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Abstract. Optimal control problems usually involve constraints which model
physical states and their possible transitions. These are represented by ordinary
or partial differential equations (ODEs/PDEs) which add a component of infinite
dimension to the problem. In recent literature, one method to simulate such
ODEs/PDEs are physics-informed neural networks. Typically, neural networks
are highly non-linear which makes their addition to optimization problems
challenging. Hence, we leverage their often available Lipschitz property on a
compact domain. The respective Lipschitz constants have to be computed only
once and are accessible thereafter.

We present a method that, based on this property, iteratively adds cuts
involving the violation of the constraints by the current incumbent and the
Lipschitz constant. Hereby, the “shape” of a cut depends on the norm used. We
prove the correctness of the method by showing that it either returns an optimal
solution when terminating or creates a sequence with optimal accumulation
points. This is complemented by a discussion about the termination in the
infeasible case, as well as an analysis of the problem complexity. For the
analysis, we show that the lower and upper iteration bound asymptotically
coincide when the relative approximation error goes to zero. In the end, we
visualize the method on a small example based on a two-dimensional non-
convex optimization problem, as well as stress the necessity of having a globally
optimal oracle for the sub-problems by another example.

1. Introduction

Mathematical optimization problems exist in a variety of levels of specificity and
are investigated in each kind. Here, we address the following general form of an
optimization problem.

min
x

f(x)

s.t. r(x) ≤ 0,
x ∈ Ω.

(P)

We assume Ω to be a non-empty, compact subset of the finite dimensional vector
space X over a field F , i.e., Ω ⊂ X ∼= Fn, n ∈ N. The space X is associated with
a norm ‖ · ‖X . That is, in particular, (X, ‖ · ‖X) is a normed space. Set Ω serves
as a domain for the function r : Ω→ Rm, mapping it into the m-dimensional real
space for some m ∈ N. We mention that 0 ∈ Rm denotes the vector of m zeros and
the inequality in (P) is to be interpreted component-wise. In addition, function r is
assumed to be Lipschitz continuous on Ω with a known Lipschitz constant L > 0,
i.e., for any x, y ∈ Ω, it holds that

‖r(x)− r(y)‖Rm ≤ L‖x− y‖X ,
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with ‖ · ‖Rm denoting some norm in Rm. Note that the value of the constant L
depends on the specific choice of norms. From now on, we will omit the subscripts
for each norm, where it is unambiguous. Further, we emphasize that the explicit
form of r can be unknown, though its evaluation at any point x ∈ Ω must be possible.
Lastly, the objective function f : Ω→ R is assumed to be continuous on Ω.

We tackle the problem (P) for an arbitrary field F in order to stress the wide
applicability of the approach presented in this article. Nevertheless, the main part of
the mathematical literature in the area of optimization or programming, considers
F = R. Doing so, solving (P) is considered as constrained global optimization or
constrained global programming. Depending on the properties of the involved objects
f , r, and Ω, the field of mathematical programming and the developed approaches
change. For example, linearity of f and r combined with box-constraints defining
Ω leads to the class of linear programming. Convexity in Ω and r determines the
problem for convex programming, whereas non-linear programming tackles general
non-linear (possibly continuously differentiable) constraints r. A broad overview of
this topic is provided in the book [9].

In our problem formulation, it is assumed that we can evaluate the constraint
function r without having an explicit representation. Such problems are tackled in
the field of black-box optimization or, more commonly, derivative-free optimization.
Here, the applicability of any particular approach also depends on the structure of Ω.
For example, if Ω is defined by linear constraints only, a directional direct-search
approach can be leveraged which applies a Lagrangian reformulation; see [12]. For
non-smooth constraints defining Ω, filtering techniques as proposed in [1] may be
more suitable. Further, in terms of direct search, a well-known method called mesh
adaptive direct search (MADS) (see [2]) is capable of handling general constraints
in Ω, too. Alternatively, [3] proposes a trust-region interpolation-based approach
to tackle such problems. For a general overview on constrained derivative-free
optimization, we refer to [4, Chapter 13].

As mentioned in [18, Chapter 6], even when minimizing a continuous function
over a simple box-shaped domain, in a worst-case situation a finite bound on the
number of iterations to find an optimal solution cannot be expected. Hence, as
described earlier, we make the assumption of a Lipschitz property to r. Since
continuous differentiability of r on Ω already implies the Lipschitz continuity of r,
we consider our assumption as a rather weak one. In particular, we touch the field
of Lipschitz optimization which is treated in [9, Chapter XI]. Here, problems with
univariate, Lipschitzian objectives are tackled by saw-tooth cover methods. More
general problems, similar to (P), are solved by branch-and-bound schemes or outer
approximation.

The authors of [6] leverage the Lipschitz continuity of constraint functions to
tackle a specific kind of problem. They assume Ω to be a polytope, variable vector x
to be partially integral, and r to be only involved in equality constraints on the
continuous part of x. For this kind of problem, they propose a method which relaxes
the equality constraints and iteratively adds cuts induced by the maximum norm
to the set Ω. Using binary variables to make a model of these cuts, they obtain
a mixed-integer program which is solved in each iteration. The principles of our
method align with this approach. Nevertheless, we consider an arbitrary compact
domain Ω with some norm and allow the constraint involving r to be an inequality
instead. Hence, our method is a generalization of the one in [6], even though we do
not discuss properties of the resulting problem class after adding the cuts due to
the general character of the original problem.

The authors of [5] discussed the Lipschitz continuity of neural networks and
introduced a method to compute the respective Lipschitz constants. In [13], the
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authors use this Lipschitz continuity of neural networks, in order to incorporate
them into the optimization problem. They leverage an approach introduced in [16],
relaxing the Lipschitz constraints and iteratively refining the domain to smaller
parallelepipedal shapes in order to solve bilevel problems with an unknown lower
problem. Our motivation is also based on incorporating the Lipschitz continuity
of neural networks. In contrast to [13], we aim to deal with ordinary or partially
differential equations in the context of physics, in particular with gas network control
(see [10]). These can be approximated by machine learning techniques, e.g., see
[15], and hopefully re-integrated into the optimization problem with the underlying
method. This justifies the inclusion of non-convex constraints by our method to
trade off against infinite dimensional differential equation constraints.

Our contribution consists in presenting a method generalizing the one in [6] which
is thus applicable to a wide and abstract class of problems. We prove its correctness
by showing that it either returns an optimal point or creates a sequence with
optimal accumulation points. In terms of problem complexity, we show asymptotic
convergence of its lower and upper complexity bounds motivating the introduction
of the method. At the end, we stress the necessity of a globally optimal oracle for
the solution of the sub-problems by illustrating the convergence to the maximum in
an one dimensional minimization problem with a locally optimal oracle.

The remainder of the paper is structured as follows. In Section 2, we give basic
definitions in order to formulate the introduced method clearly and to keep the proof
of correctness in Section 3 concise. Section 4 is dedicated to an analysis regarding
a termination bound in the case of an infeasible problem w.r.t. the properties of
r and Ω, as well as to a discussion about the problem complexity. Lastly, we give
an illustration of the procedure and present an example which shows its weakness
in terms of local solutions. We close the paper with Section 5 by summarizing the
content and pointing to further research directions.

2. Norm-induced Cut Method

In this section, we formulate a method that is able to tackle Problem (P). We
start by giving precise definitions which clarify the occurring mathematical objects.
Afterwards, the solution method is introduced, iteratively solving a relaxed problem
and adding cuts in order to enforce feasibility. The mentioned cuts are implicitly
determined by a point in Ω, the norm, and the function r with its Lipschitz constant
L. We define them formally below.

Definition 2.1. Let y ∈ Ω such that r(y) > 0 and let L > 0 define the Lipschitz
constant of function r. Then, for x ∈ Ω, we call the inequality

‖r(y)‖
L

≤ ‖x− y‖,

a norm-induced cut in y.

Whenever refering to the radius of a norm-induced cut, we consider the constant
term ‖r(y)‖/L. In the case ofX ∼= Rn we note that a norm-induced cut is non-convex
in variable x independent from the choice of norm.

Now, we denote the feasible set of (P) by
Q := {x ∈ Ω | r(x) ≤ 0} ⊆ Ω.

In the following, we define a family of sets which involve norm-induced cuts and
which are relaxations to Q as shown below in Lemma 3.3.
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Definition 2.2. Let k ∈ N be a positive integer and (xi)i=0,...,k−1 ⊆ Ω a sequence
such that r(xi) > 0 for all i = 0, . . . , k − 1. Then, we define

Qk :=
{
x ∈ Ω

∣∣∣∣∀i ∈ {0, . . . , k − 1} : ‖r(x
i)‖

L
≤ ‖x− xi‖

}
,

the kth relaxed set of Q. It results from Ω by relaxing the inequality constraint
r(x) ≤ 0 and adding k norm-induced cuts for each element xi of the sequence. For
k = 0, we naturally define Q0 := Ω.

The resulting family of relaxed problems is denoted as
min
x∈Qk

f(x), (Pk)

for k ∈ N0. We interpret k as the iteration index of our method. The following
remark shows a connection between two consecutive relaxed problems (Pk) and
(Pk+1), in particular, between their feasible sets Qk and Qk+1, respectively.

Remark 2.3. Let k ∈ N0 and let (xi)i=0,...,k ⊆ Ω be the sequence to define the kth
and the (k + 1)th relaxed set Qk and Qk+1, respectively. Then, Qk+1 is given by

Qk+1 = Qk ∩
{
x ∈ Ω

∣∣∣∣ ‖r(xk)‖
L

≤ ‖x− xk‖
}
.

In other terms, the (k + 1)th relaxed set results from the kth relaxed set by
adding the norm-induced cut in xk, i.e.,

‖r(xk)‖
L

≤ ‖x− xk‖.

Now, we are able to state our method for solving problem (P). It is called Norm-
induced Cutting Method (NIC), following its main functionality of iteratively adding
norm-induced cuts.

In particular, it starts by relaxing the explicit inequality constraint in (P), i.e.,
r(x) ≤ 0, and solves the resulting relaxed problem (Pk) for k = 0. It is assumed
that we have a suitable method to solve (Pk) for all k ∈ N0. If the relaxed problem
is infeasible, so is the original one and a message is returned accordingly. Otherwise,
the method checks if the solution of the relaxed problem x0 is also feasible for the
original problem by evaluating function r at x0 and checking for the inequality. If
it is satisfied, the current incumbent x0 is returned as a solution to the original
problem. Otherwise, a norm-induced cut in incumbent x0 is added. This defines
the set Q1. The resulting problem (P1) is then solved in the next iteration.

In conclusion, the method adds norm-induced cuts as long as the incumbents are
infeasible for the original problem (P). Below we give a formal description of the
NIC method in pseudo code. We point out that any specific stopping criterion is
omitted, as we examine the method’s behavior for an infinite number of iterations in
Section 3. The practical case of satisfaction with an approximate solution is tackled
in Section 4.

Note that the norm-induced cuts are added with a lower bound to the norm
of the difference between the current incumbent and variable x. This bound is
the radius of the norm-induced cut and includes the violation of r(x) ≤ 0 at the
incumbent and the Lipschitz constant L. Informally, the greater the violation or
the smaller L, the greater the radius of the norm-induced cut and, thus, the greater
the “excluded area” in the next iteration.

In order to discuss properties of the NIC method in the following sections, we
introduce the notation of a ball and the terms ε-packing/-covering. We start with
the former.
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Norm-induced Cutting Method (NIC)
Input: Set Ω, function r, Lipschitz constant L
Output: A message of (P)’s infeasibility, a solution to (P), or a sequence (xi)i∈N0

1: set k ← 0
2: solve (Pk)
3: if (Pk) is infeasible then
4: return ‘(P) is infeasible’
5: else
6: denote xk as the solution of (Pk)
7: end if
8: if r(xk) ≤ 0 then
9: return solution xk to (P)
10: end if
11: set k ← k + 1
12: goto (2)

Definition 2.4. Let ε > 0, x̄ ∈ X, and ‖·‖ a norm on X. Then, we define the
ε-ball around x̄ as

Bε(x̄) := {x ∈ X | ‖x− x̄‖ < ε} .
For the case x̄ = 0, we write the short form

Bε := Bε(0) = {x ∈ X | ‖x‖ < ε} .

For the fundamental mathematics regarding ε-packing/-covering, we refer to [17].
We use the notation from the lecture notes [8] and adapt the definition to fit our
question.

Definition 2.5. Let k ∈ N0, ε > 0, and ‖·‖ a norm on X. Further, consider A ⊆ X
and P := {x0, . . . , xk} ⊆ A a set of points in A.

a) If A ⊆
⋃k
i=0Bε(xi), we call P an ε-covering of A. Furthermore, we define

the minimal cardinality of such a P as
N(A, ‖ · ‖, ε) := min {k | ∃ε-covering of A with size k} ,

the covering number of A w.r.t. ε.
b) If {Bε/2(xi)}i=0,...,k are pairwise disjoint, i.e., ‖xi − xj‖ ≥ ε for all

i, j = 0, . . . , k, i 6= j, we call P an ε-packing of A. We also define the
maximal cardinality of such a P , i.e.,

M(A, ‖ · ‖, ε) := max {k | ∃ε-packing of A with size k} ,
the packing number of A w.r.t. ε.

3. Convergence and Optimality Results

This section is dedicated to show the correctness of NIC. Depending on the
feasibility of the original problem (P), we can show feasibility and even optimality
of a returned solution or of the accumulation points of a sequence of incumbents
produced by the method. In the end, we give a statement regarding the availability
of local solutions in step 2. This is complemented by a negative example in Section 4.
We start by remarking on the boundedness of (P) in case of feasibility.

Remark 3.1. As r is Lipschitz continuous, it is also continuous. By re-writing the
feasible set of (P) as

Q = Ω ∩ r−1((−∞, 0]m),
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where r−1(·) notes the pre-image of r, we can use the closure of (−∞, 0]m to derive
the closure of r−1(−∞, 0]m). Together with the compactness of Ω, this implies that
Q is compact. Therefore, Problem (P) minimizes a continuous function over a
compact set and, thus, if Q 6= ∅, the problem has a finite solution value.

With this in mind, we state two lemmata. The first one ensures that NIC does
not find any incumbent twice, the second one implies that (Pk) is a relaxation of
(P) for each k ∈ N, as mentioned in Definition 2.2.
Lemma 3.2. Consider some k ∈ N0 and a solution xk to (Pk) such that r(xk) > 0.
Then, xk /∈ Qk+1, i.e., the incumbent xk is infeasible for problem (Pk+1).

Proof. Let the assumptions as in the lemma hold true. As xk is a solution to (Pk),
we have xk ∈ Qk. Due to strict positivity of r(xk) and L, it follows

‖xk − xk‖ = 0 < ‖r(x
k)‖
L

.

Then, Remark 2.3 directly implies that xk /∈ Qk+1 and the claim follows. �

Lemma 3.3. For any k ∈ N0, it holds that Q ⊆ Qk.
Proof. If k = 0, Qk = Ω by construction and the claim follows from Definition 2.2.

Now, let k ∈ N arbitrary but fixed and let (xi)i=0,...,k−1 be a sequence to
determine Qk. Then, it holds true that

xi ∈ Ω ∧ r(xi) > 0,
for i = 0, . . . , k − 1. Further, consider some x̄ ∈ Q, thus, x̄ ∈ Ω and r(x̄) ≤ 0. We
can conclude that

0 < ‖r(x
i)‖

L
= 1
L
‖r(xi) + r(x̄)− r(x̄)‖ ≤ 1

L
‖r(x̄)− r(xi)‖ ≤ ‖x̄− xi‖,

for all i = 1, . . . , k − 1. Hence, for all i = 0, . . . , k − 1, x̄ satisfies the norm-induced
cut in xi. With Definition 2.2 it follows x̄ ∈ Qk and the claim is proven. �

In other terms, Lemma 3.3 shows that infeasibility of Problem (Pk) automatically
implies the infeasibility of Problem (P), in particular, Qk = ∅ ⇒ Q = ∅. Therefore,
step 4 associated with the corresponding if-clause is reasonable and NIC gives a
correct answer if it stops in step 4. Further, it results from Lemma 3.3 that (Pk)
is a relaxation of (P) for k ∈ N0. Therefore, the solution value of (Pk), which is
obtained during NIC, gives a lower bound to the value of (P). This can be used
in meta-level solution frameworks, e.g., in Branch-and-Bound which is common in
discrete optimization scenarios; see [11] for the original source.

In the following, we prove that NIC either outputs a feasible solution or produces
a sequence with feasible accumulation points for (P) if running for infinite time.
Theorem 3.4. Let (P) be feasible, i.e., Q 6= ∅. Then, either

a) NIC stops with a feasible solution x∗ for (P) in step 9, or
b) NIC creates a sequence of incumbents (xi)i∈N0 , there exists at least one

convergent subsequence of this sequence, and each convergent subsequence
has a limit feasible for (P). That is, (xi)i∈N0 has at least one accumulation
point and all accumulation points of (xi)i∈N0 are feasible for (P).

Proof. With the assumption and Lemma 3.3, it is clear that

∅ 6= Q ⊆
⋂
k

Qk. (1)

Here, k indicates the iteration index and is specified in the case distinction below.
From (1) we have that Qk 6= ∅ and, thus, NIC does not stop in step 4. Hence, it
either stops in step 9 or runs for infinite time. We start with the former case.
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a) Let k ∈ N0 be the index of the stopping iteration. According to Definition 2.2,
Qk ⊆ Ω and, thus, the incumbent satisfies xk ∈ Ω. Since stopping in step 9 requires
r(xk) ≤ 0, it follows that NIC returns x∗ := xk ∈ Q, i.e., a feasible point for (P).

b) NIC runs for infinite time, i.e., stopping in step 4 is not possible and the
missing of a stop in step 9 is assumed. Again, as Qk ⊆ Ω for all k ∈ N0, we receive a
sequence (xi)i∈N0 ⊆ Ω. With Ω being compact, (xi)i∈N0 has at least one convergent
subsequence (xij )j∈N0 with

lim
j→∞

xij = x∗ ∈ Ω.

We want to prove the feasibility of x∗ for (P) by contradiction and, thus, assume
x∗ /∈ Q, i.e., r(x∗) > 0. As NIC is assumed to not terminate, we have

∀j ∈ N0 : r(xij ) > 0.
Furthermore, having compactness of Ω and the (Lipschitz) continuity of r on Ω, we
can deduce the existence of an ε > 0, such that

0 < 2ε < ‖r(x∗)‖.
Due to the convergence of (xij )j∈N0 to x∗, there also exists a j(ε) ∈ N0 such that

‖x∗ − xij‖ < ε

L
, for all j ≥ j(ε). (2)

That is, for all j ≥ j(ε), the element xij of the subsequence is inside an ε/L-ball
around x∗. Using the triangle inequality and the results from above, we can conclude
the relation

2ε < ‖r(x∗)‖ = ‖r(x∗)− r(xij ) + r(xij )‖
≤ ‖r(x∗)− r(xij )‖+ ‖r(xij )‖
≤ L‖x∗ − xij‖+ ‖r(xij )‖ ≤ ε+ ‖r(xij )‖, (3)

for all j ≥ j(ε). In conclusion, we see that
‖r(xij )‖ > ε, for all j ≥ j(ε).

That is, for all j ≥ j(ε), a norm-induced cut in xij ∈ Qij of the form

‖x− xij‖ ≥ ‖r(x
ij )‖
L

>
ε

L
(4)

is added, resulting in Qij+1. In order to show termination, Lemma 3.2 and (4) imply
that it suffices to prove that only a finite number t of xij can be contained in the
original feasible set Q0 = Ω, having a pairwise distance (w.r.t. the norm) of at least
ε/L. After adding all the respective cuts, NIC would end up with an empty Qk for
some k which is a contradiction and, thus, implies termination. We can write the
problem of finding such a number as

max
t∈N

t

s.t. xα ∈ Ω, for all α = 1, . . . , t,

‖xβ − xγ‖ ≥
ε

L
, for all β, γ = 1, . . . , t, β 6= γ.

(5)

In other terms, (5) aims to find a maximal ε/L-packing of Ω, compare Defini-
tion 2.5. This motivates us to set M(δ) = M(Ω, ‖ · ‖, δ) and N(δ) = N(Ω, ‖ · ‖, δ)
the packing and covering number of Ω w.r.t. some δ > 0, respectively. There-
fore, determining the optimal value of (5) is equivalent to finding M(ε/L). For
normed spaces, it is well known that M(2δ) ≤ N(δ) (see, e.g., [17]) and, thus,
M(ε/L) ≤ N(ε/(2L)). That is, our claim of a finite termination is proven if there
exists a finite ε/(2L)-covering.
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Now, as X is a finite dimensional vector space, it is isomorphic to Rn with an
isomorphism φ : X → Rn. As Ω is compact, φ(Ω) is also compact and analogously
φ(Bε/(2L)) is open. By the theorem of Heine-Borel there exists a finite cover of φ(Ω)
with translations of φ(Bε/(2L)). Therefore, the equivalent statement holds true for
Ω and Bε/(2L), and it follows N(ε/(2L)) < ∞. This shows M(ε/L) < ∞. Hence,
NIC terminates in a finite amount of iterations, a contradiction. Therefore, x∗ ∈ Ω
and claim b) is proven.

�

In other terms, this shows that NIC solves the feasibility problem of (P) in case
it really is feasible. The following remark takes the availability of possibly smaller
Lipschitz constants into account and comments on their effects on Theorem 3.4.
Remark 3.5. Let’s assume we have access to the local Lipschitz constants Lx of r
for each x ∈ Ω. That is,

∀x ∈ Ω ∃Lx > 0 : ‖r(x)− r(y)‖ ≤ Lx‖x− y‖, for all y ∈ Ω. (6)
First, note that the statements of Lemma 3.2 and Lemma 3.3 still hold when using
the local Lipschitz constants Lxk and Lxi in the proofs, respectively. Second, as
the global Lipschitz constant L is an upper bound to every local one, i.e., L ≥ Lx
for all x ∈ Ω, inequality (2) can be re-written to ‖x∗ − xij‖ < ε/Lxij , leading to
the same result as in inequality (3) and, thus, a possible greater right-hand side in
inequality (4). Therefore, the availability of local Lipschitz constants can lead to
larger cuts and may result in faster convergence.

Further, during the execution of NIC in iteration k ∈ N0, we have to consider
the Lipschitz continuity of r only on Qk. We note that, while this has no influence
on the behavior of the algorithm per se, it might be possible to leverage a bounded
domain such as Qk to compute the Lipschitz constant efficiently, as well as obtain a
lower constant. This leads to the same effect as mentioned above.

It is also possible to combine locality with the current feasible region. In particular,
if we are in iteration k ∈ N0 and have solved (Pk) to receive xk, we could compute
Lxk for y ∈ Qk instead of doing so for all y ∈ Ω as denoted in (6). Then, we could
proceed and add the cut with respect to Lxk .

Besides the question of feasibility of the output, its quality/optimality also needs
to be investigated. Note that Theorem 3.4 does not require the solution in step 2 to
be optimal per se. Therefore, NIC produces a feasible output even if (Pk) is only
solved for a feasible solution. However, when investigating the optimality of the
returned solution or the accumulation points, respectively, we assume the global
optimality of xk for (Pk) in step 2 and apply a case distinction as in Theorem 3.4.
Theorem 3.6. Let (P) be feasible, i.e., Q 6= ∅, and let step 2 produce a globally
optimal point xk for (Pk), k ∈ N0. Then, either

a) NIC stops with a globally optimal solution x∗ of (P) in step 9, or
b) NIC creates a sequence of incumbents (xi)i∈N0 , there exists at least one

convergent subsequence of this sequence, and each convergent subsequence
has a limit that is globally optimal for (P). That is, (xi)i∈N0 has at least
one accumulation point and all accumulation points of (xi)i∈N0 are globally
optimal for (P).

Proof. With (P) being feasible, Theorem 3.4 shows that NIC either stops in step 9
or iterates infinitely often. We start with the former case.

a) Let k ∈ N0 be the index of the stopping iteration, in which xk is returned.
According to Theorem 3.4, xk is feasible for (P), i.e., xk ∈ Q, and, thus, it is

min
x∈Q

f(x) ≤ f(xk).
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Further, by assumption xk is optimal for (Pk) and Lemma 3.3 states Q ⊆ Qk which
implies

f(xk) = min
x∈Qk

f(x) ≤ min
x∈Q

f(x).

Together, we can conclude
min
x∈Q

f(x) = f(xk),

which proves claim a).
b) Assuming NIC iterates infinitely, we denote (xi)i∈N0 as the resulting sequence

of incumbents. Theorem 3.4 states that it has at least one accumulation point and
that all its accumulation points are feasible for (P). Hence, let (xij )j∈N0 denote a
convergent subsequence of (xi)i∈N0 with limit x∗ ∈ Q. The feasibility of x∗ for (P)
immediately gives

min
x∈Q

f(x) ≤ f(x∗).

Applying Lemma 3.3 on the index of the subsequence, leads to Q ⊆ Qij and, thus,

f(xij ) = min
x∈Qij

f(x) ≤ min
x∈Q

f(x),

for j ∈ N0. Leveraging the continuity of f when taking the limit, we can derive
lim
j→∞

f(xij ) = f( lim
j→∞

xij ) = f(x∗) ≤ min
x∈Q

f(x).

Therefore, f(x∗) = minx∈Q f(x) which finishes the proof. �

So far, we have proven that NIC is suited to tackle feasible problems which have
a structure like (P). We can further extend the structure by either including several
functions instead of one or by defining the function in question on lower dimensional
parts of the feasible set. The combination of these two extension is also treatable.
A formalization of this matter is given below.

Remark 3.7. As r can be multi-dimensional, i.e., m > 1, and r(x) ≤ 0 is
interpreted component-wise, we can re-write (P) as

min
x

f(x)

s.t. rp(x) ≤ 0, for p = 1, . . . , R,
x ∈ Ω,

(PR)

with R ∈ N and Lipschitz continuous functions rp : Ω → Rmp , mp ∈ N with their
Lipschitz constants Lp > 0. Then, we can perform NIC analogously by checking
for each rp(xk) ≤ 0 before step 9. Moreover, if the condition is not satisfied for
all p = 1, . . . , R, we can add one norm-induced cut for each p with rp(xk) > 0. In
particular, such a cut is given by

‖x− xk‖ ≥ ‖rp(xk)‖/Lp.
This may result in more than one cut per iteration. One can see that versions
of Lemma 3.2 and Lemma 3.3 adapted to the rp’s are equally valid with such a
procedure. Even further, the proofs of Theorem 3.4 and Theorem 3.6 can be derived
analogously by replacing each occurrence of r and L with all rp’s or the violated
ones, respectively, and the associated Lp.

Apart from that, we can assume r in (P) to map from a lower dimensional
subset of Ω into the Rm. In particular, let x = (x′, x′′) ∈ Ω = Ω′ × Ω′′ with
dim(Ω′), dim(Ω′′) ≥ 1, dim(Ω′) + dim(Ω′′) = n, and r : Ω′ → Rm. Denoting the
first dim(Ω′) elements of a vector with the prime, we can investigate the case of
an incumbent xk with r((xk)′) > 0. As a vector ((xk)′, x′′), for all x′′ ∈ Ω′′, can
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never be a valid solution for (P), the norm-induced cut in xk can be added in (xk)′
instead. That is, we can add

‖x′ − (xk)′‖ ≥ ‖r((xk)′)‖/L,
if a suitable notion of norm is available for Ω′.

In conclusion, one can even combine several inequalities depending on different
subvectors of x. The only necessary condition is the availability of respective Lipschitz
constants and norms.

We showed that NIC works correctly when we have a global solution method for
(Pk). But the question arises whether the algorithm still fulfills the desired behavior
when only a local solution method is available. In the following, we verify that a
returned point of step 9 is indeed a locally optimal point, if only such can be found
in step 2.

Theorem 3.8. Let (P) be feasible, i.e., Q 6= ∅, and let step 2 produce a locally
optimal point xk for (Pk), k ∈ N0. Then, if NIC stops in step 9, it returns a locally
optimal solution x∗.

Proof. Assume that NIC stops in step 9 in iteration k ∈ N0. As xk is a locally
optimal solution for (Pk), there exists an ε > 0 such that

f(xk) = min
x∈Bε(xk)∩Qk

f(x).

By Theorem 3.4 xk ∈ Q and, thus, xk ∈ Q ∩Bε(xk). We infer
min

x∈Q∩Bε(xk)
f(x) ≤ f(xk).

Further, the result from Lemma 3.3 implies Q ∩ Bε(xk) ⊆ Qk ∩ Bε(xk). We can
derive

f(xk) = min
x∈Qk∩Bε(xk)

f(x) ≤ min
x∈Q∩Bε(xk)

f(x),

and, thus, conclude that
min

x∈Q∩Bε(xk)
f(x) = f(xk).

Therefore, xk is a local optimum for (P) and the proof is complete. �

If NIC does not terminate with returning a particular point, we can not guarantee
the local optimality of the accumulation points. On the contrary, the sequence
might even converge to the worst possible point which we show in Example 4.7 in
the following section.

4. Termination, Problem Complexity and Illustrations

This section discusses a termination bound of NIC based on the properties of
r in case of infeasibility in (P), the problem complexity, and illustrative examples
giving rise to particular assumptions made. We start with the termination bound
and operate on R throughout the entire section.

4.1. Termination for Infeasible Problems. Let (P) be infeasible, i.e., Q = ∅.
Hence, r(x) > 0 for all x ∈ Ω. Due to the compactness of Ω and the (Lipschitz)
continuity of r, there exists δ > 0 with δ < minx∈Ω‖r(x)‖. In analogy to the proof
of Theorem 3.4, we can deduce inequality (4) regarding the norm-induced cuts for a
sequence of incumbents (xi)i∈N0 , i.e.,

‖x− xi‖ ≥ ‖r(x
i)‖

L
>
δ

L
, for all i ∈ N0.
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Ω ‖ · ‖ T

Ω1 :=
∏n
j=1[aj , bj ] ‖ · ‖∞

∏n
j=1 [(L/δ)(bj − aj) + 1]

Ω2 :=
∏n
j=1[aj , bj ] ∩ Zn ‖ · ‖∞ |Ω2|

Ω3 := {x | ‖x‖2 < D} ‖ · ‖2 (2LD/δ + 1)n

Table 1. Examples for T in (7) for δ/L < 1 depending on the
structure of Ω and the choice of norm.

That is, each incumbent xi satisfies the upper inequality with respect to all previous
incumbents x0, . . . , xi−1; compare Remark 2.3. In particular, for all l ∈ N, it is

‖xl − xi‖ > δ

L
, for all i = 0, . . . , l − 1.

Thus, the number of iterations until termination can be bounded by the maximal
number of incumbents in Ω with a norm of the pairwise difference of more than δ/L.
This was formalized in Definition 2.5 and refers to a maximal δ/L-packing of Ω.

In particular, our aim comprises of computing M(δ/L) := M(Ω, ‖ · ‖, δ/L) or an
upper bound for it. To the best of our knowledge there is no such bound for a
general normed finite-dimensional vector space. Though, when restricting X to Rn,
the situation differs, see [8, 17]:

Remark 4.1. Let X = Rn and vol( · ) denote the Lebesgue measure (“volume”).
Further, we define B := B1 as the unit ball under the considered norm ‖ · ‖ and set
B/2 := B1/2. Then, it holds

M(δ/L) ≤ T, (7)
where

T := vol(Ω + (δ/L)B/2)
vol((δ/L)B/2) ,

and the sum of two sets is considered the Minkowski sum.

Depending on the structure of Ω and the specific choice of norm, this leads to
particular upper bounds dependent on δ and L. We give some examples in Table 1.

4.2. Problem Complexity. As we tackle an abstract problem class, the expecta-
tion of finding an exact solution in finite time is inadequate; see [14, 18]. Hence, for
the investigation of problem complexity, we only consider approximate solutions.

Definition 4.2. Let ε > 0 and let ri denote the i-th component of r, i = 1, . . . ,m.
Then, we call x∗ ∈ Ω an ε-approximate solution for (P) if and only if

∀i = 1, . . . ,m : ri(x∗) ≤ ε.

As shown in [18], continuity of f is not sufficient to find an approximate solution
in a finite amount of steps. Thus, we assume the objective f to be also Lipschitz.
Additionally, in order to enable a discussion about the problem complexity, the
interior of Ω is assumed to be non-empty, as well an optimal solution x∗ to (P)
is assumed to be contained in an ε-ball inside Ω. This ensures that if NIC adds
norm-induced cuts with a radius of ε, it is not possible to cut off every neighboring
point in Ω.

For the lower bound on the problem complexity, we use a result from [14]. In
order to state it clearly, we define the following constants regarding Ω.

Definition 4.3 ([14]). Let ε > 0 and let Ω have a non-empty interior. Then, we
set the radius of Ω as

ρ(Ω) := min{s | ∃x ∈ Ω : ‖x− y‖ ≤ s, for all y ∈ Ω}.
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Further, the asphericity of Ω is defined as
α(Ω) = inf{β | ∃x, y ∈ Ω, s ≥ 0 : Bs(x) ⊆ Ω ⊆ Bβs(y)}.

In other terms, the asphericity defines the ratio of radii of the minimal ball containing
Ω and the maximal ball contained in Ω.

Since the magnitude of each ri has a great influence on how to choose a proper
approximation guarantee ε, we use the radius ρ(Ω) and assume r to be divided by
ρ(Ω)L, “normalizing” the inequality.

Now, problem complexity considers the number of oracle calls (step 2) until
achieving an approximate solution. We denote this number with N(ε) for ε > 0. As
NIC is presented to aim for an exact solution, we adjust it in the following way.

a) We only check for component-wise inequality with respect to ε in the if-clause
before step 9,

b) and we add the norm-induced cut from Definition 2.1 with respect to a
slightly changed radius of max

{
‖r(xk)‖/L, ε

}
.

Then, we can give the following lower bound on the problem complexity.

Theorem 4.4 ([14]). Let ε > 0 and let Ω have a non-empty interior. Then,

N(ε) ≥
(

c

α(Ω)

)n 1
εn
,

with some constant c > 0.

For the upper bound, we can use Remark 4.1 with ε instead of δ/L . That is,
instead of giving a termination bound dependent on values of r, we do it in terms
of the approximation guarantee ε. We formalize this in the following.

Theorem 4.5. Let ε > 0 and let Ω have a non-empty interior. Then,

N(ε) ≤ (2ρ(Ω) + ε)n 1
εn
.

Proof. With the definition of the radius in Definition 4.3, there exists x̄ ∈ Ω such
that Ω ⊆ Bρ(Ω)(x̄). Together with Remark 4.1, we can conclude

N(ε) ≤ vol(Ω + εB/2)
vol(εB/2) ≤

vol(Bρ(Ω) + εB/2)
vol(εB/2)

=
vol(Bρ(Ω)+ε/2)

vol(εB/2) =
(
ρ(Ω) + ε/2

ε/2

)n
=
(

2ρ(Ω)
ε

+ 1
)n

= (2ρ(Ω) + ε)n 1
εn
.

�

In conclusion, considering the dimension n fixed, we observe that the lower and
upper complexity bound show identical order of magnitude in ε.

4.3. Examples. Having investigated the problem complexity, we lastly aim to
illustrate the behavior of NIC. We give an example of a two dimensional problem,
involving non-linear constraints in form of a sine function. We note that such a
problem could not be treated by standard solvers such as [7] without reformulation.

Example 4.6. Consider the non-linear problem
min
x1, x2

|x1 − x2|+ x1

s.t. − sin(x1)− x2 ≤ 0,
x1, x2 ∈ [−1, 1].

(Psin)
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-1 1

-1

1

x∗

(a) Feasible region (hatched) and optimal
solution x∗ = (0, 0) of (Psin)

-1 1

-1

1

x0

x1

x2

(b) Incumbents x0, x1, x2 with the respec-
tive cuts for NIC on (Psin)

Figure 1. Illustration of Example 4.6

Following our notation, we have f(x) = f(x1, x2) = |x1 − x2| + x1,
r(x) = − sin(x1)− x2, and Ω = [−1, 1]2. The optimal solution of Problem (Psin)
is x∗ = (0, 0). See Figure 1a for a graphical representation of x∗ and the feasible
region Q = Ω ∩

{
x ∈ R2 ∣∣ r(x) ≤ 0

}
.

We specify an accuracy of ε = 10−4. Further, we consider the R2 with the
Euclidean norm ‖ · ‖2 =

√
x2

1 + x2
2 and the R with the absolute value | · |.

As r is differentiable, we can apply the mean value theorem and calculate its
global Lipschitz constant L on Ω as the maximal norm of the gradient of r over Ω.
In a formal manner, this reads

L = max
x∈Ω
‖∇r(x)‖2 = max

x∈Ω

∥∥∥∥(− cos(x1)
−1

)∥∥∥∥
2

=
√

2.

In the first iteration, the algorithm initializes k ← 0 and afterwards solves
min {f(x) |x ∈ Q0 = Ω}. As the problem is feasible, we receive a solution
x0 = (x0

1, x
0
2) = (−1,−1). Evaluating r at x0 gives r(x1) ≈ 1.84, which does not

satisfy the required accuracy. Therefore, NIC adds a cut of the form

‖x− x1‖2 ≥
|r(x0)|
L

, (8)

with the right-hand side being approximately 1.30. We illustrate this cut with a
dashed circle and its center, the current incumbent x0, with a black dot in the lower
left corner in Figure 1b.

Turning to the second iteration, NIC minimizes f over Ω associated with the
cut (8). This results in the incumbent x1 = (x1

1, x
1
2) with x1

2 = x1
2 ≈ −0.08. Again,

computing the value for r, we receive r(x1) ≈ 0.16 which does not satisfy the accuracy.
Hence, the second cut

‖x− x2‖2 ≥
|r(x1)|
L

, (9)
with a right-hand side of approximately 0.11, is added. This is illustrated with the
dotted circle and the respective incumbent in Figure 1b.

Lastly, minimizing f over Ω with the cuts (8) and (9), we receive x2 = (x2
1, x

2
2)

with x2
1 = x2

2 ≈ 4 · 10−5. This gives r(x2) ≈ 8 · 10−5 which satisfies the accuracy
and leads to termination of the algorithm. Therefore, we stop with an approximate
solution x2 which is close to the original solution x∗. We visualized the found point
in a different color in Figure 1b.
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Note that we globally solved the subproblems tackled in the upper example. In
Theorem 3.8 we have shown that a point returned in step 9 under a local method
for step 2 is a locally optimal point for (P). In the following, we will give an example
that does not terminate and, thus, creates a sequence which even converges to the
global maximum instead of the desired minimum.

Example 4.7. Here, we consider a one dimensional problem in R with the absolute
value | · | which reads

min − |x|

s.t. 1
3x

3 ≥ 0,

x ∈ [−1, 1].

(Pbad)

Again, following our notation, we have f(x) = −|x|, r(x) = − 1
3x

3, and Ω = [−1, 1].
We note that the fraction in the inequality regarding r could be omitted. But, when
we calculate the Lipschitz constant of r on Ω, we can use the differentiability of r
and the fraction to get L = maxx∈Ω|r′(x)| = maxx∈[−1,1]|x2| = 1.

In order to understand Problem (Pbad), we can re-write the problem as
max {x |x ∈ [0, 1]} and see that its optimal point is at x∗ = 1. In contrast, the
“worst” possible point in terms of the optimization problem would be x̂ = 0, as this
is the maximum of Problem (Pbad) or the minimum of the re-written problem. We
will show that NIC converges to x̂ if the solution method used in step 2 is a local
one only.

We assume step 2 to always return a locally optimal solution in [−1, 0) if it exists.
Therefore, relaxing the inequality r(x) ≤ 0 in (Pbad), we receive the incumbent
x0 = −1 with a violation of r(x0) = 1/3. Adding the cut |x− x0| ≥ r(x0)/L = 1/3,
we end up with Q1 = [−2/3, 1] as the feasible set of the next problem to investigate.
We can show by induction that our assumption about the solution method leads to
the relation

xk+1 = xk + r(xk) = xk − 1
3(xk)3, (10)

for k ∈ N0 and our incumbents xk. Further, using induction for one more time,
we can prove that xk ∈ [−1, 0) for all k ∈ N0. So, our xk’s are actually the points
returned in step 2.

Now, we define a function ν(x) := x− 1
3x

3 as the right-hand side of (10). Note
that this is a contraction on [−1, 0]. Therefore, we can use Banach’s fixed-point
theorem to see that ν has a unique fixed-point x̂ on [−1, 0]. The use of the notation
from above is intended as the fixed-point is indeed x̂ = 0, which can be seen by
ν(0) = 0. Further, Banach’s theorem gives that by starting with any x0 ∈ [−1, 0],
the sequence defined by xk+1 = ν(xk), which is equivalent to (10), converges to x̂.
Therefore, limk→∞ xk = x̂ = 0.

In summary, this shows that the sequence produced by NIC converges to the
“worst” point. If we have a solution method returning a global optimal point, then
the algorithm would return x∗ = 1 in its second iteration at the latest.

5. Conclusion

We have introduced the NIC method in order to tackle the abstract problem
class (P). The method only requires a continuous objective, a compact domain, and
Lipschitz continuous constraint functions. Leveraging an oracle for the global solution
of (Pk), we have proven the correctness of NIC in terms of returning an optimal
solution when terminating or, if not, creating a sequence whose accumulation points
are all optimal. This has been complemented by discussions about the termination
bound in the infeasible case and the problem complexity, showing asymptotic
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convergence of the bounds in the latter. The theoretical content has been rounded
off with two examples, illustrating the method and visualizing the possible effects of
a local oracle.

As mentioned in a side note above, there exist optimization software like Gurobi [7]
which successfully tackle quadratic constraint problems, but struggle when facing
general non-linear constraints. Our approach enables such software to solve even
more general problems by executing NIC using them as the oracle in step 2. Con-
trasting the theoretical character of the present article, an application to wide
problem classes accompanied by an extensive computational study can build one
further research direction.

Since the magnitude of the radius of the norm-induced cuts depend on the
Lipschitz constant L in the denominator, an application of NIC to constraints
with small L seems reasonable. For example, the field of optimal control of power
networks include sine or cosine constraints with small L and, thus, could be tackled
by NIC. This gives rise to another interesting topic of research.
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Appendix A. Examples for formula (7)

Let L > 0 be the (upper bound to the) Lipschitz constant and δ > 0, such that
δ/L < 1. We calculate the examples as appearing in table Table 1. For the sake of
clarity, we define the unit ball B = B1 with respect to the considered norm.

a) Let Ω1 =
∏n
j=1[aj , bj ] be an n-dimensional box with aj , bj ∈ R and aj < bj

for j = 1, . . . , n. We consider the maximum-norm, i.e., ‖x‖∞ = maxi∈[n]|xi|
for x ∈ Rn and [n] := {1, . . . , n}.

In this case, we have B = [−1, 1]n and, thus, vol(B) = 2n. It follows,
vol((δ/L)B/2) = (δ/L)n and

Ω1 + (δ/L)B/2 =
n∏
j=1

[aj −
δ

2L, bj + δ

2L ].

Therefore, vol(Ω1 + (δ/L)B/2) =
∏n
j=1(bj − aj + δ/L) and we conclude

T = vol(Ω1 + (δ/L)B/2)
vol((δ/L)B/2) =

n∏
j=1

[
L

δ
(bj − aj) + 1

]
.

b) Let us consider the maximum-norm again and Ω2 = Ω1 ∩ Zn to be the
integral (lattice) points in Ω1. Then, we can calculate the amount of lattice
points as

|Ω2| =
∏
j=1

(bbjc − daje+ 1).

Since we assumed δ/L < 1 in the beginning, it holds true that
({z1}+ (δ/L)B/2) ∩ ({z2}+ (δ/L)B/2) = ∅,

for z1, z2 ∈ Ω2, z1 6= z2. Therefore, we can derive for the volume
vol(Ω2 + (δ/L)B/2) = |Ω2|vol((δ/L)B/2) and, thus,

T = vol(Ω2 + (δ/L)B/2)
vol((δ/L)B/2) = |Ω2|vol((δ/L)B/2)

vol((δ/L)B/2) = |Ω2|.

c) Here, we consider the Euclidean or 2-norm, i.e., ‖x‖2 =
√(∑n

j=1 x
2
j

)
. For

some radius r > 0, we have Br and can derive from standard literature that

vol(Br) = πn/2

Γ(n2 + 1)r
n = vol(B)rn,

where Γ(·) denotes the gamma function. Now, for D > 0, let Ω3 = BD and
it follows that
vol(Ω3 + (δ/L)B/2) = vol(BD+(δ/(2L))) = vol(B)(D + (δ/(2L)))n.
Therefore, we can conclude

T = vol(BD + (δ/L)B/2)
vol((δ/L)B/2) = (D + (δ/(2L)))n

(δ/(2L))n =
(

2L
δ
D + 1

)n
.
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