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Abstract The input parameters of an optimization problem are often affected by uncer-
tainties. Chance constraints are a common way to model stochastic uncertainties in the
constraints. Typically, algorithms for solving chance-constrained problems require convex
functions or discrete probability distributions. In this work, we go one step further and
allow non-convexities as well as continuous distributions. We propose a gradient-based ap-
proach to approximately solve joint chance-constrained models. We approximate the origi-
nal problem by smoothing indicator functions. Then, the smoothed chance constraints are
relaxed by penalizing their violation in the objective function. The approximation problem
is solved with the Continuous Stochastic Gradient method that is an enhanced version of
the stochastic gradient descent and has recently been introduced in the literature. We
present a convergence theory for the smoothing and penalty approximations. Under very
mild assumptions, our approach is applicable to a wide range of chance-constrained opti-
mization problems. As an example, we illustrate its computational efficiency on difficult
practical problems arising in the operation of gas networks. The numerical experiments
demonstrate that the approach quickly finds nearly feasible solutions for joint chance-
constrained problems with non-convex constraint functions and continuous distributions,
even for realistically-sized instances.

1 Introduction

In this work, we consider joint chance-constrained optimization problems of the form

min
x

g0(x)
s.t. Pδ∼ζ(gj(x, δ) ≥ 0 ∀j = 1, . . . ,J ) ≥ p

x ∈ X

with g0 : Rn → R, gj : Rn × Rd → R for j = 1, . . . ,J and X ⊆ Rn. The functions gj

depend on the optimization variables x and stochastic parameters δ that follow a prob-
ability distribution ζ over a set ∆ ⊆ Rd. The research on chance-constrained problems
dates back to Charnes et al. [1958], where single chance constraints are introduced. Joint
chance constraints were first analyzed in Miller and Wagner [1965]. For a general overview
on chance-constrained optimization we refer to Prékopa [2003], Shapiro et al. [2021], Ne-
mirovski [2012], Bai et al. [2012] and references therein.
In this work, we consider joint chance-constrained problems with continuous distributions.
Our contribution consists in the derivation of a practically very efficient solution approach
for models with non-convex constraints gj . In addition, it is not necessary to perform
Monte-Carlo sampling. In our method, we approximate the chance-constrained problem
by smoothing the indicator functions in the probability distribution. Violation of the
smoothed constraint is penalized in the objective function. The approximation problem is
solved with the Continuous Stochastic Gradient method introduced in Pflug et al. [2020].
On the theoretical side, we derive a convergence theory for the smoothing and penalization

1



approximations, respectively. On the practical side, we illustrate that our algorithm solves
non-convex joint chance-constrained problems with continuous distributions very quickly.
In general, chance constraints can be modeled with discrete and continuous distributions.
For discrete ones, the model can be reformulated as a standard mixed-integer non-linear
optimization problem (MINLP) by introducing additional binary variables (Ruszczyński
[2002]). Nevertheless, these reformulations are often difficult to solve already for small
instances since they typically include non-linear functions together with discrete variables.
Furthermore, the problem size increases with an increasing number of scenarios in the
distribution. Contributions Adam and Branda [2016] and Adam et al. [2020] present a
regularized version of the linear relaxation for the MINLP reformulation by enlarging the
feasible set based on methods for complementarity constraints. Furthermore, the first
paper proposes an iterative algorithm that uses necessary optimality conditions of the
regularized problem. Under some assumptions, the solution converges to a stationary point
of the original problem. In the second paper, the regularized problem is solved by adding
Benders cutting planes. In Beraldi and Ruszczyński [2002], the authors introduce a tailored
Branch-and-Bound approach to solve the original MINLP reformulation. In Branda [2013],
the author provides an asymptotically equivalent penalty model for the original chance-
constrained problem. All these approaches are applicable to general functions gj . For
specific chance constraints, for example, linear functions gj , see exemplarily Luedtke et al.
[2010], Luedtke [2014], Ahmed and Xie [2018] and Bai et al. [2021].
For continuous distributions tractable reformulations for chance constraints are in general
not available. Even the check for feasibility of a given vector is often challenging. To avoid
evaluating the chance constraint exactly, one often approximates the continuous distribu-
tion with a discrete one. For example, one can use scenario approximations (e.g. Calafiore
and Campi [2005], Nemirovski and Shapiro [2006], Yang and Sutanto [2019]) or sample
approximation techniques (e.g. Ahmed and Shapiro [2008], Luedtke and Ahmed [2008],
Pagnoncelli et al. [2009], Porras et al. [2023]). Additionally, Branda [2012b] studies sample
approximation techniques for several chance constraints and Peña-Ordieres et al. [2020]
use the approach for quantile reformulations. In Sun et al. [2014] sample approximation
is applied to a conditional Value-at-Risk approximation to the chance-constrained prob-
lem. Although these approaches allow using MINLP techniques to approximate chance-
constrained problems with continuous distributions, the problem size increases with an
increasing number of scenarios in the approximating discrete distribution. Naturally, the
question arises how many scenarios are necessary to obtain a nearly feasible solution for
the original problem. More specifically, one can ask how large the sample size has to be
chosen to guarantee feasibility for the original chance constraint with a high probability.
Most of the aforementioned papers provide upper bounds for the sample size to guarantee
this property. All these bounds grow at least linearly in the dimension of X . Further-
more, the necessary number of samples increases with increasing probability level p. As
a result, discrete approximations of continuous distributions can lead to very large and
complex problems in practice if feasibility for the original chance constraint is required.
Therefore, there also exist approaches that deal directly with the continuous distributions.
We mention some of these approaches in the following paragraphs.
Another challenge arising for chance constraints with continuous distributions is non-
convexity. Even if all constraint functions gj are convex, the chance constraint is in
general non-convex. Therefore, a typical solution approach are convex approximations like
the Bernstein approximation (Nemirovski and Shapiro [2007]), the conditional Value-at-
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Risk approximation (Rockafellar et al. [2000]) or robust safe approximations (e.g. Ben-Tal
and Nemirovski [1998], Ben-Tal and Nemirovski [2000], Bertsimas and Sim [2004], Yuan
et al. [2017]). Concerning robust approximations, Li and Li [2015] provide a study about
the optimal uncertainty set to approximate chance-constrained problems and Chen et al.
[2010] discuss different robust approximations and connections to conditional Value-at-
Risk bounds. Furthermore, a combination of robust optimization and a scenario approach
is presented in Margellos et al. [2014]. The method is enhanced for robust approximation
of joint chance constraints with decision-dependent uncertainties with an application in
electricity networks in Aigner et al. [2022] and Aigner et al. [2023].
Hong et al. [2011] propose an approximation to the joint chance constraint with DC (differ-
ence of convex) functions and show convergence to KKT-points under some additional as-
sumptions. Furthermore, the authors describe a sequential convex approximation method
to solve the occurring problems. Since the obtained approximation contains difficult non-
smooth functions, Shan et al. [2014] and Shan et al. [2016] expand the analysis to smooth
functions and show convergence to KKT-points for certain asymptotic regimes. Further-
more, Hu et al. [2013] study smooth DC approximations with logarithm-sum-exponential
smoothing functions and solve the approximations with a Monte-Carlo method. Ren et al.
[2022] use an approximation of the indicator function with sigmoid functions that also pro-
vides convergence to KKT-points. In Cao and Zavala [2020], the authors approximate the
Value-at-Risk with sigmoid functions to provide an approximation for chance-constrained
problems and solve the resulting problem with a sample average approximation. Geletu
et al. [2017] propose a smooth approximation consisting of an inner and outer approxima-
tion for single chance constraints that asymptotically converges to the optimal solution of
the original problem. The last two methods work for non-convex constraint functions gj ,
whereas the other methods described in this paragraph are restricted to convex functions.
Another possibility to handle chance-constrained problems are penalty formulations like
in Branda and Dupačová [2012] or Branda [2012c]. Kannan and Luedtke [2021] combine
smoothing approaches and penalization to approximate the efficient frontier between op-
timal solutions and violations of the chance constraint for different probability levels. To
solve the approximation problems they apply a projected stochastic subgradient method.
In the following, we consider a very general type of joint chance-constrained problems with-
out convexity assumptions on the constraint functions gj . We derive a solution method
that combines smoothing and penalization techniques. Furthermore, we deal directly with
the continuous distributions and do not approximate them with discrete ones. First, we
reformulate the joint chance constraint to a single chance constraint in the spirit of Branda
[2012a]. After smoothing the indicator function to obtain continuously differentiable ex-
pressions, we penalize the violation of the smoothed constraint in the objective function.
To solve the approximation problem we apply an advanced version of the stochastic gra-
dient descent algorithm, called Continuous Stochastic Gradient method (CSG) that is
introduced in Pflug et al. [2020], Grieshammer et al. [2023a] and Grieshammer et al.
[2023b]. If the gradients of the constraint functions and the objective function are locally
Lipschitz continuous, the CSG method converges to stationary points of the approximation
problem for suitably chosen step sizes. Furthermore, we present a convergence analysis for
the smoothing and the penalty approximations, respectively. To illustrate the efficiency of
our approach, we apply it to non-convex chance-constrained gas transport problems. Our
numerical results show that we can compute feasible solutions to the original problem by
solving the approximation problem with the CSG method. Our approach is applicable to
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very general problems since we deal directly with continuous distributions of joint chance
constraints and do neither require convexity for the functions gj nor special conditions for
the continuous distributions.
We start this paper by presenting the approximations of the joint chance-constrained
problem that allow the application of the CSG method in Chapter 2. Chapter 3 provides
convergence results with increasing smoothing and penalty parameters. In Chapter 4 we
briefly summarize the CSG method and in Chapter 5 we discuss some algorithmic improve-
ments. The applicability of our method is illustrated in Chapter 6 with a small analytical
example and detailed computational results for an application to chance-constrained Nom-
ination Validation problems in gas networks. The paper closes with a short summary of
the results and an outlook to future research questions.

2 Reformulations and approximations for joint chance-con-
strained problems

In this section, we reformulate and approximate the joint chance-constrained problem
presented in Chapter 1 in order to apply the CSG method. First, we formulate the joint
chance constraint as a single chance constraint. A similar reformulation is presented in
Branda [2012a]. The joint constraint Pδ∼ζ(gj(x, δ) ≥ 0 ∀j = 1, . . . ,J ) ≥ p is equivalent
to

Pδ∼ζ

( J∑
j=1
−min{0, gj(x, δ)}2

︸ ︷︷ ︸
=:g(x,δ)

≥ 0
)
≥ p.

So, the joint chance-constrained problem can be equivalently written as

min
x

g0(x)
s.t. Pδ∼ζ(g(x, δ) ≥ 0) ≥ p

x ∈ X .
(P )

We see that g is always non-positive and continuously differentiable if gj is continuously
differentiable for each j. Obviously, transforming the joint chance constraint to a single
one complicates the expressions. But we will see in Chapter 4 that the CSG method
only requires continuously differentiable functions with Lipschitz continuous gradients.
This property is transferred from the functions gj to g, and therefore the reformulation
works for our approach. Additionally, the non-convexity of the minimum, even for linear
functions gj , is not a problem for our method since it is especially designed to handle
non-convex functions.
Next, we rewrite the probability with indicator functions χ, where χ[0,∞)(y) = 1 for y ≥ 0
and χ[0,∞)(y) = 0 for y < 0, and obtain

Pδ∼ζ(g(x, δ) ≥ 0) =
∫

∆
χ[0,∞)(g(x, δ)) µ(dδ).

Here, µ denotes the probability measure associated with the distribution ζ. The following
example demonstrates that even for simple functions gj the probability function is not
necessarily continuous, and therefore also not differentiable.
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Example 1. Let g(x, δ) = x · δ, X = [0, 1] and ∆ = [−2,−1]. Then, for every continuous
probability distribution ζ the probability function P is not continuous in x = 0 because we
have Pδ∼ζ(g(ϵ, δ) ≥ 0) = 0 for all ϵ > 0 but for x = 0 we obtain Pδ∼ζ(g(x, δ) ≥ 0) = 1.

To obtain differentiability we approximate the indicator function with a continuously dif-
ferentiable function, called smoothing function, with the following properties:

Definition 1 (Smoothing function). A function s : R×R>0 → R>0 is called a smoothing
function for the indicator function χ[0,∞) if

1. s(·, β) is continuously differentiable and monotonically increasing for all β > 0,

2. lim
y→−∞

s(y, β) = 0 for all β > 0,

3. s(0, β) = 1 for all β > 0 and

4. lim
β→+∞

s(y, β) = 0 for all y < 0.

We call β the smoothing parameter. We note that there is no condition for s for positive
inputs y except the first one. Since the argument of the indicator function is always non-
positive for our modeling, the behavior of the smoothing function for positive y is not
relevant. Nevertheless, we define the function on R since positive arguments occur in the
algorithmic improvements in Chapter 5. The first and second property guarantee that
the smoothing function approaches the indicator function from above if the first argument
becomes small. Owing to the third property, s always equals the indicator function if
the condition in the chance constraint is fulfilled, this means g(x, δ) ≥ 0. Property 4
ensures that the smoothing function approximates the indicator function better and better
for increasing smoothing parameters β. Replacing the indicator function by a smoothing
function is obviously not exact, but there is a connection between feasibility for the original
chance constraint and the smoothed version.

Theorem 1. Let x∗ fulfil the smoothed chance constraint∫
∆
s(g(x∗, δ), β) µ(dδ) ≥ p

for a smoothing function s and a smoothing parameter β > 0 . Then, there exists for every
ϵ̃ > 0 an ϵ > 0 with Pδ∼ζ(g(x∗, δ) ≥ −ϵ) ≥ p− ϵ̃.

Proof. Since limg(x,δ)→−∞ s(g(x, δ), β) = 0, there exists for every ϵ̃ > 0 an ϵ > 0 with
s(g(x, δ), β) ≤ ϵ̃ for g(x, δ) < −ϵ. Now, let ∆− := {δ ∈ ∆ : g(x∗, δ) < −ϵ} and
∆+ := ∆ \∆−. Then, we obtain with the properties of the smoothing function

p ≤
∫

∆
s(g(x∗, δ), β) µ(dδ) ≤

∫
∆−

ϵ̃ µ(dδ) +
∫

∆+
1 µ(dδ)

= ϵ̃ · µ(∆−) +
∫

∆
χ[−ϵ,∞)(g(x∗, δ)) µ(dδ) ≤ ϵ̃+

∫
∆
χ[−ϵ,∞)(g(x∗, δ)) µ(dδ)

= ϵ̃+ Pδ∼ζ(g(x∗, δ) ≥ −ϵ),

which implies the desired inequality.
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The Theorem shows that feasible solutions for the smoothed chance constraint fulfil a
relaxed feasibility for the original one, where the probability level might be smaller and
the original condition g(x, δ) ≥ 0 might be violated by a small quantity ϵ > 0. We
can avoid the inexactness in the probability level by solving the smoothed problem for a
higher probability level p+ ϵ̃. In practical computations, it is relevant not to increase the
new probability level more than necessary, also taking into account that ϵ increases for
decreasing ϵ̃ and vice versa. In the computational results in Chapter 6.2 we show that it
is not difficult to determine appropriate values for a real energy-management application
and large instances.
In total, the original joint chance-constrained problem (P ) can be approximated with

min
x

g0(x)
s.t.

∫
∆ s(g(x, δ), β) µ(dδ) ≥ p

x ∈ X
(Ps)

for a smoothing parameter β > 0. To use the CSG method we have to project vectors
onto the feasible set. To obtain an easier feasible set, we penalize the violation of the
smoothed chance constraint in the objective function. For tractability, we impose the
mild assumption that the projection onto X needs to be algorithmically tractable:

Assumption 1. The projection onto X is algorithmically tractable.

The resulting penalized and smoothed problem (Papp) reads for a penalty parameter λ > 0
and a smoothing parameter β > 0

min
x∈X

g0(x) + λ

2 max
{

0, p−
∫

∆
s(g(x, δ), β) µ(dδ)

}2
.

Assuming that the objective function g0 and the constraint functions gj for j = 1, . . . ,J
are continuously differentiable in x, the objective function of (Papp) is also continuously
differentiable.

3 Theory for smoothing and penalization

In this section, we present a convergence theory for the smoothing and penalty approxima-
tions presented in Chapter 2. This theory demonstrates that the approximation problem
(Papp) provides a good approximation to the original one. We consider sequences of in-
creasing smoothing and penalty parameters and show that the solutions of the smoothed
and penalized problems, respectively, converge to solutions of the original one under certain
conditions. In the following, we denote subsequences that converge to an accumulation
point of the whole sequence always with the indices of the whole sequence to unburden
notation.
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3.1 Smoothing

We start our convergence analysis with the smoothing approximation. We recall that the
original problem (P ) can be written as

min
x

g0(x)
s.t.

∫
∆ χ[0,∞)(g(x, δ)) µ(dδ) ≥ p

x ∈ X .
(Po)

The smoothed version of (Po) for a smoothing parameter β > 0 and a smoothing func-
tion s is given by (Ps). We define the sets ∆1(x) = {δ ∈ ∆ : g(x, δ) < 0} and
∆2(x) = {δ ∈ ∆ : g(x, δ) = 0}. We note that ∆ is the disjoint union of ∆1(x) and ∆2(x)
for each x. With these definitions we show that a sequence of feasible points for the
smoothed problems with βk →∞ converges to a feasible point for the original one.
Theorem 2. Let {xk} be a sequence of feasible points for the smoothed problems (P k

s )
with smoothing parameters βk > 0 and βk → ∞. Furthermore, let g be continuous in x
and X be compact. Then, every accumulation point x̄ of {xk} is feasible for the original
problem (Po).

Proof. Let x̄ be an accumulation point of {xk}. Owing to the feasibility of xk for (P k
s )

we have xk ∈ X for all k ∈ N. Since X is compact, this implies x̄ ∈ X . It remains to be
shown that the chance constraint is fulfilled. Because xk is feasible for (P k

s ) we have for
all k ∈ N ∫

∆
s(g(xk, δ), βk) µ(dδ) ≥ p.

Since the integral term on the left-hand side is bounded, there exists a convergent subse-
quence {kl} and we obtain

lim
kl→∞

∫
∆
s(g(xkl , δ), βkl) µ(dδ) ≥ p.

Now, we consider δ ∈ ∆1(x̄). Then, there exists an ϵδ > 0 with g(x̄, δ) + ϵδ < 0. Since
xkl → x̄ and g is continuous there also exists a kδ ∈ N with g(xkl , δ) ≤ g(x̄, δ) + ϵδ for
all kl > kδ. Together with the monotonicity and non-negativity of s this implies for all
kl > kδ

0 ≤ s(g(xkl , δ), βkl) ≤ s(g(x̄, δ) + ϵδ, βkl).
Since g(x̄, δ)+ ϵδ < 0, the left and right expression in this inequality converge to zero, and
therefore the sandwich lemma implies that fkl

(δ) := s(g(xkl , δ), βkl) converges pointwise
to zero on ∆1(x̄). Furthermore, we have |fkl

(δ)| ≤ 1 for all δ ∈ ∆1(x̄) and all kl ∈ N, which
implies that fkl

is dominated by the constant and integrable function 1. So, Lebesgue’s
dominated convergence theorem gives

lim
kl→∞

∫
∆1(x̄)

s(g(xkl , δ), βkl) µ(dδ) =
∫

∆1(x̄)
0 µ(dδ).

In total, we obtain

p ≤ lim
kl→∞

∫
∆
s(g(xkl , δ), βkl) µ(dδ) ≤

∫
∆1(x̄)

0 µ(dδ) +
∫

∆2(x̄)
1 µ(dδ)

=
∫

∆
χ[0,∞)(g(x̄, δ)) µ(dδ).

So, x̄ is feasible for (Po).
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Furthermore, the feasible set of (Po) is a subset of the feasible set of each smoothed
problem.

Lemma 1. Let x be feasible for the original problem (Po). Then, x is also feasible for
the smoothed problem (Ps) with an arbitrary smoothing parameter β > 0.

Proof. Since x is feasible for the original problem, we have x ∈ X and∫
∆
χ[0,∞)(g(x, δ)) µ(dδ) ≥ p.

So, we obtain for all β > 0∫
∆
s(g(x, δ), β) µ(dδ) ≥

∫
∆1(x)

0 µ(dδ) +
∫

∆2(x)
1 µ(dδ) =

∫
∆
χ[0,∞)(g(x, δ)) µ(dδ) ≥ p.

Therefore x is feasible for all smoothed problems.

Using these two results we obtain the convergence of globally optimal solutions for the
smoothed problems to globally optimal solutions for the original problem.

Theorem 3. Let {xk} be a sequence of globally optimal solutions to the smoothed problems
(P k

s ) with positive smoothing parameters βk that converge to infinity. Let furthermore g0
and g be continuous and X be compact. Then, every accumulation point x̄ of {xk} is a
globally optimal solution to the original problem (Po).

Proof. Let x̄ be an accumulation point of {xk}. Since xk is feasible for (P k
s ) for all

k ∈ N, Theorem 2 gives the feasibility of x̄ for the original problem. Now, assume for
a contradiction that x̄ is not optimal for (Po). Then, there exists a vector x∗ that is
feasible for the original problem with g0(x∗) < g0(x̄). Since g0 is continuous this implies
g0(x∗) < limk→∞ g0(xk). So, there exists a k̃ ∈ N such that for all k > k̃ we have
g0(x∗) < g0(xk). Now, let l > k̃. Owing to Lemma 1, x∗ is feasible for the smoothed
problem with parameter βl. This is a contradiction to the global optimality of xl for (P l

s).
So, x̄ is globally optimal for the original problem.

Since a smoothed chance constraint is in general not convex, globally optimal solutions
to the smoothed problems are difficult to compute, which means that the above Theorem
is in particular of theoretical interest. An alternative are KKT-points. For a sequence
of KKT-points, we typically cannot expect convergence to a globally optimal solution of
(Po). Since the original chance constraint is in general neither differentiable, nor convex,
nor locally Lipschitz continuous, we can also not expect that a typical version of a sub-
differential, like Clarke’s subdifferential (Clarke [1990]), exists for the chance constraint,
and therefore it is in general not possible to define generalized KKT-conditions for (Po).
In the literature, it is sometimes assumed that the probability function is locally Lipschitz
continuous (see e.g. Shan et al. [2014], Shan et al. [2016]) or even continuously differen-
tiable (see e.g. Hong et al. [2011]). In this case, generalized KKT-conditions for (Po) can
be defined and the authors in the aforementioned publications could show for their special
smoothing functions that a series of KKT-points for the smoothed problems converges to
a generalized KKT-point of the original problem under some additional conditions. There
also exist assumptions on the distributions and the constraint functions gj that guarantee
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the existence of gradients or at least subgradients for the original chance constraint. For
example, the authors in Hantoute et al. [2019] discuss the existence for Gaussian distribu-
tions and constraint functions gj that are convex in the uncertain parameters. Since we
want to avoid restrictive conditions on the distributions and constraint functions in this
work, we do not consider generalized KKT-points for (Po) in our theoretical analysis.
We note that all results in this section also apply for problems with multiple joint chance
constraints. We use this result later for practical adjustments of our approach. In the
following, we do not consider sequences of increasing smoothing parameters β, but restrict
to a fixed value. In Chapter 6.3 we illustrate that choosing β large already gives a good
approximation to the chance constraint, and therefore the restriction to fixed values is
acceptable in practice.

3.2 Penalization

It remains to discuss the penalty approximation. We consider the general optimization
problem

min
x

g0(x)
s.t. f(x) ≤ 0

x ∈ X ,
(Pp)

where f : Rn → R denotes an arbitrary function, for example the smoothed chance
constraint for a fixed smoothing parameter β, and X fulfils Assumption 1. We penalize
the violation of the constraint f(x) ≤ 0 in the objective function with a quadratic penalty
term. For a penalty parameter λ > 0 we obtain the penalty problem (Pλ)

min
x∈X

g0(x) + λ
2 max{0, f(x)}2 =: min

x∈X
G(x, λ).

We note that only one constraint is penalized. This approach is based on the necessity to
calculate projections onto the feasible set in the CSG method. Owing to Assumption 1
the projection onto X is computationally tractable, and therefore it is not necessary to
penalize the constraints in X . Unfortunately, this partial penalization prevents using
classical convergence theory for penalty problems directly. For completeness, we adapt
the well-known results in this field to our special case.
We show that a sequence of optimal solutions for the penalty problems (Pλ) with increasing
penalty parameters λk →∞ converges to an optimal solution for (Pp).

Theorem 4. Let g0 and f be continuous, X be closed and let λk > 0 be a sequence
of strictly monotonically increasing penalty parameters that converges to infinity. Let
furthermore {xk} be a sequence of globally optimal solutions for the penalty problems with
penalty parameters λk. Then, every accumulation point x̄ of {xk} is globally optimal for
the original problem (Pp).

Proof. Let x̄ be an accumulation point of the sequence {xk}. Owing to the feasibility of
xk for the corresponding penalty problem, we have xk ∈ X for all k ∈ N. Since X is
closed this implies x̄ ∈ X . The optimality follows directly from Theorem 2.1 in Freund
[2004] since the penalty function p(x) = 1

2 max{0, f(x)}2 is continuous.
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This result also holds for problems with multiple penalized constraints (see Freund [2004]).
Unfortunately, the Theorem is often not applicable in practice, since computing globally
optimal solutions to the penalty problems is not possible in general. In Chapter 4 we
discuss that the CSG method is able to compute stationary points for the penalty problems
under some mild assumptions. A point x is called stationary for (Pλ) if and only if there
exists a scalar t > 0 with

PX (x− t∇1G(x, λ)) = x,

where PX denotes the Euclidean projection onto X . In the following, we assume that the
set X is given by an n-dimensional box.

Assumption 2. There exist vectors l,u ∈ Rn with X = {x ∈ Rn : x ∈ [l,u]} and li < ui

for all i = 1, . . . , n.

We note that the projection onto boxes can be calculated separately for each coordinate.
The next Theorem shows under which conditions a series of stationary points for the
penalty problems converges to a KKT-point of the original one.

Theorem 5. Let {xk} be a sequence of stationary points for (Pλk) with λk →∞, let g0 and
f be continuously differentiable and let x̄ be an accumulation point of {xk}. Furthermore,
let Assumption 2 be true. If x̄ is infeasible for the original problem (Pp), it is a KKT-point
of

min
x∈[l,u]

f(x). (Pf )

Otherwise, x̄ is feasible for (Pp) and is either a KKT-point of (Pp) or fulfils at least one
of the following conditions:

A) ∇f(x̄) = 0.

B) There exists an index i ∈ {1, . . . , n} with x̄i ∈ (li, ui), ∇if(x̄) = 0 and ∇ig0(x̄) ̸= 0.

C) There exists an index i ∈ {1, . . . , n} with ∇if(x̄) = 0 and either x̄i = li and
∇ig0(x̄) < 0 or x̄i = ui and ∇ig0(x̄) > 0.

Proof. If there exist infinitely many k ∈ N, where the updated point xk − tk∇1G(xk, λk)
is contained in [l,u], the proof of Theorem 17.2 in Nocedal and Wright [1999], adapted
to inequality constraints and τk = 0, gives the desired result. We do not treat this case
explicitly, as it is covered by the case distinctions below.
Define I := {1, . . . , n} and let x̄ be an accumulation point of {xk}. Since [l,u] is compact
and xk is feasible for (Pλk) we have x̄ ∈ [l,u]. So, the feasibility of x̄ for the original
problem is determined by the constraint f(x) ≤ 0.
The stationarity of xk gives the existence of scalars tk > 0 with

P[l,u](xk − tk∇1G(xk, λk)) = xk,

where
(
∇1G(xk, λk)

)
i

= ∇ig0(xk) + λk max{0, f(xk)}∇if(xk). Together with the con-
vergence of xk to x̄ this implies that there exists a k̃ ∈ N such that for all k ≥ k̃

(
∇1G(xk, λk)

)
i


≥ 0, x̄i = li

= 0, x̄i ∈ (li, ui)
≤ 0, x̄i = ui.

(1)
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For simplicity, let c := limk→∞ λk max{0, f(xk)} ∈ R≥0 ∪ {∞}. If the limit does not
exist in R≥0 ∪ {∞} we can always restrict to a subsequence, for which it exists. Now, we
distinguish between feasible and infeasible vectors x̄:

1. f(x̄) > 0, i. e. x̄ is not feasible for (Pp).
We have to show that x̄ is a KKT-point of (Pf ), this means we have to find Lagrange
multipliers µ,ν ∈ Rn

≥0 with

∇f(x̄)− µ + ν = 0
x̄ ∈ [l,u]
µi(li − x̄i) = 0, νi(x̄i − ui) = 0 ∀i ∈ I.

We have already shown that the second KKT-condition holds. Furthermore, we have
c =∞ since λk →∞ and max{0, f(xk)} → f(x̄) > 0. So, there exists an l ≥ k̃ such
that the sign of (1) is given by the sign of ∇if(xk) for all k ≥ l if ∇if(xk) ̸= 0. We
distinguish between the three possible cases for x̄i:

i) x̄i ∈ (li, ui).
Owing to (1) we have for all k ≥ l

∇ig0(xk) + λk max{0, f(xk)}∇if(xk) = 0.

Therefore, we obtain ∇if(x̄) = 0. Choosing µi = νi = 0, the corresponding
KKT-conditions of (Pf ) are satisfied.

ii) x̄i = li.
If ∇if(x̄) = 0, we can argue like in case i). Otherwise, equation (1) implies
∇if(x̄) > 0. Choosing µi = ∇if(x̄) > 0 and νi = 0, the respective KKT-
conditions for (Pf ) are fulfilled.

iii) x̄i = ui.
For ∇if(x̄) = 0 see again case i). Otherwise, (1) implies ∇if(x̄) < 0, and
therefore choosing µi = 0 and νi = −∇if(x̄) > 0 gives the respective Lagrange
multipliers.

In total, we have shown that x̄ is a KKT-point of (Pf ).

2. f(x̄) ≤ 0, i. e. x̄ is feasible for (Pp).
First, we state the KKT-conditions for the original problem in x̄:

∇g0(x̄) + γ∇f(x̄)− µ + ν = 0
f(x̄) ≤ 0, x̄ ∈ [l,u]
γf(x̄) = 0, µi(li − x̄i) = 0, νi(x̄i − ui) = 0 ∀ i ∈ I
γ,µ,ν ≥ 0.

For c <∞ we choose the Lagrange multipliers γ = c,

µi =
{
∇ig0(x̄) + c∇if(x̄), x̄i = li

0, otherwise,

νi =
{
−∇ig0(x̄)− c∇if(x̄), x̄i = ui

0, otherwise.
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Owing to the limit of (1) all KKT-conditions except γf(x̄) = 0 are obviously true. If
f(x̄) = 0, we are done and x̄ is a KKT-point of the original problem. Otherwise, we
have f(x̄) < 0 which implies for k large enough f(xk) < 0. So, λk max{0, f(xk)} = 0
for large enough k and this implies γ = c = 0. So, x̄ is a KKT-point of (Pp).
It remains to consider the case c =∞. This implies immediately f(x̄) = 0 since we
need max{0, f(xk)} > 0 for large k. Furthermore, there exists an l ≥ k̃ such that
the sign of (1) is given by the sign of ∇if(xk) for all k ≥ l if ∇if(xk) ̸= 0, and
therefore we know

∇if(x̄)


≥ 0, x̄i = li

= 0, x̄i ∈ (li, ui)
≤ 0, x̄i = ui.

If case A) in the Theorem is not true, i. e. ∇f(x̄) ̸= 0, we choose the Lagrange
multipliers

γ = max
i∈I:∇if(x̄)̸=0

∣∣∣∣∇ig0(x̄)
∇if(x̄)

∣∣∣∣ ,
µi =

{
∇ig0(x̄) + γ∇if(x̄), x̄i = li

0, otherwise,

νi =
{
−∇ig0(x̄)− γ∇if(x̄), x̄i = ui

0, otherwise.
Owing to this choice, the complementarity condition (third KKT-condition) is ful-
filled. For x̄i ∈ {li, ui} the first KKT-condition holds by the definition of γ, µ and
ν. Now, we consider x̄i ∈ (li, ui). Then, we know ∇if(x̄) = 0. So, either case B) in
the Theorem holds or ∇ig0(x̄) = 0 for all x̄i ∈ (li, ui), which implies the first KKT-
condition. It remains to be shown that all Lagrange multipliers are non-negative.
This is immediately true for γ. For x̄i = li and ∇if(x̄) ̸= 0 we obtain

µi = ∇ig0(x̄) + γ∇if(x̄)︸ ︷︷ ︸
>0

≥ ∇ig0(x̄) +
∣∣∣∣∇ig0(x̄)
∇if(x̄)

∣∣∣∣∇if(x̄)

= ∇ig0(x̄) + |∇ig0(x̄)| ≥ 0.

For x̄i = ui and ∇if(x̄) ̸= 0 we obtain analogously

νi = −∇ig0(x̄)− γ∇if(x̄)︸ ︷︷ ︸
<0

≥ −∇ig0(x̄)−
∣∣∣∣∇ig0(x̄)
∇if(x̄)

∣∣∣∣∇if(x̄)

= −∇ig0(x̄) + |∇ig0(x̄)| ≥ 0.

So, we only have to consider the cases with x̄i ∈ {li, ui} and ∇if(x̄) = 0. If C) in
the Theorem is not true, the respective Lagrange multipliers are non-negative. So,
we have shown that either x̄ is a KKT-point or at least one of the conditions A), B)
or C) in the Theorem is true.

The Theorem shows that a convergent sequence of stationary points for the penalty prob-
lems either converges to an infeasible point that is a KKT-point of (Pf ) or to a feasible
point that is under some additional conditions a KKT-point of the original problem.
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Remark 1. In contrast to the previous results, the proof cannot be adapted easily to
problems with multiple penalized constraints. But for c <∞ the result remains true. This
case also includes the well-known result for multiple penalized constraints in Nocedal and
Wright [1999].

Next, we present some examples demonstrating that infeasible accumulation points and
feasible ones that are not KKT-points can even occur for quadratic functions.

Example 2 (Example for infeasibility). We consider the optimization problem

min
x

g0(x) := 0
s.t. f(x) := −x2

1 + x2 + 1 ≤ 0
x ∈ [0, 1]2 =: X .

Let xk = (0, 0)T for all k ∈ N. Then, we have for all t > 0

PX (xk − t∇1G(xk, λk)) = PX
(
(0,−tλk)T

)
= (0, 0)T .

So, xk is a stationary point for the respective penalty problem for each k ∈ N, but the
limit x̄ = (0, 0)T is obviously not feasible for the original problem. Choosing the Lagrange
multipliers µ = (0, 1)T and ν = (0, 0)T , x̄ is a KKT-point of (Pf ).

Example 3 (Example for A)). We consider the problem

min
x

g0(x) := −2x1 + x2

s.t. f(x) := x2
1 − x2

2 ≤ 0
x ∈ [0, 1]2 =: X .

We choose xk = (1/k, 0)T and λk = k3. The sequence converges to x̄ = (0, 0)T that is
feasible for the original problem. We have for all k ∈ N and all t > 0

PX (xk − t∇1G(xk, λk)) = PX ((1/k,−t)T ) = (1/k, 0)T .

So, xk is a stationary point for all k ∈ N. It remains to be shown that x̄ is not a KKT-
point of the original problem. Owing to the complementary slackness we need ν1 = 0.
Therefore, the first line of the multiplier rule reads

−2 + γ · 0− µ1 + 0 = 0 ⇔ µ1 = −2 < 0,

which is a contradiction to the non-negativity of the Lagrange multipliers. So, x̄ is not a
KKT-point of the original problem. But we see that ∇f(x̄) = 0. So, case A) in Theorem 5
is fulfilled.

Example 4 (Example for B)). We consider the problem

min
x

g0(x) := −2x1

s.t. f(x) := x2
1 + x2 ≤ 0

x ∈ [−1, 1]× [0, 1] =: X .

We choose xk = (1/k, 0)T and λk = k3. The sequence converges to x̄ = (0, 0)T that is
feasible for the original problem. We have for all k ∈ N and all t > 0

PX (xk − t∇1G(xk, λk)) = PX ((1/k,−tk)T ) = (1/k, 0)T .
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So, xk is a stationary point for all k ∈ N. It remains to be shown that x̄ is not a KKT-point
for the original problem. Owing to the complementary slackness we need µ1 = ν1 = 0.
Therefore, the first line of the multiplier rule is given by

−2 + γ · 0 = −2 ̸= 0,

which is a contradiction. So, x̄ is not a KKT-point of the original problem. But we have
x̄1 ∈ (l1, u1), ∇1f(x̄) = 0 and ∇1g0(x̄) ̸= 0 and case B) in Theorem 5 is true.

Example 5 (Example for C)). We consider the problem

min
x

g0(x) := −2x1 + x2

s.t. f(x) := x2
1 + x2 ≤ 0

x ∈ [0, 1]2 =: X .

We choose xk = (1/k, 0)T and λk = k3. The sequence converges to x̄ = (0, 0)T that is
feasible for the original problem. We have for all k ∈ N and all t > 0

PX (xk − t∇1G(xk, λk)) = PX ((1/k,−t(1 + k))T ) = (1/k, 0)T .

So, xk is a stationary point for all k ∈ N. It remains to be shown that x̄ is not a KKT-
point of the original problem. Owing to the complementary slackness we need ν1 = 0.
Therefore, the first line of the multiplier rule is given by

−2 + γ · 0− µ1 + 0 = 0 ⇔ µ1 = −2 < 0,

which is a contradiction to the non-negativity of the Lagrange multipliers. So, x̄ is not a
KKT-point of the original problem. But case C) in Theorem 5 is fulfilled since we have
∇1f(x̄) = 0, x̄1 = 0 = l1 and ∇1g0(x̄) = −2 < 0.

In general, KKT-conditions are necessary optimality conditions if a constraint qualification
holds (Nocedal and Wright [1999]). In the following, we use the linear independence
constraint qualification (LICQ) as defined in Definition 12.4 in Nocedal and Wright [1999].
If the LICQ holds in a feasible accumulation point x̄ we show that the point is always a
KKT-point of the original problem. But first, we need the following Lemma:

Lemma 2. Let {xk} be a sequence of stationary points for (Pλk) with λk →∞ and let g0
and f be continuously differentiable. Let furthermore x̄ be a feasible accumulation point
that fulfils the LICQ for the original problem and let Assumption 2 be true. Then, the
sequence

{
λk max{0, f(xk)}

}
is bounded from above.

Proof. Let I := {1, . . . , n}. For a contradiction, assume that there exists a subsequence
{kl} with λkl max{0, f(xkl)} → ∞. This implies the existence of an m ∈ N with f(xkl) > 0
for all kl > m, and therefore we have f(x̄) = 0 since x̄ is feasible. Owing to the stationarity
of xkl for (Pλkl ), there exists a k̃ > m such that (1) holds for all kl > k̃, i. e. for x̄i ∈ (li, ui)
we have

∇ig0(xkl) + λkl max{0, f(xkl)}∇if(xkl) = 0.

Because of λkl max{0, f(xkl)} → ∞ this implies ∇if(x̄) = 0 for x̄i ∈ (li, ui).
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Since f(x̄) = 0, the constraint f(x̄) ≤ 0 is active. Therefore, the LICQ is fulfilled if

a∇f(x̄) +
∑

i∈I: x̄i∈{li,ui}
biei = 0

holds if and only if a = bi = 0 for all i in the sum. We note that the vector ei denotes
the i-th unit vector. Choosing a = 1 and bi = −∇if(x̄), we have a non-trivial linear
combination of the gradients that is equal to zero since ∇if(x̄) = 0 for all indices i that
are not contained in the sum. So, we have a contradiction to the LICQ and our assumption
is false. This implies that the sequence λk max{0, f(xk)} is bounded from above.

Now, we can state the following Corollary for accumulation points x̄:

Corollary 1. Let {xk} be a sequence of stationary points for the penalty problems (Pλk)
with λk →∞ and let g0 and f be continuously differentiable. Furthermore, let Assump-
tion 2 be true. If an accumulation point x̄ is infeasible for the original problem, it is a
KKT-point of (Pf ). If an accumulation point x̄ is feasible and fulfils the LICQ for the
original problem, then it is a KKT-point of (Pp).

Proof. The infeasible case follows directly from the proof of Theorem 5. So, let x̄ be
feasible and let the LICQ be fulfilled in x̄. The proof of Theorem 5 tells us that x̄ is
always a KKT-point of the original problem, if λk max{0, f(xk)} is bounded. Owing to
Lemma 2 this always holds if the LICQ is fulfilled. So, feasible accumulation points that
fulfil the LICQ are always KKT-points of the original problem.

Remark 2. Like in Theorem 5 the proof cannot be adapted directly to multiple penal-
ized constraints for infeasible accumulation points, but the statement in the Corollary for
feasible points that fulfil the LICQ also holds for this case.

Similar to the smoothing parameters β we do not consider sequences of increasing penalty
parameters in the following, but deal with a fixed value for λ. The numerical results in
Chapter 6.3 indicate that the fixed λ can be chosen large enough to obtain nearly feasible
solutions for the original unpenalized problem.

4 Continuous Stochastic Gradient method

In this section, we present the basics of the Continuous Stochastic Gradient method intro-
duced in Pflug et al. [2020] and extended in Grieshammer et al. [2023a] and Grieshammer
et al. [2023b]. For further details we refer to these references. Furthermore, we show that
the convergence theory for the CSG method is applicable to the approximation problem
(Papp). The CSG method was introduced to solve optimization problems with an integral
in the objective function. In contrast to many other stochastic optimization schemes, like
the Stochastic Gradient method (Robbins and Monro [1951]) or the Stochastic Average
Gradient method (Schmidt et al. [2017b]), the CSG method can also handle optimization
problems with objective functions that consist of nested expectations or the composition
of measure integrals with general non-linear functions (Grieshammer et al. [2023a]). The
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approximation problem (Papp) belongs to the second class since the integral is composed
with the maximum function. In this section, we consider the general optimization problem

min
x∈X̃

J(x) :=
∫

∆̃
j(x, δ) µ̃(dδ) (PCSG)

with j : Rn × Rd → R. ∆̃ ⊆ Rd is the parameter set and X̃ ⊆ Rn the feasible set of the
optimization problem. The measure µ̃ corresponds to the distribution of the uncertain
parameters δ. As in Grieshammer et al. [2023a] we need some additional assumptions:

Assumption 3. The problem (PCSG) fulfils:

• The sequence of samples {δn}n∈N is independent and identically distributed with
distribution µ̃.

• X̃ is compact and convex.

• ∆̃ is bounded with supp(µ̃) ⊆ ∆̃.

• j is continuously differentiable in x and its gradient is bounded and Lipschitz con-
tinuous in both arguments.

The general idea of the CSG method is to approximate the gradient of the objective
function by only drawing one random sample in each iteration. The approximation quality
is improved over time by reusing the information of previous iterations. Therefore, in
each iteration we draw a random sample δn and approximate the original gradient with
a weighted linear combination of the gradients with respect to the sample points of all
previous iterations. So, we approximate the gradient in iteration n with

Ĝn =
n∑

k=1
αk∇1j(xk, δk), (2)

where αk are given integration weights. In Grieshammer et al. [2023a] the authors present
four different ways how the integration weights can be calculated. In this paper, we restrict
to the easiest one, namely the empirical integration weights, since they can be computed
efficiently even for high dimensions of ∆̃. The computation of all weights is based on
a nearest neighbour heuristic and Voronoi diagrams. For more details see Grieshammer
et al. [2023a]. We define in each iteration n ∈ N the empirical weight of the point (xk, δk)
by

αk = 1
n

n∑
i=1

1Mk
(δi), (3)

where

1Mk
(y) =

{
1, y ∈Mk

0, otherwise
and

Mk := {δ ∈ ∆̃ : ∥xn − xk∥+ ∥δ − δk∥
< ∥xn − xj∥+ ∥δ − δj∥for all j ∈ {1, . . . , n} \ {k}}.

So, Mk contains all points δ ∈ ∆̃ such that (xn, δ) is closer to (xk, δk) than to any other
point (xj , δj) obtained from a previous iteration j ̸= k. In the following, we restrict to
Euclidean norms although all results also hold for general ones.
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Algorithm 1: CSG method
while Termination condition not met do

Sample gradient gn := ∇1j(xn, δn)
Calculate empirical integration weights α via (3)
Calculate search direction Ĝn via (2)
Choose step size τn

Projected gradient step xn+1 := PX̃ (xn − τnĜn)
Update index n← n+ 1

end

The whole procedure of the CSG method is presented in Algorithm 1. Starting from an
initial choice x0 for the variables, the algorithm computes in each iteration one new sample
δn and the corresponding gradient gn. After deriving the empirical integration weights
α, the approximation Ĝn to the gradient is given as a weighted linear combination of the
sampled gradients of the previous iterations. Then, the algorithm selects a step size τn

and the new iterate xn+1 is given by the Euclidean projection of the gradient step onto
the set X̃ .
In Grieshammer et al. [2023a] the authors present the following convergence result for the
CSG method with constant step sizes:

Theorem 6. If Assumption 3 is fulfilled and if the objective function J of problem (PCSG)
has only finitely many stationary points on X̃ , the CSG method with constant step size
τn = τ < 2/L, where L is the Lipschitz constant of ∇J , converges to a stationary point of
J .

We note that stationary points for (PCSG) are defined equivalently as for the penalty
problems in Chapter 3.2.
Our goal is to solve the approximation problem (Papp) with the CSG method. To obtain
the convergence result in Theorem 6 we have to ensure that Assumption 3 holds. First,
we note that (Papp) can be written in the form of (PCSG) with X̃ = X , ∆̃ = ∆, µ̃ = µ and

j(x, δ) = g0(x) + s(g(x, δ), β).

For these definitions and supp(µ) ⊆ ∆ the objective function of (PCSG) reads

J(x) =
∫

∆
g0(x) + s(g(x, δ), β) µ(dδ) = g0(x) +

∫
∆
s(g(x, δ), β) µ(dδ),

which is the objective function of (Papp). If g0 and gj for j = 1, . . . ,J are continuously
differentiable in x and their gradients are bounded and Lipschitz continuous on their
domain, the objective function J is also continuously differentiable and its gradient is
bounded and Lipschitz continuous. In total, Theorem 6 is applicable to the approximation
problem (Papp), if

• X is compact and convex,

• ∆ is bounded with supp(µ) ⊆ ∆ and
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1

Figure 1: Approximation of indicator
function (red) by smoothing function hν for
ν = 0.51 and β = 20 (black).

1

Figure 2: Smoothing function hν with
ν = 0.51 and β = 20 for r = 0 (black) and
r < 0 (red).

• g0 and gj for j = 1, . . . ,J are continuously differentiable in x and their gradients
are bounded and Lipschitz continuous on their domain. For the constraint functions
gj the Lipschitz condition is required in both arguments, i. e. for each j = 1, . . . ,J
there exists a constant Lj > 0 with

∥∇1gj(x1, δ1)−∇1gj(x2, δ2)∥ ≤ Lj(∥x1 − x2∥+ ∥δ1 − δ2∥)

for all x1,x2 ∈ X and all δ1, δ2 ∈ ∆.

5 Algorithmic improvements for CSG

In the last section, we have shown that the CSG method computes stationary points of
(Papp) under some additional conditions. Now, we present two extensions to improve its
performance for our problems. For the numerical experiments in Chapter 6 we restrict to
a special form of a smoothing function following the conditions in Definition 1, namely a
scaled and shifted version of the hyperbolic tangent given by

hν(g(x, δ), β) = ν · (tanh(βg(x, δ) + γ) + 1)

for a smoothing parameter β > 0 and a scalar ν ≥ 0.5. Owing to the third requirement
in Definition 1 we need hν(0, β) = 1. So, the parameter γ is uniquely determined by ν
and β and given by γ = artanh(1/ν − 1). It can be verified easily that hν is a smoothing
function in the sense of Definition 1. The function hν is illustrated in Figure 1.

5.1 "Steepening of Gradients"

In theory, the smoothing function hν has non-zero gradient on its domain, but for a fixed
smoothing parameter β we have ∇1h

ν(y, β) → 0 for y → ±∞. Especially, for fixed β
the gradient approaches zero if g(x, δ)≪ 0, in other words if the condition in the chance
constraint is strongly violated. This fact enables the gradient of the whole penalty term to
approach zero although the penalized constraint is violated. Therefore, it is possible that
the CSG method converges numerically to the optimal solution of the "unconstrained"
problem min

x∈X
g0(x).

In general, this solution can be arbitrarily far from the feasible set of the original problem
and also from the feasible set for the smoothed chance constraint. We conclude that large
violations of the condition in the chance constraint can numerically produce gradient
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steps that do not create an improving move with respect to feasibility. In our numerical
experiments, we counteract this problem by the following trick. Instead of solving the
original chance-constrained problem (P ) we replace it by

min
x

g0(x)
s.t. Pδ∼ζ(g(x, δ)− r ≥ 0) ≥ p ∀r ∈ R

x ∈ X
(Pr)

for a finite set R ⊆ R≤0 with 0 ∈ R. It can be easily checked that (P ) and (Pr) are
equivalent. Reformulating and approximating problem (Pr) as discussed in Chapter 2 we
obtain the penalty problem

min
x∈X

g0(x) + λ

2
∑
r∈R

max
{

0, p−
∫

∆
s(g(x, δ)− r, β) µ(dδ)

}2
.

Most of the optimality results for smoothing and penalization presented in Chapter 3 also
hold for this formulation. For further details we refer to Remarks 1 and 2 in Chapter 3.
For a visualization of the procedure see Figure 2.
In general, for each x ∈ X and each δ ∈ ∆ there should exists an r ∈ R with g(x, δ)− r
close to zero. This choice ofR ensures that the gradient of the penalty term does not vanish
if the smoothed chance constraint is violated. In practice, this choice is often not possible
since large sets R extend the computation time drastically. Instead of approximating all
possible values of g, one often has to restrict to approximate the values of g that are
attained during the optimization procedure. In total, one has to ensure that the minimal
value in R is small enough and that the whole set is "dense" enough to derive a good
approximation for the values of g. For our numerical results in Chapter 6 preliminary
computations suggest choosing R = {. . . ,−0.02,−0.01, 0} up to a suitably chosen bound
for each problem. In general, the set R has to be "denser" for larger smoothing parameters
β. As mentioned before, large sets R require more computation time since the smoothing
function and its gradient have to be evaluated in each iteration for each element in R.
For large-sized problems the number of evaluations is often not tractable. Therefore, we
need a possibility to decrease it. We note that the smoothing function is monotonically
increasing and only attains values between 0 and 2ν. So, when reaching a scalar r ∈ R,
where the function value is numerically close to 0, this also holds for all smaller r and
we can stop the evaluations and set the smoothing function for all smaller scalars to 0.
Contrarily, if we find some r with a numerical function value larger or equal to 2ν this also
holds for all larger scalars r and we can again stop and set all function values for larger
scalars r to 2ν. To minimize the number of evaluations we start at the scalar r ∈ R that
is closest to the actual value of g. For the gradients we can proceed in a similar way. Since
both limits for ±∞ are 0, we can stop the procedure in both directions if the gradient
value is numerically equal to 0.

5.2 Stepsize rule

The convergence result for the CSG method (Grieshammer et al. [2023a]), mentioned
in Theorem 6, requires a constant step size. In contrast, we choose a more advanced
step size strategy that allows larger penalty parameters. We initialize each iteration with
the constant size τ , but decrease it if the gradient step would become too large. This

19



mainly happens for points with positive penalty term if the penalty parameter λ is large.
Concretely, we define a scalar t > 0 and reduce the constant step size in iteration n to

τ̃ = τ · t · ∥∇g0(x)∥
∥Ĝn∥

, if ∥Ĝn∥ > t · ∥∇g0(x)∥.

In practice, the step size in each iteration should be chosen as large as possible to still
obtain convergence. Our strategy for the numerical experiments is to choose the constant
step size τ large enough to ensure enough descent if we are in the feasible set for the
smoothed constraint. The scalar t has to be chosen large enough to prohibit too much
descent in the infeasible region. So, t has to be chosen large, if the penalty parameter λ is
large. This strategy ensures that at the transfer from the infeasible to the feasible region
large penalty parameters do not result in jumping wide into the interior of the feasible
set, but staying close to the boundary.

6 Numerical results

In this section, we illustrate the effectiveness of the CSG method for the approximation
problem (Papp) with some numerical examples. First, we test the method on a simple
analytical example. Then, the applicability to practical problems is demonstrated with
some instances for the Nomination Validation problem in gas networks. Additionally,
we study the method’s performance for different smoothing and penalty parameters in
Chapter 6.3 to support our strategy of fixed values for β and λ. In Chapter 6.4 we
discuss two different methods to verify feasibility for the original and the smoothed chance
constraint. Our method is implemented in Matlab R2022a. All computations are executed
on a machine with an Intel Xeon E3-1240 v6 CPU (3.7 gigahertz base frequency), 4 cores
and 32 gigabyte RAM.
To apply the CSG method to (Papp) we have to specify several parameters. In general,
the choice of parameter values is problem-specific, but some general rules for appropriate
choices are given next. Parameter ν determines 0.5 times the limit of the smoothing
function hν if the argument tends to infinity. It should be chosen slightly larger than 0.5
to approximate the original indicator function well. We note that a good approximation
for positive arguments is only necessary due to the "Steepening of Gradients". For the
smoothing and penalty parameters β and λ, the convergence theory in Chapter 3 implies
large values. However, choosing them too large can impact the stability and number of
iterations in CSG negatively. Therefore, one has to find a compromise between good
approximations of the original problem and practical requirements for the CSG method.
For our instances, good values for β lie in the range of 103 to 104 and for λ in the range of
105. For the CSG stopping criterion, we restrict the maximal number of iterations. Here,
we have to ensure that we choose this number large enough to obtain convergence, but it
also has to be small enough to keep computational tractability of computing the empirical
weights. For our experiments we perform 4000 iterations. Typically, a larger number of
iterations increases the running time, but does not change the results considerably for the
tested instances. For the step size and the parameter set R we follow the suggestions in
Chapter 5. The concrete values for the parameters for all tested problems are specified
by preliminary computational experiments. Furthermore, we perform 500 random runs of
the CSG method for each instance.
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Figure 3: Error xn−x∗ over iterations for
the median (black line). Shaded areas for
quantiles P0.1,0.9 (light) and P0.25,0.75 (dark).
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Since we solve an approximation of the original joint chance-constrained problem, a nat-
ural question is whether the obtained solutions are feasible for the original constraints.
Because the measure integral in the chance constraint cannot be evaluated exactly, we
check feasibility with a Monte-Carlo approximation. We use Monte-Carlo to approximate
the left-hand sides of the original chance constraint and the smoothed version evaluated
at the median and several quantile solutions of the 500 returned solutions x.

6.1 Analytical example

In this section, we consider the one-dimensional joint chance-constrained problem

min
x

x

s.t. Pδ∼ζ(x+ δ ≥ 0,−x · δ + 0.5 ≥ 0) ≥ 0.5
x ∈ [−1, 1] =: X ,

where ∆ = [−1, 1] and ζ is the uniform distribution over ∆. The optimal solution is given
by x∗ = 0. We evaluate our approach on this convex example to illustrate its ability
to solve joint chance-constrained problems. In Chapter 6.2 we solve large gas network
instances with non-convex constraint functions.
With g(x, δ) = −min{x+ δ, 0}2 −min{−x · δ + 0.5, 0}2 the approximation problem reads

min
x∈X

x+ λ

2 max
{

0, 0.5−
∫

∆
hν(g(x, δ), β) µ(dδ)

}2
.

Owing to the preliminary computational tests we choose ν = 0.51, β = 2 · 104 and
λ = 2 · 105. The initial constant step size is given by τ = 10−3 and is decreased with
parameter t = 2. The set R is chosen as R := {−5,−4.99,−4.98, . . . , 0}. The results for
the 500 runs with randomly chosen starting points in [−1, 1] are presented in Figure 3.
The graphic shows that the sequences approximate the true solution x∗ better over the
iterations. Instead of returning the solution found in the last iteration, the CSG method
outputs the iteration with the smallest penalized objective function value over the last
50 iterations as solution for the approximation problem. The median of these returned
solutions is −0.0096. So, the absolute error to the optimal solution of the original problem
is about 0.01. Furthermore, one random run of CSG only takes about 40− 45 seconds for
this problem.
With respect to feasibility we observe that about 75% of the returned solutions are neg-
ative, and therefore not feasible, however the violation is small. For concrete values, we
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CC 90% 75% median 25% 10%
smoothed 0.51 0.50 0.50 0.49 0.49
original 0.50 0.50 0.49 0.49 0.48

Table 1: Monte-Carlo approximation of left-hand side of smoothed CC and original CC evaluated
at the median and the respective quantile values of the returned solutions x over 500 runs of CSG.

check feasibility with a Monte-Carlo approximation using at most 105 random samples.
We stop the approximation if either the maximal number of iterations is reached or if the
absolute error between the actual approximation and the average over the last 50 iterations
is smaller than 10−10. The left-hand side of the smoothed constraint for the median value
is given by 0.50 and for the original problem we obtain 0.49. The approximations for the
quantiles can be found in Table 1. The values indicate that the CSG method finds nearly
feasible solutions for the approximation problem. Nevertheless, the returned solutions are
not in all runs feasible for the smoothed constraint. We observe that in about 20% of the
runs the CSG approximation to the violation of the smoothed constraint is in the range of
10−4. The maximal violation in one run is given by 0.02. So, the infeasibility in some runs
is caused by the inexact penalty approach. Since the smoothed chance constraint is nearly
fulfilled with probability 0.5 and the penalty term approaches zero, we can conclude that
our approach converges to the optimal solution of the smoothed optimization problem.
This implies that the absolute error of about 0.01 between the median and the optimal
solution x∗ is caused by the smoothing approximation.

6.2 Nomination Validation for gas networks

In contrast to the analytical example above, these problems contain non-convex constraint
functions. Furthermore, we consider real-world sized problems. We briefly introduce a
reformulated, nominal version of a Nomination Validation problem, explain how chance
constraints are included and present the numerical results of CSG for slightly modified
realistic gas network instances from the library by Schmidt et al. [2017a].

6.2.1 Chance-constrained Nomination Validation problem for gas networks.

For a general overview on the mathematical treatment of gas networks see for example
Koch et al. [2015]. In general, a gas network can be modeled as a directed graph G = (V,E).
We consider a stationary gas model. Our goal is to minimize the cost w(x) for modifying
active elements, like compressors or control valves, in the network. We assume that w has
a unique and strict minimum for the zero-vector, which means that no modification of
the active elements induces no cost and every modification induces a strictly positive cost.
The gas network’s physics is determined by the gas flow on each edge and a pressure value
for each node. A feasible gas flow fulfils flow conservation with respect to a given balanced
demand vector d, where balanced means ∑v∈V dv = 0. Furthermore, a nonlinear pressure
loss equation that depends on pressure loss coefficients ϕa ≥ 0 for each edge a ∈ E, is
required and we have bounds π and π for the pressure vector. We note that we use a
linear compressor model. For a more detailed overview on the nominal problem we refer
to Gotzes et al. [2016] and Aßmann et al. [2019]. In Gotzes et al. [2016] and Aßmann et al.
[2019], the authors introduce a reformulation of the nominal problem by eliminating the
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flow and pressure variables. Aßmann et al. [2019] show that the reformulation works if
there are no active elements on cycles, whereas Stangl [2014] proves the statement if every
cycle contains at least one pipe with strictly positive pressure loss coefficient ϕa. The latter
result is for example also used in Kuchlbauer et al. [2022a] and Kuchlbauer et al. [2022b].
The reformulation fixes the pressure at a chosen root node r and provides functions πv

for the pressures at all nodes, except r, that only depend on the control variables x, the
demands d and the pressure loss coefficients ϕ. Then, the whole problem reads

min
x

w(x)
s.t. πv(x,d,ϕ) ∈ [πv, πv] ∀v ∈ V \ {r}

x ∈ [x,x] =: X .

After introducing the nominal problem, we additionally consider uncertainties in the de-
mands d and assume that the demands follow a probability distribution ζ over the set

D =
{

d ∈ R|V | :
∑
v∈V

dv = 0, dv ∈ [lv, uv] ∀v ∈ V
}
,

where l,u ∈ R|V | are fixed vectors with lv ≤ uv for all v ∈ V . Now, we require that the
pressure bounds π and π have to be satisfied with a given probability p which induces the
joint chance constraint

Pd∼ζ(πv(x,d,ϕ)− πv ≥ 0, πv − πv(x,d,ϕ) ≥ 0 ∀v ∈ V \ {r}}) ≥ p.

So, the function g is defined as

g(x,d,ϕ) =
∑

v∈V \{r}

(
−min{0, πv(x,d,ϕ)− πv}2 −min{0, πv − πv(x,d,ϕ)}2

)
and the corresponding approximation problem reads

min
x∈X

w(x) + λ

2 max
{

0, p−
∫

D
hν(g(x,d,ϕ), β)µ(dd)

}2
.

CSG requires the gradient of g with respect to x. Kuchlbauer et al. [2022a] and Kuchlbauer
[2023] present a gradient formula. It can be easily verified that it is Lipschitz continu-
ous and bounded. If furthermore w is continuously differentiable and its gradient is lo-
cally Lipschitz continuous and bounded, the whole objective function has a bounded and
Lipschitz-continuous gradient. Together with the definition of D and the feasible set for
x Assumption 3 is fulfilled, and therefore Theorem 6 guarantees the convergence of the
CSG method for suitably chosen step sizes.

6.2.2 Numerical Results.

For our numerical studies in the gas context we use slightly modified instances from a
library of realistic gas instances (Schmidt et al. [2017a]), namely GasLib 24, GasLib 40
and GasLib 134. General information with respect to the size of these instances is collected
in Table 2. We note that the instances are of the size of real-world gas networks. To create
the uncertainty set D we use the given nominal demands nv for each node v in the instance

23



instance number number number dimension number
nodes edges active elements uncertainty constraints in CC

GasLib 24 24 25 4 8 46
GasLib 40 40 45 6 32 78
GasLib 134 134 133 2 48 266

Table 2: Information for GasLib instances.

files and perturb them by 5% in each direction. So, the feasible set for the demands is
given by

D =
{

d ∈ R|V | :
∑
v∈V

dv = 0, dv ∈ [lv, uv] ∀v ∈ V
}

with [lv, uv] = [0.95 · nv, 1.05 · nv] for nv ≥ 0 and [lv, uv] = [1.05 · nv, 0.95 · nv] for nv < 0.
We note that the size of the uncertainty does not impact the general performance of
the CSG method. For the chance constraint we consider the uniform distribution over
D. CSG requires independent, uniformly distributed samples on D. Since D is a box
intersected with a hyperplane, uniform sampling on D cannot be done by simply using
built-in Matlab functions. First, we reduce the dimension of D by 1 to obtain a set with
non-empty interior. Choosing an arbitrary node u ∈ V and defining

D̃ :=
{

d̃ ∈ R|V |−1 : d̃v ∈ [lv, uv] ∀v ∈ V \ {u}, −
∑

v∈V \{u}
d̃v ∈ [lu, uu]

}
,

there is a one-to-one correspondence between points in D and D̃ following the bijection
ψ : D̃ → D with ψ(d̃) = (d̃T

,−
∑

v∈V \{u} d̃v)T . We thus sample uniformly on D by sam-
pling uniformly on D̃. The uniform sample on D̃ is constructed with rejection sampling,
this means we sample uniformly at random on the box [lv, uv]v∈V \{u} until the sampled
vector is contained in D̃. The accepted vectors build the sample on D̃. We note that the
rejection method works well for D̃, whereas it is not applicable in practice to D since the
equality constraint is hardly ever satisfied for a random sample in the box.
For the numerical experiments we choose the linear objective function w(x) := 1T x,
where 1 is the vector that contains only 1-entries, and a probability level p = 0.9. We
again demonstrate the results of the CSG method for 500 random runs. Since there do
not exist strict bounds on the variables x we choose the feasible set [x,x] with 0 ∈ [x,x]
very large to never reach the bounds in an optimum. Owing to the large feasible set we do
not start the CSG method at random points, but initialize the algorithm with x = 0 since
this vector gives the lowest cost and would be preferred if no constraint is violated. To
choose the parameters we perform again preliminary computations which lead to ν = 0.51,
β = 5·103 and λ = 105. The initial constant step size is given by τ = 10−2 and is decreased
with parameter t = 100. The set R is chosen as R := {−2000,−1999.99,−1999.98, . . . , 0}.
Since the true optimum of the Nomination Validation problems is not known, we cannot
quantify the error of the returned solutions. Therefore, we illustrate in Figures 4a and 4b
the sequences of function values for the objective function in the approximation problem
including the penalty term and the original objective function w. Obviously, the initial
vector x = 0 is infeasible, and therefore the penalized objective function is very large in
the beginning. By driving the solution towards the feasible set, the penalized objective
function increases until the solution becomes feasible. At this point, there is a large jump
downwards for the penalized function. The original function also increases until this jump
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(a) Penalized objective function.
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(b) Original objective function.

Figure 4: Objective functions over iterations for the median (black line). Shaded areas
for quantiles P0.1,0.9 (light) and P0.25,0.75 (dark).

is reached. In total, we observe that after the jump the values for both objective functions
stay nearly constant, which means that the CSG method converges after about 500−1200
iterations for the tested networks. Additionally, we note that the quantiles are very small,
which emphasizes the efficiency of our method. One random run needs at most 150 seconds
for the three instances.
Next, we discuss the feasibility. Again, for the CSG iteration with the smallest penalized
objective function value over the last 50 iterations, we approximate the left-hand side
of the original chance constraint and the smoothed version with Monte-Carlo using 104

samples. The results for the median and the quantiles can be found in Table 3. Indeed,
CSG finds nearly feasible solutions for the smoothed constraints. Nevertheless, the desired
probability level is not reached in all runs and also not for the median. Table 4 tells us that
the violation of the smoothed constraint in the CSG approximation is often not exactly
equal to zero. For GasLib 24 we obtain in 61% of the runs a violation, for GasLib 40
in 36% and for GasLib 134 in 48%. In average, the violations are in the range of 10−4.
For GasLib 134 the maximal violation is in the range of 10−3, whereas for the other two
instances the maximal one also lies in the range of 10−4. So, slightly infeasible solutions
for the smoothed chance constraint occur due to the penalization technique. Since the
values for the smoothed chance constraints are nearly 0.9, this also indicates that the
found solutions are not far from the boundary of the smoothed feasible region. So, the re-
turned solutions yield high-quality objective function values with respect to minimization
of w(x).

25



instance CC 90% 75% median 25% 10%

GasLib 24 smoothed 0.88 0.89 0.89 0.90 0.91
original 0.84 0.85 0.86 0.86 0.87

GasLib 40 smoothed 0.91 0.90 0.89 0.89 0.89
original 0.91 0.89 0.89 0.89 0.89

GasLib 134 smoothed 0.87 0.88 0.88 0.89 0.91
original 0.79 0.80 0.81 0.82 0.83

Table 3: Monte-Carlo approximation of left-hand side of smoothed CC and original CC evaluated
at the median and the respective quantile values of the returned solutions x over 500 runs of CSG.

instance number of runs average maximal
with violation violation violation

GasLib 24 61% 1.7 · 10−4 4.5 · 10−4

GasLib 40 36% 2.3 · 10−4 9.7 · 10−4

GasLib 134 48% 1.9 · 10−4 1.1 · 10−3

Table 4: Violation in CSG method for returned solution over all 500 runs.

For GasLib 40 the solutions are also nearly feasible for the original chance constraint,
which is a very good result. But for the other two instances the original constraint is
violated. Since the approximation to the smoothed constraint is good for all instances,
the violation of the original one results from the smoothing technique. To heal this, we use
the trick presented in Chapter 2 and increase the probability level to 0.9 + ϵ̃. In general,
the value for ϵ̃ can be chosen small if the violation of the original chance constraint is also
small. Like for all other parameters we perform preliminary computational experiments. If
the violation of the original chance constraint is small, like for GasLib 24, we start testing
the performance for ϵ̃ = 0.01 and perform a bisection method to obtain a reasonable value
for ϵ̃. If the initial violation is large, like for GasLib 134, we start with a larger initial
value for ϵ̃ and proceed in the same way. For GasLib 24, we obtain ϵ̃ = 0.03 as a good
choice, whereas for GasLib 134 we use ϵ̃ = 0.06. Then, Theorem 1 ensures that the chance
constraint

Pd∼ζ(g(x,d,ϕ) ≥ −ϵ) ≥ p+ ϵ̃− ϵ̃ = p

is fulfilled, whenever the smoothed chance constraint is fulfilled with probability level p+ ϵ̃.
Here, ϵ is a scalar such that hν(g(x,d,ϕ), β) ≤ ϵ̃ for g(x,d,ϕ) < −ϵ. Inserting the special
form of the smoothing function hν we obtain

ϵ = −
artanh( ϵ̃

ν − 1)− γ
β

.

For the chosen ϵ̃ for GasLib 24 and GasLib 134 the values for ϵ are in the range of 10−4.
Results for solving the approximation problem with 0.9+ ϵ̃ can be seen in Table 5. We no-
tice that the values for the smoothed versions are nearly equal to the new probability levels
0.9 + ϵ̃, which implies that the CSG method also works for these approximation problems.
Concerning the original chance constraint, the returned solutions are nearly feasible. So,
our correction procedure works for appropriately chosen parameters ϵ̃. Studying the re-
sults for the perturbed chance constraint, one notes that the probability level is sometimes
much higher than requested. This illustrates that the result in Theorem 1 gives an upper
bound for the probability that the perturbed chance constraint is satisfied, but in practice
the probability is often much higher. In conclusion, our approach consistently produces
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instance CC 90% 75% median 25% 10%

GasLib 24
smoothed 0.91 0.92 0.92 0.93 0.94
original 0.88 0.88 0.89 0.90 0.91

perturbed 0.92 0.93 0.94 0.94 0.95

GasLib 134
smoothed 0.94 0.95 0.95 0.96 0.96
original 0.88 0.89 0.89 0.91 0.91

perturbed 0.96 0.96 0.97 0.97 0.97

Table 5: Monte-Carlo approximation of left-hand side of smoothed CC, original CC and per-
turbed CC evaluated at the median and the respective quantile values of the returned solutions x
over 500 runs of CSG with probability level 0.9 + ϵ̃.

Figure 5: Sequence of original objective
function values for different smoothing pa-
rameters in one fixed run.
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solutions that are remarkably close to feasibility, even when dealing with real-world sized
gas network instances featuring non-convex constraint functions and stochastic parameters
spanning up to 50 dimensions.

6.3 Different smoothing and penalty parameters

The convergence results in Chapter 3 suggest to solve sequences of approximation problems
for increasing smoothing and penalty parameters. In contrast, we solve the approximation
problem for one fixed value of β and λ. In this section, we analyze why this procedure
is appropriate. First, we consider the smoothing approximation for a fixed penalty para-
meter λ = 105 and smoothing parameters β ∈ {101, 102, 103, 5 · 103, 104, 105}. We present
the results exemplarily for the instance GasLib 24, but similar results can also be observed
for other problems. The results for one run of CSG with the same fixed samples for all
values of β can be seen in Figure 5. We observe that the CSG method needs more iter-
ations to converge for larger values of β. Especially, for the largest value CSG does not
converge within 4000 iterations. Concerning the feasibility, the Monte-Carlo approxima-
tions are shown in Table 6. We note that the smoothed constraint is satisfied with the
required probability for convergent runs, whereas the original one is only nearly satisfied
for β = 5 · 103 and β = 104. The violation for all other values is large. As a consequence,
small parameters β are not meaningful in practice, but using constant values is neverthe-
less acceptable if they are chosen large enough. Our choice of β = 5·103 is reasonable since
it gives the best trade-off between fast convergence and feasibility for all tested values. In
total, for our purposes it is enough to solve one approximation problem for a fixed and
large smoothing parameter instead of a sequence of problems to obtain nearly feasible
solutions.
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CC β = 101 β = 102 β = 103 β = 5 · 103 β = 104 β = 105

smoothed 0.90 0.90 0.90 0.91 0.90 0
original 0.01 0.53 0.81 0.87 0.88 0

Table 6: Monte-Carlo approximation of left-hand side of smoothed CC and original CC of
returned solution x for different smoothing parameters β in one fixed run.

Figure 6: Sequence of original objective
function values for different penalty param-
eters in one fixed run.
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Now, we consider different penalty parameters λ ∈ {101, 102, 103, 104, 105} and fix the
smoothing parameter to β = 5 ·103. The results for one fixed random run are presented in
Figure 6. We observe faster convergence for larger penalty parameters. Thus, choosing a
large parameter that guarantees a small penalty term is a very good choice. Table 7 shows
the Monte-Carlo approximation of the left-hand side of the smoothed chance constraint
for the returned solution x for the different penalty parameters. We observe that the
smoothed constraint is violated for the smallest value for λ, whereas the remaining tests
give feasible solutions for the smoothed constraint. Therefore, solving the approximation
problems for a fixed value of λ is also reasonable and our choice λ = 105 is good since it
gives no violation and a small convergence time.

6.4 Checking feasibility for the chance constraint

As mentioned before, checking feasibility of a given vector for a chance constraint can be
difficult for continuous distributions. To verify the solution quality, we approximate the
measure integral by Monte-Carlo simulation in the last subsections. Obviously, this pro-
cedure results in additional computational effort, in particular if sampling is complicated.
An alternative idea to check feasibility is using the information gained during the CSG
method. Since CSG is proven to produce approximations to the integrand that converge
to the true value, this also holds for the left-hand side of the smoothed chance constraint.
Since the original chance constraint is neither differentiable nor continuous, the theory for
the CSG method gives no result for the original constraint. Nevertheless, it is natural to
assume that the approximation also works for the indicator functions forming the chance
constraint since CSG approximates function values with a piecewise constant model. So,
the jumps in the indicator functions can be approximated better over the iterations. We
illustrate this assumption for the tested GasLib instances. Therefore, we perform for each
instance one random run of CSG and approximate in each iteration the left-hand side of
the smoothed chance constraint and the original one. The approximation to the smoothed
constraint is already computed for the penalized objective function values, therefore we
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λ = 101 λ = 102 λ = 103 λ = 104 λ = 105

0.85 0.90 0.90 0.90 0.90

Table 7: Monte-Carlo approximation of left-hand side of smoothed CC of returned solution x
for different penalty parameters λ in one fixed run.

instance CC MC CSG

GasLib 24 smoothed 0.90 0.90
original 0.86 0.87

GasLib 40 smoothed 0.90 0.90
original 0.89 0.90

GasLib 134 smoothed 0.88 0.90
original 0.80 0.83

Table 8: Monte-Carlo and CSG approximation of left-hand side of smoothed CC and original
CC of returned solution x for one fixed run.

do not need additional computation time here. For the original chance constraint we com-
pute the value of the indicator function in each iteration, this means we check, whether
g(xk, δk) ≥ 0. Then, we approximate the left-hand side with a weighted linear combination
of the indicator function values, where the coefficients are given by the empirical weights
α. In the end, the algorithm outputs the approximation obtained in the iteration, where
the returned solution appears. The obtained results and the Monte-Carlo approximations
can be found in Table 8. We see that the values for the Monte-Carlo and CSG approxi-
mation are nearly equal for GasLib 24 and GasLib 40, whereas we observe a difference of
up to 3% for GasLib 134. But since the difference also occurs for the smoothed version
and the CSG method is proven to converge to the true value for the smoothed constraint,
the difference for the largest instance seems to result from the number of iterations that
is too small to guarantee the convergence of the function values for the high-dimensional
uncertainty. Nevertheless, although the approximation of the left-hand sides of the chance
constraint is not exact after 4000 iterations the results of the Monte-Carlo approximation
imply that the obtained solution vector x is exact enough. So, the number of iterations
suffices to compute solutions to the approximation problem (Papp). In total, replacing the
Monte-Carlo simulation by the CSG approximation provides a good indication for the fea-
sibility of the returned solutions if the stochastic uncertainty is not extraordinarily large.
This enables us to evaluate our approach without using Monte-Carlo techniques.

7 Conclusion

In this paper, we introduce an approximation for joint chance-constrained optimization
problems using smoothing and penalization that enables the application of the CSG
method. The procedure allows non-convexities in the constraint functions and does not
rely on Monte-Carlo sampling. The numerical experiments show the efficiency of our
approach, even for high-dimensional uncertainties in the gas context. Furthermore, we
demonstrate with a convergence theory for the smoothing and penalty approach that our
approximation problem provides a good approximation for the original problem for large
smoothing and penalty parameters. For the penalty approach we show convergence results
for sequences of optimal solutions and sequences of KKT-points if the LICQ holds. For
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the smoothing approximation we only present a convergence result with respect to optimal
solutions. A question for further research is whether a similar result for KKT-points can
be obtained, if the cumulative distribution function is locally Lipschitz continuous and
whether their exist meaningful conditions on the distribution and the constraint functions
that guarantee the Lipschitz continuity of the distribution function in our setting. Since
our approach does not rely on any assumptions on the distributions or the constraint
functions, except of Lipschitz continuous gradients, the approach is applicable in a wide
context. Another interesting question for further research is, whether the presented ap-
proach can be used for solving distributionally robust optimization problems with chance
constraints, where the distribution is not known exactly.
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