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Abstract In this paper we analyze the turnpike phenomenon for optimal boundary control prob-
lems with a linear transport equation with source term. The convex objective function depends on
the boundary traces of the transport equation and is strictly convex with respect to the boundary
control. We show an integral turnpike result for an optimal Dirichlet boundary control problem in
the sense that if the time horizon goes to infinity, then the dynamic optimal control converges to
the corresponding steady state optimal control.

The novelty of this work is two-sided. On the one hand, even if turnpike results for this kind
of optimal boundary control problem already exist, we present a new direct proof without using
adjoint calculus that leads to sharper estimates. On the other hand we consider uncertainty in
the initial data and/or in the source term. We show that the integral turnpike result also holds
considering uncertainty. Throughout the paper we use numerical examples to illustrate the results.

Subject Classification: 49K20, 49K45.
Keywords: Turnpike, Boundary Control, Transport Equation, Random Boundary Data.

1 Introduction
The Turnpike property has been established long time ago in optimal control theory. It has been
discussed in mathematical economics by P. A. Samuelson in 1949 (see [3]). Until now the turnpike
theory has been analyzed in various contexts, see e.g. [15]. The turnpike theory in the context
of differential equations has been developed recently, see for example [9, 14] and [12] for finite-
dimensional optimal control problems and [13] for optimal control problems in a Hilbert space
setting. The Turnpike phenomenon for the wave equation in a linear-quadratic setting was stud-
ied in [6], linear hyperbolic 2x2-systems systems with and without integer constraints have been
analyzed in [4, 5].

In this paper we consider optimal boundary control problems with a linear transport equation with
and without uncertain data. We first present an integral turnpike result for an optimal boundary
control problem s.t. a deterministic linear transport equation is satisfied. Integral turnpike result
means, that the L2-norm of the difference between optimal dynamic control and corresponding
optimal static control converges to 0 if the time horizon T goes to infinity. The proof is based
on necessary optimality conditions for the dynamic and the corresponding static optimal control
problem. Even if turnpike results for this kind of optimal boundary control problems already exist
we present a novel direct proof without using adjoint calculus that leads to sharper estimates and a
better time independent right-hand-side constant. Another novelty of this work is that we assume
uncertainty in the initial data and/or in the source term of the transport equation. We show that
the integral turnpike property also holds for the transport equation with uncertain initial data,
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where the objective function depends on the optimal control and on the expected state. Further we
show that an integral turnpike property holds for the transport equation with random source term
as well, where the objective function also depends on the optimal control and on the expected state.

This paper is structured as follows: In Section 2 we introduce a deterministic dynamic optimal
boundary control problem with the linear transport equation and a corresponding static optimal
boundary control problem. The objective function satisfies a property similar to strong convexity
and it depends on the optimal control as well as on the corresponding state. We prove an integral
turnpike property based on necessary optimality conditions for both optimal control problems.
In Section 3 we consider a dynamic optimal control problem with uncertain initial data (modeled
by a Wiener process) and we show that the integral turnpike inequality stated in the deterministic
case in Section 2 also holds in this setting.
In Section 4 we consider a dynamic optimal control problem with a linear transport equation in
which the source term is multiplied with a random variable. We show that an integral turnpike
property also holds for a dynamic optimal control problem with the linear transport equation with
random source term and a corresponding static optimal control problem. Further we specify the
results for Gaussian and uniformly distributed random variables.
Throughout the paper we use numerical examples to illustrate our results. For the numerical
optimization we used the AMPL software package1 with the open-source interior point solver
IPOPT and the linear sparse systems solver MUMPS. For the simulations and the pictures we use
MATLAB® 2019a.

2 A Turnpike result for the deterministic optimal control
problem

In this section we consider a deterministic optimal boundary control problem governed by a linear
transport equation with source term and the corresponding static optimal problem. We state
an integral turnpike result for the optimal controls in the sense that the dynamic optimal control
converges to the static optimal control if the time horizon tends to infinity. For (t, x) ∈ [0, T ]×[0, L],
for initial data rini(x) ∈ L2(0, L), for boundary control u(t) ∈ L2(0, L) and for sound speed c > 0
consider the linear transport equation with initial and boundary control

rt(t, x) + crx(t, x) = mr(t, x),
r(0, x) = rini(x),
r(t, 0) = u(t),

(1)

where rt(t, x) is the time derivative of r and rx(t, x) is the space derivative of r. If the sound speed
c would be negative the information would be transported the other way around and we would
have to assume boundary control at x = L. The constant m is a real number. Note that the linear
transport equation (1) is exactly controllable if T ≥ L/c. Let convex and differentiable functions

f, g : R → R≥0,

be given. For u ∈ L2((0, L) and w : L2(0, T ) → L2(0, T ) we define the function

JT : L2(0, T ) → R, JT (u) =
∫ T

0
f

(
u(t)

)
+ g

(
w

(
u(t)

))
dt. (2)

Note that JT is convex due to the convexity of f and g. For w(u) = r(t, L) we consider the dynamic
optimal boundary control problem

min
u∈L2(0,T )

JT (u) =
∫ T

0
f

(
u(t)

)
+ g

(
r(t, L)

)
dt

s.t. rt(t, x) + crx(t, x) = m r(t, x),
r(0, x) = rini(x),
r(t, 0) = u(t).

(3)

1https://ampl.com/
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The objective function is chosen such that both control cost and corresponding state are opti-
mal with respect to the choice of f and g. Motivated by applications a natural choice would be
minimizing the control cost s.t. the state is close to a desired state a ∈ R, i.e., f(x) = x2 and
g(x) = (x− a)2. Obviously the term r(t, L) also depends on u(t) but be do not explicitly mention
this dependence since we will later use the explicit representation of r(t, L).

From the theory of hyperbolic partial differential equations we know that for initial data rini ∈
L2(0, L) and boundary data u ∈ L2(0, T ) the linear transport equation (1) has a solution r ∈
C([0, T ], L2(0, L)) in terms of characteristics. In fact the solution of (1) is given by

r(t, x) =
{

exp(mt) rini(x− ct) for x > ct,

exp
(
mx

c

)
u

(
t− x

c

)
for x ≤ ct.

(4)

If initial and boundary condition are C1-regular and satisfy C1 compatibility then (4) is a classical
solution. Using the solution (4) the dynamic optimal boundary control problem (3) is equivalent
to

min
u∈L2(0,T )

JT (u) =
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(

exp(mt) rini(L− ct)
)
dt

+
∫ T

L
c

g

(
exp

(
m
L

c

)
u

(
t− L

c

))
dt.

We consider the static optimal control problem corresponding to (3) that is given by
min
u∈R

f(u) + g(r(L)),

crx(x) = mr(x),
r(0) = u.

(5)

The solution of the static transport equation is given by

r(x) = exp
(
m
x

c

)
u, (6)

thus the static optimal control problem (5) is equivalent to

min
u∈R

f(u) + g

(
exp

(
m
L

c

)
u

)
.

Before we state the first Turnpike result in this paper we make the following assumptions:

(A1) Let the functions f and g satisfy the property(
f ′(x1) − f ′(x2)

)(
x1 − x2

)
+

(
g′(y1) − g′(y2)

)(
y1 − y2

)
≥ ε ∥x1 − x2∥2

2, (7)

with constant ε > 0.

(A2) Let the derivative of g be Lipschitz continuous with Lipschitz constant Lk, i.e.,

∥g′(y1) − g′(y2)∥2 ≤ Lk ∥y1 − y2∥2. (8)

Theorem 1. Let the assumptions (A1) and (A2) be satisfied. Then there exist optimal controls
uδ(t) of the dynamic optimal boundary control problem (3) and uσ of the corresponding static
problem (5) that satisfy the integral turnpike property∫ T

0
∥uδ(t) − uσ∥2

2 dt ≤ C, (9)

with a constant C > 0 that is time independent.
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Remark 2. The turnpike inequality (9) is equivalent to the normalized turnpike inequality

1
T

∫ T

0
∥uδ(t) − uσ∥2

2 dt ≤ C
T
, (10)

which implies that for a constant γ the turnpike inequality (10) leads to

1
T

∫ T

0
γ2 dt = γ2.

Remark 3. The turnpike inequality (9) implies that the dynamic optimal control converges asymp-
totically to the static optimal control for T → ∞, i.e.,

lim
T →∞

1
T

∫ T

0
uδ(t) dt = uσ.

Remark 4. There are no restrictions on the constant m in the source term. Often in turnpike
theory for hyperbolic systems the source term is required to be negative in order to avoid a blow-up
in the solution of the PDE (see e.g. [4, 7]).

We mention again that the integral turnpike result stated in Theorem 1 follows e.g. from [4, 5]
but we do not consider any restrictions to the source term and we present a direct proof without
using adjoint caluclus here. Further due to the direct proof leads to sharper estimates.

Proof of Theorem 1. For the reader’s convenience we split the proof in three parts. In the first
part we compute the derivative of the objective function, in the second part we derive necessary
optimality conditions and in the third part we proof the turnpike inequality (9).

Part I: In this part we compute the derivative of the objective function of the dynamic optimal
boundary control problem (3). We define the constant

k := exp
(
m
L

c

)
. (11)

For u ∈ L2(0, T ) we consider a control variation ũ(t) = u(t) + h(t) with h ∈ L2(0, T ). We have

JT (ũ) =
∫ T

0
f

(
u(t) + h(t)

)
dt+

∫ L
c

0
g
(

exp(mt) rini(L− ct)
)
dt

+
∫ T

L
c

g

(
k

(
u

(
t− L

c

)
+ h

(
t− L

c

)))
dt.

Using integration by substitution we have

JT (ũ) =
∫ T

0
f

(
u(t) + h(t)

)
dt+

∫ L
c

0
g
(

exp(mt) rini(L− ct)
)
dt

+
∫ T − L

c

0
g
(
k

(
u(t) + h(t)

))
dt.

Due to the convexity of f and g we have

JT (ũ) ≥
∫ T

0
f

(
u(t)

)
+ f ′(u(t)

)
h(t) dt+

∫ L
c

0
g
(

exp(mt) rini(L− ct)
)
dt

+
∫ T − L

c

0
g
(
k u(t)

)
+ k g′(k u(t)

)
h(t) dt,

which is equivalent to

JT (ũ) ≥
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(

exp(mt) rini(L− ct)
)
dt+

∫ T

L
c

g

(
k u

(
t− L

c

))
dt

+
∫ T

0
f ′(u(t)

)
h(t) dt+

∫ T − L
c

0
k g′(k u(t)

)
h(t) dt.

(12)
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We define the function

ψ : [0, T ] → {0, 1}, ψ : t 7→

{
1 0 ≤ t ≤ T − L

c ,

0 else.

We have ∫ T − L
c

0
k g′(k u(t)

)
h(t) dt =

∫ T

0
k ψ(t) g′(k u(t)

)
h(t) dt,

and thus (12) leads to

JT (ũ) ≥ JT (u) +
〈
f ′(u(t)

)
+ k ψ(t) g′(k u(t)

)
, h(t)

〉
L2(0,T )

.

Due to the convexity of JT this implies that the functional derivative of JT is given by

J ′
T (u) = f ′(u(t)

)
+ k ψ(t) g′(k u(t)

)
. (13)

Note that (13) coincides with the Fréchet derivative.

Part II: In this part we derive necessary optimality conditions for the dynamic optimal boundary
control problem (3) and for the corresponding static problem (5). The existence of an optimal con-
trol for the dynamic problem (3) follows by assumption (A1) and by applying the Direct Method of
the Calculus of Variations (see e.g. [2]). The existence of an optimal solution of the static problem
(5) also follows by assumption (A1). Also assumption (A1) guarantees uniqueness of the optimal
controls.

Let uδ(t) ∈ L2(0, T ) be the optimal solution of the dynamic optimal control problem (3) with
corresponding optimal state rδ(t, x) and let uσ ∈ R be the optimal solution of the corresponding
static optimal control problem (5) with corresponding state rσ(x). Then we have

f ′(uδ(t)
)

+ k ψ(t) g′(k uδ(t)
)

= 0,

and
f ′(uσ

)
+ k g′(k uσ

)
= 0.

Equalizing both equations leads to

f ′(uδ(t)
)

− f ′(uσ
)

= k g′(k uσ
)

− k ψ(t) g′(k uδ(t)
)
. (14)

Part III: Now we can proof the turnpike inequality (9). From assumption (A1) it follows

ε ∥uδ(t) − uσ∥2
L2(0,T ) =

∫ T

0
ε ∥uδ(t) − uσ∥2

2 dt

≤
∫ T

0

(
f ′(uδ(t)

)
− f ′(uσ

))(
uδ(t) − uσ

)
dt

+
∫ T

0

(
g′(rδ(t, L)

)
− g′(rσ(L)

))(
rδ(t, L) − rσ(L)

)
dt.

Using the necessary optimality conditions (14) leads to

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤

∫ T

0

(
k g′(k uσ

)
− k ψ(t) g′(k uδ(t)

))(
uδ(t) − uσ

)
dt

+
∫ T

0

(
g′(rδ(t, L)

)
− g′(rσ(L)

))(
rδ(t, L) − rσ(L)

)
dt.
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Using the definition of ψ and the solution of the transport equation (4) resp. (6) we have

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤

∫ T − L
c

0

(
k g′(k uσ

)
− k g′(k uδ(t)

))(
uδ(t) − uσ

)
dt

+
∫ T

T − L
c

k g′(k uσ
)(
uδ(t) − uσ

)
dt

+
∫ L

c

0

(
g′( exp(mt) rini(L− ct)

)
− g′(k uσ

))
·
(

exp(mt) rini(L− ct) − k uσ
)
dt

+
∫ T

L
c

(
g′

(
k uδ

(
t− L

c

))
− g′(k uσ

))(
k uδ

(
t− L

c

)
− k uσ

)
dt.

We use integration by substitution to get∫ T

L
c

(
g′

(
k uδ

(
t− L

c

))
− g′(k uσ

))(
k uδ

(
t− L

c

)
− k uσ

)
dt

=
∫ T − L

c

0

(
g′(k uδ(t)

)
− g′(k uσ

))(
k uδ(t) − k uσ

)
dt,

and thus we have

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤

∫ T

T − L
c

k g′(k uσ
)(
uδ(t) − uσ

)
dt

+
∫ L

c

0

(
g′( exp(mt) rini(L− ct)

)
− g′(k uσ

))
·
(

exp(mt) rini(L− ct) − k uσ
)
dt.

(15)

Since both terms are L2 scalar products we can apply Cauchy-Schwarz inequality. This leads to

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤ ∥k g′(k uσ

)
∥L2(T −L/c,T ) ∥uδ(t) − uσ∥L2(T −L/c,T )

+ ∥g′( exp(mt) rini(L− ct)
)

− g′(k uσ
)
∥L2(0,L/c)

· ∥ exp(mt) rini(L− ct) − k uσ∥L2(0,L/c).

We now apply the Lipschitz continuity stated in assumption (A2). This implies

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤ ∥k g′(k uσ

)
∥L2(T −L/c,T ) ∥uδ(t) − uσ∥L2(T −L/c,T )

+ Lk ∥ exp(mt) rini(L− ct) − k uσ∥2
L2(0,L/c).

Since the term k g′(k uσ
)

does not depend on the time we have

z1 := ∥k g′(k uσ
)
∥L2(T −L/c,T ) =

√
L

c
k

∣∣g′(k uσ
)∣∣ > 0. (16)

With the triangle inequality it follows

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤ z1 ∥uδ(t) − uσ∥L2(T −L/c,T )

+ Lk ∥ exp(mt) rini(L− ct)∥2
L2(0,L/c) + ∥k uσ∥2

L2(0,L/c).

Depending on the sign of m the term exp(mt) can be estimated by

0 ≤ exp(mt) ≤ z2 :=
{

1 m ≤ 0,
exp

(
mL

c

)
m > 0.

(17)
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Thus we have

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤ z1 ∥uδ(t) − uσ∥L2(T −L/c,T )

+ Lk z
2
2 ∥rini(L− ct)∥2

L2(0,L/c) + ∥k uσ∥2
L2(0,L/c).

We define the constant
z3 := L

c

∣∣k uσ
∣∣2 = ∥k uσ∥2

L2(0,L/c) ≥ 0. (18)

With

∥uδ(t) − uσ∥L2(T −L/c,T ) ≤ ∥uδ(t) − uσ∥L2(0,T ) and ∥rini(L− ct)∥2
L2(0,L/c) = ∥rini(x)∥2

L2(0,L),
(19)

we have

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤ z1 ∥uδ(t) − uσ∥L2(0,T ) + Lk z

2
2 ∥rini(x)∥2

L2(0,L) + z3,

which for û := ∥uδ(t) − uσ∥L2(0,T ) is equivalent to the quadratic polynom

ε û2 − z1 û−
(
Lk z

2
2 ∥rini(x)∥2

L2(0,L) + z3

)
≤ 0. (20)

Since the term Lk z
2
2 ∥rini∥2

L2(0,L) + z3 is larger than or equal to zero, since ε is positive and since
equation (20) holds for û = 0 we can find an interval [0,

√
C], such that

û = ∥uδ(t) − uσ∥L2(0,T ) ≤
√

C,

and thus the theorem is proven.

Remark 5. The constant C is time independent and it is given by

C =

 z1 +
√
z2

1 + 4 ε
(
Lk z2

2 ∥rini(x)∥2
L2(0,L) + z3

)
2 ε


2

,

where k is defined in (11), z1 is defined in (16), z2 is defined in (17) and z3 is defined in (18).

The assumption (A1) is essential for the existence of optimal controls in terms of the Direct
Method of Calculus of Variations. The assumption holds e.g. if f is strongly convex. Further in
(15) in the proof one can see that the constant C is completely defined by the behaviour of the
transport equation in the time intervals [0, L/c] and [T − L/c, T ]. This behaviour can also be
seen in by following the characteristic curves as it is shown in Figure 1.

t

x

T

L/c T − L/c

L

rini(x)

u(t)

Figure 1: Characteristics of (1) on [0, T ] × [0, L]
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Example At the end of this section we present an example. For x ∈ R we consider the
functions

f(x) = ω1 x
2 and g(x) = ω2 (x− rD)2,

where rD is a desired state. We consider the optimal boundary control problem (3) with the
constants and variables given in Table 1. The initial condition is given by the solution of the
stationary problem corresponding to the initial control u0{

c rx(x) = m r(x),
r(0) = u0.

Variable Letter Value
speed of propagation c 10 [m/s]
right hand side weight m −5 · 10−4 [1/s]
time horizon T 602 [s]
space horizon L 104 [m]
weight 1 ω1 1
weight 2 ω2 5
desired state rD 25
initial control u0 25

Table 1: Values for the deterministic example

We assume that the control and state variable are non-dimensionalized. For the time and
space discretization we consider 401 equidistant grid points in time and 21 equidistant grid points
in space. The transport equation is solved using an upwind scheme in space and an implicit
Euler method in time. As mentioned in Section 1 we solve the optimal control problem using the
AMPL software with the IPOPT and the MUMPS solver. The pictures and simulation of the
corresponding optimal states are done in MATLAB® 2019a. The solution is shown in Figure 2.

Figure 2: Optimal control (upper picture) and corresponding optimal states at x = L (lower
picture)

The results shown in Figure 2 coincide with the statement of Theorem 1, especially with (15)
in the proof of Theorem 1: The difference between the dynamic and the static solution depends on
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the time intervals [0, L/c] and [0, T −L/c]. Further for t > T −L/c due to the hyperbolic character
of the transport equation the information provided by the control does not reach the x = L, so
the control is not active anymore.

3 Uncertain Initial Data
In this section we consider an optimal boundary control problem with uncertain initial data given
by 

min
u∈L2(0,T )

JT (u) =
∫ T

0
f

(
u(t)

)
+ g

(
E

[
r(t, L)

])
dt,

s.t. r(0, x) = rω
ini(x),

rt(t, x) + crx(t, x) = mr(t, x),
r(t, 0) = u(t),

(21)

where rω
ini is defined by a space dependent random variable. Motivated by applications the random

variable often is not completely unknown than rather given by some expected value. We model
the uncertainty here by an expected deterministic state and an additional term given by a Wiener
process (Wx)x≥0 (see e.g. [10]) on an appropriate probability space (Ω,A,P). So we have

rω
ini(x) = rini(x) +Wx. (22)

One might also have a look at [11] which gives an excellent introduction and overview on prob-
ability theory and stochastic processes. Since the paths of a Wiener process are P-almost surely
continuous, regularity regarding the existence of solutions for the transport equation with random
initial state does not cause problems. A Wiener process can be represented as random Fourier
series. Let ξ1, ξ2, · · · be independent standard normal distributed random numbers. Then

Wx =
√

2
∞∑

k=1
ξk

sin
((
k − 1

2
)
πx

)(
k − 1

2
)
π

,

represents a Wiener process on [0, 1] and
√
L Wx/L represents a Wiener process on [0, L]. For

the simulation the sum can be cut after NF terms. A way of simulating the discretized paths
of a Wiener process is a Gaussian random walk. For an equidistant space grid 0 = x0 < x1 <
· · · < nn−1 < xn = L with xk − xk−1 = ∆x and independent standard normal distributed random
numbers ξ1, · · · , ξn a path of a Wiener process is given by

W0 = 0 and Wn∆x =
√

∆x
n∑

k=1
ξk.

Both representations are shown in Figure 3 for L = 10, n = 101, ∆x = 0.1 and NF = 10.

(a) Gaussian random walk (b) Random Fourier series

Figure 3: Simulation of 100 paths of a Wiener process by Gaussian random walk (a) and random
Fourier series (b)

The fact that W0 = 0 allows us to demand compatibility between initial and boundary condi-
tion. Due to the hyperbolic structure of (21) and due to c > 0 the information given by the initial
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condition is transported through the system and vanishes at the boundary c = L after t = L/c
(see Figure 1). So we can formulate the following statement:

Theorem 6. Let the assumptions (A1) and (A2) be satisfied. Then there exist optimal controls
uδ(t) of the dynamic optimal boundary control problem (21) with uncertain data given by the Wiener
process and uσ of the corresponding static problem (5) that satisfy the integral turnpike property∫ T

0
∥uδ(t) − uσ∥2

2 dt ≤ C, (23)

where the time independent constant C is given in Remark 5.

Proof. For the objective function in (21) we have

JT (u) =
∫ T

0
f

(
u(t)

)
+ g

(
E

(
r(t, L)

))
dt

=
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(

E
[

exp(mt)rω
ini(L− ct)

])
dt

+
∫ T

L
c

g
(

E
[

exp
(
m
L

c

)
u

(
t− L

c

)])
dt

Since the last part does not depend on the uncertainty, we have

JT (u) =
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(

E
[

exp(mt)rω
ini(L− ct)

])
dt+

∫ T

L
c

g
(

exp
(
m
L

c

)
u

(
t− L

c

))
dt

For the term depending on the uncertainty we have

E
[

exp(mt)rω
ini(L− ct)

]
= exp(mt) E

[
rini(L− ct) +WL−ct

]
= exp(mt) E

[
rini(L− ct)

]
+ exp(mt) E

[
WL−ct

]
Since rini is deterministic and since Wiener processes satisfy E[Wx] = 0 for all x ≥ 0 we have

E
[

exp(mt)rω
ini(L− ct)

]
= exp(mt) rini(x− ct),

and consequently

JT (u) =
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(

exp(mt)rini(L− ct)
)
dt+

∫ T

L
c

g
(

exp
(
m
L

c

)
u

(
t− L

c

))
dt.

Thus the result of Theorem 1 can be applied here and the turnpike inequality (23) holds with
constant C given in Remark 5.

Example: We consider almost the same example as above in Section 2. The only difference is
that we add a Wiener process simulated with a Gaussian random walk to the deterministic initial
data. All values and constants except the initial data are equal to the values and constants in the
example of Section 2, given in Table 1. The results are shown in Figure 4.

The result of Theorem 6 imply that the optimal controls of the dynamic optimal control prob-
lems (3) and (21) are equal. Since the initial condition has no influence on the solution at x = L
after t = L/c, different initial scenarios lead to different states only in [0, L/c] (cf. Figure 4).

Since in this setting only the initial data is uncertain, the uncertainty in the system vanishes
for times larger than L/c. So another approach would be to exclude the uncertainty part from the
objective function and consider the optimal control problem

min
u∈L2(0,T )

JT (u) =
∫ T

0
f

(
u(t)

)
dt+

∫ T

L
c

g
(
r(t, L)

)
dt,

s.t. r(0, x) = rω
ini(x),

rt(t, x) + crx(t, x) = mr(t, x),
r(t, 0) = u(t).

(24)

10



Figure 4: Optimal control (upper picture) and corresponding optimal states at x = L (lower
picture)

Then the derivative of JT is given by (13) with

ψ(t) =
{

1 L
c ≤ t ≤ T − L

c ,

0 else,

and instead of equation (15) we have

ε ∥uδ(t) − uσ∥2
L2(0,T ) ≤

∫ L
c

0
k g′(k uσ

)(
uδ(t) − uσ

)
dt+

∫ T

T − L
c

k g′(k uσ
)(
uδ(t) − uσ

)
dt

+
∫ L

c

0

(
g′( exp(mt) rini(L− ct)

)
− g′(k uσ

))
·
(

exp(mt) rini(L− ct) − k uσ
)
dt.

Due to the estimate (19) this leads to the same constants and the turnpike inequality (23) holds
as well.

4 Random Source Term
In this section we consider uncertainty in the source term of the PDE. Consider a random variable
ξ with absolutely continuous probability distribution and probability density function ϱξ on an
appropriate probability space (Ω,A,P). Assume that ξ is integrable w.r.t. the Lebesgue-measure
λ, i.e., the expected value of ξ exists. Let mω = ξ(ω) be a realization of the random variable. We
consider the linear transport equation with uncertain source term

rω
t (t, x) + c rω

x (t, x) = mω r(t, x), ω ∈ Ω
rω(0, x) = rini(x),
rω(t, 0) = u(t).

(25)
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In contrast to Section 3 the system (25) is uncertain for all (t, x) ∈ [0, T ]× [0, L]. Since mω ∈ R,
for rini ∈ L2(0, L) and u ∈ L2(0, T ) a solution of (25) exists P-almost surely in C([0, T ], L2(0, L)).
The solution is given by

r(t, x) =
{

exp
(
mωt

)
rini(x− ct) for x > ct,

exp
(
mω x

c

)
u

(
t− x

c

)
for x ≤ ct.

(26)

For JT as in (2) we consider the dynamic optimal boundary control problem

min
u∈L2(0,T )

JT (u) =
∫ T

0
f

(
u(t)

)
+ g

(
E

[
r(t, L)

])
dt

s.t. rt(t, x) + crx(t, x) = mω r(t, x),
r(0, x) = rini(x),
r(t, 0) = u(t),

(27)

and the corresponding static optimal control problem
min
u∈R

f
(
u

)
+ g

(
E

[
r(L)

])
,

crx(x) = mω r(x),
r(0) = u.

(28)

Due to the solution of the transport equation (26) the dynamic optimal control problem (27)
is equivalent to

min
u∈L2(0,T )

JT (u) =
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(

E
[

exp(mωt) rini(L− ct)
])

dt

+
∫ T

L
c

g

(
E

[
exp

(
mωL

c

)
u

(
t− L

c

)])
dt.

The solution of the static transport equation is given by

r(x) = exp
(
mω x

c

)
u, (29)

thus the static optimal control problem (28) is equivalent to

min
u∈R

f(u) + g

(
E

[
exp

(
mωL

c

)
u

])
.

Before we state a turnpike result for the optimal boundary control problem (27) and (28) we
need to make another assumption. Define the function

e0(t) : [0, T ] → R ∪ {±∞}, t 7→
∫ ∞

−∞
exp

(
zt

)
ϱξ(z) dz, (30)

where ϱξ is the probability density function of the random variable ξ, and define the number

e1 :=
∫ ∞

−∞
exp

(
z
L

c

)
ϱξ(z) dz. (31)

Both e0 and e1 are obviously positive.

(A3) We assume that
e0(t) ≤ e2 ∈ R < ∞ ∀t ∈ [0, L/c], (32)

(A4) We assume that
e1 < ∞. (33)
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Theorem 7. Let the assumptions (A1) and (A2) be satisfied. Then there P-almost surely ex-
ist optimal controls uδ(t) of the dynamic optimal boundary control problem (27) and uσ of the
corresponding static problem (28) that satisfy the integral turnpike property∫ T

0
∥uδ(t) − uσ∥2

2 dt ≤ C2, (34)

with a constant C2 > 0 that is time independent.

Proof. Consider the objective function JT (u). We have

JT (u) =
∫ T

0
f

(
u(t)

)
+ g

(
E

[
r(t, L)

])
dt

=
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(
E

[
r(t, L)

])
dt+

∫ T

L
c

g
(
E

[
r(t, L)

])
dt.

For a random variable X and a function h we have (see [8])

E
[
h(X)

]
=

∫ ∞

−∞
h(z) ϱX(z) dz,

where ϱX is the probability density function of the random variable X. Thus it follows

JT (u) =
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g

( ∫ ∞

−∞
exp

(
zt

)
rini(L− ct) ϱξ(z) dz

)
dt

+
∫ T

L
c

g

( ∫ ∞

−∞
exp

(
z
L

c

)
u

(
t− L

c

)
ϱξ(z) dz

)
dt

=
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g

(
rini(L− ct)

∫ ∞

−∞
exp

(
zt

)
ϱξ(z) dz

)
dt

+
∫ T

L
c

g

(
u

(
t− L

c

) ∫ ∞

−∞
exp

(
z
L

c

)
ϱξ(z) dz

)
dt,

and with the definitions of e0(t) and e1 given in (30) and (31) we have

JT (u) =
∫ T

0
f

(
u(t)

)
dt+

∫ L
c

0
g
(
e0(t) rini(L− ct)

)
dt+

∫ T

L
c

g

(
e1 u

(
t− L

c

))
dt.

Then the proof is analogous to the proof of Theorem 1 except the constants. We have e1 instead
of k here (e1 < ∞ due to assumption (A4)) and we define

z̃1 := ∥e1 g
′(e1 u

σ)∥L2(T −L/c,T ) =
√
L

c
e1|g′(e1 u

σ)| > 0,

z̃2 := e2,

z̃3 := L

c
|e1 u

σ|2 = ∥e1 u
σ∥2

L2(0,L/c) ≥ 0.

Note that z̃2 exists due to assumption (A3). Thus there exists a time independent constant C2
given by  z̃1 +

√
z̃2

1 + 4 ε
(
Lk z̃2

2 ∥rini(x)∥2
L2(0,L) + z̃3

)
2 ε


2

,

s.t. the turnpike inequality (34) holds and the proof is complete.
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The assumptions (A3) and (A4) might look strong at first glance but they basically guarantee
that the expected values even exist, as it is the case for most of the common distributions. In the
following part we will specify the constants for a Gaussian distributed and for a uniform distributed
random variable. For this we first proof an auxiliary lemma.

Lemma 8. For constants a0, a1, a2 ∈ R we have∫
exp

(
a0 + a1 x− a2 x

2
)
dx =

√
π

4a2
exp

(
a0 + a2

1
4a2

)
+ erf

(
√
a2 x− a1

2√
a2

)
+ γ,

where erf is the Gauss error function (see e.g., [1]) and γ ∈ R is some constant.

Proof. We have

d

dx

[ √
π

4a2
exp

(
a0 + a2

1
4a2

)
+ erf

(
√
a2 x− a1

2√
a2

)
+ γ

]
=

√
π

4a2
exp

(
a0 + a2

1
4a2

)
+ d

dx

[
erf

(
√
a2 x− a1

2√
a2

)]
.

The derivative of the Gauss error function is given by

d

dx
erf(x) = 2√

pi
exp

(
− x2)

.

Thus it follows

d

dx

[ √
π

4a2
exp

(
a0 + a2

1
4a2

)
+ erf

(
√
a2 x− a1

2√
a2

)
+ γ

]
=

√
π

4a2
exp

(
a0 + a2

1
4a2

)
+ exp

(
−

(√
a2 x− a1

2√
a2

)2
)

2√
π

√
a2

= exp
(
a0 + a2

1
4a2

)
+ exp

(
−

(
a2 x

2 − 2
√
a2

a1

2√
a2

x+ a2
1

4a2

))
= exp

(
a0 + a2

1
4a2

− a2 x
2 + a1 x− a2

1
4a2

)
= exp

(
a0 + a1 x− a2 x

2
)
.

Lemma 9. Let ξ be Gaussian distributed with mean value µ ∈ R and standard deviation σ > 0,
i.e., ξ ∼ N (µ, σ2). Then the constant e2 in assumption (A3) is given by

e2 := max
{

1, exp
(
µ
L

c
+ σ2

2
L2

c2

)}
,

and the constant e1 in assumption (A4) is given by

e1 := exp
(
µ
L

c
+ σ2

2
L2

c2

)
.

Proof. The probability density function of the Gaussian distribution with mean value µ ∈ R and
standard deviation σ > 0 is given by

ϱξ(z) = 1√
2πσ2

exp
(

− 1
2

(z − µ

σ

)2
)
.
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So for e0(t) defined in (30) we have

e0(t) =
∫ ∞

−∞
exp

(
zt) 1√

2πσ2
exp

(
− 1

2

(z − µ

σ

)2
)
dz

= 1√
2πσ2

lim
a→∞

∫ a

−a

exp
(
zt) exp

(
− 1

2

(z − µ

σ

)2
)
dz

= 1√
2πσ2

lim
a→∞

∫ a

−a

exp
(
t z − 1

2σ2 z + µ

σ2 z − µ2

2σ2

)
dz

= 1√
2πσ2

lim
a→∞

∫ a

−a

exp
(
b0 + b1(t) z − b2 z

2
)
dz,

with the values
b0 := − µ2

2σ2 , b1(t) := µ

σ2 + t and b2 := 1
2σ2 .

An antiderivative is given by Lemma 8, so it follows

e0(t) = 1√
2πσ2

lim
a→∞

[√
π

4b2
exp

(
b0 + b2

1(t)
4b2

)
erf

(√
b2 z − b1(t)

2
√
b2

)]z=a

z=−a

= 1
2
√

2σ2b2
exp

(
b0 + b2

1(t)
4b2

)
lim

a→∞

[
erf

(√
b2 a− b1(t)

2
√
b2

)
︸ ︷︷ ︸

→1

− erf
(

−
√
b2 a− b1(t)

2
√
b2

)
︸ ︷︷ ︸

−1

]

=
√

1
2σ2b2

exp
(
b0 + b2

1(t)
4b2

)
.

Inserting the values b0, b1(t) and b2 leads to

e0(t) =
√

1
2σ2 1

2σ2

exp
(

− µ2

2σ2 + σ2

2

( µ2

4σ4 + 2 µ
σ2 t+ t2

))
= exp

(
µ t+ σ2

2 t2
)
.

For t ∈ [0, L/c] this can be estimated by

e0(t) ≤ max
{

1, exp
(
µ
L

c
+ σ2

2
L2

c2

)}
:= e2,

depending on the sign and the value of µ. Equivalently we get

e1 =
∫ ∞

−∞
exp

(
z
L

c

)
1√

2πσ2
exp

(
− 1

2

(z − µ

σ

)2
)
dz = exp

(
µ
L

c
+ σ2

2
L2

c2

)
,

and the lemma is proven.

From the proof of Lemma 9 we can explicitly state the expected value of r(t, L) for Gaussian
distributed random variables:

Corollary 10. Let ξ be Gaussian distributed with mean value µ ∈ R and standard deviation σ > 0,
i.e., ξ ∼ N (µ, σ2). Then for the solution r(t, x) of the transport equation at x = L with boundary
control uδ(t) we have

E
[
r(t, L)

]
=


exp

(
µ t+ σ2

2 t2
)
rini

(
L− ct

)
0 ≤ t <

L

c
,

exp
(
µ
L

c
+ σ2

2
L2

c2

)
uδ

(
t− L

c

) L

c
≤ t ≤ T,

and for the solution r(x) of the static transport equation at x = L with boundary control uσ we
have

E
[
r(L)

]
= exp

(
µ
L

c
+ σ2

2
L2

c2

)
uσ.
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Lemma 11. Let ξ be uniformly distributed on [a, b], i.e., ξ ∼ U([a, b]). Then the constants e2 and
e1 in assumptions (A3) and (A4) are given by

e1 = e2 = c

L

1
b− a

[
exp

(
b
L

c

)
− exp

(
a
L

c

)]
.

Proof. The probability density function of the uniform distribution on [a, b] is given by

ϱξ(z) =
{

1
b−a if a ≤ z ≤ b,

0 else.

Thus we have
e0(t) =

∫ ∞

−∞
exp

(
zt

)
ϱξ(z) dz = 1

b− a

∫ b

a

exp
(
zt

)
dz.

Since we have ∫ b

a

exp
(
zt1

)
dz <

∫ b

a

exp
(
zt2

)
dz for 0 ≤ t1 < t2,

the function e0(t) is monotonously increasing on [0, L/c] and we have

e0(t) ≤ e0

(L
c

)
= 1
b− a

∫ b

a

exp
(
z
L

c

)
dz

= 1
b− a

[
c

L
exp

(
z
L

c

)]z=b

z=a

= c

L

1
b− a

[
exp

(
b
L

c

)
− exp

(
a
L

c

)]
=: e2.

Since e0(L/c) = e1 the same holds for e1 and the lemma is proven.

From the proof of Lemma 11 we can explicitly state the expected value of r(t, L) for uniformly
distributed random variables:

Corollary 12. Let ξ be uniformly distributed on [a, b], i.e., ξ ∼ U([a, b]). Then for the solution
r(t, x) of the transport equation at x = L with boundary control uδ(t) we have

E
[
r(t, L)

]
=


1

b− a

[
exp(bt) − exp(at)

] 1
t
rini

(
L− ct

)
0 ≤ t ≤ L

c
,

1
b− a

[
exp

(
b
L

c

)
− exp

(
a
L

c

)]
c

L
uδ

(
t− L

c

) L

c
≤ t ≤ T − L

c

and for the solution r(x) of the static transport equation at x = L with boundary control uσ we
have

E
[
r(L)

]
= 1
b− a

[
exp

(
b
L

c

)
− exp

(
a
L

c

)]
c

L
uσ.

Example We consider almost the same example as in Section 2 except the right-hand-side
constant mω which is random here. Let a Gaussian distributed random variable ξ be given with

ξ ∼ N
(

− 5 · 10−4, 0.001
)
, with mω = ξ(ω).

All remaining values and constants are given in Table 1. The results are shown in Figure 5. One
can see the turnpike structure of the deterministic control as well as of the expected states at x = L
and the scenarios for different realizations of mω.
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Figure 5: Optimal control (upper picture) and corresponding expected optimal state at x = L
(lower picture). The lines in cyan and magenta show 10 dynamic resp. static scenarios for different
values of mω.

5 Conclusion
In this paper we have proven turnpike results for optimal boundary control problems for the linear
transport equation with and without uncertainty. In Section 2 we have considered a determinis-
tic optimal boundary control problem for the transport equation with linear source term and we
have proven an integral turnpike inequality (see Theorem 1) exploiting the explicit solution of the
transport equation. As it was mentioned several times before, even if this result is not new (see
e.g. [4, 5]) we presented a new proof based on less assumptiones, that led to sharper estimates for
the time independent constant in (1).
In Section 3 and Section 4 we have considered uncertainty in the system. First we considered
uncertain initial data in which the initial condition was given by a deterministic function that is
perturbed by a Wiener process. We have shown in Theorem 6 that the deterministic turnpike
inequality from (23) holds with the same constant as in the deterministic setting. Then we have
considered an optimal boundary control problem for the transport equation with random source
term. The source term was multiplied with a random variable while the state in the objective
function was replaced with the expected state. In Theorem 7 we have shown that the integral
turnpike inequality from the deterministic case holds as well with another constant. Further we
have specified the time independent turnpike constant for Gaussian and uniformly distributed ran-
dom variables.

These results can be generalized in several directions. Instead of the transport equation we
can consider any scalar hyperbolic partial differential equation where an explicit solution is known
(even nonlinear ones), merely the estimates in the proofs and thus the time independent turnpike
constant changes.
For the part in Section 3 one can assume deterministic initial data that is multiplied with a random
variable, as we did for the source term. The other way around one can consider a deterministic
source term for the transport equation that is perturbed by a Wiener process, as we did for the
initial data.
Even a coupling of transport equations is possible with wisely chosen coupling conditions, but one
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has to be aware of the splitting of the time interval for the solution of the transport equation as
we did in the proofs of the turnpike theorems. En extension to systems of hyperbolic PDEs is
interesting and might be possible but explicit solutions for systems of PDEs are rarely known.
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