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Abstract

We analyse the turnpike properties for a general, infinite dimensional, linear-quadratic
(LQ) optimal control problem, both in the deterministic and in the stochastic case.
The novelty of the paper is twofold. Firstly, it obtains positive turnpike results for
systems that are (partially) uncontrollable. Secondly, it provides turnpike results
for averaged control associated to a family of problems that depend on a random
parameter, which is the first turnpike type result in the averaged controllability
framework.

Key words: Measure turnpike, Averaged control, LQ optimal control problem,
Infinite-time admissibility, Turnpike phenomenon.

1 Introduction

The turnpike property refers to a special phenomenon that occurs in many optimal control
problems associated with a time-evolution system, namely the tendency of optimal controls
and trajectories to remain nearly stationary most of the time (Figure 1). This allows a
time-dependent control problem to be reduced, at least approximately, to the corresponding
stationary one. Such a simplification is obviously of great interest, both from an applicational
and computational point of view.
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Fig. 1. Optimal trajectory remains close to the steady state x̄ most of the time framework.

The term was coined by economists more than half a century ago and introduced in the
context of finite-dimensional, discrete-time optimal control problems. However, it remained
out of focus of the systems and control community for several decades. Rigorous analysis
of the turnpike property started to develop recently in the context of mean field games
and model predictive controls [2,12]. A large theory on the topic related to the calculus of
variations and optimal control problems has been developed independently by Zaslavski in a
series of works (cf. [15,16] and the references therein). Since then, numerous results have been
published in this area, both in finite and infinite dimensional context, as well as for time-
discrete and time-continuous systems. The notion has been applied in various contexts: shape
design problems, residual neural networks, heat conduction etc. For a detailed introduction
we refer an interested reader to some recent, extensive survey papers on the topic [5,3]

In most papers on this topic, authors either require the system to be both stabilizable and
detectable, or they assume even stronger conditions, such as controllability, observability and
dissipativity (cf. Remark 3 for a detailed discussion of these assumptions). The corresponding
turnpike results are then obtained by applying sophisticated functional analysis tools to
the optimality system and exploring stabilization properties of the corresponding Riccati
operator (e.g. [1,5,11]).

In this paper we follow a different approach, based on a rather elegant procedure. By
exploring the optimality systems, we derive the key estimate (Theorem 2.1, (13)) for the
difference between evolutional and stationary optimal controls and observations in terms of
the controllability and observability Gramian operator. It is important to emphasize that
this estimate holds in general, without any restrictions on the operators and data defining
the problem. From here, the turnpike results follow directly, assuming only infinite-time
admissibility of control and observation operator.

In the framework of averaged controllability we follow a similar approach. Here we con-
sider a stochastic system depending on parameters in a random manner. The optimal aver-
aged control provides the minimal value of the cost functional averaged with respect to the
parameter, but the control itself is parameter independent. The notion was introduced in
[18], and subsequently developed in a series of papers. Links between averaged and simulta-
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neous controllability were made in [10] and the notion of long-time averaged controllability
was introduced in [8]. We refer the interested reader to [9] for a recent survey on this topic.

It is interesting to note that the same kind of arguments used in the stochastic case allow
us to obtain the corresponding turnpike results for an averaged control. To the best of the
author’s’ knowledge, these are the first turnpike type results in the framework of averaged
controllability.

The paper is organized as follows. In the next section, we present the method and pro-
vide turnpike results for a fixed linear control system. Section 3 analyses stochastic systems
and contains turnpike results for averaged controls. An illustrative example supporting the
theoretical findings is provided in Section 4. The paper is closed by some concluding remarks
and possible directions for further research on this topic.

2 Turnpike properties in a deterministic case

We analyse the control system

x′(t) + Ax(t) = Bu(t)

x(0) = x0,
(1)

whose dynamics is governed by a (possibly) unbounded operator A on a Hilbert space X
(with the scalar products denoted by ·). Here u ∈ L2

loc([0,∞);U) denotes the control function,
U is a Hilbert space, B is a bounded control operator from L(U,X), and x0 ∈ H denotes
the initial state.

Recall that the mild solution to problem (1) is given by the Duhamel’s formula

x(t) = Stx0 +
∫ t

0
St−sBu(s)ds

where (St)t≥0 denotes the semigroup generated by −A. Based on the above assumptions the
solution satisfies x ∈ L2

loc([0,∞);X) ∩ C([0,∞);X).

Given an observation operator C ∈ L(X,Z), we consider the optimal control problem

min JT (u) = min
u

1

2

∫ T

0

(
|u(t)− ud|2U + |Cx(t)− zd|2Z

)
dt+ pd · y(T ), (2)

where minimization is taken over the space L2
loc([0,∞);U), and x is the state determined by

control u, i.e. it is the solution to (1). Here ud and zd stand for a time independent desirable
control and observation, respectively, while pd ∈ X determines a linear regularization of the
final state. Based on the above assumptions the last integral is well defined. Furthermore,
the functional JT being continuous, coercive and convex admits the unique minimizer that
we denote by uT , while xT stands for the corresponding optimal state.

The optimality system for the problem (2) reads

x′T (t) + AxT (t) = −B(B∗pT (t)− ud)
xT (0) = x0

−p′T (t) + A∗pT (t) = C∗(CxT (t)− zd)
pT (T ) = pd,

(3)
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and the optimal control is given by uT = −B∗pT + ud.

We also consider the corresponding stationary problem

min
u∈U

Js(u) = min
{

1

2

(
|u− ud|2U + |Cx− zd|2Z

)
|Ax = Bu

}
, (4)

whose unique solution is given by ū = −B∗p̄ + ud, where p̄ satisfies the corresponding
stationary optimality system

Ax̄ = −B(B∗p̄− ud) A∗p̄ = C∗(Cx̄− zd), (5)

while x̄ is the optimal stationary state.

Remark 1 In order for the stationary problem (4) to be well defined it is necessary that the
corresponding state equation Ax = Bu is well posed. Obviously, this holds if A is invertible,
but also under significantly weaker conditions (e.g. A injective and its image containing the
image of B). Interesting, this issue is even more delicate in a finite dimensional case, than
for some unbounded operators (e.g. for A being an elliptic operator).

It is also remarkable that most of the papers on the turnpike do not comment on the well-
posedness of the stationary problem. Probably the most detailed contribution to this issue is
the one from [5]. Here we shall not go further into details, instead, we just assume that the
problem is well posed.

In the sequel we want to derive estimates on the difference between the solution to the
dynamic optimization problem (2) and its stationary counterpart (4), ‖uT − ū‖L2(0,T ;U), and
similarly for the difference of corresponding optimal observations ‖C(xT − x̄)‖L2(0,T ;Z).

To this effect let us subtract the two optimality systems (3) and (5). Denoting by yT =
xT − x̄ and qT = pT − p̄ the corresponding differences of optimal primal and dual states, we
get

y′T (t) + AyT (t) = −BB∗qT (t)

yT (0) = x0 − x̄
−q′T (t) + A∗qT (t) = C∗CyT (t)

qT (T ) = pd − p̄.

Note that the obtained system is independent of the target data zd and ud. In addition, unlike
the optimality system (3) it contains non-zero initial datum both for the primal and dual
variable. In order to obtain the desired estimates, we split it into two parts. Hereby, the first
part preserves the original initial condition for the primal state, while its dual component is
run from zero. The reverse situation occurs with the second part of the decomposition.

More precisely, we introduce the decomposition

yT = yT,1 + yT,2
qT = qT,1 + qT,2,

(6)

where the introduced functions satisfy the systems

y′T,1(t) + AyT,1(t) = −BB∗qT,1(t)

yT,1(0) = x0 − x̄
−q′T,1(t) + A∗qT,1(t) = C∗CyT,1(t)

qT,1(T ) = 0.
(7)
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and

y′T,2(t) + AyT,2(t) = −BB∗qT,2(t)

yT,2(0) = 0

−q′T,2(t) + A∗qT,2(t) = C∗CyT,2(t)

qT,2(T ) = pd − p̄.
(8)

Obviously, system (7) is the optimality system for the problem

min
v∈L2(0,T ;U)

JT,1(v) = min
v∈L2(0,T ;U)

1

2

∫ T

0

(
|v(t)|2U + |Cy(t)|2Z

)
dt, (9)

where y stands for the solution to

y′(t) + Ay(t) = Bv(t)

y(0) = x0 − x̄.

The minimizer of the functional JT,1 is given by the expression vT,1 = B∗qT,1, which allows
us to obtain the following bound

‖vT,1‖2
L2(0,T ;U) + ‖CyT,1‖2

L2(0,T ;Z) = 2JT,1(vT,1)

≤ 2JT,1(0) = ‖CSt(x0 − x̄)‖L2(0,T ;X) = QT (x0 − x̄) · (x0 − x̄),

(10)
where QT stands for the observability Grammian

QT =
∫ T

0
S∗tC

∗CStdt.

Similar kind of interpretation can be obtained for the second part of the above decomposition,
i.e. for the system (8). Indeed, by using the change of variable s = T − t one notice that it
coincides with the optimality system for the problem

min JT,2(z) = min
1

2

∫ T

0

(
|z(t)|2Z + |B∗q(t)|2X

)
dt, (11)

where minimization is taken over the space L2
loc([0,∞);Z), while q is the solution to the

problem
q′(t) + A∗q(t) = C∗z(t)

q(0) = pd − p̄.
Concluding similarly as in (10) we obtain

‖vT,2‖2
L2(0,T ;U) + ‖CyT,2‖2

L2(0,T ;Z) = 2JT,2(vT,2)

≤ 2JT,2(0) = ‖B∗S∗t (pd − p̄)‖L2(0,T ;X) = ΛT (pd − p̄) · (pd − p̄),
(12)

where vT,2 = B∗qT,2, while ΛT stands for the controllability Grammian

ΛT =
∫ T

0
StBB

∗S∗t dt.
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Combining the estimates (10) and (12) together we can formulate our first result.

Theorem 2.1 The difference of solutions to optimal control problems (2) and (4), vT =
uT − ū, together with the difference of the corresponding optimal states yT = xT − x̄, satisfies
the estimate

‖uT − ū‖2
L2(0,T ;U)+‖C(xT − x̄)‖2

L2(0,T ;Z) ≤ 2
(
QT (x0−x̄)·(x0−x̄)+ΛT (pd−p̄)·(pd−p̄)

)
, (13)

where QT is the observability Grammian for the pair (A,C), while ΛT stands for the con-
trollability Grammian corresponding to the pair (A,B).

Remark 2 It is important to emphasize that the previous theorem does not impose any con-
ditions on the linear operators A, B and C (apart from the well possedness of the stationary
problem discussed in Remark 1). In order to obtain the result, we decompose the system ob-
tained by subtracting the time-evolution and the stationary optimality system into two parts.
Each of these parts is identified as the optimal system of some auxiliary optimal control
problem. This is the crucial observation which allows us to obtain the above estimate with
virtually no requirements.

The last theorem allows us to obtain the first turnpike property.

Theorem 2.2 Assume that B and C are an infinite-time admissible control and observation
operator for the semigroup generated by −A, respectively. Then the following result holds.

a) (Integral turnpike) For any target data ud and zd, the time averages of optimal solutions
to optimal control problems (3) converge to the solution of the corresponding stationary
problem (4) as the time framework goes to infinity, i.e.

1

T

∫ T

0
uT −−−−→

T→∞
ū strongly in U,

with the convergence rate of O(1/
√
T ). In addition, the same kind of the convergence with

the same rate holds for the optimal observations

1

T

∫ T

0
CxT −−−−→

T→∞
Cx̄ strongly in Z.

b) (Measure turnpike) For every ε > 0 there exists a constant Cε > 0 (that depends on
x0 − x̄ and pd − p̄) such that for every T > 0 we have

µ
{
t ∈ [0, T ]

∣∣∣ |uT − ū|2 + |C(xT − x̄)|2 ≥ ε
}
< Cε.

In other words, the Lebesgue measure of the set of time instants at which the optimal
trajectory and control stay outside an ε neighborhood of the stationary optimal pair (x̄, ū)
remains uniformly bounded as the time horizon T goes to infinity.

Proof: a) The infinite-time admissibility assumptions imply that the considered Grammian
operators are uniformly bounded (with respect to T ) by their infinite-time counterparts
Λ∞, Q∞ ∈ L(X). In particular, it follows

‖uT − ū‖2
L2(0,∞;U) + ‖C(xT − x̄)‖2

L2(0,∞;Z) ≤ K
(
|x0 − x̄|2X + |pd − p̄|2X

)
, (14)
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with K = 2(‖Λ∞‖L(X) + ‖Q∞‖L(X)). From here we get

∣∣∣∣ ∫ T

0
(uT (t)− ū)dt

∣∣∣∣ ≤ √T‖uT − ū‖L2(0,T ;U) ≤
√
KT (|x0 − x̄|X + |pd − p̄|X). (15)

By dividing the last estimate with T we obtain the first convergence.
In the same way, by repeating the above arguments one easily gets the integral turnpike
property for the states, with the same convergence rate.
b) In order to obtain the measure turnpike property, let us assume the contrary. Thus there
exists a sequence (Tn) such that for every n.

µ
{
t ∈ [0, T ]

∣∣∣ |uT − ū|2 + |C(xT − x̄)|2 ≥ ε
}
≥ n.

From here it follows that

‖uT − ū‖2
L2(0,T ;U) + ‖C(xT − x̄)‖2

L2(0,T ;Z) ≥ εn,

which contradicts the estimate (13) and the infinite-time admissibility assumptions.

2

Remark 3 Several remarks are in order.

• The last theorem can be generalized to a larger class of systems, for which the operators B
and C do not satisfy infinite-time admissibility assumptions. In that case the results holds
assuming that (x0− x̄) consists of either stable or unobservable modes of the system, while
(pd − p̄) contains only stable or uncontrollable modes of the system, which is enough to
ensure uniform boundedness of the right hand side of (13) with respect to T .
• In some papers on this topic, authors derive turnpike results by assuming controllability

and observability assumptions for the pairs (A,B) and (A,C), respectively (cf. [11,19]).
However, these requirements are quite strong and are usually replaced by weaker assump-
tions of stabilizability and detectability in more recent works (e.g. [1,7]). The latter ones
require that all unstable modes of the dynamical system under consideration are both con-
trollable and observable. It is significant that these assumptions are almost opposite to
those required by Theorem 2.2. Namely, the assumed infinite time admissibilities require
all unstable modes of the system to be both uncontrollable and unobservable. This raises an
interesting question on turnpike behaviour of a dynamics that contains both controllable
and uncontrollable unstable modes (and also both observable and unobservable). We shall
return to this question in the Conclusion section.

For a stable matrix A, of course, both kind of assumptions are directly satisfied.
• In some works, the measure turnpike is obtained by assuming strict dissipativity at some

stationary point with a special choice of storage function (e.g. [13]). This notion is stronger
than dissipativity in the sense of Willems [14] and requires the existence of a special point
along which the optimal solutions concentrate in a uniform sense with respect to the time
frame T . Actually, strict dissipativity at a particular point is a rather strong assumption.
For general nonlinear optimal control problems it can be shown to be equivalent to the mea-
sure turnpike (with respect to the same point) under some additional conditions [4]. For
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LQ regularization problems, the equivalence can be obtained without additional assump-
tions in both discrete [6] and continuous time setting [7]. Of course, the question remains
open under which conditions strict dissipativity holds and at which point. A step forward
in this direction was recently achieved for LQ regularization problems in [6,7], where, un-
der the assumption of stabilizability, it was proved that strict dissipativity is equivalent
to detectability of the system under consideration. This characterizes turnpike and strict
dissipativity of the problem in terms of checkable, system theoretic properties. However,
even if one is able to verify them, the question remains at which point the dissipativity
holds, i.e. what is going to be the turnpike limit. In [7] it was shown that the limit is the
solution to an approximate stationary problem that does not coincide with the original one.
On the contrary, in this paper we not only determine verifiable conditions under which the
problem exhibits the turnpike properties, but we also provide a complete characterization
of the turnpike limit - it is the solution to the corresponding stationary optimal control
problem.
• In the existing literature the measure-turnpike is often defined in terms of the state only

(e.g. [7]). The property stated above takes into account both the state and control, similar
as in [13].
• The proof of the b) part of the above theorem actually follows directly from the well estab-

lished functional analysis results. In particular, it is related to the fact that Lp convergence
implies convergence in measure. As it is quite short we provide it explicitly for the sake of
completeness.

The next result provides a similar kind of convergence for the (normalized) minimal values
of functionals under consideration.

Theorem 2.3 Under the assumptions of Theorem 2.2 it holds

1

T
min JT −−−−→

T→∞
min Js,

with the convergence rate of order 1/
√
T .

Proof: In order to obtain the required result, we analyse the difference

∣∣∣∣ 1T min JT −min Js

∣∣∣∣ =
1

T

∫ T

0

(
|uT (t)− ud|2U − |ū− ud|2U + |Cx(t)− zd|2Z − |Cx̄− zd|2Z

)
dt.

(16)
The first two terms in the above integrand we estimate as follows

1

T

∫ T

0

(
|uT (t)− ud|2U − |ū− ud|2U

)
dt ≤ 1

T

∫ T

0
|uT (t)− ud|U

(
|uT (t)− ū|U + 2|ū− ud|U

)
dt

≤ 1

T

(
‖uT − ū‖2

L2(0,T ;U) + 2
√
T‖uT − ū‖L2(0,T ;U)|ū− ud|U

)
(17)

Performing the same analysis for the last two terms in (16), combining it with the last
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estimate and the result of Theorem 2.1 we obtain∣∣∣∣ 1T min JT −min Js

∣∣∣∣ ≤KT
(
|x0 − x̄|2X + |pd − p̄|2X

)
+

2
√
K√
T

(
|x0 − x̄|X + |pd − p̄|X

)(
|ū− ud|U + |Cx̄− zd|Z

)
.

2

Remark 4 If the desirable control and observation pair (ud, zd) coincide with the corre-
sponding optimal stationary values (ū, Cx̄), or if the pair (x0, pd) equals the solution of the
stationary optimality system (5), then the above convergence is of order 1/T .

3 Turnpike for averaged controls

In this section we consider a family of the control systems

x′(ω, t) + A(ω)x(ω, t) = B(ω)u(t)

x(ω, 0) = x0(ω),
(18)

each accompanied by an optimal control problem of the form

min JT (u) = min
u

1

2

∫ T

0

(
|u(t)− ud|2U +

∣∣∣ ∫
Ω

(
C(ω)x(ω, t)− zd(ω)

)
dω
∣∣∣2
Z

)
dt+

∫
Ω
pd(ω)·x(ω, T )dω.

(19)
Here the dynamics, control and observation operator, as well as initial datum and the desired
observation depend on a parameter ω in a measurable manner. The parameter is assumed
to be a random variable living in a space Ω and following some probability measure dω. We
additionally assume that A,B,C, x0 and zd are uniformly bounded with respect to ω in order
to ensure the integrability of solutions (by the Lebesgue dominated convergence theorem)
with respect to the parameter.

However, the optimal control problem and its solution, that we keep denoting uT , is pa-
rameter independent. This corresponds to the problem of finding a parameter-independent
control that on average performs well for particular realizations of the parameter under
consideration. This leads to the notion of the averaged control, as introduced in [18]. Addi-
tionally, the target control ud is not just time-, but also parameter-independent.

The goal of this section to check deviation of the optimal averaged control from the
solution of the corresponding stationary problem, which in this setting reads as

min
u∈U

Js(u) = min
{

1

2

(
|u− ud|2U +

∣∣∣ ∫
Ω

(
C(ω)x(ω)− zd(ω)

)
dω
∣∣∣2
Z

) ∣∣∣A(ω)x = B(ω)u
}
. (20)

In order to obtain the desired estimates, let us write the optimality system corresponding
for the non-stationary problem (19). By using the Lagrangian approach this one reads as
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x′T (ω, t) + A(ω)xT (ω, t) = −B(ω)
∫

Ω
(B(ν)∗pT (ν, t)− ud)dν

xT (ω, 0) = x0(ω)

−p′T (ω, t) + A(ω)∗pT (ω, t) = C(ω)∗
∫

Ω
(C(ν)xT (ν, t)− zd(ν))dν

pT (ω, T ) = pd(ω),

(21)

and the optimal control is given by uT = −
∫

ΩB(ω)∗pT (ω)dω + ud.

Similarly, the optimality system of the stationary problem (20) reads

A(ω)x̄(ω, t) = −B(ω)
∫

Ω
(B(ν)∗p̄(ν, t)− ud)dν

A(ω)∗pT (ω, t) = C(ω)∗
∫

Ω
(C(ν)xT (ν, t)− zd)dν

(22)

and the optimal stationary control is ū = −
∫

Ω B(ω)∗p̄(ω)dω + ud.

We proceed in the manner similar to the one from the previous section. More precisely,
we introduce the variables yT = xT − x̄ and qT = pT − p̄ which satisfy

y′T (ω, t) + A(ω)yT (ω, t) = −B(ω)
∫

Ω
B(ν)∗qT (ν, t)dν

yT (0) = (x0 − x̄)(ω)

−q′T,(ω, t) + A(ω)∗qTu(ω, t) = C(ω)∗
∫

Ω
C(ν)yT (ν, t)dν

qT (ω, T ) = (pT − p̄)(ω).

It is important to notice the identical structures of the equations satisfied by yT and qT .
This will be decisive for splitting the system into two parts which can both be analysed as
optimality system of a same kind of functional. Also note that the last system is independent
of target data ud, zd. All this allows us to perform same kind of analysis as in the deterministic
case. More precisely, we introduce the decomposition

yT (ω) = yT,1(ω) + yT,2(ω)

qT (ω) = qT,1(ω) + qT,2(ω),
(23)

where the introduced functions satisfy the systems

y′T,1(ω, t) + A(ω)yT,1(ω, t) = −B(ω)
∫

Ω
B∗(ν)qT,1(ν, t)dν

yT,1(ω, 0) = (x0 − x̄)(ω)

−q′T,1(ω, t) + A(ω)∗qT,1(ω, t) = C∗(ω)
∫

Ω
C(ν)yT,1(ν, t)dν

qT,1(ω, T ) = 0

(24)

and
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y′T,2(ω, t) + A(ω)yT,2(ω, t) = −B(ω)
∫

Ω
B∗(ν)qT,2(ν, t)dν

yT,2(ω, 0) = 0

−q′T,2(ω, t) + A(ω)∗qT,2(ω, t) = C∗(ω)
∫

Ω
C(ν)yT,2(ν, t)dν

qT,2(ω, T ) = (pT − p̄)(ω).

(25)

Obviously, system (24) is the optimality system for the problem

min
v∈L2(0,T ;U)

JT,1(v) = min
v∈L2(0,T ;U)

1

2

∫ T

0

(
|v(t)|2U +

∣∣∣ ∫
Ω
C(ω)y(ω, t)dω

∣∣∣2
Z

)
dt, (26)

where y stands for the solution to

y′(ω, t) + A(ω)y(ω, t) = B(ω)v(t)

y(ω, 0) = (x0 − x̄)(ω),

while the minimizer of JT,1 is given by v1 = −
∫

ΩB
∗(ω)qT,1(ω, t)dω.

Thus we obtain that

‖vT,1‖2
L2(0,T ;U) + ‖

∫
Ω
C(ω)yT,1(ω, t)dω‖

2

L2(0,T ;U)
= 2JT,1(vT,1) ≤ 2JT,1(0)

= ‖
∫

Ω
C(ω)St(ω)(x0 − x̄)(ω)dω‖

L2(0,T ;Z)
≤
∫

Ω
QT (ω)(x0 − x̄)(ω) · (x0 − x̄)(ω)dω,

(27)

where QT (ω) stands for the observability Grammian associated to the parameter value ω.

Similarly, system (25) is the optimality system for the problem

min
z∈L2(0,T ;U)

JT,2(z) = min
z∈L2(0,T ;Z)

1

2

∫ T

0

(
|z(t)|2U +

∣∣∣ ∫
Ω
B∗(ω)q(ω, t)dω

∣∣∣2
Z

)
dt, (28)

where q is the solution to the problem

q′(ω, t) + A∗(ω)q(ω, t) = C∗(ω)z(ω, t)

q(ω, 0) = (pT − p̄)(ω).

Concluding similarly as in (27) we obtain

‖vT,2‖2
L2(0,T ;U) + ‖

∫
Ω
C(ω)yT,2(ω, t)dω‖

2

L2(0,T ;U)
≤
∫

Ω
ΛT (ω)(pT − p̄)(ω) · (pT − p̄)(ω)dω, (29)

where ΛT (ω) stands for the controllability Grammian associated to the parameter value ω.

Combining the last two estimates we obtain the averaged control analogue of Theorem
2.1:

‖uT − ū‖2
L2(0,T ;U) + ‖

∫
Ω
C(ω) (xT (ω, ·)− x̄(ω)) dω‖

2

L2(0,T ;U)

≤
∫

Ω

(
QT (ω)(x0 − x̄)(ω) · (x0 − x̄)(ω) + ΛT (ω)(pT − p̄)(ω) · (pT − p̄)(ω)

)
dω.

(30)
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The obtained result coincides with the key estimate (13) in the deterministic case, with the
only difference that all the terms are now averaged with respect to the random parameter. As
the optimal controls are parameter independent, the first term is same as in the deterministic
case, while for the observations we have an estimate on the average of their deviations from
optimal stationary ones.

Using similar kind of arguments as in the previous section, we are able to formulate the
associated turnpike result.

Theorem 3.1 Assume that for almost every ω ∈ Ω we have that B(ω) and C(ω) are an
infinite-time admissible control and observation operator for the semigroup generated by
−A(ω), respectively. Then the following results hold.

a) (Integral turnpike) For any target data ud and zd(ω), we have

1

T

∫ T

0
uT = ū+O(

1√
T

) as T →∞,

where uT and ū are optimal averaged controls for a time-dependent and stationary optimal
control problems (19) and (20), respectively. Similarly,

1

T

∫ T

0

∫
Ω
C(ω)xT (ω)dω =

∫
Ω
C(ω)x̄(ω)dω +O(

1√
T

) as T →∞.

b) (Measure turnpike) For every ε > 0 there exists a constant Cε > 0 (that depends on
‖x0 − x̄‖L2(Ω;X) and ‖pd − p̄‖L2(Ω;X)) such that for every T > 0 we have

µ
{
t ∈ [0, T ]

∣∣∣ |uT − ū|2 +
∣∣∣ ∫

Ω
C(ω)(xT (ω)− x̄(ω))dω

∣∣∣2 ≥ ε
}
< Cε.

c) (Convergence of the optimal value functions) The time average of minimal values
of evolutional functionals converge to the optimal value of the steady state problem.

1

T
min JT = min Js +O(

1√
T

) as T →∞.

The proof follows the same steps as the proofs of theorems 2.2 and 2.3, and we omit it here.

4 An illustrative example

Now we present an example that illustrates that the turnpike phenomenon can also occur
for systems with unstable modes, if the unstable modes are not part of the observation. For
given real numbers x1

0, x2
0 consider the problem

min
1

2

∫ T

0

(
|u(t)|2 + |x1(t) + x2(t)− 1|2

)
dt

subject to x1(0) = x1
0, x2(0) = x2

0, x′1 = x1 + u, x′2 = x2 + u.
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The static problem is

min
1

2

(
|u|2 + |x1 + x2 − 1|2

)
subject to u = −x1, u = −x2. This is equivalent to

min
1

2

(
|u|2 + | − 2u− 1|2

)
hence the optimal static control is ū = −2

5
and the optimal static state is (2

5
, 2

5
).

For the state we have (x1 − x2)′ = x1 − x2. Hence x1 − x2 is independent of the control.
Thus in this example, the unstable mode is uncontrollable. We have

x1(t)− x2(t) = (x1
0 − x2

0) et.

Note that the unstable mode does not influence the observation.

In order to derive the optimal observation xT,1 + xT,2, define sT (t) = xT,1(t) + xT,2(t).
Then we have sT (0) = x1

0 + x2
0. For this example, for the optimal control we have uT (T ) = 0

which is equivalent to s′T (T ) = sT (T ). The optimal observation sT is the minimizer of

1

2

∫ T

0

(
1

4
|s′(t)− s(t)|2 + |s(t)− 1|2

)
dt,

Hence we have s′′T = 5 sT − 4. For the optimal observation this yields

sT (t) = xT,1(t) + xT,2(t) =
4

5

(
1 +

1√
5− tanh(

√
5T )

sinh(
√

5 t)

cosh(
√

5T )

)

+

(
x1

0 + x2
0 − 4

5

)
√

5− tanh(
√

5T )

(
(
√

5− 1)(1 + tanh(
√

5T ))
) e−

√
5 t

2

+

(
x1

0 + x2
0 − 4

5

)
√

5− tanh(
√

5T )

( √
5 + 1

(1 + tanh(
√

5T ))

)
e
√

5 t

2 cosh2(
√

5T )
.

So we see that for all t ∈ [0, T ] we have the inequality∣∣∣∣xT,1(t) + xT,2(t)− 4

5

∣∣∣∣
≤ 4

5

1√
5− 1

sinh(
√

5 t)

cosh(
√

5T )
+
∣∣∣∣x1

0 + x2
0 −

4

5

∣∣∣∣
e−

√
5 t +

√
5 + 1√
5− 1

e
√

5 t

2 cosh2(
√

5T )

 .
This inequality illustrates in particular the integral turnpike phenomenon that is implied by
Theorem 2.2. Note that we have

lim
T→∞

xT,1(T ) + xT,2(T )− 4

5
=

4

5

1√
5− 1

= 0.6472....

The corresponding optimal control is u(t) = 1
2
(s′T (t)− sT (t)).
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Fig. 2. The graph of xT,1(t) + xT,2(t)− 0.8 for x1
0 + x2

0 − 0.8 = 0.5.

Fig. 3. The graph of the optimal control uT (t) for x1
0 + x2

0 − 0.8 = 0.5.

Figure 2 shows the graph of xT,1(t)+xT,2(t)− 4
5

on [0, T ] for the case x1
0 +x2

0− 4
5

= 1
2

and
T = 100. In accordance with theoretical findings, we note that most of the time the optimal
observation is almost indispensable from its stationary counterpart. The largest deviations
occur at initial and terminal point, and decay exponentially as the time approaches the
center of the interval.

The evolution of the optimal control uT (t) for the same case is depicted on Figure 3.
Again we observe the largest deviations from the stationary optimal control ū = −2/5 in
the boundary layers and their exponential decay as we move away from t = 0 and t = T .
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5 Conclusion

In this paper, we have obtained turnpike results for infinite-dimensional, LQ optimal
control problems, either of deterministic or stochastic nature. The results are based on the key
estimate (Theorem 2.1, (13)) on the difference between evolutional and stationary optimal
controls and observations, which we derive with virtually no assumptions on the operators
A,B, and C (cf. Remark 2).

The turnpike properties follow directly by assuming infinite-time admissibility of control
and observation operator. In the case of a stochastic system, the assumption has to be
satisfied for almost every value of the random parameter. This assumption implies neither
controllability nor observability of the system. Instead, it requires all unstable modes of the
system to be both uncontrollable and unobservable. It is important to emphasize that the
optimal control problem under consideration does not impose any constraint on the final
state of the system, and only includes a linear terminal regularization. This allows us to
obtain positive results for a (partially) uncontrollable system.

Remarkably, previous works on this topic assume stabilizability and detectability of the
system under consideration, implying that all unstable modes of the dynamical system under
consideration are both controllable and observable. In the case of a system that contains both
controllable and uncontrollable unstable modes (and likewise both observable and unobserv-
able), one could unify the above approaches. Using the Kalman canonical decomposition,
one can construct a transformation that splits the system into a controllable and an un-
controllable part (e.g. [17, Section 3.3]). The same procedure can be performed in terms of
observability. If two transformations coincide, i.e,. if the controllable part of the system co-
incides with the observable one, then one can apply two types of turnpike results separately.
Those that assume controllability and observability (or more generally, stabilizability and
detectability) are to be applied to the first part of the decomposition, and those derived
in this paper are to be applied to the second, uncontrollable and unobservable part of the
system. Of course, if two canonical transformations do not coincide, this kind of approach is
not at disposal, and in general the measure turnpike will not hold. Existence of additional
conditions that will ensure the turnpike behaviour in this case remains an interesting open
problem.

The results obtained are closely related to those in [1], where the authors prove a stronger,
exponential turnpike property. They perform a careful analysis of the optimality system
leading to a-priori bounds in weighted Sobolev spaces (with the exponential function as
the weight). Hereby, they use a particular decoupling of the optimality system (possible
under a special kind of the final state regularization) in the terms of the solution to the
Riccati equation. For this purpose, the assumptions of stabilizability and detectability must
be satisfied, which, as discussed above, are almost opposite to those considered in this paper.
Obtaining an exponential turnpike property for a non-stabilizable system remains another
interesting open problem.
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