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A posteriori error analysis of a positivity preserving scheme for the power-law
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We study a finite volume scheme approximating a parabolic-elliptic Keller-Segel system with power law
diffusion with exponent γ ∈ [1,3] and periodic boundary conditions. We derive conditional a posteriori
bounds for the error measured in the L∞(0,T ;H1(Ω)) norm for the chemoattractant and by a quasi-
norm-like quantity for the density. These results are based on stability estimates and suitable conforming
reconstructions of the numerical solution. We perform numerical experiments showing that our error
bounds are linear in mesh width and elucidating the behaviour of the error estimator under changes of γ .
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1. Introduction

The Keller-Segel system is the prototype of a large class of non-linear aggregation diffusion
equations that is ubiquitous in continuum models of populations occurring, e.g., in mathematical
biology, gravitational collapse and statistical mechanics, see [7]. The original parabolic-elliptic Keller-
Segel system has been proposed as a model for chemotactic movement of bacteria under the assumption5

that the chemoattractant diffuses much faster than the bacteria. An extensive overview on the history
and basic properties of this model can be found in [1, 21]. One of its specific properties is that
the solution may blow-up, i.e., all mass may concentrate in one point, in finite time [22]. This has
motivated a plethora of analytical and numerical studies investigating the relation between initial data
and blow-up. Introducing nonlinear diffusion in the system has been one of various proposed model10

refinements preventing blow-up, this modification moreover allows for a biological interpretation as
volume filling effect during cell migration [5]. Among many other applications, the Keller-Segel model
has been extensively used as an essential component in the bio-medical modeling of tumor invasion
of tissue, see e.g. [9, 24], in which different kinds of migration enter as well as the interplay of cells
with the extracellular matrix and enzymatic activators. One feature shared by the original model, its15

regularizations and models in applications is that solutions develop ’spiky’ highly localized densities,
which makes the development and analysis of numerical schemes a challenging task.
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There is a strong interest in developing and analyzing numerical methods for the Keller-Segel
system. A main goal has been to derive schemes that retain structural properties of the PDE system
such as non-negativity of the solution, conservation of mass, entropy dissipation or that preserve the20

asymptotic behavior in the parabolic to elliptic limit. Let us mention certain seminal and recent works.
A temporal semi-discretisation that preserves positivity and is compatible with the parabolic to elliptic
limit can be found in [26]. A positivity and mass conservative upwind finite-element scheme was
investigated in [31] and error estimates were proven under the assumption that a strong solution exists.
More recently, error estimates for a positivity preserving finite element scheme were derived in [10].25

Furthermore, discontinuous Galerkin (DG) methods have been used to solve Keller-Segel
equations: A family of interior penalty semi-discrete discontinuous Galerkin methods for Keller-Segel
equations was derived in [16] and error estimates were proven provided exact solutions are sufficiently
regular. These results were extended to a fully discrete scheme in [15]. The local discontinuous
Galerkin (LDG) method was applied to the 2D Keller-Segel model in [25] and optimal error estimates30

were proven for smooth solutions. Subsequently, another LDG scheme was introduced that can be
proven to be energy dissipative [20]. A high order hybrid finite-volume finite-difference method was
derived in [11] and a dedicated scheme for the three dimensional case was derived in [17].

Another important class of numerical methods for Keller-Segel models are finite volume schemes
for which positivity can be preserved easily. A finite volume scheme was derived and analyzed in35

[18] and can be shown to converge to a weak solution for sufficiently small initial data. Another finite
volume scheme was proposed in [34] and error estimates were proven for sufficiently regular exact
solutions.

This discussion shows that there has been a significant amount of work on deriving novel schemes
and proving a priori error estimates that are valid as long as rather smooth exact solutions exist, see40

also the overview in [12]. However, the time of existence of sufficiently smooth solutions is usually
not known and it is very challenging to determine the actual error of a numerical simulation.

In addition to the mentioned high order (usually DG) schemes various approaches have been
recently pursued in order to obtain efficient and accurate schemes: the mass-transport approach for
the one-dimensional problem [3, 8], adaptive mesh refinement [14, 23] and moving mesh schemes45

[13, 32]. The latter are based on an error sensor that determines regions in which the mesh
should be refined — in practice, a smoothed density gradient is used for this purpose. Apart from
modeling applications a main motivation for these schemes is the investigation of structural properties
of solutions, e.g., whether in two-species models blow-up of both densities is simultaneous, and
underresolved simulations may give misleading results as noted in [13].50

In this situation, a posteriori error estimates are a valuable complement to a priori error estimates
that are currently missing in the literature. They offer several advantages: They allow to move regularity
requirements away from the exact solution to the numerical solution, thereby reducing the number of
non-verifiable conditions in the analysis. They also provide computable error bounds so that one can
check the accuracy of a given simulation and, finally, they provide a more rigorous way to define an55

error sensor for mesh adaptation. The goal of this paper is to obtain a posteriori error estimates that



A POSTERIORI ANALYSIS FOR THE POWER-LAW DIFFUSION KELLER-SEGEL MODEL 3

ensure that, as long as the numerical solution is ’well-behaved’ — in a sense that is to be made precise
— so is the exact solution and numerical and exact solution can be guaranteed to be close to each other.

We provide such an a posteriori error estimate for a scheme numerically approximating the
parabolic-elliptic Keller-Segel system with non-linear power-law type diffusion that has been60

considered in [6] and reads

∂tρ +∇ · (ρ∇c)−∆ρ = 0

ρ = c−∆c
on (0,T )×Td , (1)

where γ ∈ [1,3] and Td denotes the d-dimensional flat torus, i.e., we consider periodic boundary data.
The numerical method we consider is a new linearly implicit first-order finite volume scheme that
builds on the upwind approach in [18]. The scheme is introduced in this work and we show that it
preserves positivity. While we allow for non-equidistant meshes in the one-dimensional case our study65

focuses on Cartesian meshes in two dimensions. We believe that our analysis can, in principle, be
extended to other (higher order) schemes and more complex models. Indeed, the companion paper [19]
provides a posteriori error estimates for a DG scheme applied to the parabolic-elliptic Keller-Segel
system with linear diffusion. We also believe that our analysis can be extended to more general meshes
following the ideas in [30].70

Our analysis relies on an elliptic reconstruction of the numerical solution, cf. [28], and a
generalization of the Gronwall lemma that allows us to cope with strong nonlinearities. This
generalized Gronwall lemma leads to conditional error bounds, i.e., bounds that are only known to
be valid when they are small enough; a condition that can be verified a posteriori.

The outline of the remainder of this paper is as follows: In Section 2 we state and prove two75

stability estimates for system (1), one addressing the linear diffusion case (γ = 1) and the other one the
nonlinear diffusion case (1 < γ ≤ 3). Section 3 introduces a finite volume scheme for (1) and shows
its positivity-preserving property. In Sections 4 and 5 we derive computable residual estimates for our
scheme that are crucial for the evaluation of the a posteriori error estimates. Finally, we show numerical
experiments for different γ in Section 6, investigating the behavior of the a posteriori bounds and the80

stability conditions under global mesh refinement.

2. Stability estimates

Let (ρ,c) be a weak solution of (1) and (ρ̄, c̄) a strong solution of the system

∂t ρ̄ +∇ · (ρ̄∇c̄)−∆ρ̄
γ = Rρ

ρ̄ = c̄−∆c̄
on (0,T )×Td (2)

for some given function Rρ ∈ L2(0,T ;H−1(Td)). The regularity requirements on (ρ,c) and (ρ̄, c̄) are
made precise in the theorems below. Note that elliptic regularity implies ∥c̄∥H2 ≤Cell∥ρ̄∥L2 for some85

Cell > 0. In the section at hand, we provide estimates for the difference (ρ − ρ̄,c− c̄) in terms of the
difference of their initial data and in terms of Rρ . We provide two types of such stability estimates. The
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first one shown in Section 2.1 is based on L∞(0,T ;L2(Td))-norm estimates and works well for γ = 1.
The second one shown in Section 2.2 is based on L∞(0,T ;H−1(Td))-norm estimates and works well
for larger values of γ . The situation we have in mind is that ρ̄ and c̄ are obtained as a reconstruction of90

a numerical solution and Rρ is the corresponding residual with respect to (1).

2.1. Stability estimate for the classical model

In this section we provide a stability estimate for the classical model and therefore assume γ = 1.
Subtracting (2) from (1) and testing with ρ − ρ̄ we obtain

∫
Td
(ρ − ρ̄)∂t(ρ − ρ̄)dx =

∫
Td
(ρ − ρ̄)∆(ρ − ρ̄)− (ρ − ρ̄)∇ · (ρ∇c− ρ̄∇c̄)−Rρ(ρ − ρ̄)dx, (3)

which after integration by parts implies95

d
dt

[∫
Td

1
2
(ρ − ρ̄)2dx

]
+
∫
Td

|∇(ρ − ρ̄)|2 dx

=
∫
Td

∇(ρ − ρ̄)ρ∇(c− c̄)+∇(ρ − ρ̄)(ρ − ρ̄)∇c̄−Rρ(ρ − ρ̄)dx

=
∫
Td

∇(ρ − ρ̄)ρ̄∇(c− c̄)+∇(ρ − ρ̄)(ρ − ρ̄)∇c̄−Rρ(ρ − ρ̄)

+∇(ρ − ρ̄)(ρ − ρ̄)∇(c− c̄)dx. (4)

Using Cauchy-Schwartz’s inequality we obtain

d
dt

[
1
2
∥ρ − ρ̄∥2

L2

]
+ |ρ − ρ̄|2H1 ≤ |ρ − ρ̄|H1∥ρ̄∥L3 |c− c̄|W 1,6 + |ρ − ρ̄|H1∥ρ − ρ̄∥L2∥∇c̄∥L∞

+∥Rρ∥H−1∥ρ − ρ̄∥H1 + |ρ − ρ̄|H1∥ρ − ρ̄∥L2∥∇(c− c̄)∥L∞ .

Provided the number of space dimensions satisfies d ≤ 3 this implies

d
dt

[
1
2
∥ρ − ρ̄∥2

L2

]
+ |ρ − ρ̄|2H1 ≤CS|ρ − ρ̄|H1∥ρ̄∥L3 |c− c̄|H2 + |ρ − ρ̄|H1∥ρ − ρ̄∥L2∥∇c̄∥L∞

+∥Rρ∥H−1∥ρ − ρ̄∥H1 +C′
S|ρ − ρ̄|H1∥ρ − ρ̄∥L2∥c− c̄∥H3

≤CS|ρ − ρ̄|H1∥ρ̄∥L3∥ρ − ρ̄∥L2 + |ρ − ρ̄|H1∥ρ − ρ̄∥L2∥∇c̄∥L∞

+∥Rρ∥H−1∥ρ − ρ̄∥H1 +CellC′
S|ρ − ρ̄|H1∥ρ − ρ̄∥L2∥ρ − ρ̄∥H1 , (5)
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where CS and C′
S are the Lipschitz constants of the embeddings H1 ↪→ L6 and H2 ↪→ L∞ respectively.

Using Young’s inequality, we obtain

d
dt

[
1
2
∥ρ − ρ̄∥2

L2

]
+ |ρ − ρ̄|2H1 ≤

1
4
|ρ − ρ̄|2H1 +C2

S∥ρ̄∥2
L3∥ρ − ρ̄∥2

L2
+

1
4
|ρ − ρ̄|2H1

+∥ρ − ρ̄∥2
L2∥∇c̄∥2

L∞ +∥Rρ∥2
H−1 +

1
4
∥ρ − ρ̄∥2

H1

+ |ρ − ρ̄|H1C′
S∥ρ − ρ̄∥L2∥ρ − ρ̄∥H1 . (6)

In the next step, we set100

y1(t) =
1
2
∥ρ(t, ·)− ρ̄(t, ·)∥2

L2 ,

y2(t) =
1
4
|ρ(t, ·)− ρ̄(t, ·)|2H1 ,

y3(t) = |ρ(t, ·)− ρ̄(t, ·)|H1C′
S∥ρ(t, ·)− ρ̄(t, ·)∥L2∥ρ(t, ·)− ρ̄(t, ·)∥H1 ,

a1(t) = 2C2
S∥ρ̄(t, ·)∥2

L3 +2∥∇c̄(t, ·)∥2
L∞ +

1
2
.

(7)

Then, we integrate (6) in time from 0 to T ′ and get

y1(T ′)+
∫ T ′

0
y2(t)dt ≤ y1(0)+

∫ T ′

0
a1(t)y1(t)+∥Rρ∥2

H−1 + y3(t)dt. (8)

We have, using Young’s inequality,

y3(t)≤C′
S|ρ − ρ̄|2H1∥ρ − ρ̄∥L2 +C′

S|ρ − ρ̄|H1∥ρ − ρ̄∥2
L2

≤ 4
√

2C′
Sy2

√
y1 +4C′

S
√

y2y1 ≤ (4
√

2+2)C′
S

√
y1(t)(y1(t)+ y2(t))

and consequently ∫ T ′

0
y3(t)dt = (4

√
2+2)C′

S sup
t∈[0,T ′]

√
y1(t)

∫ T ′

0
y1(t)+ y2(t)dt. (9)

Equations (8) and (9) show that our analysis fits into the framework of [2, Prop 6.2] with y1,y2,y3,a as
above B = 2C′

S, β = 1
2 ,105

A := y1(0)+
∫ T

0
∥Rρ∥2

H−1dt and E1 := exp
(∫ T

0
a1(t)dt

)
.

Then, taking into account the regularity requirements in [? , Theorem 9] we have the following
conditional error estimate.
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Theorem 2.1 (Stability estimate for linear diffusion). Let d ∈ {1,2,3}, γ = 1 and suppose that
ρ ∈ H1(0,T ;H−1(Td))∩ L2(0,T ;H1(Td)) and c ∈ L2(0,T ;H1(Td)) constitute a weak solution of
the Keller–Segel model (1). Furthermore, for ρ̄ ∈ H1(0,T ;H−1(Td)) ∩ L2(0,T ;H2(Td)) let Rρ ∈110

L2(0,T ;H−1(Td)) and c̄ ∈ L2(0,T ;H2(Td)) ∩ L2(0,T ;W 1,∞(Td)) satisfy (2) in terms of a strong
solution. Then, provided

8AE1(8(4
√

2+2)C′
S(1+T )E1)

2 ≤ 1 (10)

is satisfied, it holds

sup
t∈[0,T ]

1
2
∥ρ(t, ·)− ρ̄(t, ·)∥2

L2 +
1
4

∫ T

0
|ρ(t, ·)− ρ̄(t, ·)|2H1dt

≤ 8
(

1
2
∥ρ(0, ·)− ρ̄(0, ·)∥2

L2 +
∫ T

0
∥Rρ∥2

H−1dt
)

exp
(∫ T

0
2C2

S∥ρ̄(t, ·)∥2
L3 +2∥∇c̄(t, ·)∥2

L∞ +
1
2

dt
)
.

(11)

Note that, ∥∇c̄(t, ·)∥2
L∞ in (11) is bounded up to a constant by ∥ρ̄(t, ·)∥2

L3+ε for any ε > 0.

2.2. Stability estimate for the power-law diffusion model115

In this section we show a stability estimate in case of nonlinear diffusion and assume that 1< γ ≤ 3.
Subtracting (2) from (1) and testing with c− c̄ we obtain∫

Td
(c− c̄)∂t(ρ − ρ̄)dx =

∫
Td
(c− c̄)∆(ργ − ρ̄

γ)− (c− c̄)∇ · (ρ∇c− ρ̄∇c̄)−Rρ(c− c̄)dx, (12)

which after integration by parts implies

d
dt

[∫
Td

1
2
(c− c̄)2 +

1
2
|∇(c− c̄)|2dx

]
=
∫
Td

∆(c− c̄)(ργ − ρ̄
γ)+∇(c− c̄) · (ρ∇c− ρ̄∇c̄)

−Rρ(c− c̄)dx

=
∫
Td
(c− c̄)(ργ − ρ̄

γ)− (ρ − ρ̄)(ργ − ρ̄
γ)+ρ|∇(c− c̄)|2

+∇c̄ ·∇(c− c̄)(ρ − ρ̄)−Rρ(c− c̄)dx. (13)

We introduce the notations

z1(t) :=
1
2
∥c(t, ·)− c̄(t, ·)∥2

L2 +
1
2
∥∇(c(t, ·)− c̄(t, ·))∥2

L2 ,

z2(t) :=
1
2
∥F(ρ, ρ̄)1/2(ρ(t, ·)− ρ̄(t, ·))∥2

L2 ,

(14)
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where120

F(ρ, ρ̄) :=

{
ργ−ρ̄γ

ρ−ρ̄
if ρ ̸= ρ̄

γργ−1 otherwise
. (15)

The latter satisfies the bound

F(ρ, ρ̄) =
γ

ρ − ρ̄

∫
ρ

ρ̄

sγ−1ds ≥


γ

2
(ργ−1 + ρ̄

γ−1) if 1 < γ ≤ 2

γ

2γ−1 (ρ
γ−1 + ρ̄

γ−1) if 2 ≤ γ

, (16)

which can be easily verified as follows: if the integrand is concave the integral is bounded from below
by the trapezoidal rule and if the integrand is convex the integral is bounded from below by the midpoint
rule. Due to (16) we have

z2 ≥
∫ cγ

2
(ργ−1 + ρ̄

γ−1)(ρ − ρ̄)2 dx ≥
∫ cγ

2
|ρ − ρ̄|γ+1 dx (17)

with cγ =
γ

2 if γ ≤ 2 and cγ =
γ

2γ−1 if γ ≥ 2. Then (13) implies125

d
dt

z1(t)+2z2(t) =
∫
Td
(c− c̄)(ργ − ρ̄

γ)+ρ|∇(c− c̄)|2

+∇c̄ ·∇(c− c̄)(ρ − ρ̄)+Rρ(c− c̄)dx =: I1 + I2 + I3 + I4. (18)

We will estimate the terms I1, . . . , I4 one by one. Before we do this, let us recall the following technical
lemmas:

Lemma 2.2. For u, ū ∈ R≥0 and α ≥ 1 the following inequalities holds: |uα − ūα | ≥ |u− ū|α .

Proof Assume w.l.o.g. u > ū then we have

|uα − ūα |= α

∫ u

ū
sα−1ds ≤ α

∫ u

ū
(s− ū)α−1ds = |u− ū|α

using the monotonicity of the mapping s 7→ sα−1. □130

Lemma 2.3. For all ρ, ρ̄ > 0 and γ > 1 the following inequality holds:

|ργ−1 − ρ̄
γ−1||ρ − ρ̄| ≤ ((ργ − ρ̄

γ)(ρ − ρ̄))
γ

γ+1 . (19)
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Proof Assume w.l.o.g. ρ > ρ̄ . Setting u := ργ−1 and ū := ρ̄γ−1 we have for any a ∈ [0,1], using
Lemma 2.2,

(ργ − ρ̄
γ) = (u

γ

γ−1 − ū
γ

γ−1 )a(ργ − ρ̄
γ)1−a ≥ (u− ū)

aγ

γ−1 (ρ − ρ̄)(1−a)γ .

It remains to show that we can choose a such that

aγ

γ −1
= (1−a)γ +1 =

γ +1
γ

,

which can be easily verified taking a = (γ+1)(γ−1)
γ2 . □135

We next estimate I1. We observe that

|ργ − ρ̄
γ |= γρ̃

γ−1|ρ − ρ̄| ≤ γρ̄
γ−1|ρ − ρ̄|+ γ|ργ−1 − ρ̄

γ−1||ρ − ρ̄| (20)

for some ρ̃ between ρ and ρ̄ . Thus using (16) we estimate

I1 ≤
∫
Td

γ|c− c̄|ρ̄γ−1|ρ − ρ̄|+ γ|c− c̄||ργ−1 − ρ̄
γ−1||ρ − ρ̄|dx

≤ γ

√
2c−1

γ z2 ∥ρ̄
γ−1

2 ∥L3∥c− c̄∥L6 + γ

∫
|c− c̄||ργ−1 − ρ̄

γ−1||ρ − ρ̄|dx. (21)

Applying Lemma 2.3, Hölder’s and Young’s inequality in inequality (21) yields

I1 ≤ 2γ

√
c−1

γ CS
√

z2∥ρ̄
γ−1

2 ∥L3
√

z1 + γ∥c− c̄∥γ+1(2z2)
γ

γ+1

≤ 2γ

√
c−1

γ CS
√

z2∥ρ̄
γ−1

2 ∥L3
√

z1 + γ
γ+1CY∥c− c̄∥γ+1

Lγ+1 +
3
8

z2

≤ 2γ

√
c−1

γ CS
√

z2∥ρ̄
γ−1

2 ∥L3
√

z1 +CSCY (
√

2γ)γ+1z
γ+1

2
1 +

3
8

z2, (22)

where as above CS is the Lipschitz constant from the embedding H1 ↪→ L6 and CY = 1
γ+1

(
16γ

3γ+3

)γ

is a
constant from Young’s inequality.140

The next step is to control I2. We have

I2 ≤ 2∥ρ̄∥L∞z1 +
∫
Td
(ρ − ρ̄)|∇c−∇c̄|2 dx

≤ 2∥ρ̄∥L∞z1 +∥ρ − ρ̄∥Lγ+1∥∇c−∇c̄∥L2∥∇c−∇c̄∥
L

2γ+2
γ−1

.
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Assuming that 7/5≤ γ ≤ 3 in the case d = 3 we use the Sobolev embedding W 2,γ+1 ↪→W 1, 2γ+2
γ−1 together

with elliptic regularity to bound ∥∇c−∇c̄∥
L

2γ+2
γ−1

by a multiple of ∥ρ − ρ̄∥Lγ+1 and obtain using (17)

and Young’s inequality

I2 ≤ 2∥ρ̄∥L∞z1 +C̃S∥ρ − ρ̄∥2
Lγ+1∥∇c−∇c̄∥L2

≤ 2∥ρ̄∥L∞z1 +C̃Sc̃γ

√
2z1z

2
γ+1
2 ≤ 2∥ρ̄∥L∞z1 +C̃SC′

Y z
γ+1

2(γ−1)
1 +

3
8

z2, (23)

where C̃S accounts for the Sobolev embedding, c̃γ = (
cγ

2 )
γ+1

2 and C′
Y =

√
2c̃γ

γ−1
γ+1

(
16
√

2C̃S c̃γ

3γ+3

) 2
γ−1

comes145

from Young’s inequality. The term z
γ+1

2(γ−1)
1 is higher order compared to z1 so that it can be treated via

the generalized Gronwall lemma [2, Prop 6.2]. It is simply z1 for γ = 3.
Our next step is to control I3. We estimate

I3 =
∫
Td

∇c̄ ·∇(c− c̄)(c− c̄)−∇c̄ ·∇(c− c̄)(∆c−∆c̄)dx

≤ ∥∇c̄∥L3∥∇c−∇c̄∥L2∥c− c̄∥L6 +
∫
Td

∇c̄ ·∇ ·
(
−1

2
|∇(c− c̄)|2 +∇(c− c̄)⊗∇(c− c̄)

)
dx

≤ 2CS∥∇c̄∥L3z1 +C
∫
Td

|∆c̄||∇(c− c̄)|2 dx

≤ 2CS∥∇c̄∥L3z1 +2Cz1∥∆c̄∥L∞ ≤ 2CS∥∇c̄∥L3z1 +2Cz1∥ρ̄∥L∞ , (24)

where we have used integration by parts in the second and elliptic regularity in the last inequality and
introduced the constant C = d/2.150

Finally, I4 can be controlled via
I4 ≤ ∥Rρ∥H−1

√
2z1. (25)

We combine our estimates for I1, . . . , I4 in (18) and obtain, using Young’s inequality

d
dt

z1 +2z2 ≤ 4C2
Sc−1

γ γ
2 ∥ρ̄

γ−1
2 ∥2

L3z1 +CSCY (
√

2γ)γ+1 z
γ+1

2
1 + z2 +2∥ρ̄∥L∞z1 +C̃SC′

Y z
γ+1

2(γ−1)
1

+2CS∥∇c̄∥L3z1 +2C∥ρ̄∥L∞z1 +∥Rρ∥2
H−1 +

1
2

z1. (26)

Since for any a > 0 and 1 < α < β it holds aα < a+aβ we have

z
γ+1

2
1 ≤ z1 + z

γ+1
2(γ−1)
1 if 1 < γ < 2, z

γ+1
2(γ−1)
1 ≤ z1 + z

γ+1
2

1 if 2 ≤ γ ≤ 3. (27)

Equation (26) fits into the framework of [2, Prop 6.2]. We define

aγ(t) := 4C2
Sc−1

γ γ
2∥ρ̄

γ−1
2 ∥2

L3 +Ca(γ)+2(C+1)∥ρ̄∥L∞ +2CS∥∇c̄∥L3 +
1
2

(28)
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given the constant155

Ca(γ) :=

{
CSCY (

√
2γ)γ+1 if 1 < γ < 2

C̃SC′
Y if 2 ≤ γ ≤ 3

. (29)

Then, we can integrate (26) in time from 0 to T ′ and obtain

z1(T ′)+
∫ T ′

0
z2(t)dt ≤ z1(0)+

∫ T ′

0
aγ(t)z1(t)+∥Rρ∥2

H−1 +Bz1(t)1+β dt (30)

with

B :=CSCY (
√

2γ)γ+1 +C̃SC′
Y , β :=

{
3−γ

2(γ−1) if 1 < γ < 2
γ−1

2 if 2 ≤ γ ≤ 3
. (31)

Equation (30) shows that our analysis fits into the framework of [2, Prop 6.2] with y1 := z1, y2 := z2,

y3 = Bz1(t)1+β , A := z1(0)+
∫ T

0
∥Rρ∥2

H−1dt, Eγ := exp
(∫ T

0
aγ(t)dt

)
,

aγ , β and B as above. Then, we have the following conditional error estimate.

Theorem 2.4 (Stability estimate for nonlinear diffusion). Let either d = 1,2 and 1 < γ ≤ 3 or d = 3160

and 7/5 ≤ γ ≤ 3. Suppose that ρ ∈ H1(0,T ;H−1(Td))∩ L2(0,T ;H1(Td)) and c ∈ C(0,T ;H1(Td))
constitute a weak solution of the power-law diffusion Keller–Segel model (1). Furthermore, for
ρ̄ ∈ H1(0,T ;H−1(Td)) ∩ L2(0,T ;H2(Td)) ∩ L1(0,T ;L∞(Td)) let Rρ ∈ L2(0,T ;H−1(Td)) and c̄ ∈
L2(0,T ;H2(Td))∩C(0,T ;H1(Td)) satisfy (2) in terms of a strong solution. Then, provided

8AEγ(8B(1+T )Eγ)
1
β ≤ 1 (32)

is satisfied, it holds165

sup
t∈[0,T ]

1
2
∥c(t, ·)− c̄(t, ·)∥2

H1 +
1
2

∫ T

0

∫
Td
(ργ − ρ̄

γ)(ρ − ρ̄)dxdt

≤ 8
(

1
2
∥c(0, ·)− c̄(0, ·)∥2

H1 +
∫ T

0
∥Rρ∥2

H−1dt
)

exp
(∫ T

0
aγ(t)dt

)
. (33)

Remark 2.5. To make the estimate for the density difference resulting from (33) more transparent, we
note that it can be expressed in the style of what is done for the gradient in p-Laplace problems [27]
and called quasi-norm, i.e.

|ρ
γ+1

2 − ρ̄
γ+1

2 |2 ≤ (ργ − ρ̄
γ)(ρ − ρ̄)≤ γ +1

2
|ρ

γ+1
2 − ρ̄

γ+1
2 |2.
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3. A positivity-preserving finite volume scheme

We consider a discretization of the time domain with step sizes ∆tn > 0, time instances tn =∑
n
i=1 ∆t i

170

and a discretization of Td for d ∈ {1,2} on a grid with the mesh cells K1, . . . , KN . In the case d = 2 the
cells form an equidistant Cartesian mesh, whereas in the case d = 1 we allow for nonuniform interval
cells, details are given below. By ρn

h we denote a piecewise constant approximation of (1) at time tn

consisting of the cell averages ρn
i .

The 1D scheme In the case d = 1 we introduce the cell interfaces xi+1/2 for i = 0,1, . . . ,N, such that175

hi = xi+1/2 − xi−1/2 > 0, x−1/2 = 0 and xN+1/2 = 1 and define the mesh cells Ki = [xi−1/2,xi+1/2]. We
also define cell-midpoints xi := 1

2 (xi+1/2 + xi−1/2) and define the function spaces

Rh := {r ∈ L2(T1,R) : r|(xi−1/2,xi+1/2)
constant ∀i}, (34)

Vh := {v ∈ H1(T1,R) : v|(xi,xi+1) linear ∀i}, (35)

Ṽh := {v ∈ H1(T1,R) : v|(xi−1/2,xi+1/2)
linear ∀i}. (36)

Starting from ρ0
h ∈ Rh we compute successively cn

h ∈Vh and ρ
n+1
h ∈ Rh by solving∫

T1
∇cn

h∇vh + cn
hvh dx =

∫
T1

ρ̃
nvh dx ∀vh ∈Vh, (37)

where ρ̃n ∈Vh is determined by ρ̃n(xi) = ρn
i , the latter being given by the scheme

ρ
n+1
i = ρ

n
i −

∆tn

hi

(
F n

i+1/2 −F n
i−1/2

)
+

∆tn

hi

(
Dn,n+1

i+1/2 −Dn,n+1
i−1/2

)
, (38)

where ρn
i denotes the value of ρn

h on (xi−1/2,xi+1/2). The numerical fluxes accounting for nonlinear180

diffusion are defined by

Dn,n+1
i+1/2 = γ (ρ̂n

i+1/2)
γ−1 ρ

n+1
i+1 −ρ

n+1
i

di+1/2
, (39)

where we employ the averages

ρ̂
n
i+1/2 =

ρn
i+1 +ρn

i

2
. (40)

and di+1/2 := hi+hi+1
2 refers to the distance between xi and xi+1. For brevity of notation in the following

computations we further introduce the notation

∆
γ

h[ρ
n
h ,ρ

n+1
h ]|Ki =

1
hi

(
Dn,n+1

i+1/2 −Dn,n+1
i−1/2

)
. (41)

The advective numerical fluxes are given by185

F n
i+1/2 = ∂xcn

h(xi+1/2)
+

ρ
n
i −∂xcn

h(xi+1/2)
−

ρ
n
i+1 (42)

with the positive and negative part defined as x+ = max{0,x} and x− =−min{x,0}.
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The 2D scheme In the case d = 2 the mesh cells for ρh are given by the squares Ki = K j,k =
[x j−1/2,x j+1/2]× [yk−1/2,yk+1/2], where the single and double index notation relates as i = (k−1)n+
( j−1) for i, j = 1, . . . ,n and N = n2. In analogy to the 1D scheme we consider x- and y-coordinates of
the cell interfaces in horizontal and vertical direction, which due to the assumption of equidistant cells190

of side length h, have the simple structure xi+1/2 = yi+1/2 = (i−1)h for i = 0,1, . . . ,N. The time- and
space dependent cell averages ρn

j,k are governed by the scheme

ρ
n+1
j,k −ρn

j,k

∆tn +
1
h

(
F n

j+1/2,k −F n
j−1/2,k

)
+

1
h

(
F n

j,k+1/2 −F n
j,k−1/2

)
=

1
h

(
Dn,n+1

j+1/2,k −Dn,n+1
j−1/2,k

)
+

1
h

(
Dn,n+1

j,k+1/2 −Dn,n+1
j,k−1/2

)
. (43)

In order to define ch we introduce a triangulation Th of T2 by considering the dual quadrilateral mesh
consisting of cells [x j,x j+1]× [yk,yk+1] and dividing each square into a lower-left and an upper-right
triangle. We define195

Vh = {v ∈ H1(T2,R) : v|T is linear ∀T ∈ Th}

and cn
h ∈Vh by ∫

T2
∇cn

h∇vh + cn
hvh dxdy =

∫
T2

ρ̃
nvh dxdy,

where ρ̃n is the unique element of Vh with ρ̃n(x j,yk) = ρn
jk. The numerical fluxes analogue to (41) and

(42) are direction dependent. To discretize the diffusion terms the numerical fluxes

Dn,n+1
j+1/2,k = γ (ρ̂n

j+1/2,k)
γ−1

ρ
n+1
j+1,k −ρ

n+1
j,k

h
, Dn,n+1

j,k+1/2 = γ (ρ̂n
j,k+1/2)

γ−1
ρ

n+1
j,k+1 −ρ

n+1
j,k

h
(44)

are used together with the averages

ρ̂
n
j+1/2,k =

ρn
j+1,k +ρn

j,k

2
, ρ̂

n
j,k+1/2 =

ρn
j,k+1 +ρn

j,k

2
.

Like (41) in the 1D scheme we introduce the abbreviations200

∆
γ

x,h[ρ
n
h ,ρ

n+1
h ]|Ki =

1
h

(
Dn,n+1

j+1/2,k −Dn,n+1
j−1/2,k

)
, ∆

γ

y,h[ρ
n
h ,ρ

n+1
h ]|Ki =

1
h

(
Dn,n+1

j,k+1/2 −Dn,n+1
j,k−1/2

)
.

To discretize the advection terms, we denote the centers of the intervals [x j−1/2,x j+1/2] and
[yk−1/2,yk+1/2] by x j and yk, respectively and use the numerical fluxes

F n
j+1/2,k = ∂xcn

h(x j+1/2,yk)
+

ρ
n
j,k −∂xcn

h(x j+1/2,yk)
−

ρ
n
j+1,k,

F n
j,k+1/2 = ∂ycn

h(x j,yk+1/2)
+

ρ
n
j,k −∂ycn

h(x j,yk+1/2)
−

ρ
n
j,k+1,
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where the points (x j+1/2,yk) and (x j,yk+1/2) are located at the center of an interface between two
adjacent mesh cells. Note that ∂xcn

h(x j+1/2,yk) and ∂ycn
h(x j,yk+1/2) are well defined.

Remark 3.1. It is not clear, whether our definition of the reconstruction ρ̃ achieves optimal a posteriori205

estimates for the proposed finite volume scheme. An alternative would be a biliner reconstruction on a
quadrilateral mesh.

The introduced finite volume scheme employs an implicit discretization of the nonlinear diffusion
terms. However, a time step of the scheme does not require the solution of a non-linear system, only a
linear system needs to be solved with system matrix depending on the current numerical solution.210

The following theorem states an important property of the scheme.

Theorem 3.2. Suppose that the CFL condition

∆t ≤ min
1≤i≤N

hi

an
i
, (45)

holds for all n ∈ N0, where an
i = |∂xc(tn,xi−1/2)

−+∂xc(tn,xi+1/2)
+| in the case d = 1 and

an
i = |∂xc(tn,(x j+1/2,yk))

++∂xc(tn,(x j−1/2,yk))
−+∂yc(tn,(x j,yk+1/2))

++∂yc(tn,(x j,yk−1/2))
−|

in the case d = 2. Then the finite volume scheme given by (38) if d = 1 and (43) if d = 2 is positivity
preserving, i.e., if the initial data satisfies ρ0

h ≥ 0 we have ρn
h ≥ 0 for all n ∈ N0.215

Proof We prove this result inductively and assume ρn
h ≥ 0. If d = 1 we obtain due to |∂xc| ≥

∂xc+,∂xc− ≥ 0 and (45) the estimate

ρ
n
i −

∆t
hi

[
F n

i+1/2 −F n
i−1/2

]
= ρ

n
i −

∆t
hi

[
∂xc(tn,xi+1/2)

+
ρ

n
i −∂xc(tn,xi+1/2)

−
ρ

n
i+1 −∂xc(tn,xi−1/2)

+
ρ

n
i−1 +∂xc(tn,xi−1/2)

−
ρ

n
i
]

≥ ρ
n
i

(
1− ∆t

hi

[
∂xc(tn,xi+1/2)

++∂xc(tn,xi−1/2)
−])

≥ ρ
n
i

(
1− ∆t

hi
an

i

)
≥ 0. (46)

The scheme (38) can be rewritten as

ρ
n+1
i −∆tn

∆
γ

h[ρ
n
h ,ρ

n+1
h ]|Ki = ρ

n
i −

∆t
hi

[
F n

i+1/2 −F n
i−1/2

]
i = 1, . . . ,N, (47)

which gives rise to the vector form

(I −∆tAn)ρn+1
h = r(ρn

h )
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with An ∈ RN×N . By the nonnegativity of ρn
h also ρ̂n

i+1/2 is nonnegative for i = 1, . . . ,N and thus the220

matrix An has nonpositive diagonal and nonnegative off-diagonal entries. In addition, the entries of
each line of An add up to zero. For these reasons I −∆tAn is an M matrix and the nonnegativity of
r(ρn

h ) due to (46) implies ρ
n+1
h ≥ 0.

The argument can be transferred to the case d = 2 in a straight-forward manner, in particular the
entries of the right hand side of the linear system are bounded by225

ρ
n
j,k−

∆t
h

[
F n

j+1/2,k −F n
j−1/2,k +F n

j,k+1/2 −F n
j,k−1/2

]
≥ ρ

n
j,k

(
1− ∆t

h

[
∂xc(tn,(x j+1/2,yk))

++∂xc(tn,(x j−1/2,yk))
−]

− ∆t
h

(
∂yc(tn,(x j,yk+1/2))

++∂yc(tn,(x j,yk−1/2))
−))

≥ ρ
n
j,k

(
1− ∆t

h
an

j,k

)
≥ 0 (48)

using the CFL condition (45). □

4. Residual estimates for the 1D scheme

To obtain a posteriori estimates for the scheme introduced in Section 3 we employ the stability
framework established in Section 2, i.e. we evaluate the stability estimates on approximate solutions
ρ̃ and c̃ that are obtained by suitable reconstructions, to be detailed below, of ρh and ch. In this and230

the following section we provide the required computable bounds of the residual Rρ occurring upon
inserting ρ̃ and c̃ into the power-law diffusion Keller-Segel system.

To extend the reconstructions and the numerical solution in time we introduce the temporal
interpolations

ρ̃(t,x) = ℓn
0(t)ρ̃

n+1(x)+ ℓn
1(t)ρ̃

n(x), t ∈ [tn, tn+1]

ρh(t,x) = ℓn
0(t)ρ

n+1
h (x)+ ℓn

1(t)ρ
n
h (x), t ∈ [tn, tn+1]

(49)

using the Lagrange polynomials235

ℓn
0(t) =

t − tn

∆t
, ℓn

1(t) =
tn+1 − t

∆t
.

By this definition we have

∂t ρ̃ =
ρ̃n+1 − ρ̃n

∆tn , t ∈ (tn, tn+1). (50)

Next, we introduce the reconstruction c̃ as the solution to the elliptic equation

c̃−∆c̃ = ρ̃, (51)
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which allows us to define the residual

R̃ρ := ∂t ρ̃ +∇ · (ρ̃∇c̃)−∆ρ̃
γ . (52)

In the following, we aim to find a bound for

∫ T

0
∥R̃ρ∥2

H−1(T1) dt =
∫ T

0
sup

φ∈H1(Td)
∥φ∥H1≤1

(∫
T1

R̃ρ φ dx
)2

dt.

Estimates are first discussed for the non-equidistant scheme in 1D. A generalization to the 2D scheme240

on Cartesian meshes is discussed in Section 5. Fixing t ∈ [tn, tn+1] we find that

R̃ρ =
ρ̃n+1 − ρ̃n

∆tn +∇ · (ρ̃∇c̃)−∆ρ̃
γ

=
ρ̃n+1 − ρ̃n

∆tn +∂x((ℓ
n
0ρ̃

n+1 + ℓn
1ρ̃

n)(ℓn
0∂xc̃n+1 + ℓn

1∂xc̃n))

−∆ρ̃
γ + ℓn

0∆
γ

h[ρ
n
h ,ρ

n+1
h ]+ ℓn

1∆
γ

h[ρ
n−1
h ,ρn

h ]

−
ℓn

0(t)
h

(dF n
h )−

ℓn
1(t)
h

(
dF n−1

h

)
− ℓn

0(t)
ρ

n+1
h −ρn

h
∆tn − ℓn

1(t)
ρn

h −ρ
n−1
h

∆tn ,

(53)

where we have used (50), the scheme (38), and the piecewise constant function dF n
h |Ki := F n

i+1/2 −
F n

i−1/2. To estimate the residual we split it as R̃ρ = R̃1 + R̃2 + R̃3, such that

R̃1 := ℓn
0∆

γ

h[ρ
n
h ,ρ

n+1
h ]+ ℓn

1∆
γ

h[ρ
n−1
h ,ρn

h ]−∆ρ̃
γ , (54)

R̃2 :=
ρ̃n+1 − ρ̃n

∆tn − ℓn
0(t)

ρ
n+1
h −ρn

h
∆tn − ℓn

1(t)
ρn

h −ρ
n−1
h

∆tn−1 , (55)

R̃3 := ∂x((ℓ
n
0ρ̃

n+1 + ℓn
1ρ̃

n)(ℓn
0∂xc̃n+1 + ℓn

1∂xc̃n))−
ℓn

0(t)
hi

dF n
h −

ℓn
1(t)
hi

dF n−1
h . (56)

4.1. First part of the residual

We first consider the constituent R̃1 of the residual and rewrite it as245

R̃1 = ℓn
0
(
∆

γ

h[ρ
n
h ,ρ

n+1
h ]−∂x

(
γ(ρ̃n)γ−1

∂xρ̃
n+1))+ ℓn

1
(
∆

γ

h[ρ
n−1
h ,ρn

h ]−∂x
(
γ(ρ̃n−1)γ−1

∂xρ̃
n))

+ ℓn
1∂x
(
(ρ̃n−1)γ−1

∂xρ̃
n − (ρ̃n)γ−1

ρ̃
n+1
x
)
+∂x

(
(ρ̃n)γ−1

∂xρ̃
n+1 − (ρ̃)γ−1

∂xρ̃
)
. (57)

Note that the latter two terms vanish in the case γ = 1. The sum (57) is estimated in H−1(T) on a term
by term basis. To this end we fix φ ∈ H1(T) with ∥φ∥H1(T) ≤ 1.
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We estimate the first two terms of (57) in H−1(T) rearranging the summation and integrating by
parts. Therefore, we compute∫

T1

(
∆

γ

h[ρ
n
h ,ρ

n+1
h ]− γ∂x

[
(ρ̃n)γ−1

∂xρ̃
n+1])

φ dx

=
N

∑
i=1

Dn,n+1
i+1/2

(
1
hi

∫
Ki

φ dx− 1
hi+1

∫
Ki+1

φ dx
)
+

N

∑
i=1

∫ xi+1

xi

γ(ρ̂n
i+1/2)

γ−1
∂xρ̃

n+1
∂xφ dx

+
N

∑
i=1

∫ xi+1

xi

γ

(
(ρ̃n)γ−1 − (ρ̂n

i+1/2)
γ−1
)

∂xρ̃
n+1

∂xφ dx. (58)

For the last sum in (58) we estimate using the piecewise linearity of ρ̃ and Cauchy Schwartz’s250

inequality

N

∑
i=1

∫ xi+1

xi

γ

(
(ρ̃n)γ−1 − (ρ̂n

i+1/2)
γ−1
)

∂xρ̃
n+1

∂xφ dx

≤ γ

N

∑
i=1

∥(ρ̃n)γ−1 − (ρ̂n
i+1/2)

γ−1∥L∞(xi,xi+1)∥∂xρ̃
n+1∥L2(xi,xi+1)

∥φ∥H1(xi,xi+1)

≤ γ

(
N

∑
i=1

(ρn+1
i+1 −ρ

n+1
i )2

di+1/2
max

ℓ∈{i,i+1}

∣∣∣(ρn
ℓ )

γ−1 − (ρ̂n
i+1/2)

γ−1
∣∣∣2)1/2

. (59)

Since ∂xρ̃ is piecewise constant the integral in the remainder in (58) can be computed and we obtain
the bound

N

∑
i=1

Dn,n+1
i+1/2

(
1
hi

∫
Ki

φ dx− 1
hi+1

∫
Ki+1

φ dx
)
+

N

∑
i=1

Dn,n+1
i+1/2 (φ(xi+1)−φ(xi))

=
N

∑
i=1

(
Dn,n+1

i+1/2 −Dn,n+1
i−1/2

) 1
hi

∫
Ki

(φ −φ(xi))dx

≤
N

∑
i=1

1√
hi

∣∣∣Dn,n+1
i+1/2 −Dn,n+1

i−1/2

∣∣∣∥φ −φ(xi)∥L2(Ki)

≤

(
N

∑
i=1

hi

(
Dn,n+1

i+1/2 −Dn,n+1
i−1/2

)2
)1/2

(60)

using Cauchy Schwartz’s inequality. The second part of (57) is bounded by

∫
T

∂x((ρ̃
n−1)γ−1

∂xρ̃
n−(ρ̃n)γ−1

∂xρ̃
n+1)φ dx ≤

(
N

∑
i=1

∥((ρn−1
i )γ−1

ρ̃
n
x − (ρn

i )
γ−1

ρ̃
n+1
x )∥2

L2(Ki)

)1/2

(61)
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which is readily computable. Considering the last term of (57) we note that the estimate255

|(ρ̃n)γ−1
∂xρ̃

n+1 − (ρ̃)γ−1
∂xρ̃| ≤ max{(ρ̃n)γ−1,(ρ̃n+1)γ−1}|∂xρ̃

n+1 −∂xρ̃
n|

+ |(ρ̃n)γ−1 − (ρ̃n+1)γ−1)||∂xρ̃
n+1|

holds and therefore ∫
T

∂x
(
(ρ̃n)γ−1

∂xρ̃
n+1 − (ρ̃)γ−1

∂xρ̃
)

φ dx

≤
n

∑
i=1

∥((ρn
i )

γ−1 +(ρn+1
i )γ−1)|∂xρ̃

n+1 −∂xρ̃
n| φx∥L1(Ki)

+
n

∑
i=1

∥|(ρn
i )

γ−1 − (ρn+1
i )γ−1| |∂xρ̃

n+1|∂xφ∥L1(Ki)

≤

(
N

∑
i=1

((ρn
i )

γ−1 +(ρn+1
i )γ−1)2∥∂xρ̃

n+1 −∂xρ̃
n∥2

L2(Ki)

)1/2

+

(
N

∑
i=1

((ρn
i )

γ−1 − (ρn+1
i )γ−1)2∥∂xρ̃

n+1∥2
L2(Ki)

)1/2

. (62)

In summary, a bound of ∥R̃1∥H−1(T) is given by summing the terms (59), (60), (61) and (62).

4.2. Second part of the residual

In this section, a bound of R̃2 in H−1(T) is derived. Since the Lagrange polynomials satisfy ℓn
0(t)+

ℓn
1(t) = 1, it holds260

ρ
n+1
h −ρn

h
∆t

|Ki = (ℓn
0(t)+ ℓn

1(t))
ρ

n+1
i −ρn

i
∆t

, (63)

which allows us to rewrite the second part of the residual as

R̃2 =
(ρ̃n+1 −ρ

n+1
h )− (ρ̃n −ρn

h )

∆t
+ ℓn

1(t)
ρ

n+1
h −2ρn

h +ρ
n−1
h

∆t
. (64)

To obtain an estimate for (64) we first derive H−1(T) bounds of ρh − ρ̃ . To this end, we use φ with
∥φ∥H1(T) ≤ 1 and compute

∫
T1
(ρn

h − ρ̃
n)φ dx =

N

∑
i=1

∫ xi

xi−1/2

[
ρ

n
i −
(

xi − x
di−1/2

ρ
n
i−1 +

x− xi−1

di−1/2
ρ

n
i

)]
φ dx

+
N

∑
i=1

∫ xi+1/2

xi

[
ρ

n
i −
(

xi+1 − x
di+1/2

ρ
n
i +

x− xi

di+1/2
ρ

n
i+1

)]
φ dx.
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Using Cauchy-Schwartz’s inequality we obtain

∫
T1
(ρn

h − ρ̃
n)φ dx ≤

N

∑
i=1

(∫ xi

xi−1/2

∣∣ρn
i −ρ

n
i−1
∣∣2 dx

)1/2(∫ xi

xi−1/2

φ
2 dx

)1/2

+
N

∑
i=1

(∫ xi+1/2

xi

∣∣ρn
i −ρ

n
i+1
∣∣2 dx

)1/2(∫ xi+1/2

xi

φ
2 dx
)1/2

. (65)

Thus, using Cauchy-Schwartz’s inequality once more, an H−1(T) bound for the first term in (64) is265

given by ∥∥∥∥∥ρn
h −ρ

n+1
h

∆t
− ρ̃n − ρ̃n+1

∆t

∥∥∥∥∥
H−1

≤

 N

∑
i=1

hi +hi−1

2

∣∣∣∣∣ρn
i −ρ

n+1
i

∆t
−

ρn
i−1 −ρ

n+1
i−1

∆t

∣∣∣∣∣
2
1/2

. (66)

The second term in (64) is controlled using Cauchy-Schwartz’s inequality by

N

∑
i=1

∫
Ki

ℓn
1(t)

ρ
n+1
i −2ρn

i +ρ
n−1
i

∆t
φ dx ≤

(
N

∑
i=1

hi

∆t2

[
ρ

n+1
i −2ρ

n
i +ρ

n−1
i
]2)1/2

. (67)

4.3. Third part of the residual

Using integration by parts testing the third part of the residual with φ ∈ H1(T) yields∫
T

R3
φ dx =−

∫
T
(ℓn

0ρ̃
n+1 + ℓn

1ρ̃
n)(ℓn

0∂xc̃n+1 + ℓn
1∂xc̃n)∂xφ dx

−
N

∑
i=1

(
ℓn

0F
n
i+1/2 + ℓn

1F
n−1
i+1/2

)( 1
hi

∫
Ki

φ dx− 1
hi+1

∫
Ki+1

φ dx
)
. (68)

We denote by Ψi+1/2 the unique element of Ṽh having the value 1 at xi+1/2 and zero at all x j+1/2 with270

j ̸= i and remark regarding the last factor in (68) that

1
hi+1

∫
Ki+1

φ dx− 1
hi

∫
Ki

φ dx =−
∫
T

φ∂xΨi+1/2 dx =
∫
T

Ψi+1/2 ∂xφ dx. (69)

Therefore (68) recasts as∫
T

[
ℓn

0(ρ̃
n
∂xc̃n)+ ℓn

1(ρ̃
n−1

∂xc̃n−1)− ((ℓn
0ρ̃

n+1 + ℓn
1ρ̃

n)(ℓn
0∂xc̃n+1 + ℓn

1∂xc̃n))
]

∂xφ dx

−
∫
T

[
ℓn

0(ρ̃
n
∂xc̃n)+ ℓn

1(ρ̃
n−1

∂xc̃n−1)
]

∂xφ dx+
N

∑
i=1

(
ℓn

0F
n
i+1/2 + ℓn

1F
n−1
i+1/2

)∫
T

Ψi+1/2 ∂xφ dx. (70)
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We consider the first integral in (70) and use Cauchy-Schwartz’s inequality, the identity

(ℓn
0(t)a1 + ℓn

1(t)a2)(ℓ
n
0(t)b1 + ℓn

1(t)b2)− ℓn
0(t)a1b1 − ℓn

1(t)a2b2 = (a1 −a2)(b1 −b2)(t̃ 2 − t̃)

for t ∈ [tn, tn+1] and t̃ = (t − tn)/∆t and elliptic regularity in (51) to estimate

∫
T

[
ℓn

0(ρ̃
n
∂xc̃n − ρ̃

n+1
∂xc̃n+1)+ ℓn

1(ρ̃
n−1

∂xc̃n−1 − ρ̃
n
∂xc̃n)

]
∂xφ dx

+
∫
T

[
ℓn

0(ρ̃
n+1

∂xc̃n+1)+ ℓn
1(ρ̃

n
∂xc̃n)− ((ℓn

0ρ̃
n+1 + ℓn

1ρ̃
n)(ℓn

0∂xc̃n+1 + ℓn
1∂xc̃n))

]
∂xφ dx

≤ ∥ρ̃
n
∂xc̃n − ρ̃

n+1
∂xc̃n+1∥L2(T)+∥ρ̃

n−1
∂xc̃n−1 − ρ̃

n
∂xc̃n∥L2(T)+∥(ρ̃n+1 − ρ̃

n)(∂xc̃n+1 −∂xc̃n)∥L2(T)

≤ ∥ρ̃
n(∂xc̃n −∂xc̃n+1)+∂xc̃n+1(ρ̃n − ρ̃

n+1)∥L2(T)+∥ρ̃
n−1(∂xc̃n−1 −∂xc̃n)+∂xc̃n(ρ̃n−1 − ρ̃

n)∥L2(T)

+∥(ρ̃n+1 − ρ̃
n)(∂xc̃n+1 −∂xc̃n)∥L2(T)

≤ ∥ρ̃
n∥L∞(T)∥∂xc̃n −∂xc̃n+1∥L2(T)+∥∂xc̃n+1∥L2(T)∥ρ̃

n − ρ̃
n+1∥L∞(T)+∥ρ̃

n−1∥L∞(T)∥∂xc̃n−1 −∂xc̃n∥L2(T)

+∥∂xc̃n∥L2(T)∥ρ̃
n−1 − ρ̃

n∥L∞(T)+∥ρ̃
n+1 − ρ̃

n∥L∞(T)∥∂xc̃n+1 −∂xc̃n∥L2(T)

≤
(
∥ρ̃

n∥L∞(T)+∥ρ̃
n+1∥L∞(T)+∥ρ̃

n+1 − ρ̃
n∥L∞(T)

)
∥ρ̃

n − ρ̃
n+1∥L∞(T)

+
(
∥ρ̃

n−1∥L∞(T)+∥ρ̃
n∥L∞(T)

)
∥ρ̃

n−1 − ρ̃
n∥L∞(T). (71)

In the last inequality the embedding L∞ ↪→ L2 has been used. We next derive a bound for the remaining275

terms of (70). To this end, we neglect the time and remark that Ψi+1/2 for all i = 1, . . . ,N form a
partition of unity, which allows us to write and estimate the remainder as

N

∑
i=1

∫
Ki∪Ki+1

(Fi+1/2 − ρ̃∂xc̃)Ψi+1/2 ∂xφ dx ≤
N

∑
i=1

∥(Fi+1/2 − ρ̃∂xc̃)Ψi+1/2∥L2(Ki∪Ki+1)
∥∂xφ∥L2(Ki∪Ki+1)

≤ 2

(
N

∑
i=1

∥Fi+1/2 − ρ̃∂xc̃∥2
L2(Ki∪Ki+1)

)1/2

. (72)

Using Hölder’s inequality we further estimate

∥Fi+1/2 − ρ̃∂xc̃∥2
L2(Ki)

≤ ∥g(ρi,ρi+1)∂xch − ρ̃∂xc̃(xi+1/2)∥2
L2(Ki)

≤ ∥∂xch∥2
L2(Ki)

∥g(ρi,ρi+1)− ρ̃∥2
L∞(Ki)

+∥ρ̃∥2
L∞(Ki)

∥∂x(ch − c̃)∥2
L2(Ki)

≤ ∥∂xch∥2
L2(Ki)

max
ℓ∈{i,i+1}

∥ρℓ− ρ̃∥2
L∞(Ki)

+∥ρ̃∥2
L∞(Ki)

∥∂x(ch − c̃)∥2
L2(Ki)

, (73)
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where g(ρi,ρi+1) = ρi if ∂xch(xi+1/2) > 0 and g(ρi,ρi+1) = ρi+1 otherwise. Similarly, the following
bound holds280

∥Fi+1/2 − ρ̃∂xc̃∥2
L2(Ki+1)

≤ ∥∂xch∥2
L2(Ki+1)

max
ℓ∈{i,i+1}

∥ρℓ− ρ̃∥2
L∞(Ki+1)

+∥ρ̃∥2
L∞(Ki+1)

∥∂x(ch − c̃)∥2
L2(Ki+1)

(74)
and thus combining (71), (72), (73), and (74) with the a posteriori bound

∥cn
h − c̃(tn)∥2

H1(T1) ≤
N

∑
i=1

d2
i+1/2∥cn

h − ρ̃
n∥2

L2(xi,xi+1)
+

N

∑
i=1

hi(∂xcn
h(x

+
i )−∂xcn

h(x
−
i ))

2,

see [33], we obtain a computable bound for the second part of (70).

5. Residual estimates for the 2D scheme

In this section we discuss an adaptation of the above residual estimates for the 2D scheme (43).

5.1. First part of the residual285

Proceeding in analogy to (53) the first part of the residual takes the form

R̃1 = ℓn
0∆

γ

x,h[ρ
n
h ,ρ

n+1
h ]+ ℓn

1∆
γ

x,h[ρ
n−1
h ,ρn

h ]−∆xρ̃
γ

+ ℓn
0∆

γ

y,h[ρ
n
h ,ρ

n+1
h ]+ ℓn

1∆
γ

y,h[ρ
n−1
h ,ρn

h ]−∆yρ̃
γ . (75)

The constituents with respect to the x- and to the y−derivative each allow for a reformulation analogous
to (57). The terms accounting for the time discretization are estimated as in the one-dimensional case,
i.e., the bounds (61) and (62) hold. The terms accounting for the approximation of the nonlinear
diffusion terms are also estimated analogously as in the one-dimensional scheme: considering the290

x-derivative we obtain

∫
T2

(
∆

γ

x,h[ρ
n
h ,ρ

n+1
h ]− γ∂x

[
(ρ̃n)γ−1

∂xρ̃
n+1])

φ dx

= ∑
j,k

Dn,n+1
j+1/2,k

(
1
h

∫
K j,k

φ dx− 1
h

∫
K j+1,k

φ dx
)
+∑

j,k

∫ yk+1/2

yk−1/2

∫ x j+1

x j

γ(ρ̂n
j+1/2,k)

γ−1
∂xρ̃

n+1
∂xφ dxdy

+∑
j,k

∫ yk+1/2

yk−1/2

∫ x j+1

x j

γ

(
(ρ̃n)γ−1 − (ρ̂n

j+1/2,k)
γ−1
)

∂xρ̃
n+1

∂xφ dxdy. (76)
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The last term occurring in (76) is bounded by

∑
j,k

∫ yk+1/2

yk−1/2

∫ x j+1

x j

γ

(
(ρ̃n)γ−1 − (ρ̂n

j+1/2,k)
γ−1
)

∂xρ̃
n+1

∂xφ dxdy

≤ ∑
j,k

γ∥(ρ̃n)γ−1 − (ρ̂n
j+1/2,k)

γ−1∥L∞(K̃ j,k)
∥∂xρ̃

n+1∥L2(K̃ j,k)
∥φ∥H1(K̃ j,k)

≤ γ

(
∑
j,k
∥(ρ̃n)γ−1 − (ρ̂n

j+1/2,k)
γ−1∥2

L∞(K̃ j,k)
∥∂xρ̃

n+1∥2
L2(K̃ j,k)

)1/2

, (77)

where K̃ j,k = [x j,x j+1]× [yk−1/2,yk+1/2] refers to a shifted version of the cell K j,k in x−direction. For
estimating the remainder of (76), we define χ j = χ j(x) as 1/h in [x j−1/2,x j+1/2] and zero outside of
this interval. Then, the first two terms in (76) equal295

∫
T2 ∑

j,k

(
χk(y)Ψ j+1/2(x)D

n,n+1
j+1/2,k −χk(y)χ j+1/2(x)D

n,n+1
j+1/2,k

)
∂xφ

≤ 1
2 ∑

j,k

(
h2|Dn,n+1

j+1/2,k −Dn,n+1
j−1/2,k|

2
)1/2

∥∂xφ∥L2(K jk)

≤ h
2

(
∑
j,k
|Dn,n+1

j+1/2,k −Dn,n+1
j−1/2,k|

2

)1/2

. (78)

5.2. Second part of the residual

The second part of the residual takes also in case of the 2D scheme the form (64). To obtain a
computable bound we estimate ρh − ρ̃ on the Cartesian grid. To this end we decompose all mesh cells
as

K j,k = [x j−1/2,x j]× [yk−1/2,yk]∪ [x j,x j+1/2]× [yk−1/2,yk]

∪ [x j−1/2,x j]× [yk,yk+1/2]∪ [x j,x j+1/2]× [yk,yk+1/2]

=: KSW
j,k ∪KSE

j,k ∪KNW
j,k ∪KNE

j,k
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then, neglecting the time index n, the piecewise bilinear function ρ̃ takes the form300

ρ̃(x,y)|KSW
j,k

=

(
1+

x− x j

h
+

y− yk

h

)
ρ j,k −

x− x j

h
ρ j−1,k −

y− yk

h
ρ j,k−1,

ρ̃(x,y)|KSE
j,k
=

(
1−

x− x j

h
+

y− yk

h

)
ρ j,k +

x− x j

h
ρ j+1,k −

y− yk

h
ρ j,k−1,

ρ̃(x,y)|KNW
j,k

=

(
1+

x− x j

h
− y− yk

h

)
ρ j,k −

x− x j

h
ρ j−1,k +

y− yk

h
ρ j,k+1,

ρ̃(x,y)|KNE
j,k

=

(
1−

x− x j

h
− y− yk

h

)
ρ j,k +

x− x j

h
ρ j+1,k +

y− yk

h
ρ j,k+1.

Assuming a constant test function φ ≡ φ j,k in K j,k we note that∫
KSW

j,k

(ρh − ρ̃)φ j,k dx =
h
2

∫ x j

x j−1/2

x− x j

h
(ρ j−1,k −ρ j,k)φ j,k dx+

h
2

∫ yk

yk−1/2

y− yk

h
(ρ j,k−1 −ρ j,k)φ j,k dy

=
h2

16
[
ρ j,k −ρ j−1,k

]
φ j,k +

h2

16
[
ρ j,k −ρ j,k−1

]
φ j,k.

Similar identities hold when integrating over KSE
j,k , KNW

j,k and KNE
j,k giving rise to

∑
j,k

∫
K j,k

(ρh − ρ̃)φ j,k dx = ∑
j,k

h2

32
[
−ρ j−1,k −ρ j,k−1 +4ρ j,k −ρ j,k−1 −ρ j−1,k

]
φ j,k

≤ ∑
j,k

(
h2

1024
[
−ρ j−1,k −ρ j,k−1 +4ρ j,k −ρ j,k−1 −ρ j−1,k

]2)1/2

:= hP[ρh]. (79)

Focussing again on the south west part of the mesh cells we estimate the remainder term

∑
j,k

∫
KSW

j,k

(ρh − ρ̃)(φ −φ j,k)dx

≤ ∑
j,k

∥∥∥∥x− x j

h
(ρ j−1,k −ρ j,k)+

y− yk

h
(ρ j,k−1 −ρ j,k)

∥∥∥∥
L2(K j,k)

∥φ −φ j,k∥L2(K j,k)

≤ ∑
j,k

h2 (|ρ j−1,k −ρ j,k|+ |ρ j,k−1 −ρ j,k|
)
∥φ∥H1(K j,k)

≤

(
∑
j,k

h4 (|ρ j−1,k −ρ j,k|+ |ρ j,k−1 −ρ j,k|
)2

)1/2

=: h2 QSW[ρh]. (80)
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We note that similar estimates hold, when focussing on any of the other subcells in (79). Eventually
the first term in (64) can be bounded in H−1(T2) by305

h
∆t

P[ρn+1
h −ρ

n
h ]+

h2

∆t

(
QSW[ρn+1

h −ρ
n
h ]+QSE[ρ

n+1
h −ρ

n
h ]+QNW[ρn+1

h −ρ
n
h ]+QNE[ρ

n+1
h −ρ

n
h ]
)
.

(81)

5.3. Third part of the residual

Following the computation (53) in case of the 2D scheme we obtain as third part of the residual

R̃3 = ∂x((ℓ
n
0ρ̃

n+1 + ℓn
1ρ̃

n)(ℓn
0∂xc̃n+1 + ℓn

1∂xc̃n))−
ℓn

0
h

dxF
n
h −

ℓn
1
h

dxF
n−1
h

+∂y((ℓ
n
0ρ̃

n+1 + ℓn
1ρ̃

n)(ℓn
0∂yc̃n+1 + ℓn

1∂yc̃n))−
ℓn

0
h

dyF
n
h −

ℓn
1
h

dyF
n−1
h . (82)

where dxF
n−1
h and dyF

n−1
h are defined analogously to the 1D case. After testing with φ ∈H−1(T2) the

residual part (82) can be split into components accounting for the x- and the y- derivative respectively,
each of which can be rewritten in analogy to (68). For the first part accounting for the mixed time310

instances in the advection term the bound (71) holds in 2D analogously. A computation analogue to
(69) shows that

1
h

(∫
K j+1,k

φ dx−
∫

K j,k

φ dx
)
=
∫ yk+1/2

yk−1/2

∫ x j+3/2

x j−1/2

Ψ j+1/2(x)∂xφ dxdy. (83)

We thus estimate the second part of the 2D equivalent of (68) corresponding to the x-derivative by

∑
j,k

∫ yk+1/2

yk−1/2

∫ x j+3/2

x j−1/2

(
F j+1/2,k − ρ̃∂xc̃

)
Ψ j+1/2(x)∂xφ dxdy

≤ 2

(
∑
j,k
∥F j+1/2,k − ρ̃∂xc̃∥2

L2(K j,k∪K j+1,k)

)1/2

. (84)

Replicating the computations in (73) and (74), we obtain

∥F j+1/2,k − ρ̃ c̃x∥2
L2(K j,k∪K j+1,k)

≤ ∥∂xch∥2
L2(K j,k∪K j+1,k)

max
ℓ∈{ j, j+1}

∥ρℓ,k − ρ̃∥2
L∞(K j,k∪K j+1,k)

+∥ρ̃∥2
L∞(K j,k∪K j+1,k)

h2∥∂xch −∂xch(x j+1/2,yk)∥2
L∞(K j,k∪K j+1,k)

+∥ρ̃∥2
L∞(K j,k∪K j+1,k)

∥∂x(ch − c̃)∥2
L2(K j,k∪K j+1,k)

, (85)
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FIG. 1. Cell density ρ over T2 at initial and final time T = 5×10−3 for Experiments 1–3 computed using the 2D scheme on a
mesh of 200×200 cells.

where the last term is controlled employing the a posteriori bound315

∥cn
h − c̃(tn)∥2

H1(T2) ≤
N

∑
T∈Th

h2∥cn
h − ρ̃

n∥2
L2(T )+ ∑

ET |V∈Eh

h |ET |V |
(
(∇cn

h|T −∇cn
h|V )ηT |V

)2 (86)

from [33] with Eh denoting the set of edges within Th, ET |V the edge between T and V and ηT |V the
outer normal vector of T towards V .

6. Numerical experiments

To illustrate the behavior of the residual, and thus of the error estimator, we present three numerical
experiments using the 2D scheme on the domain T2. We consider scenarios which differ with respect320

to the cell migration and set γ = 1 in the first, γ = 1.5 in the second and γ = 2 in the third experiment.
The initial cell density is set to a modified Gaussian function centered at the point

( 1
2 ,

1
2

)
in detail given

by
ρ0(x,y) = 1.3 sin(πx) sin(πy)e−25(x− 1

2 )
2−25(y− 1

2 )
2
. (87)

Numerical solutions are computed up to the final time T = 5×10−3 using Cartesian meshes consisting
of n×n cells and the uniform mesh resolution dependent step sizes ∆t = T

n . During the simulation we325

verify that by this choice the CFL condition in Theorem 3.2 remains satisfied and thus the numerical
approximation preserves its initial positivity. For efficiency we employ mass lumping in (37) to
compute the chemical attractant ch, which gives rise to linear systems that can be solved using a fast
Fourier transform of ρh. We note that also using mass lumping an a posteriori estimate of the form (86)
holds, cf. [? ].330

The qualitative behavior of the numerical solution with respect to the choice of γ is shown in
Figure 1. As γ increases lower cell concentrations spread slower over the domain, while the diffusion
of higher concentrations occurs with higher speed.

To verify the conditions (10) and (32) that ensure validity of our a posteriori error estimate we
compute numerical estimates of the embedding constants occurring in (28) taking into account the335
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FIG. 2. The residual A over the time interval [0,0.005] in Experiment 1 (γ = 1), 2 (γ = 1.5) and 3 (γ = 2) for the 2D scheme
using the mesh resolutions 400× 400, 800× 800, 1600× 1600 and 3200× 3200. Dashed lines indicate the regime, in which
the stability condition (10) for Experiment 1 and (32) for Experiments 2–3 is not satisfied. Note that our residuals are valid for
longer times in Experiment 2 than in Experiment 1 due to different exponents in the respective stability conditions.

computational domain and our choice of γ . Using the result in [4, Lemma 2.3] we obtain CS ≈ 2.1358.
Combining the embeddings from H2 to W 1,6 and from W 1,6 to L∞ employing [29, Theorem 3.4] we

compute C′
S ≈ 7.6112. Lastly, by using the embedding H2 ↪→W 1, 2γ+2

γ−1 and [29, Theorem 3.3] we obtain
C̃2

S ≈ 5.2494 in case of experiment 2 and C̃3
S ≈ 3.9228 in case of experiment 3.

For all three experiments Figure 2 presents the total residual340

A(t) = z1(0)+
∫ T

0
∥Rρ∥2

H−1dt (88)

over the considered time interval for various mesh resolutions ranging from n = 400 to n = 3200. The
total residual is clearly reduced as finer meshes are considered, whereas an increase with the choice of
γ is observed. In Experiment 1 the stability condition (10) remains satisfied over the full time interval
for mesh resolution n = 3200. Also shorter time computations using coarser meshes of resolution
n= 400, n= 800 or n= 1600 can be conducted without violating the stability conditions. The condition345

(32) allows for significantly larger total residuals in Experiment 2 than in Experiment 1 as it remains
satisfied over the full time interval for all shown mesh resolutions. In case of γ = 2 in Experiment 3
even finer mesh resolutions than the considered ones are necessary to satisfy condition (32). This is due
to the larger exponent 1

β
, which in this experiment requires a total residual of approximate magnitude

10−7.350
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TABLE 1 Mesh convergence for the total and the restricted residuals given
by (88) and (89) in case of the classical Keller–Segel model in Experiment 1.

mesh A1 EOC A2 EOC A3 EOC A EOC

100 6.085×10−4 1.766×10−4 3.629×10−6 7.888×10−4

200 1.538×10−4 1.98 3.326×10−5 2.41 9.207×10−7 1.98 1.880×10−4 2.07
400 3.860×10−5 1.99 7.656×10−6 2.12 2.314×10−7 1.99 4.648×10−5 2.02
800 9.680×10−6 2.00 1.884×10−6 2.02 5.804×10−8 2.00 1.162×10−5 2.00

1600 2.424×10−6 2.00 4.762×10−7 1.98 1.453×10−8 2.00 2.915×10−6 2.00
3200 6.065×10−7 2.00 1.298×10−7 1.88 3.636×10−9 2.00 7.399×10−7 1.98

TABLE 2 Mesh convergence for the total and the restricted residuals given
by (88) and (89) in case of the power-law Keller–Segel model in Experiment
2.

mesh A1 EOC A2 EOC A3 EOC A EOC

100 7.794×10−4 6.951×10−4 4.562×10−6 1.479×10−3

200 1.983×10−4 1.97 1.606×10−4 2.11 1.166×10−6 1.97 3.601×10−4 2.04
400 4.995×10−5 1.99 3.966×10−5 2.02 2.943×10−7 1.99 8.990×10−5 2.00
800 1.255×10−5 1.99 9.929×10−6 2.00 7.393×10−8 1.99 2.255×10−5 2.00

1600 3.145×10−6 2.00 2.491×10−6 2.00 1.853×10−8 2.00 5.654×10−6 2.00
3200 7.870×10−7 2.00 6.312×10−7 1.98 4.637×10−9 2.00 1.423×10−6 1.99

TABLE 3 Mesh convergence for the total and the restricted residuals given
by (88) and (89) in case of the power-law Keller–Segel model in Experiment
3.

mesh A1 EOC A2 EOC A3 EOC A EOC

100 9.221×10−4 2.121×10−3 5.473×10−6 3.048×10−3

200 2.368×10−4 1.96 5.383×10−4 1.98 1.414×10−6 1.95 7.765×10−4 1.97
400 5.995×10−5 1.98 1.375×10−4 1.97 3.589×10−7 1.98 1.978×10−4 1.97
800 1.509×10−5 1.99 3.488×10−5 1.98 9.041×10−8 1.99 5.006×10−5 1.98

1600 3.787×10−6 1.99 8.792×10−6 1.99 2.269×10−8 1.99 1.260×10−5 1.99
3200 9.483×10−7 2.00 2.215×10−6 1.99 5.682×10−9 2.00 3.169×10−6 1.99

We moreover show the behavior of the total as well as of the restricted residuals

A j(t) = z1(0)+
∫ T

0
∥R̃ j∥2

H−1dt, j ∈ {1,2,3} (89)
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as the mesh is refined in Tables 1–3. To analyze mesh convergence we compute the according
experimental order of convergence (EOC)1. Throughout the experiments and residual components the
results indicate a second order convergence (of the squared L2(0,T ;H−1(Td)) norms of all components
of the residual and, thus, of the squared discretisation error) with respect to the mesh parameter n,355

which also affects the time step. In addition, the tables show that the first and the second part of the
residual resulting from the finite volume discretization of the diffusion and the time discretization are
considerably larger than the third part that is due to the discretization of advection.
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