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Abstract

The retail industry is governed by crucial decisions on inventory management, discount offers like
promotions and stock clearing as so-called markdowns, presenting two sets of optimization problems. The
former is an estimation problem, where the underlying objective is to predict the coefficients of demand
(sales) elasticity with respect to product prices. The latter is the dynamic revenue maximization problem,
which takes in the coefficients of demand as inputs. While both tasks present nonsmooth optimization
problems, the latter is a challenging nonlinear problem in massive dimensions. This is further subject
to constraints on inventory, inter-product relationships, and price bounds. Traditional approaches to
solve such problems relied on using reformulations and approximations, thereby leading to potentially
suboptimal solutions. In this work, we retain the nonsmooth structure generated by the max type (or
equivalently absolute value type) function and solve the resulting problem in its abs-quadratic form, i.e., in
a quadratic matrix-vector-product based representation including linear arguments in the abs-evaluation.
Subsequently, we present an adaptation of the Constrained Active Signature Method (CASM) that
explicitly exploits this abs-quadratic structure of the problem yielding the Quadratic Constrained Active
Signature Method (QCASM). In process, we also guarantee convexity of the objectives under some mild
realistic assumptions on the market demand and structure. Two real world retail examples (UK and
US market data from 2017-2019) and one simulated use-case are studied from an empirical standpoint.
Numerical results demonstrate good performance of QCASM and further show that such solvers can be
used significantly by the retail science community in the future.

1 Introduction and Survey

Retail markets primarily gravitate towards revenue maximization. While the revenue can simply be
expressed as a direct product of price and sales, these two quantities are actually more complicated in
reality [Coh+17; CPP16; KPW20] as they depend on multiple factors like consumer demand, time-line,
inventory levels, and relationships between SKUs. Here, SKU refers to Stock Keeping Unit, or in simpler
terms product ID. It can also be noted that pricing and consumer demand vary significantly from one SKU
to another, e.g., pricing of a T-shirt may differ significantly from that of rice or sugar. Consumer demand
is usually a consequence of prices, social aspects, geographical indicators, and many other criteria [All38;
CDH90]. Retailers also face challenges in maintaining sufficient inventory levels at their respective outlets
that are subject to several logistic factors, practical weather aspects, and storage limitations. Within the
same SKU, the demand towards different sizes can vary. For example, the demand for a medium size
T-shirt may be higher than that of a large or small T-shirt. Proposing a different SKU to each such size
is deemed to be arduous and less robust, since this can significantly increase the problem dimension. One
way to handle such variations is by deploying the stock response factor [Li+22], which models demand as
a function of both customer preferences and available inventory levels.

Another crucial aspect with retail markets is the aspect of discounts [Coh+17; CPP16; KP20; KPW20].
Discounts are usually offered in two levels, respectively referred to as promotions and markdowns.
Promotions are lower levels of discounts intended to increase product sales temporarily. These reductions
are usually enforced when a new competitive product is introduced or if sudden changes in inventory are
required. Products are also promoted when there is a sudden random surge/drop in customer demand
levels. Markdowns are slightly different and are offered during inventory clearance. These prices are
considerably lower than the base and are brought forward as a mechanism to either discard older stocks or
when replacing the SKU, e.g., when terminating a product from the catalogue. There exist constraints on
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Figure 1: Demand-price curve for regular products/SKUs.

the number of times promotions or markdowns are offered, since they are tied to several internal policies
and regulations of the corresponding businesses. Additionally, there also exist inter-item constraints
within multiple SKUs, e.g., SKU “A” cannot be promoted when SKU “B” is promoted. Lastly, the entire
problem presents a dynamic programming framework, where decision variables are coupled in time.

It is practically obvious and well established that consumer demand is monotonically decreasing
in terms of price, predominantly following an S-like pattern as shown in figure 1, [All38, chapter 5],
or [CPP16]. Here, vaguely the region between the markdowns and the base price is concave. The overall
curve can be neither convex or concave and the patterns are not the same as above for all SKUs. Usually,
the windows of promotions and markdowns respectively are between 70-80 percent and 30-50 percent
of the base price. However, this is not rigid and the window can be wider/shorter depending on the
product type. Quite often, products are priced between the base price and promotional levels. From the
standpoint of analysis, both convex [HLP13; SRL08] and concave [CRS06; DHP10; HLP13] instances of
demand-price curves have been studied in detail. Let dti(p

t
i) denote the demand of product i at time t

depending on the price pti. Then, some examples of demand functions are given by

dti(p
t
i) = ai − bi

(
pti
)γ
,︸ ︷︷ ︸

concave for γ ≥ 0

dti(p
t
i) = (ai − bip

t
i)

γ ,︸ ︷︷ ︸
concave for γ ≤ 1 and convex for γ > 1

dti(p
t
i) = ai(p

t
i)

−bi︸ ︷︷ ︸
convex

, (1)

where ai, bi, and γ are positive scalars. Comprehensive details on different choices of demand-pricing
functions have been discussed in [HLP13]. Some works attempt to address the dynamic aspects of demand
with respect to price [Coh15; Coh+17] using for example functions like

dti(p
t
i) =

(
pti
)α1

(
pt−1
i

)α2
. . . (pt−K

i )αK+1 .

In our work, we do not focus on this aspect and assume that the demand versus price curve is static.
The structure of revenue is given by the function ptid

t
i(p

t
i), which can be a highly nonlinear function in pti.

Additionally, this optimization problem is subject to several constraints on promotions and inventory
levels.

Underlying Nonsmoothness Besides a few practical implementations, literature has mainly ad-
dressed these problems from a discrete perspective [Coh+17; Hua+21]. The resulting optimization tasks
are either solved using standard mixed-integer linear programming solvers like CPLEX or Gurobi for
smaller dimensions [Coh+17; SS10] or solved using heuristics-based approaches for larger dimensional
instances [Hua+21; MF17]. There have been some works based on a continuous problem formula-
tion [YGT14]. We focus on solving the continuous version of this problem, allowing for prices to take
any intermediate value between the lower and upper bounds. Closed form expressions for demand are
usually unknown and are highly SKU specific. Estimation of these demands has been primarily based on
data. Some approaches have attempted to use neural networks or decision trees to come up with such
estimations [Mit+22], when the demand is a function of various product design attributes in addition to
price. This is beyond the scope of our work, where the focus is only on prices. Since nonlinear demand
functions have their own issues with tractability, we concentrate on solving piecewise linear instances of
demand in our work, covering almost all aspects of retail markets, as we will see later through the paper.
The following instances are examples where nonsmoothness arises in retail demand.

• Given historical data, it has been observed that piecewise linear functions prove to be robust in
quantifying the demand-price behavior, [Coh15, chapter 4], or [KP20; KPW20]. In cases of convex
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and concave demand, their respective approximations take the following form.

dti(p
t
i) ≈ max(ãi − b̃ip

t
i, ai − bip

t
i), or dti(p

t
i) ≈ min(ãi − b̃ip

t
i, ai − bip

t
i).

It can be observed that more than two pieces can be deployed in the above expressions without loss
of generality.

• Demand-price models are inherently piecewise linear in the presence of reference price effects [Che+16]
and non-negativity of demand.

dti(p
t
i) =

{
ai − bip

t
i, p ≤ p̄i

ai − bip
t
i − ci(p

t
i − p̄i), pti > p̄i.

}
︸ ︷︷ ︸

reference price effects

, dti(p
t
i) = max(ai − bip

t
i, 0)︸ ︷︷ ︸

demand non-negativity

.

Demand non-negativity can also be written in a form similar to the expression for reference price
effects, when p̄i =

ai
bi
, and ci = 1.

• The stock response factor (mentioned earlier) has been noted to be a highly nonlinear function.
Approximating the same using piecewise linear functions has also been well accepted as stated
in [Li+22]. This can be expressed as follows.

dti(p
t
i, I

t
i ) = srf(Iti ) · rp(pti), srf(Iti ) = rs(I

t
i ) ≈ max

(
ãi − b̃iI

t
i , ai − biI

t
i

)
,

where Iti refers to the inventory of SKU i at time t, rp to the function corresponding to seasonality
and rs to the actual stock response factor.

For this work, we consider prices to be continuous variables and demand to be a consequence of piecewise
linear functions.

Active Signature Methods A natural question that would arise is the possible use of slack variables
(sales) sti to reformulate the problem into a smoother version by deploying constraints and incorporating
terms of the form ptis

t
i in the objective. For example,

dti(p
t
i) = min(ãi − b̃ip

t
i, ai − bip

t
i)

can be presented as constraints of the form{
sti ≤ ãi − b̃ip

t
i, s

t
i ≤ ai − bip

t
i, ∀i, t

}
.

While such reformulations work reasonably well in practice, we note that these do not present guarantees
on global optimality and can potentially lead to suboptimal solutions, unless computationally expensive
global solvers are used. In cases where the demand function dti(p

t
i) is concave, convexity of the objectives

is preserved when using the primitive formulation. These optimization problems fall under the category
of “Extended Quadratic Linear Programs” (EQLPs). We propose an appropriate adaptation of the active
signature method [GW18; KWG21] as alternative to solve our EQLP. While [KWG21] focused on solving
a problem with piecewise linear objectives, the novelty in this work arises from extending the same to
quadratic objectives of a certain structure. We name our solver Quadratic Constrained Active Signature
Method (QCASM). More details of this method are explained in section 3.

Contributions: As parts of the larger revenue maximization problem, we focus on two different
questions.

• Prediction: Given historical data on price and demand for each SKU, we solve a regression problem
to obtain our nonsmooth demand functions. This problem is a piecewise linear optimization problem
and takes the form

min
a,b≥0

∑
i∈I

n∑
j=1

∣∣∣fi(a, b, p)− dobsj

∣∣∣ ,
where fi(a, b, p) is a PLF (piecewise linear function) of the min or max type. We deploy the extended
active signature method mentioned above to solve the same. We consider three types of PLF in this
paper. They are defined as follows:

max(ã− b̃p, a− bp)︸ ︷︷ ︸
Convex PLF-1

, max(ã− b̃p, 0)︸ ︷︷ ︸
Convex PLF-2

, min(ã− b̃p, a− bp)︸ ︷︷ ︸
Concave PLF

.

3



• Revenue maximization: Setting the demand, dti(p
t
i) = fi(a, b, p

t
i), we deploy QCASM to solve the

larger problem of interest, i.e., the revenue maximization problem, that takes the form

min
p∈P

∑
t∈T

∑
i∈F

−fi(a, b, pti)pti.

Note that the constraint set P and index sets T ,F are defined appropriately (more details in the
next section).

While literature has analyzed practical datasets pertaining to this problem, they are not publicly
available [Bur+21; Hek+19]. There exist some open source datasets [Che; SB21; Ske+21] that present
similar data, but they are tailored towards clustering applications and product attributes other than price.
Hence, we resort to three widely used open source datasets [Coh+22; CSG12; EC23] for our studies, which
explicitly contain the price-sales data for multiple years and SKUs for individual retailers, as detailed in
section 4. The remainder of the paper is organized into four sections. Section 2 presents the mathematical
model. Section 3 discusses the extended active signature method in detail. Section 4 demonstrates the
behavior of QCASM on three practical datasets and we conclude in section 5.

2 Problem Formulation

Our problem formulation centers on pricing and inventory management. We consider constraints on
inventory, bounds on promotions and markdowns, coupled item pricing, and replenishments. At this
point, we once again mention that our focus is on the continuous version of the problem. Along the lines
of earlier works [Coh+17; KPW20], the revenue maximization problem can be put forth as follows.

min
p,u,I

h(p) =
∑
i∈I

∑
t∈T

 −ptidti(pti)︸ ︷︷ ︸
revenue

+ ϕ(dti(p
t
i))︸ ︷︷ ︸

costs

 (2)

subject to It+1
i = Iti + ut

i − dti(p
t
i) Inventory Dynamics constraint

ρli ≤ pti ≤ ρui , ∀t ∈ Tp Promotion constraint

θli ≤ pti ≤ θui , ∀t ∈ Tm Markdown constraint

pti − ptj ≥ κij , ∀ {i, j} ∈ N Inter-Item constraints

ut
i = 0, ∀t ∈ Ti Non-replenishment time-slots

Iti , u
t
i, p

t
i ≥ 0, ∀i ∈ N , t ∈ T Non-negativity constraints.

Here, Iti , p
t
i, and u

t
i respectively refer to the inventory, price, and replenishments of product i at time t.

During several times of the year, stores do not receive any replenishments due to regulations, transportation
issues, and sudden power outages. Discounts, i.e., promotions and markdowns, are mostly seasonal and
are offered at specific sets of time Tp and Tm. An example of inter-item constraints is the following:
If milk is priced at 2 Euros per Litre, then yogurt should be priced at the least around 1.5 Euros per
Litre. The demand dti(p

t
i) predominantly follows different trends and can turn out to be discontinuous,

nonlinear, and nonconvex. Some real world examples of historical data from a retail store are shown in
figure 2. Given that there are no closed form expressions, we attempt to approximate the demand by
means of piecewise linear functions. There has been extensive research along these lines for several types
of demand functions [HLP13]. Recent granted patent works [KP20] use one such approximation to solve
a discrete version of our problem, where dti(p

t
i) ≈ maxj(hj(p

t
i)), hj(p

t
i) = aji + bjip

t
i.

2.1 Demand Types

While there are innumerable ways to approximate nonlinear demand by piecewise linear functions, we
focus on the following three cases. While this is not exhaustive, it still covers most of the pricing patterns
in the retail industry.

2.1.1 Convex Demand

An exhaustive survey of convex models has been described in [HLP13]. This type of behavior stems in
both competitive (oligopolistic) and single-firm based settings. In the case of competition, it has been
well accepted that demand either falls under the category of discrete choice or Multiplicative Competitive
Interaction (MCI) models. Discrete choice models are either logistic [KC14] or probit type [Chi01], which
are majorly concave. As an alternative to logit models, the Multiplicative Competitive Interaction (MCI)
model [KC14; NC74] has also been studied in great detail. A static example (dropping time suffixes) of
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Figure 2: Examples of demand-price curves for regular products from [Coh+22].

MCI type models in lieu of competition is given in Equation (3). Here, p−i refers to prices of agents
(retailers) other than i. Logarithmic type models (log-log) of the form given by Equation (3) have also
been studied in literature [Coh+17]. As mentioned earlier, [Coh+17] also presents an MCI model in the
context of dynamic and non-competitive regimes. Some sample data profiles (historical sales-price data)
that depict convex behavior have been shown already in figure 2.

MCI: di(pi, p−i) = aip
bi
i Πj ̸=ip

bj
j , Log-Log: log (di(p

t
i)) = ai log(p

t
i) + bi. (3)

We further highlight a few important model classes from literature as follows.

• Linear type: These take a simple form d(p) = a − bp and have been extensively studied [Mil59].
Nonsmooth counterparts related to price caps and reference prices have also been studied (to be
discussed later).

• Iso-elastic type: These have a sharper elasticity or response towards price [KC62] and have also
been widely studied in literature. These are of the form d(p) = ap−b.

• Power Linear type: These are inverse demand functions that are represented as follows [SRL08]:
d(p) = (a− bp)γ , γ > 1.

• Hybrid versions [LL03]: They are combinations of any of the above three forms of functions (additive
or composition).

Smooth and convex demand functions can be approximated by a max over multiple linear functions, i.e.,

d(p) = max
i

(ai + bip) , ai, bi ≥ 0.

One of the main disadvantages with this setting is that the revenue function, which is a product of
negative price times demand happens to be nonconvex. In this relation, we present the following theorem
on convexity. We note that the related extensions follow by direct inspection.

Theorem 2.1. Let f(p) = −p ·max(a− bp, 0) and let a, b ≥ 0. Then, the function f(p) is not convex
over the complete domain −∞ ≤ p ≤ ∞.

Proof. Let us consider p1 and p2 such that a − bp1 > 0 and a − bp2 < 0. That is, p2 >
a
b
> p1. Let

p3 = αp1 +(1−α)p2 for α ∈ (0, 1). It is easy to observe that p2 > p1 and f(p1) < f(p2) = 0. This further
implies

αf(p1) + (1− α)f(p2) = αf(p1) < 0. (4)

Noting the strict inequalities, it is easy to observe that there exists ᾱ ∈ (0, 1) such that

p3 = ᾱp1 + (1− ᾱ)p2, where p3 =
a

b
.

Using Equation (4), this implies that f(p3) = f(αp1 + (1 − α)p2) = 0 > αf(p1) + (1 − α)f(p2). This
completes the proof.

Remark: For max over three functions and higher, recursive arguments can be made by using
expressions similar to max(f1, f2, f3) = max(max(f1, f2), f3).
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Stock Response Factor: This setting is very common in domains pertaining to fashion. Here, the
differences between sales and available inventory can be enormous [CG05] and only a subset of products
are kept on display. As an example, consider a firm that may have 100 white T-shirts in their stock. The
size is say, spread over “Small”, “Medium”, “Large”, and “XL”. The distribution may not be exactly 25
each. The display may start, e.g., with 10 T-shirts per size. During the course of the day this could be
reduced to one T-shirt of size “Small”. This may not exactly correspond to the situation in the inventory.
Usually there are minor price differences between sizes among the same brand, but these are assumed to
follow fixed patterns. Here, the sales capacity is limited by the following expression

sti ≤ srfti(I
t
i ) · dti(pti).︸ ︷︷ ︸

constant

Since the function “srf” is very nonlinear, the well accepted methodology in literature is to approximate it
by a set of piecewise linear functions [Li+22] as follows: srfti(I

t
i ) = fnonlin(I

t
i ) ≈ maxj(bjI

t
i+aj), aj , bj ≥ 0.

Here, the objective is to maximize sales and prices are assumed to be fixed as per seasonal rules within a
firm. Note that the above inequality automatically presents a nonconvex constraint in s and I. We do
not focus on “srf” in this work, but mention it in this subsection, because it follows a similar problem
structure as our case of convex demand.

2.1.2 Nonconvex demand

Literature’s focus has also been significant on concave demand type models. These may be classified
vaguely into three forms as follows. This classification is not existent in literature and we merely state it
for the ease of understanding.

• Logit models: These choice models as stated previously in [Chi01; KC14] have predominantly
been the mainstay of literature. Similar to price p, we note that product attributes ap like design
specification become very relevant to the question. An example of a logit model is given as follows.

d(p, ap) = ηp
(
1 + e−U(p,ap)

)−1

.

The utility function U(.) is usually linear or quadratic. Consider a winter-wear product (shawl or
gloves). Let p and a1 denote the price and number of woolen layers respectively. Then, the utility
function may take the form U(p, ap) = 0.1p − 0.01a1. The equation above is a case restricted to
a single-firm with the customer presented with two options, namely purchase (high utility) and
no-purchase (the scalar term “1” indicates the no-purchase option or no-utility). The purchase levels
are fractions or probability levels, which are in turn multiplied by the market population ηp. We
note that this extends to a multinomial-logit model [CDH90] when there are multiple firms, each
with an exponential component defined in the denominator. However, we do not focus on product
attributes in this work.

• Exponential models [CSL04]: These models can be defined by d(p) = a− beγp, where a, b, γ ≥ 0 are
scalars. Exponential models are structurally slightly different from logit models.

• Logarithmic models [CRS06; RLS05]: Their structure is also similar to exponential models and they
take the form: d(p) = (log a− bp)γ .

• Polynomial models [SRL08]: These models are more commonly deployed in several industries and are
given by d(p) = (a− bp)γ for γ < 1. Above, we had discussed cases where these models are convex
for γ > 1. Concave demand models of the form d(p) = a− bpγ have also been studied [CRS06].

Some examples of data depicting nonconvex demand functions are given in figure 3. We note that when
demand is concave, then the resulting minimization problem happens to be convex. We present the formal
statement as follows.

Theorem 2.2. Let f(p) = −p ·min(ã− b̃p, a− bp) and let ã, b̃, a, b ≥ 0. Then, the function f(p) is convex
over the complete domain −∞ ≤ p ≤ ∞.

Proof. Using a similar argument along the lines of theorem 2.1, this result follows. The proof can also be
taken from theorem 2.4, which is discussed later in this section.

2.1.3 Relativistic Demand Pricing

Some retail portfolios are characterized by relative pricing, where the drop in demand becomes significantly
higher when the price crosses a threshold. This is very commonly studied in both game-theoretic
regimes [FGL03] and single-agent optimization settings [Gre95]. Such a structure has also received
considerable attention in marketing-based retail settings with multiple channels [CCH03]. Retail industries
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Figure 3: Concave example of a demand-price curve for products for the logit demand from [EC23].

may have both physical store based outlets and online stores. While the indirect channels do not have
many reference price effects, direct channels have shown a strong requirement for such nonsmooth demand
behavior as follows.

dt(pt) = a− bpt − γ(pt − pref), γ =

{
γref, pt > pref
0, pt ≤ pref

}
.

Positive sales: In simpler cases, where the demand function is linear and smooth, it can still be
noticed that the sales have to be non-negative [KC14]. This is dictated by

st = max(dt, 0) = max(a− bpt, 0).

A natural question that would arise is whether this behavior can be simply invoked in the problem by
plugging in st instead of dt in the objective and imposing constraints st ≥ 0 and st ≥ dt. However, such
a formulation induces bilinear terms of the form ptst in the objective, and we lose the benefits of the
primitive formulation as discussed earlier. Ignoring the domain of prices, where demand can be negative,
is not practical from a business perspective.

Zero price-elasticity: In wholesale outlets, demand responses can be significantly low or even zero
for certain levels of price. For example, assume that the regular price of a milk is 1.2 Euros per litre
and the demand at this level is 1000 units. If the price drops to 0.5 Euros, the demand increases to
5000 units. If the price drops further down to 0.2 Euros, the demand still stays at 5000 units. Beyond a
point, the society becomes “in-elastic” to price changes. This effect can be described by the expression
d(p) = min(a− bp, d̄). This setting is also analogous to price-caps in Cournot based regimes [TR19], where
prices are defined as a consequence of demand, e.g., p(q) = min (a− bq, p̄). In both of these cases, the
revenue functions lead to convex optimization problems (similar structure to the functions in theorem 2.4).
We now move onto our learning problem, i.e., the fitting of piecewise linear functions to data.

2.2 Regression Subproblem

It can be observed that building “parametric” models based on data automatically leads to regression
based settings. Given that we already have piecewise linear functions in our model to be estimated, we
move along the path of l1-regression, which further presents piecewise linear functions in the absolute
value form, i.e., using |.|. The benefit of such an l1-type setting is that the learning problem yields
an optimization formulation with piecewise linear objectives, which can be handled by our QCASM
framework. Moving to l2-type regression (or polynomial and more complex models) further makes the
problem nonlinear, obviously necessitating the use of more stylized solvers and reformulations. We do not
intend to compare the complexity versus accuracy behavior of multiple regression models in this work
and leave this large area for future research. Noting that all the three types of PLFs lead to similar
formulations, we consider the regression problem for PLFs of the type dti(p

t
i) ≈ min(ãi − b̃ip

t
i, ai − bi, p

t
i)

in the following form:

min
a,ã,b,b̃

∑
i∈I

K∑
k=1

∣∣∣min
(
ãi − b̃ip

k,sl
i , ai − bip

k,sl
i

)
− dk,sl

∣∣∣
subject to ãi, ai, b̃i, bi ≥ 0 ∀i ∈ I. (5)
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Here, ãi, ai and b̃i, bi respectively refer to the intercept and slope of the demand function and{
pk,sli , dk,sl

}
1 ≤ k ≤ K

to the price-sales data, i.e., the history from retailer records. We note that the regression problem also
need not necessarily be convex by means of the following corollary.

Corollary 2.3. Let h(a, b) = |max(a− bp, 0)− d| for scalars p, d ≥ 0. Then, mina,b≥0 h(a, b) does not
necessarily present a convex problem.

Proof. Using the same argument as in theorem 2.1, this result follows. The steps are straightforward.

We move to the next subsection to analyze the formulation of the larger revenue maximization problem
from the angle of a composition of absolute value type functions. As we will see later through the next
section, this fits into the general framework of EQLPs, for which our solver QCASM can be deployed.

2.3 Larger problem in abs-quadratic form

We state our formulation for the case (2) as minimum over two functions. Note that the flipping of signs
(maximum over two functions) and subtraction of linear terms (maximum over a linear function and 0)
lead to the other two types of PLFs.

min
p,I

f(p) = −
∑
i∈I

T−1∑
t=0

pti min
(
ãi − b̃ip

t
i, ai − bip

t
i

)
=

∑
i∈I

T−1∑
t=0

pti max
(
b̃ip

t
i − ãi, bip

t
i − ai

)
subject to : It+1

i = Iti + rti +max
(
b0i p

t
i − a0i , bip

t
i − ai

)
pi,l ≤ pti ≤ pi,u, ∀t ∈ T Bound constraints on price

Iti ≥ 0, ∀i ∈ I, t ∈ T Non-negativity constraints

ITi ≤ Ī , ∀i ∈ I Final-inventory constraint.

The promotions and markdown constraints are jointly incorporated as bound constraints in the above
expression. Introducing additional variables, the problem can be rewritten in the following form:

min
I,p,s,ŝ

f̂(p, s, ŝ) =
∑
i∈I

T−1∑
t=0

pti
(
bip

t
i − ai

)
+

1

2

∑
i∈I

T−1∑
t=0

pti(s
t
i + ŝti)

subject to sti = (b0i − bi)p
t
i − a0i + ai, ∀t ∈ T (EQ-1)

2It+1
i = 2Iti + 2rti + 2bip

t
i − 2ai + sti + ŝti, ∀t ∈ {0, . . . , T − 1} (EQ-1)

sti = ai − bip
t
i, ∀t ∈ {0, . . . , T − 1} (6)

pi,l ≤ pti ≤ pi,u, ∀i ∈ I, t ∈ T (INQ-1)

Iti ≥ 0, ∀i ∈ I, t ∈ T (INQ-1)

ITi ≤ Ī , ∀i ∈ I (INQ-1)

ŝti = |sti|, ∀i ∈ I, t ∈ T (EQ-2),

using max(sti, 0) =
(
sti + |sti|

)
/2. Here, note that (INQ-1) refers to inequality constraints of a particular

form handled by QCASM (described later) and (EQ-1) and (EQ-2) refer to two similar classes of
equality constraints. For the ease of parsing and clarity, we maintain the same terminology in both (6)
and (CAQOP) discussed in section 3 for constraint classes (EQ-1), (EQ-2), and (INQ-1). Next, we study
the convexity of the objective f̂ .

Theorem 2.4. Consider problem (6) and the function f̂ . Assume that there exists a feasible point (p, s, ŝ)
that satisfies all the constraints (EQ and INQ). Then, in the feasible region governed by the constraints
(EQ and INQ), the function f̂ is convex.

Proof. Exploiting the structure of f̂ , it suffices to prove the convexity of the following function

f̃(p) = 2p(bp− a) + p
(
(b̃− b)p− ã+ a+ |(b̃− b)p− ã+ a|

)
,

for given and fixed values of ã, a, b̃, b ∈ R. Note that we drop the subscripts of i pertaining to products
for the simplicity of notation and also that p ∈ R for this discussion. Let b̃ = b+ δ, ã = a+ γ. Then, f̃
can be further simplified to

f̃(p) := (2b+ δ)p2 + |δp2 − γp|.
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Setting λ = γ
δ
, then it suffices to prove the convexity of the function

g̃(p) := p2 + |p2 − λp|, λ ≥ 0.

Let pA and pB refer to any two arbitrary prices that satisfy the bounds, i.e., the inequality constraints
INQ in (6). Then, it suffices to show that

g̃(αpA + (1− α)pB) ≤ αg̃(pA) + (1− α)g̃(pB) (7)

holds. We prove this by an exhaustive case-by-case analysis. Let pC = αpA + (1− α)pB

• pA, pB ≥ λ: Then, Equation (7) follows from the convexity of the quadratic function (2p2 − λp).

• pA, pB ≤ λ: Here, g̃(pA) = λpA and g̃(pB) = λpB holds. Then, the result follows from the convexity
of the linear function λp.

• pA ≤ λ ≤ pC ≤ pB : For the expressions in Equation (7) one obtains

g̃(αpA + (1− α)pB)− αg̃(pA) + (1− α)g̃(pB) = 2
(
(αpA + (1− α)pB)

2 − αλpA − (1− α)p2B
)

= 2
(
α2p2A + p2B(α

2 − α) + 2α(1− α)pApB − αλpA
)

= 2
(
α2p2A − p2Bα(1− α) + 2α(1− α)pApB − αλpA

)
≤ 2

(
α2p2A − p2Bα(1− α) + 2α(1− α)pApB − αp2A

)
= 2

(
−α(1− α)p2A − α(1− α)p2B + 2α(1− α)pApB

)
= −2α(1− α)(pA − pB)

2,≤ 0

proving the assertion for this case.

• pA ≤ pC ≤ λ ≤ pB : Then one obtains for the expressions in Equation (7) that

g̃(αpA + (1− α)pB)− αg̃(pA) + (1− α)g̃(pB)

= λ(αpA + (1− α)pB)− αλpA − (1− α)(2p2B − λpB)

= −(1− α)2p2B + 2λ(1− α)pB = 2(1− α)pB(λ− pB),≤ 0

proving the assertion for this case.

Hence, the convexity of our objective f(.) is shown.

We conclude this section by mentioning that the above theorem on convexity does not hold for the
other two instances of PLF given by the max(ã− b̃p, a− bp) and max(a− bp, 0) types.

3 Optimization Approach

In this section, we will present a solution algorithm for the optimization problem posed previously. Since
this algorithm is not specific and exclusive to the problem in this paper and builds on a previously
published algorithm, the notation in this section is detached from the other sections.

For solving unconstrained piecewise linear optimization problems, Andreas Griewank and Andrea
Walther presented the Active Signature Method (ASM) in [GW18]. The basic idea of this method is
to explicitly exploit the structure of the given nonsmoothness caused by the absolute value. For this
purpose, the argument space is decomposed into polyhedra and then a sequence of quadratic optimization
problems is solved on them. A given starting point determines the initial polyhedron and then optimality
conditions help to identify a suitable neighboring polyhedron until a local minimizer is reached.

In [Kre23] this concept was extended to the Constrained Active Signature Method (CASM) for
piecewise linear optimization problems with piecewise linear equality and inequality constraints. Here, an
active set strategy is used to handle the constraints. For both ASM and CASM, necessary and sufficient
optimality constraints, which can be verified in polynomial time, can be derived, see [GW18; Kre23].
Furthermore, in the same references, convergence in finitely many steps is proven. Optimality conditions
for the more general nonliner, nonsmooth case are considered in [HSS20].

In this section, first we will introduce some notations and then present the Constrained Active
Signature Method for Abs-quadratic Problems, short QCASM, an algorithm derived from CASM to
handle additional quadratic components in the objective function.
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3.1 Notation and Definitions

The basis for developing the new optimization method is the so-called abs-linear form, which was
introduced in [Gri13] and is defined as follows.

Definition 3.1 (abs-linear form, switching vector). A continuous piecewise linear function f : Rn → R
is in abs-linear form if y ≡ f(x) is given by

y = d+ a⊤x+ b⊤z , (8a)

z = c+ Zx+Mz + L|z| , (8b)

with x ∈ Rn the argument vector, z ∈ Rs the vector of switching variables, called switching vector, and
constants a ∈ Rn, b, c ∈ Rs, d ∈ R, Z ∈ Rs×n, L,M ∈ Rs×s, where the last two matrices are strictly lower
triangular. Eq. (8b) is called switching system.

Here, |z| denotes the component-wise absolute value of a vector z. In the context of optimization, one
can set d = 0 without loss of generality. Furthermore, we assume that all components zi, 1 ≤ i < s, are
used as arguments of the absolute value for simplicity of notation. It follows with the identities

min(x, y) =
1

2
(x+ y − |x− y|) and max(x, y) =

1

2
(x+ y + |x− y|)

and the representation of piecewise linear function shown, e.g., in [Sch12, Proposition 2.2.2], that every
piecewise linear function has a representation in an abs-linear form, see also [GW20, Lemma 2]. However,
this representation might be not unique.

We denote by α(x) ≡ {i ∈ {1, . . . , s− 1} | zi(x) = 0} the set of indices of so-called active switching
variables and by Pα ≡ (e⊤i )i∈α ∈ R|α|×s the projection onto the active components of z(x), where
ei is the ith unit vector of appropriate size. For each x ∈ Rn we define the signature vector by
σ(x) ≡ (sgn(z1(x)), . . . , sgn(zs(x))) ∈ {−1, 0, 1}s. The corresponding signature matrix is given by
Σ(x) = diag(σ(x)). As in [Gri13], the signature vectors are used to define a polyhedral structure.

Definition 3.2 ((extended) signature domain). For a fixed σ ∈ {−1, 0, 1}s, define

Pσ ≡ {x ∈ Rn | sgn(z(x)) = σ} ⊂ Pσ ≡ {x ∈ Rn | Σz(x) = |z(x)|} . (9)

The set Pσ is called signature domain and the set Pσ extended signature domain.

As shown in [Gri+16, Proposition 2], the union of all possible extended signature domains equals Rn.
By definition, the extended signature domains do not have common interior points. Hence, they form a
decomposition of Rn. The points where the underlying piecewise linear function is not differentiable are
located exclusively on the boundaries of the polyhedra. Motivated by the structure in R2 these boundaries
are also called kinks, see for example [GW18; Kre23] for more details.

To incorporate also quadratic components in the objective function, we now extend the definition of
abs-linear functions as follows.

Definition 3.3 (abs-quadratic form). A continuous piecewise smooth function f : Rn → R is in
abs-quadratic form if y ≡ f(x) is given by

y = x⊤Q1x+ x⊤Q2z + z⊤Q3z + a⊤x+ b⊤z + d , (10a)

z = c+ Zx+Mz + L|z| , (10b)

with x ∈ Rn the argument vector, z ∈ Rs the switching vector, and constants Q1 = Q⊤
1 ∈ Rn×n,

Q2 ∈ Rn×s, Q3 = Q⊤
3 ∈ Rs×s, a ∈ Rn, b, c ∈ Rs, d ∈ R, Z ∈ Rs×n, L,M ∈ Rs×s, where the last two

matrices are strictly lower triangular.

The chosen name is motivated by quadratic optimization problems, where the objective function
is quadratic and the constraints are linear. In the further course of the paper, Eq. (10a) serves as the
objective function of the considered optimization problem and Eq. (10b) represents one of the constraint
sets. Note that in contrast to the piecewise linear case, not every piecewise quadratic function has an
abs-quadratic form, as shown by the following example.

Example 3.4. The function f1(x1, x2) = |x1x2| = |x1||x2| can be represented by the abs-quadratic form

y =
(
z1 z2 z3 z4

)
0 0 0 0
0 0 0 0
0 0 0 1

2

0 0 1
2

0



z1
z2
z3
z4

 (11)

z =


1 0
0 1
0 0
0 0

(
x1
x2

)
+


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0



|z1|
|z2|
|z3|
|z4|

 (12)
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setting the remaining matrices and vectors to zero. However, the function f2(x1, x2) = |x1x2 + 1| cannot
be written in abs-quadratic form, since the switching equation does not allow a quadratic term.

3.2 Description of the Algorithm

First, we state the optimization problem for which we will present and analyze a solution algorithm in
this paper, i.e., the constrained abs-quadratic optimization problem (CAQOP) given by

min
x∈Rn,z∈Rs

x⊤Q1x+ x⊤Q2z + z⊤Q3z + a⊤x+ b⊤z + d

s.t. 0 = g +Ax+Bz + C|z| ,
0 ≥ h+Dx+ Ez + F |z| ,
z = c+ Zx+Mz + L|z| ,

(CAQOP)

with an abs-quadratic target function and g ∈ Rm, h ∈ Rp, A ∈ Rm×n, B,C ∈ Rm×s, D ∈ Rp×n and
E,F ∈ Rp×s. For a detailed investigation of necessary and sufficient optimality conditions we refer to
[GW16; HSS20; Kre23].

For later use, we introduce

H : Rn × Rs × Rs → Rp, (x, z, |z|) 7→ h+Dx+ Ez + F |z|

as the function for the inequality constraints. Furthermore, we define ω = sgn(H(x, z, |z|)) to identify the
active inequalities and Ω = diag(ω) as the projection onto these active inequality constraints.

The proposed optimization method is a feasible point approach. Hence, a feasible starting point x0 is
required that determines the initial polyhedron Pσ with σ = σ(x0) to be examined. For such a fixed σ,
we will now describe the steps of the optimization algorithm:

Computing a descent direction for given σ and ω Following the approaches presented in
[GW18; Kre23], on each polyhedron defined by σ taking account the required signs of z, we obtain the
optimization problem

min
x∈Rn,z∈Rs

x⊤Q1x+ x⊤Q2|Σ|z + z⊤|Σ|Q3|Σ|z + a⊤x+ b⊤|Σ|z + d

s.t. 0 = g +Ax+B|Σ|z + CΣz ,

0 ≥ h+Dx+ E|Σ|z + FΣz ,

0 = |Σ|z − c̃− Z̃x ,

0 ≤ Σz ,

(13)

with Z̃ and c̃ defined as

Z̃ = (Is −M − LΣ)−1Z and c̃ = (Is −M − LΣ)−1c . (14)

Due to the fixed signature vector, this optimization problem is smooth, has a quadratic target function
and linear constraints. When a solution exists, it can be solved with a standard QP method. However,
we want to exploit the structure provided by the signature vector as additional feature. For this purpose,
we apply standard KKT theory to Equation (13). With Lagrange multipliers δ ∈ Rm, ν ∈ Rp, λ ∈ Rs and
µ ∈ Rs, we obtain the following necessary optimality conditions

0 = 2x⊤Q1 + z⊤|Σ|Q⊤
2 + a⊤ + δ⊤A+ ν⊤D − λ⊤Z̃ , (15a)

0 = x⊤Q2|Σ|+ 2z⊤|Σ|Q3|Σ|+ b⊤|Σ|

+ δ⊤(B|Σ|+ CΣ) + ν⊤(E|Σ|+ FΣ) + λ⊤|Σ| − µ⊤Σ , (15b)

0 = g +Ax+B|Σ|z + CΣz , (15c)

0 ≥ h+Dx+ E|Σ|z + FΣz , (15d)

0 = |Σ|z − c̃− Z̃x , (15e)

0 ≤ Σz , 0 ≤ µ , 0 = µ⊤Σz , (15f)

0 ≤ ν , 0 = ν⊤(h+Dx+ E|Σ|z + FΣz) . (15g)

Multiplying Eq. (15b) by Σ from the right and using the sign condition for µ yields

0 ≤ µ⊤|Σ| = x⊤Q2Σ+ 2z⊤|Σ|Q3Σ+ b⊤Σ+ δ⊤(BΣ+ C|Σ|) + ν⊤(EΣ+ F |Σ|) + λ⊤Σ . (16)
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Due to the complementarity condition µ⊤Σz = 0, this inequality must hold as an equation. Hence, it
follows that

−b⊤Σ = x⊤Q2Σ+ 2z⊤|Σ|Q3Σ+ δ⊤(BΣ+ C|Σ|) + ν⊤(EΣ+ F |Σ|) + λ⊤Σ .

Thus with ω = sgn(H(x, z, |z|)) and Ω = diag(ω) denoting as before the projection onto the active
inequality constraints, a solution x of the optimization task (13) together with the corresponding z and
the Lagrange multipliers must satisfy the linear system

2Q1 Q2|Σ| −Z̃⊤ A⊤ D⊤

ΣQ⊤
2 2ΣQ3|Σ| Σ ΣB⊤+|Σ|C⊤ ΣE⊤+|Σ|F⊤

Z̃ −|Σ| 0 0 0
A B|Σ|+CΣ 0 0 0
Ω̄D Ω̄(E|Σ|+FΣ) 0 0 Ω



x
z
λ
δ
ν

 = −


a
Σb
c̃
g
Ω̄h

 , (17)

where Ω̄ = Ip − |Ω| forces the active inequalities to vanish. The matrix Ω in the right lower corner ensures
that ν is zero for the inactive inequality constraints. A solution of this linear system must exists as soon
as the optimization task (13) has at least one solution. At the end of this section, we will discuss options
to ensure the existence of such a solution. For the time being, we assume that we can compute a solution
(x̂, ẑ, λ, δ, ν) of this linear system and define for the current iterate x and z

∆x := x̂− x and ∆z := ẑ − z

as directions towards the next iterate.

Computing a step size β The optimization problem (CAQOP) has only (piecewise) linear constraints.
This situation was already analyzed for the CASM solver. Hence the step size strategy from CASM
[Kre23] can be reused here. Nevertheless, we sketch the step calculation briefly for a complete picture of
the algorithm.

For a solution (x̂, ẑ) of Equation (17), we must check whether σ(x̂) = σ is still valid and that the
inequality constraints of Eq. (15) still hold to ensure feasibility. For this purpose, we calculate two step
sizes. The first one is the step length from the current iterate x in the direction ∆x to a possible kink,
i.e., a sign change in one component of z. It is denoted by βz and defined as

βz = inf
1≤l≤s

{
βz
l ≡ −zl

ẑl − zl

∣∣∣∣ (ẑl − zl)σl < 0

}
∈ (0,∞] . (18)

If βz <∞ the first index for which the minimum is attained is denoted by jz. For βz < 1, there exists a
blocking kink such that we can not take the full step to the solution x̂. For a given signature vector σ
with σi ̸= 0 and x ∈ Pσ it follows that zi(x) ̸= 0. Thus, βz > 0 must hold.

The second step size is the step length from the current iterate x in the direction ∆x to a possible
inequality constraint Hl(x, z,Σz), 1 ≤ l ≤ p, that becomes active. Similar to the computation of βz, this
step size βH is given by

βH = inf
1≤l≤p

{
βH
l ≡ Hl

Hl − Ĥl

∣∣∣∣ (Ĥl −Hl)ωl < 0

}
∈ (0,∞] , (19)

where H ≡ H(x, z,Σz), Ĥ ≡ H(x̂, ẑ,Σẑ) and l denotes the lth component of H and Ĥ, respectively. We
denote by jH the smallest index for which the minimum is attained. If βH < 1, there exists a blocking
inequality constraint, i.e., the solution x̂ is not feasible. Therefore, the new iterate x+ should be chosen
such that the jHth components of H(x+, z+,Σz+) and ω(x+) drop to zero in comparison to H(x, z,Σz)
and ω, respectively. Setting ω+

jH
= 0 changes the optimality system (15) and a new solution of system (17)

has to be computed. If βH ≤ βz then we have zjH ẑjH ≥ 0 such that the iterate x̂ is still contained in Pσ,

i.e., σ(x̂) = σ is still valid. Since all active constraints are encoded in ω, one must have βH > 0.
Finally, we determine the actual step size

β = min{βz, βH , 1} ∈ (0, 1] , (20)

where the upper bound 1 on β ensures with the update

x+ = (1− β)x+ βx̂ = x+ β∆x

that the next iterate is feasible for the optimization task (13) and the current σ. As can be seen, the case
β < 1 corresponds to the activation of a kink or an inequality constraint, respectively. Therefore, we will
refer to this situation as a restriction of σ or ω, respectively. If β = 1, one has for the new iterate x+ = x̂
that σ(x+) = σ and ω(x+) = ω. In this case, x+ is called signature stationary since the two signature
vectors are kept.
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Algorithm 1 Quadratic Constrained Active Signature Method (QCASM)

Require: Feasible start point x ∈ Rn, n ∈ N, s,m, p ∈ N ∪ {0}, a ∈ Rn, b, c ∈ Rs, Z ∈ Rs×n,
L,M ∈ Rs×s strictly lower triangular, Q1 = Q⊤

1 ∈ Rn×n, Q2 ∈ Rn×s, Q3 = Q⊤
3 ∈ Rs×s, g ∈ Rm, h ∈ Rp,

A ∈ Rm×n, B,C ∈ Rm×s, D ∈ Rp×n, E,F ∈ Rp×s, β = 0
Set: z := z(x) via Eq. (8b), σ := σ(x) and ω := ω(x)

1: loop
2: If possible compute (x̂, ẑ, λ, δ, ν) by solving Eq. (17) else return ERROR
3: Compute βz via Eq. (18), βH via Eq. (19) and β via Eq. (20)
4: Set (x+, z+) = (1− β)(x, z) + β(x̂, ẑ)
5: if βH = β then Restrict ω ▷ Add constraint

6: if βz = β then Restrict σ ▷ Add kink

7: if β = 1 then ▷ x+ is feasible signature stationary
8: if ν ≱ 0 then
9: Relax ω, set β = 0 ▷ Drop constraint

10: else ▷ x+ is feasible signature optimal
11: if Eq. (21) holds true then
12: Relax σ, set β = 0 ▷ Drop kink
13: else ▷ x+ is local optimal
14: return (x+, z+) ▷ Problem solved

15: Set (x, z) = (x+, z+)

Checking the optimality If x+ is signature stationary on the current polyhedron Pσ, it fulfills the
necessary optimality condition of the optimization task (13) on Pσ. Then, one has to check whether x+

is a minimizer of (CAQOP). If this is the case the iteration stops. Otherwise, the optimization continues
in one of the neighboring polyhedra Pσ̃ with σ̃ ≻ σ where

σ̃ ⪰ σ holds if σ̃jσj ≥ σ2
j for j = 1, . . . , s .

Such a σ̃ can be decomposed into σ + γ with |σ|⊤|γ| = 0. Replacing Σ in the optimality conditions (15)
by the corresponding Σ + Γ and using

zσ̃(x) = zσ+γ(x) = (Is −M − LΣ− LΓ)−1(c+ Zx) = (Is − L̃Γ)−1(c̃+ Z̃x)

it follows that most of the equations still hold for the current values of x̂, ẑ and λ. Just Eq. (16) changes
in that it has as many new nontrivial component as γ which are given by

0 ≤ µ⊤|Γ| = x̂⊤Q2Γ + 2ẑ⊤|Γ|Q3Γ + b⊤Γ + δ⊤(BΓ + C|Γ|) + ν⊤(EΓ + F |Γ|) + λ⊤(Is − L̃Γ)Γ

=
(
x̂⊤Q2 + 2ẑ⊤|Γ|Q3 + b⊤ + δ⊤B + ν⊤E + λ⊤

)
Γ + (δ⊤C + ν⊤F − λ⊤L̃)|Γ| .

This condition is violated if and only if there exists at least one index k with 1 ≤ k < s such that
γ ≡ ek sgn(b

⊤ + δ⊤B + ν⊤E + λ⊤) satisfies

0 > (δ⊤C + ν⊤F − λ⊤L̃)ek −
∣∣∣x̂⊤Q2 + 2ẑ⊤Q3b

⊤ + δ⊤B + ν⊤E + λ⊤
∣∣∣ ek and σk = 0 . (21)

This optimality condition can be verified as a matrix-vector product in polynomial time. For the
unconstrained and abs-linear case a similar complexity result was shown in [GW18] and for the general
case of abs-smooth and constrained problems in [HSS20].

The overall algorithm Combining all the steps described above, one obtains Algo. 1 as an extension
of [KWG21, Algorithm 1] for the piecewise linear case. Once more, the resulting algorithm consists of
three main parts: First, the computation of the search direction (cf. line 2 of Algo. 1). Second, computing
the step size and in case of blocking kinks and/or inequality constraints restrict σ and/or ω, respectively
(cf. line 3-6). Third, checking the optimality and relaxing kinks or constraints in case of nonoptimality
(cf. line 7-14).

Finite convergence of QCASM For the piecewise linear case, convergence properties of (C)ASM
have already been analyzed in detail in [GW18; Kre23]. The basic idea is that by decomposing Rn

there are only finitely many polyhedra and on one polyhedron a solution is found in finitely many steps.
However, the essential difference lies in the quadratic parts of the objective function. For the piecewise
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linear case considered in [GW18; Kre23] the resulting linear problems on each polyhedron were extended
by a quadratic penalty term with a positive definite matrix Q to ensure the existence of a minimizer in
each polyhedron. To derive the same convergence results for the optimization task (CAQOP), a similar
requirement would be that the matrix

Q =

(
Q1

1
2
Q2

1
2
Q⊤

2 Q3

)
is positive definite. However, this is not necessarily the case for the examples considered in the earlier
sections of this paper. On the other hand, it was shown in the Theorems 2.1, 2.2, and 2.4 that the target
function is convex on the feasible domain. Therefore, we will now analyze the convergence of QCASM
under more general convexity assumptions including also the case that the matrix Q is positive definite.
For this purpose, first we define a regularity condition, which has already been introduced [GW19] for the
unconstrained case and in [HSS20] for the constrained case. It corresponds to the well-known LICQ in
the smooth case.

Definition 3.5 (LIKQ (constrained case)). Let a constrained optimization problem of the form (CAQOP)
and a signature vector σ ∈ {−1, 0, 1}s be given. Then the linear independent kink qualification (LIKQ)
holds at a feasible point x of the corresponding optimization problem (13) if the active Jacobian

Jσ ≡

 A+B|Σ|Z̃ + CΣZ̃

PI(D + E|Σ|Z̃ + FΣZ̃)

PαZ̃

 ∈ R(m+|I|+|α|)×n (22)

has full row rank m+ |I|+ |α|. Here, I ≡ I(x) collects the indices of the active inequality constraints
at x and the projection onto the active components of H(x) is defined as PI ≡ (e⊤i )i∈I ∈ R|I|×p with ei
denoting the ith unit vector of appropriate size.

Now, we present one of the main contributions of this paper.

Theorem 3.6 (Finite convergence of QCASM). Let an optimization problem of the form (CAQOP) be
given and suppose that LIKQ holds at every feasible point. Furthermore, assume that the target function
f : Rn → R of (CAQOP) is convex on the compact feasible set F . Then, Algorithm 1 terminates for any
feasible starting point x ∈ Rn after finitely many iterations at a global minimizer of (CAQOP).

Proof. Since f is continuous and F is compact, there exists a minimizer of the optimization task (CAQOP).
For a fixed given σ, the same statement holds for the optimization task (13), such that one can always
compute a solution of Eq. (17) and Algorithm 1 does not terminate with an error. Moreover, it is clear
that if the current iterate xi is not a minimizer of (CAQOP), then a descent direction must exist. Now,
we show that such a descent direction is determined by Algorithm 1.

Since standard KKT theory was used to derive the system of equations (17), its solution is a stationary
point for the currently active set of constraints, encoded by the matrix Ω, and the active switches, encoded
by the matrix Σ. Since f is convex on the feasible set, such a stationary point is already a minimum for
the restricted subproblem defined by the current Ω and Σ. If the solution of (17) yields a point x̂ that is
not equal to the current iterate x, then ∆x = x̂− x ̸= 0 defines a direction of descent. If x̂ = x, but x is
not a minimizer of the original problem (CAQOP), then active inequality constraints and/or switches
must be dropped. Since we can ensure in the next iterate that the step length β is larger than zero, a
cycling can not happen. Hence, standard active set theory yields the convergence to a minimizer of the
optimization task (13) in finitely many steps.

There are only finitely many polyhedra. Furthermore, if the signature vector σ is modified by Algo. 1,
the value of the target function is consistently reduced in the next iterate. Hence, the signature vector
can be modified only finitely many times leading to a finite convergence of the overall algorithm.

4 Numerical Validation

This section is organized into two subsections. The first subsection discusses a few possible data sources
that have been used in the literature. This is included for the benefit of the community and aims at
showing the reach of the problem and the importance of such datasets. We also note that most of
these datasets are proprietary and are far from being published in open-source repositories. The second
subsection presents the numerical performance of our proposed approach on three retail datasets. Two
out of the three datasets correspond to real data and one refers to simulated data.

4.1 Data Sources

We divide this subsection further into three parts, where the first one elaborates on case studies that are
proprietary, the second one on the datasets we use for this work, and the third one on other possible
sources that can be used for the future.
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4.1.1 Propriety Industry Data

We present two use-cases that specifically focus on problems pertaining to discounts and pricing.

• Assortment Optimization Case (2017): This work presents an inventory management problem, where
the demand is a consequence of product prices. Here, promotions and markdowns follow a slightly
different structure and apply not to the product pricing, but instead to their shelf assortment within
the store (product sales is limited by an upper bound, which is a consequence of some pre-defined
rules set by the store).

sti = min(dti(p), s̄
t
i), dti(p

t
i) = max

(
ai − bip

t
i, 0

)
.

Note that s̄ti is a constant, which is determined based on the various shelf widths and heights,
specific to the store. Recent work [Hek+19] investigates this setting in detail based on real business
data from a Turkish grocery store. However, the data has not been made publicly available.

• Markdown Optimization Case (2020/2021): Recent work [Bur+21] considers the promotions planning
problem (discrete version) in spirit similar to our proposed formulation. However, the setting is
slightly more complex, where the objective includes metrics that are not restricted to only revenue.
This data is from a European retail outlet (details also anonymized) and is not publicly available.

4.1.2 Open Source Repositories

While there are multiple datasets available from the standpoint of retail, e.g., market basket data, product
attribute data, inventory data, and geographical variation data, very few actually correspond to historical
price-sales entries. Of these, we describe two crucial and widely used datasets and one simulated dataset
as follows.

• Tech-Gadget Retailer (Cohen’s dataset): This dataset is anonymized and refers to real data from
a US based retailer [Coh+22]. It comprises 44 SKUs and 4400+ entries, with individual columns
for price and sales. This dataset has been used as one of the standards for demand forecasts, e.g.,
by [CZJ19; DLS22]. The time stamps for the records range from the years of 2016 to 2018 for 98
weeks.

• Online Retail: This refers to data from the UCI repository [CSG12] and contains all the transactions
between Jan. 2010 and Sep. 2011 for a real UK based online retail company (details similarly
anonymized). The customers are wholesalers and the products/SKUs are “gifts” (occasion specific).
The dataset has a few additional indicators like geography. It contains more than 2500 SKUs and
roughly 50,000 records (transactions).

• Logit: Here, we simulate data based on previous work on logit models [EC23]. While the logit model
is well established and possibly the most widely used, most of these models also contain product
attributes or competition related additions. The model takes the form: d(p) = {1 + exp {−ψ(p)}}−1.
We use the same parameters from [EC23], adding minor randomization with respect to the products.
Our data is generated for 50 products and 50 weeks.

4.1.3 Other References

Some datasets from kaggle [Che; SB21] and beyond [Ske+21] also contains the necessary price-sales entries.
However, they comprise information on product attributes in addition to prices. These datasets have
been mainly analyzed in literature from the standpoint of clustering or association rule mining. Demand
forecasting in these cases has also been studied, but over these comprehensive input features. These
datasets hence do not ideally suit our case study.

4.2 Numerical Results

We present three sets of results in this discussion. The numbers denoting the revenue are expressed in
the respective currency units (US-Dollars or Pounds). First, we analyze the progressive performance of
the QCASM algorithm for the different datasets. Second, we discuss the accuracy of the three different
piecewise linear functions on each of these datasets. Lastly, we compare the results of our optimization
algorithm with standard base price solutions and randomly generated prices. All our computations were
done on a quadcore Linux machine (Ubuntu 15.0) with 2.7Ghz speed and 32 GB RAM. We consider a
simple version of the revenue maximization problem, which is continuous and further ignore inter-item
constraints. Prices are bounded from above and below, where upper bounds indicate the base price. The
lower bounds and the interior values of price indicate discounts. The price bounds are set to be the
lowest and highest values of the respective products prices from historical data. The initial inventory and
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Iteration Revenue (in multiples of 100,000)
Product 4 Product 5 Product 7 Product 8 Product 12 Total

1 0.07529 0.04287 0.11084 1.14629 0.56539 24.4017
10 0.07620 0.04380 0.11968 1.16121 0.56647 25.4976
20 0.07734 0.04496 0.13073 1.17985 0.56783 26.8673
50 0.08075 0.04844 0.16388 1.23578 0.57191 30.9767
70 0.08121 0.04891 0.18598 1.27306 0.57191 32.3248
80 0.08121 0.04891 0.19703 1.29170 0.57191 32.8250
100 0.08121 0.04891 0.21913 1.32899 0.57191 33.8253

Table 1: Iterative progress of QCASM for Cohen’s problem

replenishment levels are set to be proportionate to the total historical sales. All the datasets considered
in our study and the related implementation details are available online1.

Iterative Performance: We begin our analysis with Cohen’s dataset. For this dataset, the sales data
obviously appeared to follow a non-concave trajectory and hence the choice of max(., .) is ideal from both
practicality and accuracy standpoints. Given the 44 SKUs, QCASM was used to solve both nonsmooth
optimization problems, regression and revenue maximization. The termination criterion for both cases
was 200 iterations of the active signature method or attainment of optimal error tolerance levels. Table 1
shows the revenue of different products at different stages of the QCASM algorithm. The estimation
problem is relatively simple in that it consumes a significantly lesser number of iterations. Hence, we
ignore reporting the related iterative performance. Here, coefficients a and b refer to the values from the
fit sti ≈ max

(
a0i − b0i p, a

1
i − b1i p

t
i

)
. It can be observed that convergence is reached in very few iterations

for some products. This is very much expected since the variability in price and demand levels is huge
across the product portfolio. In the case of nearly one-third of the products, the number of iterations did
not exceed 10. For the UCI dataset, a similar iterative behavior is reported in table 2. Here, coefficients
a and b are fitted with respect to the curve sti = max(ai − bip

t
i, 0) and the second problem (revenue

maximization) is solved using the same expression. For this case, the sales data had a large fraction of
“0” values and product returns, and the choice of max(., 0) is the most practical. The total revenue is
reported in the last column. Similar results are reported in table 3 for another set of products. For

Iteration Revenue
P-377 P-780 P-756 P-263 P-599 P-1060 P-441 P-686 P-324 Total

1 257.92 1939.60 132.60 1536.60 1234.48 515.84 792.48 1012.94 3307.20 5857376.16
10 425.60 2726.41 326.01 3119.66 2616.66 875.51 1056.24 1903.86 4852.65 7692706.11
20 635.20 3709.92 567.77 5098.49 4344.38 1325.10 1385.94 3017.51 6784.47 9987238.74
50 1264.01 6660.46 1293.04 11034.96 9527.54 2673.87 2375.05 6358.47 12579.92 16803284.78
70 1347.85 7053.87 1389.75 11826.49 10218.63 2853.70 2506.93 6803.94 13352.65 17766752.17
80 1347.85 7053.87 1389.75 11826.49 10218.63 2853.70 2506.93 6803.94 13352.65 17798875.94
100 1347.85 7053.87 1389.75 11826.49 10218.63 2853.70 2506.93 6803.94 13352.65 17824970.72
150 1347.85 7053.87 1389.75 11826.49 10218.63 2853.70 2506.93 6803.94 13352.65 17839027.50

Table 2: Iterative progress of QCASM for UCI’s problem

Iteration Revenue
P-1169 P-1316 P-1316 P-1476 P-1145 P-1913 P-1541 P-1404 P-1433 P-1201

1 187.13 1505.40 1505.40 1491.85 1325.48 895.44 388.96 1549.08 1677.52 309.40
10 555.90 4884.62 4884.62 3248.09 3816.33 4273.68 1650.53 2033.86 2001.66 1068.77
20 1016.87 9108.65 9108.65 5443.38 6929.90 8496.49 3227.48 2639.84 2406.83 2017.98
50 2399.77 21780.72 21780.72 12029.27 16270.60 21164.91 7958.35 4457.78 3622.35 4865.62
70 2584.16 23470.33 23470.33 12907.38 17516.03 22854.03 8589.13 4700.18 3784.42 5245.30
80 2584.16 23470.33 23470.33 12907.38 17516.03 22854.03 8589.13 4700.18 3784.42 5245.30
100 2584.16 23470.33 23470.33 12907.38 17516.03 22854.03 8589.13 4700.18 3784.42 5245.30
150 2584.16 23470.33 23470.33 12907.38 17516.03 22854.03 8589.13 4700.18 3784.42 5245.30

Table 3: Iterative progress of QCASM for UCI’s problem (second set)

the logit dataset, a similar iterative behavior is reported in table 4. Here, coefficients a and b are fitted
with respect to the curve sti = min(a0i − b0i p

t
i, ai − bip

t
i) and the second problem (revenue maximization)

1Please follow this link for all details: https://scm.cms.hu-berlin.de/aswinkannan1987/retail-code-base.
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is solved using the same expression. This solves the issue of concavity with respect to maximization of
revenue and as we will see later also provides the best possible fit. The choice of the min type PLF for

Iteration Revenue - in multiples of 100,000
P-38 P-8 P-11 P-36 P-24 P-21 P-25 P-33 Total

1 9.5455 13.6753 3.7833 9.9388 7.7593 8.4056 9.2360 7.5832 342.6827
10 9.9612 14.5872 5.6423 11.2419 9.7020 9.3681 10.1433 9.3743 428.4903
20 10.4809 15.7272 7.9662 12.8707 12.1304 10.5713 11.2774 11.6132 535.7499
50 12.0400 19.1471 14.9376 17.7572 19.4154 14.1807 14.6798 18.3299 857.5285
70 13.0794 21.4270 15.8672 18.4088 20.3867 16.5871 16.9481 19.2254 919.1238
80 13.5991 22.5669 15.8672 18.4088 20.3867 17.7902 18.0822 19.2254 930.8060
100 14.6385 24.8468 15.8672 18.4088 20.3867 20.1965 20.3505 19.2254 954.1704
150 14.9504 25.5308 15.8672 18.4088 20.3867 20.9184 21.0310 19.2254 961.1797

Table 4: Iterative progress of QCASM for the Logit problem

the logit case can be observed to be quite straightforward.

Comparison of models: In synopsis, the three piecewise linear models give a good estimate on the
nature of demand for each of our datasets. If a min type function is more accurate, then demand can
be possibly more concave. Table 5 shows the accuracy error (mean absolute error) for all the different
possible scenarios. It follows that the max(., .) fits the Cohen problem finer, and min(., .) suits the concave
demand problem.

Dataset Mean Absolute Error (Scaled)
Model - max(., 0) Model - max(., .) Model - min(., .)

Cohen 46.4562 42.7222 47.8897
UCI 19.9365 6.1840 8.6981

Concave-Demand 5.6640 5.6637 0.7258

Table 5: Comparison of Different Piecewise Linear Functions

Solution Quality: For the revenue maximization problem, we compare our results with three standard
(and rudimentary) settings. One is setting the prices throughout at the base level (upper bound). The
second setup refers to a randomly generated price vector between the lower and upper bounds, while the
third one refers to the mid point between the lower and upper price bounds. It can be easily noticed from
table 6 that there is a significant improvement in running our algorithm QCASM on the actual nonsmooth
optimization problem. At this point, we do not intend to compare the performance of our algorithms
against other smooth reformulations or other quadratic optimization methods. We just demonstrate as a
proof of concept that the nonsmooth problem can be solved efficiently by the QCASM solver and the
scheme is also theoretically convergent when demand functions follow some structure on concavity.

Dataset Revenue
Base price Random price Midpoint price QCASM

Cohen 2440173.82 2970553.95 2846046.30 4774583.20
UCI 5857376.16 15807897.04 12736676.95 17841259.92

Concave-Demand 34268272.32 88747048.32 76545493.35 96117974.13

Table 6: Comparison of Different Piecewise Linear Functions

5 Conclusion

This work considered nonsmooth quadratic optimization problems in retail revenue management. A
continuous variant of the multi-period problem with inventory constraints and price bounds was analyzed
and some preliminary statements on convexity were stated. The problem also required the estimation
of piecewise linear functions that fit the historical data on price-sales leading to a similar optimization
problem. A convergent active signature method that deploys the structure of the nonsmoothness was
proposed for both problems in question. For a proof of concept, three practical datasets were studied.
While the first two cases originate from real retail data, the third one was simulated from the widely used
logit model. Preliminary results demonstrated a good behavior in iterative performance and revenue
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improvement in comparison to other trivially chosen points. Future work aims to expand on deploying
active signature methods for generalizations of our problem involving discrete prices and product design
attributes.
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