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Abstract: In the transition to renewable energy sources, hydrogen will potentially play an
important role for energy storage. The efficient transport of this gas is possible via pipelines. An
understanding of the possibilities to control the gas flow in pipelines is one of the main building
blocks towards the optimal use of gas.
For the operation of gas transport networks it is important to take into account the randomness
of the consumers’ demand, where often information on the probability distribution is available.
Hence in an efficient optimal control model the corresponding probability should be included
and the optimal control should be such that the state that is generated by the optimal control
satisfies given state constraints with large probability. We comment on the modelling of gas
pipeline flow and the problems of optimal nodal control with random demand, where the aim of
the optimization is to determine controls that generate states that satisfy given pressure bounds
with large probability. We include the H2 norm of the control as control cost, since this avoids
large pressure fluctuations which are harmful in the transport of hydrogen since they can cause
embrittlement of the pipeline metal.
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1. INTRODUCTION

The isothermal Euler equations (see e.g. Banda et al.
(2006), Gugat and Herty (2022))

ρt + qx = 0,
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are a well-established model for gas pipeline flow, where
ρ denotes the gas density, p the pressure, q the mass
flow rate and θ ≥ 0 is a friction parameter. At the end
x = 0 the flow rate that is desired by the consumers is
given by a random variable, so we have q(t, 0) = qr(ω)
on a probability space (Ω, A, P). Here we assume that
qr(ω) ∈ C1([0, T ]) for all ω ∈ Ω. Due to the influence of
the random boundary term, also the pde solution becomes
a random variable. At the end x = L of the pipe, the
pressure is controlled, p(t, L) = u(t). We consider controls
u ∈ H2([0, T ]). For the deterministic case, in Gugat and
Sokolowski (2022), a similar optimal control problem for
gas networks is considered and the existence of an optimal
control is shown. See Göttlich and Schillinger (2021) for a
related study for linear systems.
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2. THE SYSTEM

Let a time horizon T > 0 be given. For the case of ideal
gas where p = a2ρ with the sound speed a > 0, our system
is governed by the initial boundary value problem

(Sω)


q(0, x) = q0(x), ρ(0, x) = ρ0(x), x ∈ (0, L),
q(t, 0) = qr(ω), p(t, L) = u(t), t ∈ (0, T ),(
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Let R0 > 0 denote a constant reference density. Due to
the theory of semi-global solutions (see Li (2010), Li et al.
(2016)) for any given time horizon T > 0 there exist
numbers ε(T ) > 0 and C1(T ) > 0 such that for all R ≥ R0

and all initial states that satisfy

max{∥q0∥C1([0, L]), ∥ρ0 −R∥C1([0, L])} ≤ ε(T ) (2)

and all qr(ω) with

∥qr(ω)∥C1([0, T ]) ≤ ε(T ) (3)

and all controls with

∥u− a2 R∥C1([0, T ]) ≤ ε(T ) (4)

that are C1-compatible with the initial state (q0, ρ0) there
exists a classical solution (qω, ρω) of (Sω) on [0, T ] that
satisfies the a priori estimate
max{∥qω∥C1([0, T ]×[0,L]), ∥ρω −R∥C1([0, T ]×[0,L])} ≤ C1(T )
max{∥q0∥C1([0, L]), ∥ρ0−R∥C1([0, L]), ∥qr(ω)∥C1([0, T ]), ∥u−



a2R∥C1([0, T ])}. Moreover, the state depends continuously

in (C1([0, T ]× [0, L]))2 on the control u ∈ C1([0, T ]).

To guarantee that a regular solution exists, in the optimal
control problem the control constraint (4) and the C1-
compatibility conditions with the initial state are pre-
scribed.

3. THE OPTIMAL CONTROL PROBLEM

Let a lower pressure bound pmin > 0 be given. For a control
u ∈ H2(0, T ) define the objective function

J(u, R) = ∥u−R∥H2(0, T ) (5)

−ln
(
P
(
∥(pmin − pω)+∥C([0,T ]×[0,L]) = 0

))
.

The optimal control problem Pdyn(T ) is to minimize
J(u, R) subject to the constraints R ≥ R0, (4) and the
C1-compatibility conditions for u, where (pω, qω) solves
(Sω).

The H2-term in the objective function helps to avoid large
pressure fluctuations in the pipe that can be harmful if
the gas contains hydrogen due to the danger of embrit-
tlement, see Guy et al. (2021). The optimal control of
gas transportation systems is a classical topic in process
engineering, see for example Osiadacz and Swierczewski
(1994).

3.1 Existence of solutions

Theorem 1. Let (q0, ρ0) ∈
(
C1([0, T ])

)2
be given such that

a2 ρ0 > pmin and (2) holds. Assume that (3) and the
C1-compatibility conditions of qr(ω) and the initial data
hold almost surely. Then an optimal control that solves
Pdyn(T ) does exist in (0, ∞)×H2([0, T ]).

Proof. The set of admissible controls is non-empty, since
for all R > 0 there exists a control û ∈ H2(0, T )
that is compatible with (q0, ρ0) and satisfies (4). The a
priori estimate implies that if R is sufficiently large, we
have almost surely pω = a2R + a2(ρω − R) ≥ a2R −
a2C1(T ) ε(T ) ≥ pmin. Hence if R is sufficiently large, there
exists a control where the objective function attains a finite
value. (Note that this does not require that pω ≥ pmin

almost surely, but only that pω ≥ pmin has a nonzero
probability.)

TheH2-norm is a weakly sequentially lower semi-continuous
functional in H2(0, T ). Results from Farshbaf-Shaker et al.
(2018) imply that the probabilistic part of the objective
function is also weakly sequentially lower semi-continuous
in H2(0, T ). This can be seen as follows. A sequence
that converges weakly in H2(0, T ) converges strongly in
C1([0, T ]) to a limit point u∗ ∈ H2(0, T ). Due to the
theory of semi-global solutions, (2), (3) and (4) imply that
the controls generate classical solutions of (Sω) almost
surely and the strong convergence in C1([0, T ]) of the
controls implies that also the corresponding subsequence
of generated states given by the classical solutions of (Sω)

converges strongly in
(
C1([0, T ]× [0, L])

)2
to the solution

that is generated by the limit point u∗. Then Lemma 2 in
Farshbaf-Shaker et al. (2018) implies that the probability
is weakly sequentially upper semi-continuous in H2(0, T ).

This implies that the objective functional is a weakly
sequentially lower semi-continuous functional in (0,∞) ×
H2(0, T ).

We consider a minimizing sequence of feasible controls
(Rk, uk). Due to the H2-term and (4), this sequence is
bounded in R×H2(0, T ). Hence it contains a subsequence
that converges weakly in R×H2(0, T ) and thus converges
strongly in R×C1([0, T ]) to a limit point (R∗, u∗) ∈ R×
H2(0, T ). Moreover, this also implies that u∗ satisfies (4)
and that the values of the objective function J(u∗) is
minimal.

3.2 Numerical approaches

For the numerical solution, a kernel density estimator
should be used to obtain a differentiable approximation of
the objective function similar to the approach in Schuster
et al. (2021). The controls are represented as Fourier series,
u(t) = a0
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cation of the Fourier series after a finite number of modes
leads to a semi-infinite optimization problem, for a survey
see Stein (2012).

4. A NUMERICAL EXAMPLE

Gas network optimization has been of interest for decades,
see e.g., Herty and Sachers (2007); Zlotnik et al. (2015)
for a semilinear hyperbolic gas transport model and Mak
et al. (2019) for a parabolic gas transport model. But gas
network optimization with H2 control and probabilistic
terms in the objective function was not considered yet. We
present a numerical example on a single edge for both, a
probabilistic objective function with a L2 control term and
a probabilistic objective function with an H2 control term.

We consider the isothermal Euler equations for ideal gases,
i.e., for (t, x) ∈ [0, T ]× [0, L] we have

p(t, x) = a2ρ(t, x),

where a denotes the speed of sound in the gas. Due to the
proportionality of pressure and density we consider density
control at x = L instead of pressure control. All values and
constants are given in Table 1.

Letter Value Unit

T 12 h
L 30 km
a 343 m/s
θ 0.2
R 46.3 kg/m3

ρmin 40.4 kg/m3

Table 1. Values for the numerical example.

At the end x = 0 we assume random gas outflow. Therefor
we define a deterministic function

qD(t) = −16

π
sin
( π

12 · 602
t
)
· 16
π

cos
( π

8 · 602
t
)
+ 140.

Let

ξ ∼ N
(
1,
√
0.1

)
,



be a Gaussian distributed random variable on an appropri-
ate probability space (Ω,A,P). Similar as in Schuster et al.
(2021) we write qD(t) as Fourier series and multiply every
Fourier term with a random number ξ(ω), ω ∈ Ω. For the
implementation we cut the Fourier series after 10 terms.
A sample of 20 random boundary functions qr(ω) and the
corresponding deterministic function qD(t) are shown in
Figure 1. For the implementation we use the negative flow
values since gas is transported from the end of the pipe
(x = L) to its beginning (x = 0).

Fig. 1. Sample of 20 random boundary functions qr(ω).

For the initial state we solve the stationary isothermal
Euler equations

qσx = 0,(
a2ρσ +

(qσ)2

ρσ

)
x

= −1

2
θ
qσ |qσ|
ρσ

,
(6)

with the boundary conditions qσ(0) = qD(0) and ρσ(L) =
46.3 kg/m3. The solution (ρσinit, q

σ
init) of (6) serves as initial

state for the dynamic problem.

The probabilistic term in the objective function is com-
puted with a kernel density estimator approach (see Schus-
ter et al. (2021)). Due to the friction along the pipe and due
to the choice of initial states, for every time the density
is minimal at x = 0. Thus we have ρω(t, x) ≥ ρmin iff
ρω(t, 0) ≥ ρmin. We discretize the time interval using nT+1
equidistant points 0 = t0 < · · · < tnT

= T and we
use a multivariate kernel density estimator approach with
Gaussian product kernels to approximate the probabilistic
term. For

Pmin := ⊗nT
i=1[ρmin,∞),

we have

P
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Here N is the number of samples, ρi(tj) is the density
for the i-th sample at (t, x) = (tj , 0) and H is a diagonal

positive definite bandwidth matrix.

We define objective functions

JL2(u,R) = w1∥u−R∥L2(0,T )

− ln
(
P
(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

))
,

and

JH2(u,R) =

w1∥u−R∥L2(0,T ) + w2∥u′∥L2(0,T ) + w3∥u′′∥L2(0,T )

− ln
(
P
(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

))
,

with weights

w1 = 2 · 10−3, w2 = 1 · 105, w3 = 1 · 1012.

The optimal controls for both objective functions (N = 20
and nT = 25) are shown in Figure 2. The blue line shows
the optimal density control for JL2(u,R) and the red line
in shows the optimal density control for JH2(u,R). The
results can be interpreted as follows: For an objective
function without probabilistic term the optimal solution
would obviously be u ≡ R. The density at x = 0 is only
lower than ρmin for the peak around 7 hours (cf. Figure
1). Thus the control only needs to be active in this time
span. As it was expected the H2 control is smoother than
the L2 control.

Fig. 2. Optimal control for JL2(u,R) and JH2(u,R).

We have

PL2

(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

)
≈ 74%,

and

PH2

(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

)
≈ 66%.

Thus a slight decrease of the probability leads to a
smoother density control and less density fluctuations.
This can also be seen in Figure 3 and Figure 4. The peaks
around 7 hours are smoother in Figure 4 than in Figure
3. The blue line shows ρmin. The optimal density control
and the corresponding densities at x = 0 would be even
smoother if we would increase the weights w2, w3 for the
L2-Norm of the control derivatives.



Fig. 3. Scenarios at x = 0 for the optimal density control
of JL2(u,R)

Fig. 4. Scenarios at x = 0 for the optimal density control
of JH2(u,R)

5. CONCLUSION

In optimal control problems, it is important to take into
account the uncertainty of the problem data in order to
obtain controls that work sufficiently well in the set of data
that is expected. Since in many applications information
on the probability distribution of the data is available,
this information should be used in an optimal control
model. In our contribution we choose the probability that
state constraints are satisfied as a part of the objective
function. In this way, it is ensured that the optimization
generates controls that are robust in the sense that the
pressure bounds are satisfied with a high probability. We
include an H2 control cost in the objective functional,
which is of particular interest in the context of hydrogen
transport. It also serves as a Tychonov regularization term
that is important for the proof of the existence of optimal
controls.
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