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Abstract. We propose a framework that allows to quantitatively analyze the
interplay of the different agents involved in gas trade and transport in the context
of the European entry-exit system. While previous contributions focus on the case
of perfectly competitive buyers and sellers of gas, our novel framework considers
the mathematically more challenging case of a strategic and monopolistic gas
seller. We present a multilevel framework that is suitable to capture the sequential
nature of the decisions taken. We then derive sufficient conditions that allow
for reformulating the challenging four-level model as a computationally tractable
single-level reformulation. We prove the correctness of this reformulation and use
it for solving several test instances to illustrate the applicability of our approach.

1. Introduction

We analyze the organization of gas trade and transport in the context of the
European gas market design. In Europe, the so-called “entry-exit system” aims at
largely separating gas trade and transport. Agents have to take an involved sequence
of actions, which first lead to gas trading independently of grid restrictions and then
transport of the traded volumes through the network. In particular, the transmission
system operator (TSO) first announces so-called “technical capacities”, which are
capacities available to the buyers and sellers at the different entry and exit nodes.
These technical capacities must be chosen such that any balanced set of quantities less
than the technical capacity can be transported through the network. In a second step,
suppliers and consumers “book” capacities at the nodes to secure access to the network,
trade gas at the marketplace (being capacity-constrained by their bookings) and finally
“nominate” the quantities bought and sold at the market for transport. Finally, the
gas is routed through the network by the TSO, where feasibility is guaranteed by the
ex ante restrictions on technical capacities. For the specific institutional rules we refer
to [40] and [31].

It is important to notice that the entry-exit system hinders the efficient use of
existing network capacities due to the restrictive requirements on technical capacities.
This was not harmful when there was abundant network capacity available, as it
has been the case for European gas markets. However, in the context of the green
transition, pipeline-bound hydrogen-transport will gain importance. Future hydrogen
networks will be build from parts of the existing natural gas networks, which implies
that for both, the gas and the hydrogen network, transmission constraints will become
an issue. Thus, a comprehensive understanding of the limitations and the efficiency
losses of the entry-exit system is crucial to prepare the right regulatory decisions for
the envisioned hydrogen gas market and networks.
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The current EU gas market design has already been analyzed in recent scientific
contributions that focus on important aspects of properly organizing those markets.
A recent strand of literature provides setups that allow to quantitatively assess gas
trade and transport in the context of the entry-exit system. Due to the sequential
decision-making structure outlined above, this involves multilevel approaches, which,
in general, are difficult to tackle as it is known that even bilevel problems are hard
to solve; see, e.g., [20, 30] for general hardness results. Recent articles, see, e.g., [6,
18], provide models and computational approaches under the assumption of perfectly
competitive behavior of all agents acting on gas markets. In this case, modeling of
booking and nomination can be jointly reformulated as decisions taken on the lower
level of a bilevel model, whereas all decisions taken by the TSO are modeled in the
resulting upper level. The obtained bilevel problem can then be finally reformulated
as a single-level optimization problem.

However, market power and strategic behavior of gas suppliers play a crucial role
in gas markets; see, e.g., [51]. It is the goal of our analysis to provide and solve a
computationally tractable framework, which allows to analyze the interaction of the
TSO, price-taking gas buyers, and a strategic monopolistic gas seller in the context of
the European entry-exit system.

In more detail, as a starting point of our modeling approach, we consider the
sequential decisions taken by the TSO (choice of technical capacities and routing
of gas transport), a single strategic and profit-maximizing gas seller (booking and
nomination) and gas buyers, which are assumed to be price takers (booking and
nomination). The objectives of the seller and the buyers differ in this case. Unlike in
a setup under the assumption of perfectly competitive agents, see, e.g., [6, 18, 23], the
integration of seller and buyer decisions in a single optimization problem is not possible
in this case. The resulting interaction of (i) the TSO while setting technical capacities
for entry and exit nodes and routing the gas as well as of (ii) the seller and buyers
while making their booking and nomination decisions in the context of the entry-exit
system thus results in four different levels. The entire model is formulated in Section 2.
As this cannot be solved directly, we derive a computationally solvable single-level
reformulation of the overall problem in Section 3. Based on this reformulation, we can
solve test instances and conduct performance checks; see Section 4.

Our work is related to several strands of literature. Given the relevance of gas
markets in general and given the importance of strategic behavior especially on the
supply side, there is a large and well-developed body of literature, which considers many
different aspects of strategic supply decisions in this context. There are both highly
stylized models, which allow for an analytical solution of the considered problem, as well
as larger, more realistic setups, which have to be solved by appropriate computational
methods. Prominent examples of stylized and, thus, analytically tractable frameworks
are [13, 26, 28, 29, 34, 38, 39, 49]. Computational approaches, which often rely on
formulations as complementarity problems are given by [2, 4, 5, 7–10, 14–16, 25, 27,
35, 36, 42, 45, 50]. Many of those contributions do consider some kind of network
constraints, ranging from simple linear network flow problems to static but nonlinear
gas flow models, which take into account the influence of pressure gradients; e.g., the
so-called Weymouth equation [48].

All above-mentioned articles typically assume that congestion management of
scarce network capacities is organized in an efficient and centralized manner. Hence,
in contrast to our approach, those contributions do not explicitly model and analyze
the specific rules of congestion management, which involve a sequence of decisions
taken by the TSO, suppliers, and consumers.

Another strand of literature does consider the specific rules of congestion man-
agement in the context of the European entry-exit system. Those contributions are
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typically based on illustrative examples, which discuss the different aspects and im-
plications of the market rules in detail. Those more policy-oriented contributions,
however, do not aim at providing computational setups, which would allow to quantify
the impact of specific institutional details; see, e.g., [3, 17, 19, 24, 47].

Very recently, several contributions provided setups, which indeed allow for a
computational and thus quantitative analysis of the different specific aspects of the
entry-exit system. Most of them are based on the model presented in [18]. In, [6],
the authors exploit several reformulations to obtain an equivalent single-level model
that they solve for different institutional setups of the entry-exit system. Going one
step further, load uncertainty has been tackled in [23] by using chance-constrained
modeling. For tree-structured networks, highly efficient solution techniques have been
developed in [44] and a first step towards addressing active network elements such as
compressors are given in [41] for a certain part of the four-level model presented in [18].
All those contributions provide important computational setups that allow to analyze
different important aspects of the entry-exit system. In contrast to our contribution,
however, they all focus on the case of perfectly competitive behavior of gas suppliers.
In our work, we explicitly consider strategic behavior on the supply side.

The remainder of this paper is structured as follows. In Section 2, we present the
four-level model with market-power aspects by including a monopolistic gas seller.
Afterward, we study the market levels in more detail in Section 3 to obtain a single-level
reformulation. Numerical results based on this single-level reformulation are presented
and discussed in Section 4 before we close with some concluding remarks in Section 5.

2. The Four-Level Model with a Monopolistic Gas Selling Firm

It is our scope to analyze the sequential decisions of the TSO, who chooses technical
capacities and routes gas, together with the decisions of booking and nomination
made by firms. We consider the case of strategic booking and nomination decisions
of a monopolistic gas seller. The fundamental timing of our setup, in principle,
corresponds to the one introduced in [18]. However, as we consider strategic booking
and nomination decisions of the gas selling firm, we have to disaggregate seller and
buyer decisions into different levels. Formally, this sequential interaction can be
described by the following four-level situation:

(i) Specification of technical capacities and booking price floors by the TSO.
(ii) Booking of capacity rights, day-ahead nominations, and setting of gas prices

by the gas selling firm.
(iii) Booking of capacity rights and day-ahead nominations by gas buying firms.
(iv) Cost-optimal transport of the realized nominations by the TSO.
Similar to the four-level model proposed in [18], all decisions of the gas sellers and

gas buyers are modeled in levels (ii) and (iii). However, in [18], all gas traders book
capacities at level (ii) and they nominate quantities in level (iii). In the model we
propose, the levels are split according to the different market participants, i.e., the gas
seller and the gas buyers. The monopolistic gas selling firm decides on booked and
nominated quantities as well as on gas prices at level (ii). The gas buying firms decide
on their bookings and nominations at level (iii) based on these gas prices.

We also consider different pricing regimes by introducing price groups. The gas
selling firm sets a price for each price group so that all gas buyers in one price group
pay the same price. This allows to analyze and compare different pricing regimes like,
e.g., nodal pricing, smaller or larger price groups, or a network-wide uniform price.

In the following, we state the multilevel model of the entry-exit market with a
monopolistic gas selling firm. We model the gas network as directed and weakly
connected graph G = (V,E). The node set of this graph is partitioned into entry
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nodes V+, at which the gas selling firm is located, exit nodes V−, at which the
consumers are located, and the remaining inner nodes V0. We consider a finite set of
time periods T and denote the optimal value function of level ` with ϕ`.

2.1. Level (i): Specification of Technical Capacities and Booking Price
Floors by the TSO. The player of level (i) is the transmission system operator
(TSO), who specifies technical capacities qTC := (qTC

u )u∈V+∪V− and booking price
floors πbook := (πbook

u )u∈V+∪V− for all entry and exit nodes. By doing so, the TSO
has to ensure that the bookings and nominations that realize in levels (ii) and (iii)
can be transported through the network. The optimization problem of the TSO in
level (i) reads

max
qTC,πbook

∑
t∈T

∑
u∈V−

∫ qnom
u,t

0

Pu,t(s) ds−
∑
u∈V+

cvaru qnomu,t

− ϕ4(qnom)− C (1a)

s.t. 0 ≤ qTC
u , 0 ≤ πbook

u , u ∈ V+ ∪ V−, (1b)∑
u∈V+∪V−

πbook
u qbooku = ϕ4(qnom) + C, (1c)

(
qbook+ , qnom+ , πnom

)
solves (2), (1d)

(p, q) solves (4). (1e)

Constraint (1c) models that the transport costs ϕ4(qnom) arising in level (iv) plus
additionally given network costs C ≥ 0 have to be recovered. Note that we consider
the optimistic setting, i.e., in case of multiple optimal solutions of the lower levels, the
TSO chooses the welfare-maximizing solution. As mentioned above, in our setup, the
TSO only has to ensure that the realized nominations from levels (ii) and (iii) have to
be physically feasible. For further discussion of more robust settings see, e.g., [6, 23].

2.2. Level (ii): Booking of Capacity Rights, Day-Ahead Nominations, and
Setting of Gas Prices by the Gas Selling Firm. The player of level (ii) is the
monopolistic gas selling firm, which is located at the entry nodes V+ and has variable
production costs cvaru > 0 for all u ∈ V+. This firm has to take into account the
technical capacities qTC as well as booking price floors πbook

u at all entry and exit
nodes u ∈ V+ ∪ V−, which are given from level (i). It maximizes its profit by booking
input capacities qbook+ := (qbooku )u∈V+ , choosing nominations qnom+ := (qnomu,t )u∈V+,t∈T ,
and setting gas prices πnom at the exit nodes V−, to which the consumers react as
price takers.

We assume that the exit nodes are partitioned into different price groups and that
the monopolistic firm sets a gas price being the same for all consumers in each price
group. This allows us to consider and compare different pricing regimes. In the
literature, this is typically referred to as third-degree price discrimination; see, e.g., [1]
for a reference. Let V1, . . . , Vk be a partition of the exit nodes V− into k price groups.
We use the notation [k] := {1, . . . , k} and denote the gas prices by (πnom

i,t )i∈[k],t∈T .
Note that in level (ii), the monopolistic firm decides on bookings qbook+ and nomina-

tions qnom+ as well as on gas prices πnom, while anticipating the bookings qbook− and
nominations qnom− of the gas buying firms, which are chosen in level (iii).
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The monopolistic firm’s optimization problem is given by

max
qbook
+ ,qnom

+ ,πnom

∑
t∈T

 k∑
i=1

πnom
i,t

∑
u∈Vi

qnomu,t −
∑
u∈V+

cvaru qnomu,t

− ∑
u∈V+

πbook
u qbooku (2a)

s.t. qbooku ≤ qTC
u , u ∈ V+, (2b)

0 ≤ qnomu,t ≤ qbooku , u ∈ V+, t ∈ T, (2c)∑
u∈V−

qnomu,t −
∑
u∈V+

qnomu,t = 0, t ∈ T, (2d)

(
qbook− , qnom−

)
solves (3). (2e)

The monopolistic firm’s profit (2a) is the difference between the aggregated revenues
from selling gas and the costs of the nominated and booked quantities. Constraints (2b)–
(2d) model the restriction by technical capacities, compliance with booked capacities,
and market clearing.1 Constraint (2e) models the reactions of the consumers to the
market prices πnom

i,t set by the monopolistic firm. The existence of a solution of
Problem (2) can be ensured under Assumptions 2.1 and 2.2; see Lemma 3.2 below.

In the context of such a multilevel market model, a common concern is strategic
over-booking, which means that a firm or consumer books a capacity that is larger than
its maximal nomination in order to prevent its competitors from using this capacity.
Note that in our setup, the gas selling firm has no incentive to over-book, i.e., we have
qbooku = maxt∈T {qnomu,t } for all entry nodes u ∈ V+.

2.3. Level (iii): Booking of Capacity Rights and Day-Ahead Nominations
by Gas Buying Firms. The players of level (iii) are the gas buying firms, which are
located at the exit nodes V−. They observe the gas prices πnom, booking prices πbook

u ,
and technical capacities qTC

u given from levels (i) and (ii), and react to these prices by
booking capacities qbook− := (qbooku )u∈V− and by deciding on their nominations qnom− :=
(qnomu,t )u∈V−,t∈T . Demand at the exit nodes is modeled by inverse demand functions Pu,t,
for which we make the following assumption.

Assumption 2.1. All inverse demand functions are linear and strictly decreasing.
Moreover, the intercepts are the same within each price group, i.e.,

Pu,t(q
nom
u,t ) = ai,t − bu,tqnomu,t

holds with ai,t, bu,t > 0 for all nodes u ∈ Vi in price group i ∈ [k] and all time periods
t ∈ T .

Note that the specification of demand depending linearly on market prices (inducing
quadratic consumer surplus in the objective functions) is very common in the entire
literature providing computational approaches for solving equilibrium problems in
energy markets; see, e.g., [9, 14, 49] for some examples. Intercepts in our setup can
vary with time periods t. The assumption of equal intercepts ai,t for all nodes in a
price group is worthwhile to note. This does restrict the flexibility of our framework.
The assumption is required, however, to guarantee concavity of the maximization
problem solved by the seller; see Lemma 3.2 and Problem (13) below.

Regarding symmetry of consumption at different nodes of the same price group,
observe that slopes bu,t of demand can be different at each node and for each time

1Observe that the monopolistic seller thus faces capacity constraints both regarding its own
output at the entry nodes as well as its sales at the different exit nodes. Related problems in which
monopolistic sellers face different kinds of capacity constraints are prominent in the recent literature;
see, e.g., [46].
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period. This allows for different consumption levels at the different nodes within the
same price group in our setup.

All gas buyers are assumed to be price takers as, e.g., in [18]. Given the prices for
bookings (πbook

u ) and nominations (πnom
i,t ), the booking and nomination decisions of

the gas buyers at each exit node u ∈ Vi in price group i ∈ [k] can thus be obtained as
the solution of the optimization problem

max
qbook
u ,qnom

u

ϕu(qbooku , qnomu ) (3a)

s.t. qbooku ≤ qTC
u , (3b)

0 ≤ qnomu,t ≤ qbooku , t ∈ T, (3c)

with

ϕu(qbooku , qnomu ) :=
∑
t∈T

(∫ qnomu,t

0

Pu,t(s) ds− πnom
i,t qnomu,t

)
− πbook

u qbooku .

Here, we use the notation qnomu := (qnomu,t )t∈T . The existence and uniqueness of a
solution of these problems under Assumption 2.1 is discussed in Lemma 3.1 below.

We make the assumption that all network fees are collected from the seller. For
perfectly competitive sellers and buyers it is irrelevant for the resulting market equi-
librium and the tax incidence who nominally pays a tax; see, e.g., [33]. In our setup,
which considers the interplay of gas transport with gas trade and a strategic seller,
this equivalence does not always hold. Nevertheless, this assumption is crucial in
the next step, because it allows us to eliminate qbook− and to obtain the reformulated
problem (13).

Assumption 2.2. For all exit nodes u ∈ V− it holds πbook
u = 0 and qTC

u > 0.

2.4. Level (iv): Cost-Optimal Transport of the Realized Nominations by
the TSO. The player of level (iv) is the TSO again, who minimizes transport costs
resulting from the nominations of the gas seller and the gas buyers. For the modeling
of gas physics, we use the nonlinear flow model introduced in [44]. The optimization
problem of the TSO in level (iv) is given by

min
p,q

∑
t∈T

ctranst (p, q; qnom) (4a)

s.t. (p, q) ∈ F (qnom) , i.e., (p, q) fulfills (6)–(9), (4b)

where the transport costs are defined (with a slight abuse of notation) as

ctranst (p, q; qnom) =
∑

e=(u,v)∈E

ctranst

∣∣p2u,t − p2v,t∣∣ . (5)

The feasible set F(qnom) models all existing restrictions on the gas pressures p :=
(pu,t)u∈V,t∈T and gas mass flows q := (qe,t)e∈E,t∈T . These are flow bounds

−∞ < q−e ≤ qe,t ≤ q+e <∞, e ∈ E, t ∈ T, (6)

balance of flows ∑
e∈δout(u)

qe,t −
∑

e∈δin(u)

qe,t = qnomu,t , u ∈ V+, t ∈ T, (7a)

∑
e∈δout(u)

qe,t −
∑

e∈δin(u)

qe,t = −qnomu,t , u ∈ V−, t ∈ T, (7b)

∑
e∈δout(u)

qe,t −
∑

e∈δin(u)

qe,t = 0, u ∈ V0, t ∈ T, (7c)
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TSO Market

(i): Technical Capacity (ii): Booking, Nomination,
Pricing (Seller)

(iii): Booking, Nomination
(Buyers)

(iv): Cost-Optimal
Transport

qTC
+ , πbook

+

qTC
− , πbook

−

qbook+

πnom
qnom+

qnom−

qnom−

qbook−ϕ4

Figure 1. Illustration of dependencies between the four levels.

as well as pressure loss constraints and pressure bounds

p2u,t − p2v,t = Λeqe,t|qe,t|, e = (u, v) ∈ E, t ∈ T, (8)

0 < p−u ≤ pu,t ≤ p+u ≤ ∞, u ∈ V, t ∈ T. (9)

Here, δin(u) and δout(u) represent in- and outgoing arcs at node u, Λe > 0 is an arc
specific constant and ctranst > 0 represents the transport costs in time period t.

In order to computationally solve instances of this problem, we replace the absolute
values in the objective function, see (4a) and (5), and in Constraint (8) of Problem (4)
in our implementation as described in the following remark.

Remark 2.3. We model the absolute values |qe| in Constraint (8) of Problem (4) by
splitting qe into positive and negative parts by adding the constraints qe,t = qpos

e,t − q
neg
e,t

and qpos
e,t q

neg
e,t = 0; see, e.g., [21]. Moreover, we replace the pressure variables by

variables for squared pressure p̃ := p2. Thus, we replace Constraint (8) by

p̃u,t − p̃v,t = Λeqe
(
qpos
e,t + qneg

e,t

)
.

We also replace the transport costs in the objective function, see (4a) and (5), of
Problem (4) by

ctranst

∣∣p2u,t − p2v,t∣∣ = ctranst Λe
(
qpos
e,t + qneg

e,t

)2
.

Bounds for the new flow variables qpos
e,t and qneg

e,t are given by max{0, q−e } ≤ qpos
e,t ≤

max{0, q+e } as well as max{0,−q+e } ≤ qneg
e,t ≤ max{0,−q−e } and bounds for the new

pressure variables p̃ are given by (p−u )
2 ≤ p̃u,t ≤ (p+u )

2.

Figure 1 illustrates the dependencies between the four levels.

3. Single-Level Reformulation

We now provide a reformulation of the four-level model into a single-level optimiza-
tion problem. To this end, we begin by integrating levels (i) and (iv) in one problem
in Section 3.1. Then, we reformulate levels (ii) and (iii) as one concave maximization
problem in Section 3.2, which can be replaced by its KKT conditions. In Section 3.3
we combine those results to obtain a single-level optimization problem, whose solutions
correspond to the solutions of the four-level model described in Section 2.
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TSO Market

(i) & (iv): Technical Capacity,
Cost-Optimal Transport

(ii): Booking, Nomination,
Pricing (Seller)

(iii): Booking, Nomination
(Buyers)

qTC
+ , πbook

+

qTC
− , πbook

−

πnom

qnom+ ,qbook+

qnom−

qnom− , qbook−

Figure 2. Illustration of dependencies between the three levels.

3.1. Aggregation of Level (i) and Level (iv). It follows from Theorem 7 of [18],
see also Problem (13) in [6], that the TSO levels (i) and (iv) can be aggregated in the
following way:

max
qTC,πbook,p,q

∑
t∈T

∑
u∈V−

∫ qnomu,t

0

Pu,t(s) ds−
∑
u∈V+

cvaru qnomu,t


−
∑
t∈T

ctranst (p, q; qnom)− C (10a)

s.t. 0 ≤ qTC
u , 0 ≤ πbook

u , u ∈ V+ ∪ V−, (10b)∑
u∈V+∪V−

πbook
u qbooku =

∑
t∈T

ctranst (p, q; qnom) + C, (10c)

(p, q) ∈ F (qnom) , (10d)(
qbook+ , qnom+ , πnom

)
solves (2). (10e)

Figure 2 illustrates the dependencies between the three levels.

3.2. Aggregation of Level (ii) and Level (iii). To aggregate level (ii) and (iii)
into one optimization problem, we use that the solutions of level (iii) can be computed
explicitly.

Lemma 3.1. Suppose Assumption 2.1 holds. Then, Problem (3) has an optimal
solution for all entry nodes u ∈ Vi in all price groups i ∈ [k]. The optimal consumers’
nominations are unique and given by

qnomu,t = max

{
0,min

{
ai,t − πnom

i,t

bu,t
, qbooku

}}
(11)

for all t ∈ T . For all exit nodes u ∈ V− with πbook
u > 0, the optimal consumers’ bookings

are also unique and given by qbooku = maxt∈T {qnomu,t }. For all exit nodes u ∈ V− with
πbook
u = 0, the optimal consumers’ bookings are from the interval [maxt∈T {qnomu,t }, qTC

u ].

Proof. Consider an arbitrary price group i ∈ [k] and an entry node u ∈ Vi. Then, the
existence of a solution follows from the theorem of Weierstraß. The feasible set of
Problem (3) is convex and the objective function is concave and strictly concave in qnomu,t .
Thus, the optimal nominations are unique due to Lemma 1 of [32]. The formula for
these optimal nominations follows from fixing qbooku , computing the unconstrained
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global maximum of the quadratic and strictly concave objective function w.r.t. qnomu,t

and projecting it onto the feasible interval [0, qbooku ]. The formula for the optimal
bookings follows from the fact that the objective function is strictly decreasing in
qbooku in case πbook

u > 0 and from the feasibility constraints in case πbook
u = 0. �

From now on, we impose Assumption 2.2, i.e., that the gas buyers do not have to
pay anything for their booked capacity. In this case qbooku = qTC

u is always an optimal
choice according to Lemma 3.1 and the optimal nominations are given by

qnomu,t = max

{
0,min

{
ai,t − πnom

i,t

bu,t
, qTC
u

}}
u ∈ Vi, i ∈ [k], t ∈ T. (12)

Using this, we can show that Problem (2) is equivalent to the problem

max
qbook
+ ,qnom

+ ,

πnom,qnom
−

ψ(qbook+ , qnom+ , πnom, qnom− ) (13a)

s.t. qbooku ≤ qTC
u , u ∈ V+, [πbook

u ] (13b)

0 ≤ qnomu,t ≤ qbooku , u ∈ V+, t ∈ T, [γ−u,t, γ
+
u,t] (13c)

k∑
i=1

∑
u∈Vi

qnomu,t −
∑
u∈V+

qnomu,t = 0, t ∈ T, [λt] (13d)

0 ≤ qnomu,t ≤ qTC
u , u ∈ V−, t ∈ T, [γ−u,t, γ

+
u,t] (13e)

Pu,t(q
nom
u,t )− πnom

i,t ≥ 0, u ∈ Vi, i ∈ [k], t ∈ T, [αu,t] (13f)

with objective function

ψ(qbook+ , qnom+ , πnom, qnom− )

:=
∑
t∈T

(
k∑
i=1

∑
u∈Vi

Pu,t(q
nom
u,t )qnomu,t −

(
Pu,t(q

nom
u,t )− πnom

i,t

)
qTC
u

)

−
∑
t∈T

∑
u∈V+

cvaru qnomu,t

− ∑
u∈V+

πbook
u qbooku .

Note that Problem (13) is a concave maximization problem with linear constraints,
and therefore, its KKT conditions are necessary and sufficient for global solutions. We
use this later to obtain the single-level reformulation of the entire problem described
in Section 2. For this reason, the dual variables corresponding to the constraints are
already indicated in brackets in Problem (13).

Lemma 3.2. Suppose Assumptions 2.1 and 2.2 hold. Then, the following is true:
(a) If (qbook+ , qnom+ , πnom) is feasible for Problem (2), then (qbook+ , qnom+ , π̃nom, qnom− )

with qnom− as defined in (12) and

π̃nom
i,t = min{πnom

i,t , ai,t} i ∈ [k], t ∈ T,
is feasible for Problem (13) with the same objective function value.

(b) If (qbook+ , qnom+ , πnom, qnom− ) is a solution of Problem (13), then
(qbook+ , qnom+ , πnom) is feasible for Problem (2) with the same objective function
value.

(c) Problems (2) and (13) both attain a solution and the optimal objective function
value of both problems is the same.
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Proof. We begin the proof with a closer look at the modified part of the objective
function of Problem (13). For all i ∈ [k], a slight reformulation shows∑

u∈Vi

(
Pu,t(q

nom
u,t )qnomu,t −

(
Pu,t(q

nom
u,t )− πnom

i,t

)
qTC
u

)
= πnom

i,t

∑
u∈Vi

qnomu,t︸︷︷︸
≥0

+
∑
u∈Vi

(
Pu,t(q

nom
u,t )− πnom

i,t

)︸ ︷︷ ︸
≥0

(
qnomu,t − qTC

u

)︸ ︷︷ ︸
≤0

. (14)

The signs indicated in the second sum hold for all feasible points of Problem (13).
(a) Every price πnom

i,t ≥ ai,t implies qnomu,t = 0 for all u ∈ Vi by Lemma 3.1. The
gas seller is thus indifferent between prices πnom

i,t ≥ ai,t and we can switch
from πnom to π̃nom in Problem (2) without affecting feasibility or the value of
the objective function.

Then, the feasibility of (qbook+ , qnom+ , π̃nom) for Problem (2) and the formula
for qnom− from (12) immediately show that (qbook+ , qnom+ , π̃nom, qnom− ) is feasible
for Problem (13). Furthermore, observation (14) together with (12) shows that
both objective functions attain the same value, because due to the modified
prices π̃nom and Assumption 2.2 for all u ∈ Vi, one of the two factors in the
second sum is zero.

(b) The constraints (13e) and (13f) are equivalent to

0 ≤ qnomu,t ≤ min

{
qTC
u ,

ai,t − πnom
i,t

bu,t

}
u ∈ Vi, i ∈ [k], t ∈ T. (15)

Now, assume that there exists a time period t and a price group i with

0 ≤ qnomu,t < min

{
qTC
u ,

ai,t − πnom
i,t

bu,t

}
≤
ai,t − πnom

i,t

bu,t
(16)

for at least one node u ∈ Vi and thus ai,t − πnom
i,t > 0 holds. If we increase

the corresponding price πnom
i,t to πnom

i,t + ε with ε > 0, in all possibly existing
nodes u ∈ Vi with

qnomu,t =
ai,t − πnom

i,t

bu,t
> 0,

we have to decrease the nomination to qnomu,t − ε/bu,t to retain feasibility. How-
ever, since we know that there exists at least one node u ∈ Vi satisfying (16), in
which we can increase qnomu,t slightly, for ε > 0 sufficiently small it is possible to
adjust qnomu,t , u ∈ Vi, such that we retain feasibility for the higher price πnom

i,t +ε,
see (15), and do not change

∑
u∈Vi

qnomu,t . This process can be repeated until

qnomu,t = min

{
qTC
u ,

ai,t − πnom
i,t

bu,t

}
holds for all u ∈ Vi. Since we did not change the sum

∑
u∈Vi

qnomu,t and ensured
that the bounds from (15) are still satisfied, the modified point remains feasible
for Problem (13). However, the modified point has a better objective function
value, because in (14) we increased πnom

i,t by ε > 0 and we increased the second
sum from a negative value to zero. This shows that a solution of Problem
(13) has to satisfy (12) and, consequently, (qbook+ , qnom+ , πnom) is feasible for
Problem (2).

As discussed in (a), in points satisfying (12) the objective function values
of both problems coincide.

(c) Problem (13) has a solution according to the theorem of Weierstraß, because
its feasible set is a nonempty polytope and its objective function is continuous.
Then, using (b), we know that Problem (2) has a feasible point with the
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TSO Market

(i) & (iv): Technical Capacity,
Cost-Optimal Transport

(ii) & (iii): Booking,
Nomination, Pricing

qTC, πbook

qbook, qnom

Figure 3. Illustration of dependencies between the two levels.

same objective function value. If this would not be a solution of Problem (2),
there would exist a feasible point of Problem (2) with a larger objective
function value. To this point, according to (a), a feasible point of Problem
(13) corresponds with the same larger objective function value. This is a
contradiction to having started the discussion with a solution of Problem
(13). �

We can thus solve levels (ii) and (iii) by solving Problem (13). Figure 3 illustrates
the dependencies between the remaining two levels.

Note that, in Problem (13), the optimal nominations qnom− and the optimal
prices πnom are uniquely determined and, in case the booking costs πbook are posi-
tive, the optimal bookings qbook+ are uniquely determined by the nominations qnom+ .
However, the optimal nominations qnom+ are not necessarily unique. For this reason,
we would like to recall that we consider an optimistic setting, i.e., in case of multiple
solutions of Problem (13) the TSO chooses the welfare-optimal one in the level above.

The KKT conditions for the concave maximization Problem (13) consist of the
stationarity conditions

−πbook
u − πbook

u +
∑
t∈T

γ+u,t = 0, u ∈ V+, (17a)

−cvaru + γ−u,t − γ+u,t + λt = 0, u ∈ V+, t ∈ T, (17b)∑
u∈Vi

qTC
u −

∑
u∈Vi

αu,t = 0, i ∈ [k], t ∈ T, (17c)

Pu,t(q
nom
u,t ) + bu,t

(
qTC
u − qnomu,t − αu,t

)
+ γ−u,t − γ+u,t − λt = 0, u ∈ Vi, i ∈ [k], t ∈ T, (17d)

primal feasibility conditions

qbooku ≤ qTC
u , u ∈ V+, (18a)

0 ≤ qnomu,t ≤ qbooku , u ∈ V+, t ∈ T, (18b)
k∑
i=1

∑
u∈Vi

qnomu,t −
∑
u∈V+

qnomu,t = 0, t ∈ T, (18c)

0 ≤ qnomu,t ≤ qTC
u , u ∈ V−, t ∈ T, (18d)

Pu,t(q
nom
u,t )− πnom

i,t ≥ 0, u ∈ Vi, i ∈ [k], t ∈ T, (18e)

dual feasibility conditions

πbook
u ≥ 0, u ∈ V+, (19a)

γ−u,t, γ
+
u,t ≥ 0, u ∈ V− ∪ V+, t ∈ T, (19b)
αu,t ≥ 0, u ∈ V−, t ∈ T, (19c)



12 V. GRIMM, J. GRÜBEL, M. SCHMIDT, A. SCHWARTZ, A. WIERTZ, G. ZÖTTL

and the complementary conditions

πbook
u

(
qTC
u − qbooku

)
= 0, u ∈ V+, (20a)

γ−u,tq
nom
u,t = 0, u ∈ V+ ∪ V−, t ∈ T, (20b)

γ+u,t
(
qbooku − qnomu,t

)
= 0, u ∈ V+, t ∈ T, (20c)

γ+u,t
(
qTC
u − qnomu,t

)
= 0, u ∈ V−, t ∈ T, (20d)

αu,t
(
Pu,t(q

nom
u,t )− πnom

i,t

)
= 0, u ∈ Vi, i ∈ [k], t ∈ T. (20e)

3.3. Single-Level Optimization Problem. Combining the results from Sections 3.1
and 3.2, we obtain the following single-level reformulation of the four-level problem
described in Section 2 by including the KKT conditions of Problem (13) into the
combined TSO Problem (10):

max
qTC,πbook,p,q,

qbook
+ ,qnom,πnom,

πbook,γ−,γ+,λ,α

∑
t∈T

∑
u∈V−

qnomu,t∫
0

Pu,t(s) ds−
∑
u∈V+

cvaru qnomu,t


−
∑
t∈T

∑
(u,v)∈E

ctranst

∣∣p2u,t − p2v,t∣∣− C (21a)

s.t. 0 ≤ qTC
u , 0 ≤ πbook

u , u ∈ V+ ∪ V−, (21b)∑
u∈V+

πbook
u qbooku =

∑
t∈T

∑
(u,v)∈E

ctranst

∣∣p2u,t − p2v,t∣∣+ C, (21c)

(p, q) ∈ F(qnom), i.e., (p, q) fulfills (6)–(9), (21d)

(qbook+ , qnom, πnom, πbook, γ−, γ+, λ, α) fulfills (17)–(20). (21e)

Recall that we could eliminate the booked quantities qbook− of the gas buyers by
choosing them as qbook− = qTC

− ; see Lemma 3.1 together with Assumption 2.2. The
lemma below shows that we can do something similar with the technical capacities qTC

+

of the entry nodes in Problem (21).

Lemma 3.3. If (qTC
+ , x) with

x := (qTC
− , πbook, p, q, qbook+ , qnom, πnom, πbook, γ−, γ+, λ, α)

is feasible for Problem (21), then (qbook+ , x) is also feasible for Problem (21) with the
same objective function value.

Proof. The technical capacities qTC
+ of the entry nodes do not occur in the objective

function and only in the constraints (21b), (18a), and (20a). It follows that choosing
qTC
+ = qbook+ retains feasibility and does not change the objective function value. �

According to the previous result, we can always choose qTC
+ = qbook+ and use this

to eliminate qTC
+ from Problem (21). The dual variable πbook ≥ 0 can then also be

eliminated, which allows for the following simplifications: Constraints (18a), (19a),
(20a), and the first half of (21b) are automatically satisfied and can be omitted. The
stationarity equation (17a) turns into the inequality

−πbook
u +

∑
t∈T

γ+u,t ≥ 0.
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Entry 3Exit 1 Exit 2

Exit 3
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Figure 4. The 6-node network. The arcs illustrate the direction of
positive flow.

After solving Problem (21), the technical capacities of the entry nodes u ∈ V+ can
be recovered as

qTC
u

{
= qbooku , if

∑
t∈T γ

+
u,t > πbook

u ,

≥ qbooku , if
∑
t∈T γ

+
u,t = πbook

u .
(22)

4. Numerical Results

The reformulation derived in Section 3 allows to computationally solve instances
of our original problem. There, a TSO determines technical capacities as well as
controls the gas transport in the network and the gas selling firm books and nominates
capacities to supply its customers; see Section 2. We solved several test instances
by using the reformulation (21), where we removed the variables qbook− according
to Lemma 3.3. We implemented the modeling of gas physics and transport costs
as described in Remark 2.3. In the subsequent Section 4.1, we provide technical
details regarding calibration, software and hardware used, and a description of the
test instances. We then discuss the results for specific test instances in Section 4.2.
Finally, for several different test instances, we analyze the numerical performance of
our approach in Section 4.3.

4.1. Computational Setup and Test Instances. All optimization problems have
been implemented in Python 3.11.1 using Pyomo 6.6.1; see [22]. They have been
solved with ANTIGONE 40.1.0; see [37]. The computations have been carried out
on a ThinkPad T460s laptop running Windows 10 Enterprise with an Intel Core
i7-6600U CPU 2.60GHz processor. We provide the solver ANTIGONE with bounds
for all variables. An overview of the variable bounds as well as the proofs of their
correctness can be found in Appendix A; see Table 9.

To numerically test our approach and to also provide an economic interpretation of
our results (see Section 4.2), we consider the test instance provided in [6]. It contains
the 6-node network depicted in Figure 4. More specifically, the network consists of
3 entry nodes and 3 exit nodes and 7 arcs (pipe 1, . . . ,pipe 7). The pipes’ data for
the identical pipes e ∈ E is given by length Le, diameter De, roughness ke, and flow
bounds q±e :

Le = 350 km, De = 0.5 m, ke = 0.1 mm, q±e = ±435 kg s−1.

The pressure bounds are given by

p−u = 40 bar, p+u = 65 bar, u ∈ V+,
p−u = 40 bar, p+u = 50 bar, u ∈ V−.
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Table 1. Parameters of test instances: Variable costs cvaru (in
EUR/(1000 N3/h)) at entries and slopes bu (in EUR/(1000 N3/h)2)
and intercepts at (in EUR/(1000 N3/h)) of inverse demand at exits.

Entries Exits

at

cvaru bu t 6-nodes 70% 6-nodes 100% 6-nodes 140%

Entry 1 63 Exit 1 4.5 1 1330.00 1900.00 2660.00
Entry 2 57 Exit 2 5.0 2 726.83 1038.33 1453.66
Entry 3 71 Exit 3 20.0 3 1225.00 1750.00 2450.00

4 2030.00 2900.00 4060.00

Table 2. Overview of analyzed pricing regimes in the 6-node network.

perfect price discr.: V1 = {Exit 1}, V2 = {Exit 2}, V3 = {Exit 3}
price groups: V1 = {Exit 1,Exit 2}, V2 = {Exit 3}
uniform price: V1 = {Exit 1,Exit 2,Exit 3}

The pressure loss coefficient Λe is computed as described in [6] using the formula
Λe = (λec

2Le)/((0.25π)2D5
e). We set the transport cost coefficients to ctrans = 1 and

the additional network costs to C = 0. We consider four time periods. The economic
data for the gas selling and buying firms are given in Table 1. To comply with our
setup, the intercepts of the inverse demand functions depend only on the time periods,
and do not differ between exit nodes. The slopes bu, however, are different at each
exit node, they are assumed not to depend on the time periods in our test instances.

To vary the degree of network congestion, we consider different levels of inverse
demand denoted by the scenarios 6-nodes 70%, 6-nodes 100%, and 6-nodes 140%. In
these scenarios, the physical properties of the network remain unchanged and the
intercepts of the inverse demand functions at (see Table 1) at the exit nodes are
scaled according to the percentage value in the name of the test instance. In principle,
larger demand is likely to create more intensive use of the network and, thus, more
congestion.

Depending on the specific organization of the market, the seller might be able to
charge different prices at the different exit nodes of the network. Our framework is
suitable to determine pricing strategies for any degree of price discrimination. We
consider three different configurations: (i) perfect price discrimination with possibly
different prices at all exit nodes, (ii) a uniform price, where prices at the exit nodes
have to coincide, and (iii) price groups, which is an intermediate scenario; see Table 2.
We describe and discuss the results for the 6-nodes instances in Section 4.2.

Additional Test Instances. We consider further instances with 6, 8, 9, and 11 nodes
to test the numerical performance of our algorithm in more detail; see Section 4.3.
For the instance 6-nodes 50%, the intercepts are given by a = (950, 519.17, 875, 1450).
The network of the instances 6-nodes with pipe 8 70%, 6-nodes with pipe 8 100%, and
6-nodes with pipe 8 140% is the network given in Figure 4 with an additional pipe from
Entry 2 to Exit 1. The inverse demand functions are the same as in the corresponding
instances without the additional pipe; see Table 1.

For the 8-nodes instance, we consider a network consisting of 3 entry nodes, 5 exit
nodes, and 10 arcs. The economic data differs only in the demand functions of the
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Table 3. Intercepts for the instances with |T | ∈ {8, 12, 16}.

6-nodes (with pipe 8)

t 50% 70% 100% 140% 8-nodes 9-nodes 11-nodes

1 950.00 1330.00 1900.00 2660.00 1660.00 1530.00 4040.07
2 519.17 726.83 1038.33 1453.66 830.00 826.00 3686.97
3 875.00 1225.00 1750.00 2450.00 1530.00 1350.00 3542.87
4 1450.00 2030.00 2900.00 4060.00 2690.00 1530.00 2907.10
5 1045.00 1463.00 2090.00 2926.00 1000.00 1683.00 2378.13
6 571.08 799.51 1142.16 1599.03 450.00 908.60 2399.77
7 787.50 1102.50 1575.00 2205.00 2000.00 1215.00 2558.60
8 1305.00 1827.00 2610.00 3654.00 1700.00 1377.00 2448.57
9 855.00 1197.00 1710.00 2394.00 1494.00 1377.00 1929.73
10 467.25 654.15 934.50 1308.30 747.00 743.40 3189.77
11 962.50 1347.50 1925.00 2695.00 1683.00 1485.00 3216.93
12 1595.00 2233.00 3190.00 4466.00 2959.00 1683.00 3604.10
13 1045.00 1463.00 2090.00 2926.00 1000.00 1683.00 2378.13
14 467.25 654.15 934.50 1308.30 747.00 743.40 3189.77
15 962.50 1347.50 1925.00 2695.00 1683.00 1485.00 3216.93
16 1305.00 1827.00 2610.00 3654.00 1700.00 1377.00 2448.57

gas buyers. The intercepts are given by a = (1660, 830, 1530, 2690) for the four time
periods and the slopes are given by b = (4.5, 4.8, 5, 20, 10) for the five exit nodes.

The network of the 9-nodes instance consists of 4 entry nodes, 5 exit nodes, and
13 arcs. The parameters of the inverse demand functions are given by the intercepts
a = (1530, 826, 1350, 1530) and the slopes b = (4.5, 5, 20, 6, 4). Moreover, the variable
cost at the additional entry node is given by cvarEntry4 = 60.

For the configuration price groups of the instances 8-nodes and 9-nodes, the three price
groups are given by V1 = {Exit 1,Exit 2}, V2 = {Exit 3,Exit 4}, and V3 = {Exit 5}.

The network of the 11-nodes instance consists of three entry and three exit nodes
as well as of five inner nodes and 11 arcs with pipe lengths varying from 80 to 210 km.
The variable costs at the entry nodes are given by cvar = (274.8, 270.4, 250.3), the
intercepts are given by a = (3756.64, 2562.33, 2312.3, 3336.93), and the slopes are given
by b = (16.6, 13.8, 20.7).

All other parameters for the described instances are set according to the data
given for the 6-nodes instance. For the analysis of the numerical performance, all test
instances are also solved for the cases of 8, 12, and 16 time periods. The intercepts for
the additional time periods are given in Table 3. We describe and discuss the results
for the analysis of numerical performance in Section 4.3.

4.2. Economic Interpretation. Our main computational results are provided in
Table 4, which contains the values for welfare, the supplier’s profits, and the consumer
surplus for the different levels of demand and the different pricing regimes. Figure 5
shows detailed nominations and technical capacities, which we obtain in the different
cases of our 6-nodes instances. The nominations in the four time periods at the different
entry and exit nodes are depicted as blue columns. The bookings of the supplier are
depicted by a dotted red line and the technical capacities, which limit the available
bookable capacities, are depicted in gray. In some cases, this technical capacity is not
binding; see (22). The cases, in which the technical capacities are not binding for the
nominations of the consumers can be determined similarly. If Pu,t(qnomu,t ) = πnom

i,t and
γ+u,t = 0 holds for all t ∈ T , the technical capacity at exit node u ∈ V− can be chosen
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Table 4. Comparison of welfare, supplier’s profit, and consumer
surplus for different levels of demand and different pricing regimes.
Top: 6-nodes 70%, middle: 6-nodes 100%, bottom: 6-nodes 140%.

configuration welfare supplier profit consumer surplus

perfect price discr. 1254099.74 836066.49 418033.25
price groups 1254099.74 836066.49 418033.25
uniform price 1254099.74 836066.49 418033.25

perfect price discr. 2366860.28 1694455.94 672404.34
price groups 2354966.62 1686683.62 668283.00
network price 2349913.42 1690616.30 659297.12

perfect price discr. 3904386.19 3016880.31 887505.87
price groups 3836285.03 3009675.22 826609.81
network price 3826532.93 3009261.07 817271.86

arbitrarily with qTC
u ≥ maxt∈T q

nom
u,t . Whenever a technical capacity is binding in a

solution, it is depicted as a gray line. Otherwise, it is illustrated by a gray rectangle,
meaning that the technical capacity for this node could be set to any level above
the maximal nomination in the optimal solution. We do not depict the bookings of
the consumers, because they can be chosen from the set [maxt∈T q

nom
u,t , q

TC
u ] and thus

either coincide with a binding technical capacity or are not uniquely determined.
Note that we do not have any uniqueness results—neither for the lower-level nor

for the upper-level problem of our bilevel reformulation. For the lower-level problem,
this aspect is addressed by choosing the optimistic variant of bilevel optimization as it
is discussed in Section 3.2. However, it can still be the case that the corresponding
(optimistic) upper-level solution is not uniquely determined as well. Hence, in what
follows, we (as usual) discuss the results obtained by solving the derived single-level
reformulation but note here that there might be other welfare-optimal solutions as
well.

First of all, observe that both welfare and profits are significantly larger in case
of higher inverse demand. Moreover, in case of relatively scarce network capacities,
different pricing regimes apparently have a larger impact on welfare, profits, and
consumer surplus. This becomes most apparent in case of the 6-nodes 70% case,
where technical capacities at the exit nodes are never binding (see Figure 5a) and
the supplier can choose the unconstrained optimum of setting the same price at
all exit nodes. For higher levels of demand (instances 6-nodes 100% and 6-nodes
140%), technical capacities are binding at the exit nodes more often. More specifically,
technical capacities are binding at node Exit 1 in all 6-nodes 100% and 6-nodes 140%
test instances; see Figures 5b and 5c.

In all these cases, the different pricing regimes indeed deliver different results as
the supplier engages in price discrimination among nodes if possible. Interestingly,
the possibility of the supplier to choose different prices at the different exit nodes
in our results tends to increase both consumer surplus and supplier profits. Appar-
ently, differentiated prices at the different exit nodes allow for a more appropriate
representation of the network-congestion situation, which allows for a more favourable
choice of technical capacities on the upper level. It is worthwhile to note that this
only provides a general intuition of the results. Due to the nonconvex network model
considered, see (8), and the nonconvexities induced by the multilevel structure itself,
see Section 2, we also obtain exceptions to this general intuition; in the present test
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(a) 6-nodes 70%

(b) 6-nodes 100%

(c) 6-nodes 140%

Figure 5. Illustration of results for the instances 6-nodes 70%, 6-
nodes 100%, and 6-nodes 140%: technical capacities (gray), bookings
(red), and nominations (blue) in case of perfect price discrimination
(top), price groups (middle), and uniform price (bottom)
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scenarios the sole exception being the 6-nodes 100%, where supplier profits are lowest
in case of price groups.

4.3. Numerical Performance. To analyze the numerical performance, we solved
additional instances with up to 11 nodes and up to 16 time periods. The instances are
described in Section 4.1. We limit the run time to 6 hours. The run times as well as
the number of variables, constraints, and nonlinear terms are depicted in Tables 5–8.

As expected, the complexity increases with the number of time periods considered.
For the instances with 4 time periods, 26 out of 30 are solved to global optimality
within 10 minutes, and all instances are solved to global optimality in the run time
limit of 6 hours. For 8 time periods, 28 instances are solved in the run time limit,
compared to 24 for 12 time periods, and 23 for 16 time periods.

The run times also increase with the size of the considered network; see Table 5.
For the instances with 4 time periods, the average run time for the instances with 6
nodes is 4.61 s, whereas the average run time for the instances with 8 or more nodes
is 1358.32 s. The additional pipe in the instances 6-nodes with pipe 8 also increases
complexity. The number of variables, constraints, and nonlinear terms is higher in
the 6-nodes with pipe 8 instances as for the 6-nodes instances; see Tables 5–8. This
also results in longer run times. The average run time for the 6-nodes instances is
2.51 s compared to 7.54 s for the 6-nodes with pipe 8 instances in the case with 4 time
periods.

Also, the instances that are less constrained by the physical constraints have longer
run times. This can be observed, i.e., by comparing the run times for the uniform
price for the instances 6-nodes 50% (15.88 s) and 6-nodes 140% (0.39 s). This effect
can also be observed for the instances 6-nodes with pipe 8 70% (40.88 s) and 6-nodes
with pipe 8 140% (2.56 s).

The size of the price groups also affect the complexity and therefore the run times.
Consider, i.e., the case with 4 time periods. Here, the average run time for the 6-nodes
instances with perfect price discrimination is 0.58 s. In these instances, the three price
groups consist of one exit node each. For the case with price groups, i.e., one group
of two exit nodes and one group with one exit node, the average run time increases
to 1.50 s and to 5.16 s for the case with a uniform price, i.e., all three exit nodes are
in one price group. This effect is especially pronounced for the larger test instances
with 8, 9, and 11 nodes. For the 11-nodes instance, the run time increases by 686.95 %
from perfect price discrimination to price groups and by 138.12 % from price groups
to uniform price.

Overall, we see that the instances get very hard to solve already for moderate
network sizes and time periods.

5. Conclusion

We provide a multilevel setup that allows to quantitatively analyze the interplay
of the TSO with gas sellers and gas buyers in the entry-exit system, a market design
which is currently used to organize trading and transport of pipeline-bound natural
gas in Europe. With the planned onset of pipeline-bound hydrogen transport (see, e.g.,
[11, 12, 43]), the entry-exit system might gain further relevance also in the context of
zero-carbon energy supply chains. Moreover, the potential re-dedication of natural
gas pipelines to be integrated into a new hydrogen network might also induce tighter
network constraints for the natural gas network. Hence, a careful assessment of the
current market design’s efficiency to appropriately use physical transport capacities is
very important.

Our work crucially builds on the setup provided in [18]. The latter, however,
considers perfectly competitive decisions of buyers and sellers. To the best of our
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Table 5. Data for instances with 4 time periods: run times, number
of variables, constraints, and nonlinear terms. Top: 6-nodes, middle:
6-nodes with pipe 8, bottom: 8-nodes, 9-nodes, 11-nodes

run time (s)

instance perf. pr. discr. pr. groups uniform pr. var. constr. nl. terms

50% 0.53 4.64 15.88 173–177 273–277 243–255
70% 0.64 0.50 3.83 173–177 273–277 243–255
100% 0.42 0.42 0.53 173–177 273–277 243–255
140% 0.74 0.42 0.39 173–177 273–277 243–255

70% 1.54 16.36 40.88 189–193 305–309 267–279
100% 0.67 0.58 4.30 189–193 305–309 267–279
140% 0.48 0.51 2.56 189–193 305–309 267–279

8-nodes 18.37 37.58 65.97 251–159 413–421 359–397
9-nodes 3.17 6516.17 3824.21 297–305 482–490 428–448
11-nodes 18.82 1311.66 19 428.91 225–229 325–329 295–307

Table 6. Data for instances with 8 time periods: run times, number
of variables, constraints, and nonlinear terms. Top: 6-nodes, middle:
6-nodes with pipe 8, bottom: 8-nodes, 9-nodes, 11-nodes

run time (s)

instance perf. pr. discr. pr. groups uniform pr. var. constr. nl. terms

50% 0.70 81.78 416.86 337–345 459–549 483–507
70% 0.93 0.83 11.19 337–345 459–549 483–507
100% 4.54 1.74 0.77 337–345 459–549 483–507
140% 0.74 5.65 0.67 337–345 459–549 483–507

70% 1.10 0.91 20 262.77 369–377 605–613 531–555
100% 1.08 0.80 795.93 369–377 605–613 531–555
140% 0.83 0.84 16.45 369–377 605–613 531–555

8-nodes 114.69 302.44 6114.98 491–507 821–837 715–755
9-nodes 1.60 — 10 689.91 581–597 958–974 852–892
11-nodes 935.02 — 83.69 441–449 645–653 587–611

knowledge we are the first ones to propose a framework that allows to analyze strategic
seller decisions in this specific context. This is of high practical relevance as gas selling
takes place in environments with only few players and substantial market power; see
[51]. Introducing a strategic monopolistic seller in our model requires to disaggregate
buyer and seller decisions into separate levels. This leads to an overall model with
significantly increased complexity and the derivation of a single-level reformulation is
much more challenging compared to the case of perfectly competitive markets, which
have been discussed in the recent literature. Hence, one of our main contributions is
that we provide assumptions under which we can formally show that we can derive a
tractable single-level reformulation. Based on our reformulation we are then able to
solve test instances from the literature. We illustrate the applicability as well as the
computational capabilities and limits of our approach using several test instances.
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Table 7. Data for instances with 12 time periods: run times, number
of variables, constraints, and nonlinear terms. Top: 6-nodes, middle:
6-nodes with pipe 8, bottom: 8-nodes, 9-nodes, 11-nodes

run time (s)

instance perf. pr. discr. pr. groups uniform pr. var. constr. nl. terms

50% 1.02 112.05 156.97 501–513 809–821 723–759
70% 1.12 1.04 29.92 501–513 809–821 723–759
100% 0.97 1.12 0.98 501–513 809–821 723–759
140% 1.13 1.05 0.71 501–513 809–821 723–759

70% 1.34 6207.56 1106.88 549–561 905–917 795–831
100% 1.17 1.26 14 914.76 549–561 905–917 795–831
140% 1.10 1.26 41.99 549–561 905–917 795–831

8-nodes 114.84 — — 731–755 1229–1253 1071–1131
9-nodes 3.21 — — 865–889 1434–1458 1276–1336
11-nodes 13 562.67 — — 657–669 965–977 879–915

Table 8. Data for instances with 16 time periods: run times, number
of variables, constraints, and nonlinear terms. Top: 6-nodes, middle:
6-nodes with pipe 8, bottom: 8-nodes, 9-nodes, 11-nodes

run time (s)

instance perf. pr. discr. pr. groups uniform pr. var. constr. nl. terms

50% 3.30 82.3 375.87 665–681 1077–1093 963–1011
70% 1.95 1.64 69.97 665–681 1077–1093 963–1011
100% 1.50 2.17 1.54 665–681 1077–1093 963–1011
140% 1.40 1.92 1.10 665–681 1077–1093 963–1011

70% 1.71 15 419.72 — 729–745 1205–1221 1059–1107
100% 1.65 1.54 21 219.03 729–745 1205–1221 1059–1107
140% 1.95 1.81 120.59 729–745 1205–1221 1059–1107

8-nodes 3999.60 — — 971–1003 1637–1669 1427–1507
9-nodes 3.77 — — 1149–1181 1910–1942 1700–1780
11-nodes — — 2695.89 873–889 1285–1301 1171–1219
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Appendix A. Finite Variable Bounds

We present all finite variable bounds in Table 9 and prove their correctness in what
follows.

Bounds for qbooku , u ∈ V+, and qTC
u , u ∈ V−: For all nodes u ∈ V+ ∪ V−, we have

qnomu,t ≤ qbooku ≤ qTC
u , t ∈ T ;
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Table 9. Variable bounds. For a variable x, we denote the upper
(lower) bound of x by x+(x−).

variable index set lower bound upper bound

qbooku u ∈ V+ 0 maxt∈T {
(
qnomu,t

)+}
qTC
u u ∈ V− 0 maxt∈T {

(
qnomu,t

)+}
πbook
u u ∈ V+ 0

∑
t∈T

(
γ+u,t
)+

pu,t u ∈ V , t ∈ T p− p+

qe,t e ∈ E, t ∈ T q−e q+e

qnomu,t u ∈ V+, t ∈ T 0
∑
u∈V−

(
qnomu,t

)+
qnomu,t u ∈ V−, t ∈ T 0 ai,t/bu,t

πnom
i,t i ∈ [k], t ∈ T 0 ai,t

γ−u,t u ∈ V+, t ∈ T 0 max{0, cvaru − λ−t }
γ+u,t u ∈ V+, t ∈ T 0 max{0,−cvaru + λ+t }
γ−u,t, γ

+
u,t u ∈ V−, t ∈ T 0 see (24)

λt t ∈ T minu∈V+
{cvaru } maxu∈V−{ai,t + bu,t

(
qTC
u

)+}
αu,t u ∈ V−, t ∈ T 0

∑
u∈Vi

(
qTC
u

)+
see Constraints (18b) and (18d). The bound then follows from the bounds on qnomu,t

for u ∈ V+ ∪ V− using the observation that it is never beneficial to choose qbooku or
qTC
u larger than necessary.

Bounds for πbook
u : We use the stationarity conditions (17a) together with (21b)

and (19a) to obtain

0 ≤ πbook
u = −πbook

u +
∑
t∈T

γ+u,t ≤
∑
t∈T

γ+u,t ≤
∑
t∈T

(
γ+u,t
)+
.

Bounds for pu,t and qe,t: These are directly given in (9) and (6).

Bounds for qnomu,t , u ∈ V+: The lower bound is given in (18b) and the upper bound
follows from the lower bound together with the market-clearing condition (18c):

qnomu,t ≤
∑
u∈V−

qnomu,t ≤
∑
u∈V−

(
qnomu,t

)+
.

Bounds for qnomu,t , u ∈ V−: The lower bound is given in (18d) and the upper bound
follows from (18e) together with the lower bound on πnom

i,t :

qnomu,t ≤
ai,t − πnom

i,t

bu,t
≤ ai,t
bu,t

.

Bounds for πnom
i,t : The upper bound follows from Lemma 3.2. The lower bound follows

from the fact that πnom
i,t < 0 can only be optimal in Problem (2) if

∑
n∈Vi

qnomu,t = 0
holds, in which case the gas seller can also choose πnom

i,t = 0 without changing the
objective value.

Bounds for γ−u,t, γ
+
u,t, u ∈ V+: We start by showing that if Problem (21) has a feasible

point, it also has a feasible point with the same objective function satisfying γ−u,tγ
+
u,t = 0

for all t ∈ T and u ∈ V+. To this end, consider a feasible point of Problem (21) and
an entry node u ∈ V+. If qbooku > 0, then for this node γ−u,tγ

+
u,t = 0, t ∈ T , follows
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immediately from (20b) and (20c). Now, suppose that qbooku = 0 and γ−u,t, γ
+
u,t > 0

holds. Then, we re-define

γ̃−u,t := max{γ−u,t − γ+u,t, 0} ≥ 0, (23a)

γ̃+u,t := −min{γ−u,t − γ+u,t, 0} ≥ 0, (23b)

π̃book
u := 0 (23c)

for all t ∈ T . This partially modified point is still feasible, because the Con-
straints (19b), (17a) (in its inequality version after eliminating πbook

u ≥ 0), (17b),
(21b) are still satisfied and Constraint (21c) still holds due to qbooku = 0. Moreover,
none of the modified variables occurs in the objective function (21a).

It thus suffices to consider feasible points with γ−u,tγ
+
u,t = 0 for all t ∈ T and u ∈ V+.

Then, we can use the stationarity condition (17b) together with the bounds on λt and
obtain

γ−u,t = cvaru − λt ≤ cvaru − λ−t , γ+u,t ≤ 0,

in the case of γ+u,t = 0 and

γ−u,t ≤ 0, γ+u,t = −cvaru + λt ≤ −cvaru + λ+t

in the case of γ−u,t = 0. We take the maximum of the two possible cases to obtain the
upper bound and use the lower bound from (19b).

Bounds for γ−u,t, γ
+
u,t, u ∈ V−: By Assumption 2.2, we have qTC

u > 0 and thus (20b)
and (20d) imply γ−u,tγ

+
u,t = 0 for all t ∈ T , u ∈ V−.

For γ+u,t = 0, Equation (17d) together with (18d), (21b), and the upper bounds on
λt and αu,t implies

γ−u,t = −ai,t + 2bu,tq
nom
u,t − bu,tqTC

u + λt + bu,tαu,t ≤ ai,t + λ+t + bu,tα
+
u,t,

γ+u,t ≤ 0.

For γ−u,t = 0, Equation (17d) together with (18d), (19c), the upper bound on qTC
u , and

the lower bound on λt implies

γ−u,t ≤ 0,

γ+u,t = ai,t − 2bu,tq
nom
u,t + bu,tq

TC
u − λt − bu,tαu,t ≤ ai,t + bu,t

(
qTC
u

)+ − λ−t .
The lower bounds for γ+u,t, γ

−
u,t are given in (19b) and as upper bounds we use the

maximum of the two possible cases:(
γ−u,t
)+

:= max{0, ai,t + λ+t + bu,tα
+
u,t}, (24a)(

γ+u,t
)+

:= max{0, ai,t + bu,t
(
qTC
u

)+ − λ−t }. (24b)

Bounds for λt: Next, we have to make the assumption that there is no time period in
which no trade takes place at all. In realistic settings, this extreme situation typically
does not occur so we are convinced that the assumption is reasonable.

Assumption A.1. For all time periods t ∈ T , there exists an entry node u ∈ V+ with
a positive nomination qnomu,t > 0.

Suppose that Assumption A.1 holds. Consider a time period t ∈ T and an entry
node u ∈ V+ such that qnomu,t > 0 holds and thus γ−u,t = 0 follows from (20b). Then, we
can use (17b) together with (19b) to obtain

λt = γ+u,t + cvaru ≥ cvaru ≥ min
v∈V+

{cvarv } .
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Due to the market-clearing condition (18c), there also exists an exit node u ∈ V− with
qnomu,t > 0 and, thus, γ−u,t = 0 follows from (20b). Using (17d) together with (18d),
(19b), and (19c), we then obtain

λt = (ai,t − 2bu,tq
nom
u,t + bu,tq

TC
u )− γ+u,t − αu,tbu,t

≤ ai,t + bu,t
(
qTC
u

)+ ≤ max
v∈V−

{ai,t + bv,t
(
qTC
v

)+}.
Bounds for αu,t: For u ∈ Vi, i ∈ [k], we have

0 ≤ αu,t ≤
∑
v∈Vi

αv,t =
∑
v∈Vi

qTC
v ≤

∑
v∈Vi

(
qTC
v

)+
.

The first inequality holds due to (19c) and the equality holds by (17c).
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