤

α − µ⊤

≤ (δ⊤C + ν⊤F − λ⊤L̃)P⊤
α .
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Now the key observation is that this condition is linear in Γ and is strongest for the choice

γi = −sgn(λ⊤ + b⊤ + δ⊤B + ν⊤E)i for i ∈ α .

Hence, one obtains the inequalities

|(b+B⊤δ + E⊤ν + λ)i| ≤ ei(C
⊤δ + F⊤ν − L̃⊤λ) for i ∈ α

showing Eq. (4.7) and therefore the necessary optimality conditions.
Second, we show that these conditions are also sufficient. For this purpose, we consider again all

adjacent extended signature domains F σ̃. For this purpose, we multiply Eq. (4.12) again from the right
by ΓP⊤

α and use Eqs. (4.15) and (4.7) to obtain

µ⊤ =
(
b⊤ + δ⊤B + ν⊤E + λ⊤)ΓP⊤

α +
(
δ⊤C + ν⊤F − λ⊤L̃

)
P⊤
α ≥ 0

and thus the feasibility. Exploiting Eq. (4.14), Eq. (4.6) multiplied from the right by Z̃ and Eq. (4.5)
yields

λ⊤Z̃ = λ⊤ (
|Σ|+ P⊤

α Pα

)
Z̃ = λ⊤|Σ|Z̃ + λ⊤P⊤

α PαZ̃

= −b⊤|Σ|Z̃ − δ⊤ (B|Σ|+ CΣ) Z̃ − ν⊤ (E|Σ|+ FΣ) Z̃

+ a⊤ + b⊤|Σ|Z̃ + δ⊤
(
A+B|Σ|Z̃ + CΣZ̃

)
+ ν⊤

(
D + E|Σ|Z̃ + FΣZ̃

)
= a⊤ + δ⊤A+ ν⊤D

and hence Eq. (4.11). Using Eq. (4.14), Eq. (4.12) holds if and only if

0 = b⊤ (|Σ|+ |Γ|) + δ⊤ (B (|Σ|+ |Γ|) + C(Σ + Γ))

+ ν⊤ (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ⊤
(
|Σ|+ P⊤

α Pα − L̃Γ
)
− µ⊤PαΓ

is valid. Using Eq. (4.6) the last equation is equivalent to

0 = b⊤|Γ|+ δ⊤ (B|Γ|+ CΓ) + ν⊤ (E|Γ|+ FΓ) + λ⊤
(
P⊤
α Pα − L̃Γ

)
− µ⊤PαΓ .

Multiplying the last equation from the right by ΓP⊤
α and using Eq. (4.15), we obtain

µ⊤ = −λ⊤L̃P⊤
α +

(
b⊤ + δ⊤B + ν⊤E + λ⊤)ΓP⊤

α +
(
δ⊤C + ν⊤F

)
P⊤
α .

Thus, defining the Lagrange multiplier µ as given above, it satisfies Eq. (4.12) since

b⊤ (|Σ|+ |Γ|) + δ⊤ (B (|Σ|+ |Γ|) + C (Σ + Γ)) + ν⊤ (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ⊤
(
Is − L̃Γ

)
−
(
−λ⊤L̃P⊤

α +
(
b⊤ + δ⊤B + ν⊤E + λ⊤)ΓP⊤

α +
(
δ⊤C + ν⊤F

)
P⊤
α

)
PαΓ

= b⊤ (|Σ|+ |Γ|) + δ⊤ (B (|Σ|+ |Γ|) + C (Σ + Γ)) + ν⊤ (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ⊤
(
Is − L̃Γ

)
+ λ⊤L̃Γ−

(
b⊤|Γ|+ δ⊤B|Γ|+ ν⊤E|Γ|+ λ⊤|Γ|+ δ⊤CΓ + ν⊤FΓ

)
=− λ⊤|Σ|+ λ⊤L̃Γ− λ⊤|Γ|+ λ⊤Is − λ⊤L̃Γ

=− λ⊤|Σ| − λ⊤|Γ|+ λ⊤|Σ|+ λ⊤P⊤
α Pα = −λ⊤|Γ|+ λ⊤ΓΓ = −λ⊤|Γ|+ λ⊤|Γ| = 0

using Eq. (4.6) and (4.14). Due to the fact that the optimization problem (4.10) is linear, the KKT
conditions are necessary and sufficient for the minimality of xσ. Thus, we have shown that xσ satisfies
the KKT conditions for all adjacent extended signature domains. Therefore, xσ is also a minimizer
of (4.10) and hence of (CALOP).

For the uniqueness of the Lagrange multipliers, the first paragraph of this proof states that the
Lagrange multipliers δ and ν as well as the components λi belonging to the index set α(xσ) are unique.
Finally, for the remaining i ∈ αC , the complement of α, the components λi can be uniquely determined
by Eq. (4.6).
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It is important to note that for given Lagrange multipliers δ, ν, and λ, it can be verified in polynomial
time whether the conditions (4.5)–(4.7) hold. Hence, this optimality test at a feasible signature optimal
point is independent from the combinatorial complexity caused by all the possible values of Γ.

Furthermore, for the unconstrained case, i.e., A = 0, B = 0, C = 0, D = 0, E = 0, F = 0 in the
appropriate dimensions, one rediscovers the conditions

0 = a⊤ + b⊤|Σ|Z̃ + λ⊤PαZ̃ and |Pα(b+ λ)| ≤ Pα(−L̃⊤λ) ,

i.e., tangential stationarity and normal growth as introduced in [19].
These optimality conditions ensure just local minimality. However, as stated in Section 2, only global

minima of the globalized gap function V̂ (x) are the solutions of the LGNEP. Hence, one has to employ
the additional criterion V̂ (x) = 0 to verify that a point that fulfills the derived necessary and sufficient
optimality conditions is indeed a global minimizer. If this is not the case, one could start the optimization
again using a starting point that lies in a different polyhedron than the first one. In the worst case,
then one would have to visit all definite polyhedra to determine global minimizer. The corresponding
computational effort fits to the fact that the concave piecewise linear problem is NP hard to solve.

As illustrated in the next section, the solution approach proposed here finds a global minimizer for
the examples considered here. So far, we do not have a theoretical justification for this behaviour. Hence,
it is subject of future research.

5 Numerical Examples

The active signature method proposed in [16] was extended in [23, 24] to optimization problems with
piecewise linear constraints of the form (CALOP). The resulting algorithm, i.e., CASM relies heavily
on the optimality conditions considered in the previous section. So far, a MATLAB implementation of
CASM is available such that the abs-linear form as stated above can not be generated in an automated
fashion. Currently, we are working on an C/C++-based implementation with the corresponding interface
to ADOL-C. Then, the abs-linear form is also available for larger problem instances. Hence, corresponding
tests are the subject of future work.

We present results for three small LGNEPs illustrating the numerical solution proposed in this paper.

Example 5.1. We start with an example taken from [30], recap the calculation for the piecewise linear
form and apply CASM to calculate a solution of this LGNEP. One considers a game with two one-
dimensional players, given as x1, x2. That is n1 = n2 = 1 and n = 2. The two players share the
constraints

A1x1 +B1x2 =

 − 1
2
1
−1

x1 +

 1
−1
−1

x2 ≤

 1
1
1

 = c1 = c2,

i.e., m1 = m2 = 3 and A2 = B1, B2 = A1. The target functions are defined by a1 = −1, a2 = 1. This
yields the polyhedra

Z1 = {o1 ∈ R3| − 1 + (−0, 5 1 − 1) o1 = 0 , o1 ≥ 0} =

o1 ∈ R3

∣∣∣∣∣∣
 −I1

(A1)⊤

−(A1)⊤

 o1 ≤

 0
−a1

a1

 ,

Z2 = {o2 ∈ R3|1 + (1 − 1 − 1) o2 = 0 , o2 ≥ 0} =

o2 ∈ R3

∣∣∣∣∣∣
 −I2

(A2)⊤

−(A2)⊤

 o1 ≤

 0
−a2

a2

 .

For those polyhedra one can determine the sets of vertices as

O1 = {(0 1 0)
⊤} and O2 = {(0 0 1)

⊤
, (0 1 0)

⊤} .

Combining these sets with definition (2.1) and the reformulation Equation (2.5), one obtains the piecewise
linear function

V̂ (x) = −x1 + 1 + x2 +min{x2 + 1 + x1, x2 + 1− x1} = −x1 + 2 + 2x2 − |x1| .
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An abs-linear form for the target function is given by

y = 2 + (1 2)x+ (0 − 1) z,

z =

(
1 0
0 0

)
x+

(
0 0
1 0

)
|z|.

This yields the

min
x∈R2,z∈R2

(1 2)x+ (0 − 1) z

s.t. 0 ≥

−1
−1
−1

+

−1/2 1
1 −1
−1 −1

x,

z =

(
1 0
0 0

)
x+

(
0 0
1 0

)
|z|,

and hence a formulation in (CALOP) form. Applying CASM yields after two iterations the optimal point
x∗ = (0, 5 − 0, 5) with the function value V̂ (x∗) = 0. Therefore, this is indeed a global solution of the
given LGNEP.

Example 5.2. This LGNEP is formulated in [4] and given by the two-player game

min
x1
1,x

1
2

−x1
1 − 2x1

2, min
x2

−x2, s.t. Ax ≤ b ,

with n1 = 2, n2 = 1, A =
[
A1 A2

]
=

[
B2 B1

]
, b = c1 = c2 and

A =


1 2 −1
3 2 1
−1 0 0
0 −1 0
0 0 −1

 , b =


14
30
0
0
0


and a1 = (−1 − 2)

⊤
, a2 = −1. Analogous reformulations of Z1, Z2 as in Example 5.1 yield as the sets

of vertices

O1 = {(1 0 0 0 0)
⊤
, (0 1 2 0 0)

⊤} ,

O2 = {(0 1 0 0 0)
⊤} .

Then the target function is given by

V̂ (x) = min{−x1
1 − 2x1

2 + 14 + x2,−x1
1 − 2x1

2 + 30− x2} − x2 + 30− 3x1
1 − 2x1

2

= −4x1
1 − 4x1

2 − x2 + 44 +min{x2, 16− x2}
= −4x1

1 − 4x1
2 − x2 + 52− |x2 − 8| .

The corresponding abs-linear form reads

y = 52 + (−4 − 4 − 1)x+ (0 − 1) z,

z =

(
−8
0

)
+

(
0 0 1
0 0 0

)
x+

(
0 0
1 0

)
|z|,

yielding the (CALOP) formulation

min
x∈R3,z∈R2

(−4 − 4 − 1)x+ (0 − 1) z

s.t. 0 ≥ −b+Ax,

z =

(
−8
0

)
+

(
0 0 1
0 0 0

)
x+

(
0 0
1 0

)
|z|.
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Applying CASM one obtains

x∗ =

(
19

3

14

3

5

3

)⊤

,

with the function value V̂ (x∗) = 0 within three iterations. This is indeed an optimal point and therefore
also included in the set of solutions calculated in [4] using the algorithm proposed in that paper. One has
to note that convergence analysis of the algorithm discussed in [4] can only be applied if the feasible set
Xν is bounded.

Example 5.3. The next example taken from [31] is given by

min
x1∈R

−x1, min
x2∈R

−x2, s.t. A1x1 +A2x2 ≤ b

with

A1 =
(
1
2 1 −1 0

)⊤
, A2 =

(
1 1

2 0 −1
)⊤

, and c = (1 1 0 0)
⊤

.

Proceeding as in the first two examples, one obtains

O1 = {(0 1 0 0)
⊤
, (2 0 0 0)

⊤} , O2 = {(0 2 0 0)
⊤
, (1 1 0 0)

T } ,

and the target function

V̂ (x) = min
{
−x1 + (0 1 0 0)

(
c−A2x2

)
,−x1 + (2 0 0 0)

(
c−A2x2

)}
+min

{
−x2 + (0 2 0 0)

(
c−A1x1

)
,−x2 + (1 0 0 0)

(
c−A1x1

)}
= −9

4
(x1 + x2) + 3− 1

4

(
|3x2 − 2|+ |3x1 − 2|

)
.

This is a piecewise linear function with two absolute value evaluations. Similar to above, one obtains the
(CALOP) formulation

min
x∈R2,z∈R3

(−9/4 − 9/4)x+ (0 0 − 1/4) z

s.t. 0 ≥


−1
−1
0
0

+


1/2 1
1 1/2
−1 0
0 −1

x,

z =

−2
−2
0

+

0 3
3 0
0 0

x+

0 0 0
0 0 0
1 1 0

 |z|.

Applying CASM, one obtains x̃ = (0.6667 0.6667) with the function value V̂ (x̃) = 4.4409 · 10−16 within
five iterations. This approximates the point x∗ = (2/3 2/3) with the function value V̂ (x∗) = 0 which
therefore is, as also shown in [31] via straightforward calculation, an optimal point.

6 Conclusion and Outlook

In this paper, we considered linear generalized Nash equilibrium problems as one example for optimization
problems with a piecewise linear target function and possibly piecewise linear constraints.

For this class of problems, we prove necessary and sufficient optimality conditions for the formulation
of the piecewise linear problems considered here. Similar to the result for an alternative formulation
discussed in [20, 22], we can verify the optimality of a given point with polynomial effort. This is
in contrast to most optimality conditions available for nonsmooth optimization. Using a few small
examples, we illustrate the usage of these optimality conditions in the Constrained Active Signature
Method (CASM).

As discussed at the end of Section 4, the presented optimality conditions only ensure local minimality.
The globalization of CASM is subject to current research. One possible approach that is currently
investigated is the exploitation of the polyhedra decomposition that is given by the signature vectors.

There are some LGNEPS that yield smooth globalized gap functions that are linear. In this case it is
much faster to use some linear solver for calculating optimal points. Therefore, it is important to check
for such property before using the approach proposed here.

14



Acknowledgement

The authors thank the DFG for support within project B10 in the TRR 154 Mathematical Modelling,
Simulation and Optimization using the Example of Gas Networks (project ID: 239904186). The research
was funded partly by the DFG under Germany’s Excellence Strategy – The Berlin Mathematics Research
Center MATH+ (EXC-2046/1, project ID:390685689).

References

[1] A. M. Bagirov et al., eds. Numerical nonsmooth optimization. State of the art algorithms. English.
Cham: Springer, 2020.

[2] D. Bremner. “Incremental Convex Hull Algorithms Are Not Output Sensitive.” In: Proceedings of
the 7th International Symposium on Algorithms and Computation. ISAAC ’96. Berlin, Heidelberg,
1996, pp. 26–35.

[3] F. E. Curtis, T. Mitchell, and M. L. Overton. “A BFGS-SQP method for nonsmooth, nonconvex,
constrained optimization and its evaluation using relative minimization profiles.” In: Optimization
Methods and Software 32.1 (2017), pp. 148–181.

[4] A. Dreves. “Computing all solutions of linear generalized Nash equilibrium problems.” In: Mathe-
matical Methods of Operations Research 85 (2017), pp. 207–221.

[5] A. Dreves and C. Kanzow. “Nonsmooth optimization reformulations characterizing all solutions
of jointly convex generalized Nash equilibrium problems.” In: Computational Optimization and
Applications 50 (Sept. 2011), pp. 23–48.

[6] A. Dreves, C. Kanzow, and O. Stein. “Nonsmooth optimization reformulations of player convex gen-
eralized Nash equilibrium problems.” In: Journal of Global Optimization 53 (Aug. 2012), pp. 587–
614.

[7] A. Dreves et al. “On the solution of the KKT conditions of generalized Nash equilibrium problems.”
In: SIAM Journal on Optimization 21 (July 2011), pp. 1082–1108.

[8] F. Facchinei and C. Kanzow. “Generalized Nash equilibrium problems.” In: Ann. Oper. Res. 175
(2010), pp. 177–211.

[9] F. Facchinei and C. Kanzow. “Penalty Methods for the Solution of Generalized Nash Equilibrium
Problems.” In: SIAM Journal on Optimization 20.5 (2010), pp. 2228–2253.

[10] F. Facchinei and J.-S. Pang. “Exact penalty functions for generalized Nash problems.” In: Large-
Scale Nonlinear Optimization. Boston, MA: Springer US, 2006, pp. 115–126.
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Lübbecke. Vol. 14. Open Access Series in Informatics (OASIcs), pp. 45–60.

[13] K. Fukuda and A. Prodon. “Double description method revisited.” In: Franco-Japanese and Franco-
Chinese conference on combinatorics and computer science. Springer, 1996, pp. 91–111.

[14] M. Fukushima. “Restricted generalized Nash equilibria and controlled penalty algorithm.” In: Com-
putational Management Science 8 (Aug. 2011), pp. 201–218.

[15] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural networks.” In: Proceedings of
the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings. 2011, pp. 315–323.

[16] A. Griewank and A. Walther. “Finite convergence of an active signature method to local minima
of piecewise linear functions.” In: OMS 34.5 (2019), pp. 1035–1055.

[17] A. Griewank and A. Walther. “Polyhedral DC decomposition and DCA optimization of piecewise
linear functions.” In: Algorithms (Basel) 13.7 (2020), Paper No. 166, 25.

[18] A. Griewank and A. Walther. “Relaxing kink qualifications and proving convergence rates in piece-
wise smooth optimization.” In: SIAM J. Optim. 29.1 (2019), pp. 262–289.

[19] A. Griewank and W. Walther. “First and second order optimality conditions for piecewise smooth
objective functions.” In: Optimization Methods and Software 31.5 (2016), pp. 904–930.

15



[20] L. C. Hegerhorst-Schultchen. “Optimality conditons for abs-normal NLPs.” PhD thesis. Gottfried
Wilhelm Leibniz Universität, 2020.

[21] L. C. Hegerhorst-Schultchen, C. Kirches, and M. C. Steinbach. “Relations between Abs-Normal
NLPs and MPCCs. Part 1: Strong Constraint Qualifications.” In: Journal of Nonsmooth Analysis
and Optimization Volume 2 (Feb. 2021).

[22] L. C. Hegerhorst-Schultchen and M. C. Steinbach. “On first and second order optimality conditions
for abs-Normal NLP.” In: Optimization 69.12 (2020), pp. 2629–2656.

[23] T. Kreimeier. “Solving Constrained Piecewise Linear Optimization Problems by Exploiting the
Abs-linear Approach.” PhD thesis. Humboldt-Universität zu Berlin, 2023.

[24] T. Kreimeier, A. Walther, and A. Griewank. Constrained piecewise linear optimization by an active
signature method. Tech. rep. Humboldt-Universität zu Berlin, 2023.

[25] F. Liers and M. Merkert. “Structural investigation of piecewise linearized network flow problems.”
In: SIAM J. Optim. 26.4 (2016), pp. 2863–2886.
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