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Abstract. We consider a state estimation problem for gas pipeline flow modeled by the one-
dimensional barotropic Euler equations. In order to reconstruct the system state, we construct
an observer system of Luenberger type based on distributed measurements of one state variable.
First, we show the existence of Lipschitz-continuous semi-global solutions of the observer system
and of the original system for initial and boundary data satisfying smallness and compatibility
conditions for a single pipe and for general networks. Second, based on an extension of the
relative energy method we prove that the state of the observer system converges exponentially
in the long time limit towards the original system state. We show this for a single pipe and for
star-shaped networks.
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1. Introduction

The goal of data assimilation is to estimate the current state of some system by combining
available measurement data with a physical model of the system [1, 2]. This is important, for
example, if control problems are considered that need the current system state as input data.
Here, we will consider systems that are described by nonlinear hyperbolic balance laws. In many
applications such systems are considered on networks, for a survey on balance laws on networks
see [3]. Examples are the Saint-Venant system modeling water flow through open channels, the
Aw-Rascle-Zhang model for traffic flow and the barotropic Euler equations modeling gas trans-
port through pipes, where our long-term goal is to study data assimilation for these problems
on networks.

There are different approaches for data assimilation, which can mainly be grouped into
variational approaches, statistical approaches such as Kalman filtering and observer-based ap-
proaches. In this paper we will use the observer-based approach, which means that an observer
system is constructed that contains, in comparison to the original system, some additional source
terms or boundary conditions accounting for the measurement data. Then, the main goal is to
show the synchronization, i.e., the convergence of the observer system towards the original sys-
tem state. Proving synchronization of observer systems can be viewed as a control problem,
where the difference system has to be controlled to zero. A particular difficulty arises from the
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nonlinearity of the balance laws, since for nonlinear systems the difference system does not have
the same structure as the original system. To deal with this challenge we construct Lyapunov
functions based on relative energy.

Similar to other control problems, we can distinguish between boundary observers based on
boundary measurements (cf. [4] for an example for a semilinear model for gas transport), and
distributed observers, where distributed measurements are inserted into the observer system
through suitable source terms. Synchronization of a boundary observer for linear hyperbolic
systems was shown in [5]. An important class of observers for distributed measurements are
Luenberger-type observers [6], where the inserted source terms are proportional to the difference
between the state of the observer system and the measurements, see e.g. [7] for an application to
the Saint-Venant system using a Luenberger-type observer for a kinetic representation. Other
works using Luenberger-type observers include [8], where synchronization of an observer for
the 2D Bénard convection problem is investigated numerically for coarse-grained measurements
of one variable, [9] and [10], where exponential synchronization of an observer for the surface
quasi-geostrophic equation and the wave equation, respectively, is shown, and [11], where error
estimates for a mixed finite element discretization of an observer system for the Navier-Stokes
equation are provided. Luenberger observers for linear hyperbolic systems of second order are
investigated in [12] and [13], where in the latter work measurement data are incorporated into
the discretization of wave-like equations in order to guarantee bounded approximation errors.
Joint state-parameter estimation for a front-tracking problem using a Luenberger observer for
state estimation and a Kalman filter for parameter estimation is studied in [14] and in [15] si-
multaneous state and parameter estimation is investigated for wave equations and exponential
synchronization is shown. Luenberger observers can also be designed for boundary measure-
ments, see e.g. [16], where a boundary Luenberger observer is introduced for a linearized model
of pipeline flow.

In the following, we will consider observer-based data assimilation for systems modeled by
the one-dimensional barotropic Euler equations

∂tρ+ ∂xm = 0 (1)

∂tm+ ∂x

(
m2

ρ
+ p(ρ)

)
= −γ

|m|m
ρ

(2)

for 0 < x < ℓ, t > 0 allowing for a nonlinear friction term on the right-hand side. Here, the
density ρ and the mass flow rate m = ρv with the velocity v are the unknowns and the system
is complemented by a strictly monotone pressure law p(ρ) and a friction coefficient γ ≥ 0.
This system describes gas transport through gas pipes, where the friction term results from the
friction at the pipe walls (cf. [17]). Let us note that for a pressure law given by p(ρ) = g

2ρ
2 with

g the gravity of earth the system (without friction) is equivalent to the Saint-Venant system for
flat bathymetry and the system is also similar to the Aw-Rascle-Zhang model (see e.g. [18]) for
traffic flow.

In order to investigate the convergence of the state of the observer system towards the original
solution, we have to bound the difference between two solutions. There are different frameworks
for this in the case of systems of nonlinear hyperbolic balance laws: The L1-stability framework
by Bressan [19], which needs a small total variation condition, and the relative energy framework,
which we will use in the following. The relative energy defined with respect to conservative
variables was introduced in [20] and was applied to a variety of thermo-mechanical theories of
fluids in [21]. If systems on networks are studied, it turns out, see [22], that it is more suitable
to use the relative energy with respect to the non-conservative variables (ρ, v). Therefore, we
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rewrite system (1)-(2) in the Hamiltonian form

∂tρ+ ∂xm = 0 (3)

∂tv + ∂xh = −γ|v|v (4)

with the specific enthalpy h(ρ, v) := 1
2v

2+P ′(ρ), a smooth and strictly convex pressure potential
P = P (ρ), connected to the pressure law by p′(ρ) = ρP ′′(ρ), and associated energy functional

H(ρ, v) :=

∫ ℓ

0

(
1
2ρv

2 + P (ρ)
)
dx. (5)

In the case of subsonic velocities and smooth solutions, which is the relevant case for gas trans-
port, this formulation allows to use relative energy techniques in order to investigate the stability
of the equations (3)-(4) with respect to parameters and initial data, see [22]. The essential idea
of our approach is to use a modification of this relative energy method to prove the exponential
synchronization of the observer to the original system, i.e., we show the exponential convergence
in the long time limit of the state of the observer system to the original system state.

We study the case where distributed partial measurements are available, i.e., measurements
of only one state variable on the whole computational domain. Our aim is to estimate the
complete system state. A motivation for this scenario is that e.g. for the Saint-Venant system
the water height in a network of open channels is accessible more easily than the velocity. For
the barotropic Euler system, we assume that we have distributed measurements of one of the
fields velocity, density or mass flow. Then, we introduce an observer system for the original
system (3)-(4), which reads for the case of velocity measurements

∂tρ̂+ ∂xm̂ = 0 (6)

∂tv̂ + ∂xĥ = −γ|v̂|v̂ + Lv (7)

with source term Lv = µ(v − v̂) of Luenberger type with ‘nudging parameter’ µ > 0. We
complement both systems by identical Dirichlet boundary conditions at the left and right end of
the pipe. When we consider the equations on networks, we additionally need coupling conditions
at inner nodes. Here, we will use the conservation of mass and the continuity of the specific
enthalpy, which yields energy conservation as shown in [23].

The two main contributions of this paper are to prove exponential decay of the difference
between the state of the observer system and the original system state for partial measurements
and to show existence of semi-global Lipschitz-continuous solutions of the observer system. Using
only measurements of one of the state variables the other state variable can be reconstructed
exponentially fast. Our results are valid for single pipes as well as for star-shaped networks.
It turns out that increasing the nudging parameter does not necessarily improve the speed of
synchronization. To the best of our knowledge, this is the first time that the synchronization of
an observer system is proven for 2× 2–systems of quasilinear hyperbolic balance laws.

This paper is structured as follows. In section 2 we present the general setup, relevant
notations and the Luenberger terms for the three cases of measurement of velocity, density or
mass flow. In section 3 we show the existence of semi-global Lipschitz-continuous solutions of
the observer system (6)-(7) for measurement of velocity or density provided that the original
system (3)-(4) admits a unique solution and the solution of the original system as well as the
initial and boundary data are sufficiently small when expressed in Riemann invariants and have
sufficiently small Lipschitz-constants. For the original system (3)-(4), existence of semi-global
solutions was shown in [24] for coupling conditions requiring conservation of mass and continuity
of the pressure. This was done by writing the system in terms of Riemann invariants, which
yields an integral equation along the characteristic curves. The proof cannot be transferred
directly to the observer system due to the form of the observer-terms, but by using a modified
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fixed-point iteration, we can show the existence of solutions of the observer system on a single
pipe and on general networks with coupling conditions given by the conservation of mass and
the continuity of the specific enthalpy. In addition, our proof yields existence of solutions of the
original system for these coupling conditions, i.e., for continuity of the specific enthalpy instead
of continuity of the pressure as it was used in [24].

In section 4 we show exponential convergence of solutions of the observer system towards
the original system state under the assumption that both systems admit classical solutions that
are bounded away from vacuum, have sufficiently small velocity and the solution of the original
system has small time derivatives. We can show this result for a single pipe and for star-
shaped networks for all three cases, i.e., measurement of velocity, density or mass flow. In the
convergence proof we use techniques that are similar to those used in [22] to show stability of the
barotropic Euler equations, i.e., we will measure the distance between the solution of the original
system (3)-(4) and the solution of the observer system (6)-(7) in terms of the relative energy
and then estimate the time derivative of the relative energy. This leads to decrease with respect
to the variable that is measured, but not with respect to the other state variable. Therefore
one of the main ideas of the proof is to use an extension of the relative energy framework.
More precisely, we introduce an additional functional whose time derivative yields decrease with
respect to the variable that is not measured. This modification of the relative energy is inspired
by the extension of the energy that was used in [25] to study convergence of wave equations to
steady states, which in turn was based on [26], among others.

2. General Setup and Luenberger Observer

In the following we assume that the pressure law p : R+ → R is smooth and strictly monotone
so that for given density bounds 0 <

¯
ρ < ρ̄ there exist constants

¯
Cp′ , C̄p′ > 0 such that

0 <
¯
Cp′ ≤ p′(ρ) ≤ C̄p′ ∀ 0 <

¯
ρ ≤ ρ ≤ ρ̄.

Since the pressure potential P : R+ → R is connected to the pressure law by p′(ρ) = ρP ′′(ρ),
this implies that the pressure potential is smooth and strongly convex with

0 <
¯
CP ′′ ≤ P ′′(ρ) ≤ C̄P ′′ , |P ′′′(ρ)| ≤ CP ′′′ ∀ 0 <

¯
ρ ≤ ρ ≤ ρ̄

for some constants
¯
CP ′′ , C̄P ′′ , CP ′′′ > 0.

We consider three different cases of available measurements, i.e., we assume that one of the
three fields v, ρ or m is measured in the whole interval [0, ℓ], while for the other state variable
we have no information. Then, we consider the observer system

∂tρ̂+ ∂xm̂ = Lρ (8)

∂tv̂ + ∂xĥ = −γ|v̂|v̂ + Lv (9)

for 0 < x < ℓ, t > 0 with Luenberger observer terms Lρ, Lv depending on the measurements.
For velocity measurements we set

Lρ = 0, Lv = µ(v − v̂), µ > 0 (10)

and for density measurements

Lρ = µ
c√
p′(ρ̂)

ρ̂(P̃ (ρ)− P̃ (ρ̂)), Lv = 0, µ > 0 (11)

with c :=
√

p′(ρref) for a reference density ρref > 0 and P̃ (ρ) :=
∫ ρ
ρref

√
p′(s)
cs ds. For measurements

of the mass flow we will use

Lρ = 0, Lv = µ(m− m̂), µ > 0. (12)



OBSERVER-BASED DATA ASSIMILATION FOR BAROTROPIC GAS TRANSPORT 5

Note that the observer term for density measurements is not exactly in Luenberger form, but for

0 < ρ ≤ ρ, ρ̂ ≤ ρ̄ we have Lρ = µ ρ̂
ρ̃

√
p′(ρ̃)√
p′(ρ̂)

(ρ− ρ̂) with some ρ̃ ∈ [ρ, ρ̄] and due to the monotonicity

of p we have

0 < ¯
ρ

ρ̄

√
¯
Cp′√
C̄p′

≤ ρ̂
ρ̃

√
p′(ρ̃)√
p′(ρ̂)

≤ ρ̄

¯
ρ

√
C̄p′√
¯
Cp′

.

The reason why we choose this form of the observer term is that this observer term is linear
when expressed in Riemann invariants, which will be relevant for the existence proof.

Remark 2.1. If exact measurements of ρ are available one might compute ∂tρ = −∂xm and,
thus, reconstruct the whole system state without recourse to an observer. However, in practical
applications, measurements are subject to measurement errors and while these are usually small
for the measured field they will be significant for its derivatives. Thus, we provide a framework
that uses measurement data of one of the fields v, ρ or m, but does not make use of derivatives
of measured data.

Since we will also consider the observer system on networks, we have to introduce some
notation. We describe a network by a directed, connected graph with edges e ∈ E and vertex set
V consisting of boundary nodes v ∈ V∂ and inner nodes v ∈ V \ V∂ . The edge e ∈ E is identified
with an interval (0, ℓe) and the set of edges that are incident to some node v is denoted by E(v).
We assume that all pipes have the same diameter. For an edge e = (v1, v2) that starts in node
v1 and ends at node v2 we denote the pipe direction by se(v1) = −1 and se(v2) = 1. In the
following, we will abbreviate

∥u− v∥2L2(E) :=
∑
e∈E

∥ue − ve∥2L2(0,ℓe).

Then, we assume that on each edge e ∈ E the equations (3)-(4) and (8)-(9), respectively, are
satisfied. At the inner nodes we have to prescribe coupling conditions, where we will use the
conservation of mass and the continuity of the specific enthalpy, i.e.,∑

e∈E(v)

me(v)se(v) = 0, he(v) = hf (v) ∀e, f ∈ E(v) (13)

for every inner node v ∈ V \ V∂ . These coupling conditions yield energy conservation, see [23].

3. Existence of solutions

A prerequisite of our proof of convergence of solutions of the observer system towards the
original solution in section 4 is the existence of Lipschitz-continuous solutions of the observer
system that have small, subsonic velocities and densities that are bounded away from vacuum.
Therefore, in this section we will show existence of solutions of the observer system with suitable
bounds on velocity and density for observer terms given by (10) or (11), i.e., for measurement
of velocity or density.

For the original system (3)-(4) existence of solutions was shown in [24] for a single pipe and
for networks, where in contrast to our coupling conditions conservation of mass and continuity of
the pressure is used as coupling condition. If the initial and boundary conditions are sufficiently
small when written in terms of Riemann invariants and have sufficiently small Lipschitz constant,
existence of semi-global solutions, i.e., existence of solutions on a given time interval, with a priori
bounds on velocity and density was established (see Theorem 6.1 in [24]). The main idea in the
proof is rewriting the barotropic Euler equations (3)-(4) in terms of Riemann invariants. Then,
by integrating along the characteristic curves, the problem is formulated as an integral equation,
for which existence of solutions is shown by a fixed-point argument. These techniques have also
been used to study semi-global classical solutions, see [27].
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This result is not directly transferable to the observer system (8)-(9) (since the conditions
(5.7) and (6.1) of [24] are not satisfied for the right hand side of the observer term for fixed
µ > 0), but with a similar strategy as in [24] we can show existence of semi-global solutions of
the observer system. The key idea here is to modify the fixed-point map by using the specific
form of the observer terms. Note that by setting the observer terms to zero, i.e., setting µ = 0,
our proof also yields existence of solutions of the original system for the coupling conditions
(13), i.e., for conservation of mass and continuity of the specific enthalpy.

3.1. Observer system in Riemann invariants. Before we formulate the fixed-point map,
we first rewrite the observer system for a single pipe in terms of Riemann invariants in order to
diagonalize the advective part of the system. We can write (8)-(9) as(

∂tρ̂
∂tv̂

)
+

(
v̂ ρ̂

P ′′(ρ̂) v̂

)(
∂tρ̂
∂tv̂

)
=

(
Lρ

−γ|v̂|v̂ + Lv

)
, (14)

where the flux Jacobian matrix has the eigenvalues

λ̂± = v̂ ±
√

p′(ρ̂),

where
√
p′(ρ̂) is the speed of sound, and left eigenvectors

l± =

(√
p′(ρ̂)

cρ̂
,±1

c

)
with c =

√
p′(ρref) for a reference density ρref > 0. Now, we will write (14) in terms of Riemann

invariants S±, which have the property (∂ρS±, ∂vS±) = l± (for an introduction to Riemann
invariants see [28], Chapter 7). Here, the observer system has the Riemann invariants

S± =

∫ ρ̂

ρref

√
p′(s)
cs ds± v̂

c =: P̃ (ρ̂)± v̂
c . (15)

By multiplying (14) from the left by the eigenvectors l±, we see that the observer system can
be written in terms of Riemann invariants as the diagonalized system(

∂tS+

∂tS−

)
+

(
λ̂+ 0

0 λ̂−

)(
∂xS+

∂xS−

)
= (σ(S+, S−)− 1

cLv(S+, S−))

(
−1
1

)
+

√
p′(ρ̂)
cρ̂ Lρ(S+, S−)

(
1
1

)
,

(16)

where σ(S+, S−) = γ
c |v̂|v̂ = γ c

4 |S+ − S−|(S+ − S−) is the friction term and Lv(S+, S−),
Lρ(S+, S−) are the Luenberger terms written in Riemann invariants.

Let us mention some properties of the Riemann invariants and of the eigenvalues of the system
that are needed to get existence of characteristic curves. First, the equation for the Riemann
invariants implies

v̂ = c
2(S+ − S−), ρ̂ = P̃−1(12(S+ + S−)), (17)

where P̃−1 is the inverse of the function P̃ introduced in (15), which exists since P̃ ′ > 0 due
to the assumption p′ > 0. Thus, if the Riemann invariants satisfy |S±| ≤ Smax for a constant
Smax > 0, then the corresponding velocity and density satisfy the bounds

|v̂| ≤ cSmax =: v̄,
¯
ρ := P̃−1(−Smax) ≤ ρ̂ ≤ P̃−1(Smax) =: ρ̄.

Since P̃−1(0) = ρref > 0 and P̃−1 is continuous, there exists a constant Smax > 0 such that
0 <

¯
ρ ≤ ρ̂ ≤ ρ̄. If additionally Smax is sufficiently small such that cSmax ≤ 1

2

√
¯
Cp′ , then from
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the bounds on velocity and density we can deduce the following bounds for the eigenvalues

0 <
¯
Λ(Smax) ≤ λ̂+ ≤ Λ(Smax), 0 > −

¯
Λ(Smax) ≥ λ̂− ≥ −Λ(Smax) (18)

with
¯
Λ(Smax) =

1
2

√
¯
Cp′ and Λ(Smax) =

3
2

√
C̄p′ . Furthermore, we can show∣∣λ̂±(S+, S−)− λ̂±(S̃+, S̃−)
∣∣ ≤ Lλ(|S+ − S̃+|+ |S− − S̃−|),

i.e., the eigenvalues are Lipschitz-continuous with Lipschitz constant Lλ ≤ c
2 + cρ̄

4
¯
Cp′

C̄p′′ , where

C̄p′′ := max
¯
ρ≤ρ≤ρ̄ |p′′(ρ)|.

Using these prerequisites we can show analogously to Lemma 5.1 in [24] that, if S = (S+, S−) ∈
C([0, T ] × [0, ℓ])2 is Lipschitz-continuous with respect to x and satisfies |S±| ≤ Smax and if
T ∈ (0,mine∈E

ℓe

Λ(Smax)
), the characteristic curves ξS±(s, x, t) defined by

ξS±(t, x, t) = x, ∂sξ
S
±(s, x, t) = λ±(S(s, ξS±(s, x, t)))

exist locally. They can be extended up to the boundary of [0, T ] × [0, ℓ] and are Lipschitz-
continuous with respect to x. Now, using the characteristic curves system (16) can be written
as

∂sS±(s, ξ
S
±(s, x, t)) = ∓σ(S+, S−)(s, ξ

S
±(s, x, t))± 1

cLv(S+, S−)(s, ξ
S
±(s, x, t))

+

√
p′(ρ̂)
c

1
ρ̂Lρ(S+, S−)(s, ξ

S
±(s, x, t)).

In the following we will study the existence of solutions of the observer system for the case of
velocity measurement or density measurement, i.e., with observer terms given by (10) and (11),
respectively. Therefore, we rewrite the observer terms Lρ, Lv in terms of the Riemann invariants

R± = P̃ (ρ)± v
c of the original system and S± = P̃ (ρ̂)± v̂

c of the observer system. Using (17)
we see that the system for velocity measurement, i.e., for Lρ = 0, Lv = µ(v− v̂), can be written
as

∂sS±(s, ξ
S
±(s, x, t))

= ∓σ(S+, S−)(s, ξ
S
±(s, x, t))±

µ
2 (R+ −R− − (S+ − S−)) (s, ξ

S
±(s, x, t)).

(19)

For measurement of the density we have Lv = 0, Lρ = µ c√
p′(ρ̂)

ρ̂(P̃ (ρ)− P̃ (ρ̂)) and therefore

∂sS±(s, ξ
S
±(s, x, t))

= ∓σ(S+, S−)(s, ξ
S
±(s, x, t)) +

µ
2 (R+ +R− − S+ − S−) (s, ξ

S
±(s, x, t)).

(20)

Remark 3.1. In the following, we will show existence of semi-global Lipschitz-continuous so-
lutions of the observer system for velocity measurement with observer terms (10). Since the
system (20) for measurement of ρ has the same structure as the system (19) for measurement
of v, i.e., both systems can be written as

∂sS+ + µ
2S+ = −σ + b+(R+, R−, S−), ∂sS− + µ

2S− = +σ + b−(R+, R−, S+)

for suitable functions b+, b−, existence of solutions of (20) can be shown analogously. The crucial
point in the proof is that for measurements of velocity or density, the observer terms are linear
when written in terms of Riemann invariants. However, this is not the case for measurement of
the mass flow such that the same strategy cannot be used to show existence of solutions of the
observer system for mass flow measurements.

Before we present the existence proof, we first consider the coupling conditions, since we also
show existence of solutions on networks.
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3.2. Coupling conditions in Riemann invariants. In order to show existence of solutions
of the observer system for networks, we have to rewrite the coupling conditions in terms of
Riemann invariants. Using that the mass flow can be written as

m = ρv = P̃−1(12(R+ +R−))
c
2(R+ −R−)

and the specific enthalpy as

h = 1
2v

2 + P ′(ρ) = 1
2

(
c
2(R+ −R−)

)2
+ P ′(P̃−1(12(R+ +R−))),

the coupling conditions in Riemann invariants are given by∑
e∈E(v)

P̃−1(12(R
e
+ +Re

−))(R
e
+ −Re

−) = 0, (21)

c2

8 (R
e
+ −Re

−)
2 + P ′(P̃−1(12(R

e
+ +Re

−))) =

c2

8 (R
f
+ −Rf

−)
2 + P ′(P̃−1(12(R

f
+ +Rf

−))), ∀e, f ∈ E(v) (22)

for any inner node v ∈ V \ V∂ . For ease of notation we have assumed that the direction of the
incident pipes is such that all pipes start in the node v. In order to show existence of solutions
also on networks, we need the following lemma:

Lemma 3.2. Consider an inner node v of a pipe network, where v has n incident edges denoted
by i = 1, . . . , n. Then there exists some constant Smax > 0 such that, if the incoming Riemann
invariants R− = (R1

−, . . . , R
n
−) satisfy |Ri

−| ≤ Smax, i = 1, . . . , n, then there exist unique outgoing
Riemann invariants R+ = (R1

+, . . . , R
n
+) satisfying the coupling conditions (21)-(22). In this case

there exists a constant C(n) > 0 independent of R− such that the outgoing Riemann invariants
are bounded by

|R+|∞ ≤ C(n)|R−|∞.

Proof. We show the assertion by using the implicit function theorem. As a first step, we write
(21)-(22) as

F (R−, R+) =

0
...
0


with

F (R−, R+) :=


∑n

i=1 P̃
−1(12(R

i
+ +Ri

−))(R
i
+ −Ri

−)
c2

8 (R
2
+ −R2

−)
2 + P ′(ρ2)− c2

8 (R
1
+ −R1

−)
2 − P ′(ρ1)

...
c2

8 (R
n
+ −Rn

−)
2 + P ′(ρn)− c2

8 (R
n−1
+ −Rn−1

− )2 − P ′(ρn−1)


with ρi = P̃−1(12(R

i
++Ri

−)). The entries of the derivative of F with respect to R+ are given by(
∂F

∂R+

)
1,i

= (P̃−1)′(12(R
i
+ +Ri

−))
1
2(R

i
+ −Ri

−) + ρi, i ∈ {1, . . . , n},(
∂F

∂R+

)
i,i

= c2

4 (R
i
+ −Ri

−) + P ′′(ρi)(P̃
−1)′(12(R

i
+ +Ri

−))
1
2 , i ∈ {2, . . . , n},(

∂F

∂R+

)
i,i−1

= − c2

4 (R
i−1
+ −Ri−1

− )− P ′′(ρi−1)(P̃
−1)′(12(R

i−1
+ +Ri−1

− ))12 , i ∈ {2, . . . , n}
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and all other entries of ∂F
∂R+

are zero. For R− = 0, R+ = 0, we have F (0, 0) = 0 and

∂F

∂R+
(0, 0) =


ρref ρref ρref . . . ρref
−a a 0 . . . 0
...

. . .
. . .

...
0 . . . −a a 0
0 . . . 0 −a a

 ,

where a := 1
2P

′′(ρref)ρref and a > 0 since P is strictly convex. We can show by induction

that det
(

∂F
∂R+

(0, 0)
)
> 0, i.e., ∂F

∂R+
(0, 0) is invertible. Therefore the implicit function theorem

provides the existence of some open neighborhood W ⊂ Rn of 0 and a unique, continuous
function g : W → Rn, R− 7→ R+ = g(R−) such that F (R−, g(R−)) = 0. This means that
for incoming Riemann invariants R− with |Ri

−| ≤ Smax, i = 1, . . . , n, for some Smax > 0 with
BSmax(0) ⊂ W , the outgoing Riemann invariants R+ are given by R+ = g(R−).

It remains to show that we have a bound of the form |R+|∞ ≤ C|R−|∞ for some constant
C > 0. In order to show this note that the implicit function theorem implies

∂g

∂R−
(R−) = −

(
∂F

∂R+
(R−, g(R−))

)−1 ∂F

∂R−
(R−, g(R−)).

Since all components of F are continuously differentiable,
(

∂F
∂R+

(R−, g(R−))
)−1

and
∂F
∂R−

(R−, g(R−)) depend continuously on R−, i.e., for (R−, g(R−)) in a neighbourhood of (0, 0)

also the derivatives
(

∂F
∂R+

(R−, g(R−))
)−1

and ∂F
∂R−

(R−, g(R−)) are close to
(

∂F
∂R+

(0, 0)
)−1

and
∂F
∂R−

(0, 0), respectively. Therefore, there exists a constant C(n) such that, if we choose Smax

sufficiently small, then∣∣ ∂g

∂R−
(R−)

∣∣
∞ ≤

∣∣ ( ∂F

∂R+
(R−, g(R−))

)−1 ∣∣
∞
∣∣ ∂F
∂R−

(R−, g(R−))
∣∣
∞ ≤ C(n)

for all incoming Riemann invariants R− that satisfy |R−|∞ ≤ Smax. □

3.3. Existence of solutions of the observer system for measurement of v. By formu-
lating the observer system (19) for velocity measurements as a fixed-point iteration along the
characteristic curves we can show the following existence theorem:

Theorem 3.3. Let some µ ≥ 0 be given. Consider a pipe network, where any inner node has at
most n incident edges. Let some T ∈ (0,mine∈E

ℓe

Λ(Smax)
) such that

1 − e−
µ
2 T ≤ 1

12 min{1, 1
1+C(n)

4
9 ¯
Λ(Smax)
Λ(Smax)

} with the constant C(n) from Lemma 3.2 be given and

consider the system (19), i.e., the observer system for measurement of v, together with the initial
and boundary conditions

S±,e(0, x) = ye±(x), e ∈ E , x ∈ (0, ℓe), (23)

S±,e(t, v) = ue±(t), v ∈ V∂ , e ∈ E(v), t ∈ (0, T ). (24)

Assume that the boundary and initial data are C0-compatible, i.e., ye±(v) = ue±(0) for v ∈ V∂,
e ∈ E(v), the initial data is compatible with the coupling conditions (21)-(22) and the boundary
and initial data are Lipschitz-continuous with Lipschitz-constant LI . Let Bmax denote the bound
on the initial and boundary data, i.e.,

Bmax = max
e∈E

sup
(t,x)∈[0,T ]×[0,ℓe]

(
|ue±(t)|, |ye±(x)|

)
.
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For µ > 0, assume in addition that the original system (3)-(4) (written in Riemann invariants,
i.e., as (16) with Lv = 0, Lρ = 0) together with the boundary data

R±,e(t, v) = ue±(t), v ∈ V∂ , e ∈ E(v), t ∈ (0, T ) (25)

and the coupling conditions (21)-(22) has a unique solution R = ((R+,e, R−,e))e∈E , (R+,e, R−,e) ∈
C0([0, T ]× [0, ℓe]) that satisfies ∥R±,e∥L∞([0,T ]×[0,ℓ]) ≤ Smax and is Lipschitz-continuous with re-
spect to x with Lipschitz-constant bounded by LR.

Then, if Bmax, LI , Smax and LR are sufficiently small, the system (19) together with the
initial and boundary conditions (23)-(24) and the coupling conditions (21)-(22) admits a unique
solution in

M(Smax, LR) :={S = ((S+,e, S−,e))e∈E , (S+,e, S−,e) ∈ C0([0, T ]× [0, ℓe]) :

|S±,e| ≤ Smax ∀e ∈ E and all S±,e are Lipschitz-continous

with respect to x with Lipschitz-constant LR}.

Remark 3.4. Theorem 3.3 provides the existence of Lipschitz-continuous solutions satisfying
the bounds |S±| ≤ Smax. This implies the bounds

|v̂| ≤ cSmax =: v̄,
¯
ρ := P̃−1(−Smax) ≤ ρ̂ ≤ P̃−1(Smax) =: ρ̄

for the velocity and density with
¯
ρ > 0 for Smax sufficiently small. Thus, the bound |S±| ≤ Smax

on the Riemann invariants corresponds to bounds for ρ̂, v̂ that are of the same form as the
bounds that will be used in the convergence proof, cf. assumptions (A1) and (A3) in section 4.

Remark 3.5. Note that Theorem 3.3 also applies to the case µ = 0, which means that the
theorem asserts the existence of Lipschitz-continuous solutions of the original system for the
coupling conditions (13). This was not known before, since [24] uses other coupling conditions.

Proof of Theorem 3.3. The main idea of the proof is to write (19) as a suitable fixed-point
mapping and then apply the Banach fixed-point theorem in order to show existence of a unique
fixed-point in M(Smax, LR), where we use on M(Smax, LR) the norm

∥Se∥M := max
(t,x)∈[0,T ]×[0,ℓe]

|S+,e(t, x)|+ |S−,e(t, x)|.

The strategy of the proof is similar to the strategy of the proof of Theorem 5.1 in [24], but
we use a modification of the fixed-point iteration that is used there in order to deal with the
observer terms. More precisely, we denote Si = ((Si

+,e, S
i
−,e))e∈E and define the mapping

Φ : M(Smax, LR) → M(Smax, LR), Si 7→ Si+1,

where Si+1 = ((Si+1
+,e , S

i−1
−,e ))e∈E is the solution of the differential equations

∂sS
i+1
+,e (s, ξ

Si

+,e(s, x, t)) +
µ
2S

i+1
+,e (s, ξ

Si

+,e(s, x, t))

= µ
2

(
R+,e −R−,e + Si

−,e)
)
(s, ξS

i

+,e(s, x, t))− σ(Si)(s, ξS
i

+,e(s, x, t)), e ∈ E ,
(26)

along the ξ+-characteristics and

∂sS
i+1
−,e (s, ξ

Si

−,e(s, x, t)) +
µ
2S

i+1
−,e (s, ξ

Si

−,e(s, x, t))

= −µ
2

(
R+,e −R−,e − Si

+,e)
)
(s, ξS

i

−,e(s, x, t)) + σ(Si)(s, ξS
i

−,e(s, x, t)), e ∈ E ,
(27)

along the ξ−-characteristics complemented with the initial and boundary conditions (23)-(24)
and the coupling conditions (21)-(22). Note that on the left hand side there is not only the
derivative term ∂sS

i+1
+ , but also some part of the observer term. This has the advantage that

we get some extra damping from this term, which will be relevant in the estimates that are
needed to show that Φ is a contraction and a self-mapping.
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For fixed x and t, equations (26) and (27) are ordinary differential equations in the variable
s that can be solved by the ”variation of constants”- formula. For the equation (26) for S+ this
yields

Si+1
+,e (s, ξ

Si
e

+ (s, x, t)) = Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))e−
µ
2 (s−t

Si
e

+ (x,t))

+

∫ s

t
Si
e

+ (x,t)
e−

µ
2 (s−r)

(
µ
2 (R+,e −R−,e + Si

−,e)(r, ξ
Si
e

+ (r, x, t))− σ(Si
e)(r, ξ

Si
e

+ (r, x, t))
)
dr

(28)

on every pipe e ∈ E for s ≥ t
Si
e

+ (x, t), where t
Si
e

+ (x, t) is the time when the characteristic ξ
Si
e

+ (s, x, t)

hits the boundary of the interval [0, ℓe] or the initial time, i.e., t
Si
e

+ (x, t) = 0, if ξ
Si
e

+ (s, x, t) > 0

for all s ∈ [0, T ], and t
Si
e

+ (x, t) is defined by ξ
Si
e

+ (t
Si
e

+ (x, t), x, t) = 0 otherwise. In particular,

Si+1
+,e (t

Si
e

+ (x, t), ξS
i

+ (t
Si
e

+ (x, t), x, t)) is known from the initial data, boundary data or from the
coupling conditions. This means that the fixed-point iteration can be written as

Si+1
+,e (s, ξ

Si
e

+ (s, x, t))

=

∫ s

t
Si
e

+ (x,t)
e−

µ
2 (s−r)

(
µ
2 (R+,e −R−,e + Si

−,e)(r, ξ
Si
e

+ (r, x, t))− σ(Si
e)(r, ξ

Si
e

+ (r, x, t))
)
dr

+


y+,e(ξ

Si
e

+ (0, x, t))e−
µ
2 s if t

Si
e

+ (x, t) = 0,

u+,e(t
Si
e

+ (x, t))e−
µ
2 (s−t

Si
e

+ (x,t)) if ξ
Si
e

+ (t
Si
e

+ (x, t), x, t) is a boundary node,

Si+1
+,e (t

Si
e

+ (x, t), v)e−
µ
2 (s−t

Si
e

+ (x,t)) if ξ
Si
e

+ (t
Si
e

+ (x, t), x, t) = v is an inner node

on each edge e ∈ E . Now, if we choose Smax sufficiently small such that (18) holds, from the

bound T ≤ mine∈E
ℓe

Λ(Smax)
we deduce that the value of Si+1

+,e (t
Si
e

+ (x, t), v) in the last case can be

followed back to the initial state and we obtain

Si+1
+,e (t

Si
e

+ (x, t), v) = ge(S
i+1
− (t

Si
e

+ (x, t), v)),

where ge is the e-th component of the function g that represents the coupling conditions, see
the proof of Lemma 3.2, and the components Si+1

−,f , f ∈ E(v), of Si+1
− are given by

Si+1
−,f (t

Si
e

+ (x, t), v)

=

∫ t
Si
e

+ (x,t)

0
e−

µ
2 (t

Si
e

+ (x,t)−r)
(
− µ

2 (R+,f −R−,f − Si
+,f )(r, ξ

Si
f

− (r, v, t
Si
e

+ (x, t)))

+ σ(Si
f )(r, ξ

Si
f

− (r, v, t
Si
e

+ (x, t)))
)
dr + Si+1

−,f (0, ξ
Si
f

− (0, v, t
Si
e

+ (x, t)))e−
µ
2 t

Si
e

+ (x,t)

(29)

with Si+1
−,f (0, ξ

Si
f

− (0, v, t
Si
e

+ (x, t))) given by the initial data. For ease of presentation we assume

here that all pipes that are incident to the inner node v are oriented such that they start in v.
In the first part of the proof we show that the fixed-point mapping Φ is well-defined, i.e.,

Φ(S) ∈ M(Smax, LR) for S ∈ M(Smax, LR). Before we start, let us note that

σ(S+, S−) =
γ
c |v̂|v̂ = γ c

4 |S+ − S−|(S+ − S−) ≤ γc(Smax)
2 =: σmax

and σ(S+, S−) is Lipschitz-continuous with Lipschitz-constant Lσ, i.e.,

|σ(R+, R−)− σ(R̃+, R̃−)| ≤ Lσ

(
|R+ − R̃+|+ |R− − R̃−|

)
(30)

with Lσ ≤ γ c Smax for S ∈ M(Smax, LR). In the following, let us choose Smax sufficiently small
such that v̂(S+, S−) =

c
2(S+ − S−) ≤ 1

2

√
¯
Cp′ and the bounds (18) on λ± are satisfied.
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Let Si ∈ M(Smax, LR). Then

|Si+1
+,e (s, ξ

Si
e

+ (s, x, t))| ≤ |Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))e−
µ
2 (s−tS

i

+ (x,t))|

+

∫ s

t
Si
e

+ (x,t)
e−

µ
2 (s−r)

(
µ
2 |R+,e −R−,e + Si

−,e|(r, ξ
Si
e

+ (r, x, t)) + |σ(Si
e)|(r, ξ

Si
e

+ (r, x, t))
)
dr

≤ |Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))|+
∫ s

t
Si
e

+ (x,t)
e−

µ
2 (s−r) (µ

23Smax + σmax

)
dr

= |Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))|+
(
1− e−

µ
2 (s−t

Si
e

+ (x,t))

)
3Smax + Tσmax

≤ |Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))|+ 1
12

1
1+C(n)3Smax + Tσmax

for all (x, t) ∈ [0, ℓ] × [0, T ], t
Si
e

+ (x, t) ≤ s ≤ T , since 0 ≤ s − t
Si
e

+ (x, t) ≤ T and 1 − e−
µ
2 T ≤

1
12

1
1+C(n) . If Si+1

+,e (t
Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t)) is given by the initial or boundary data, then

|Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))| ≤ Bmax. If ξ
Si
e

+ (t
Si
e

+ (x, t), x, t) is an inner node v ∈ V \V∂ , then

Si+1
+,e (t

Si
e

+ (x, t), v) = ge(S
i+1
− (t

Si
e

+ (x, t), v)) with

|Si+1
−,f (t

Si
e

+ (x, t), v)| ≤ |Si+1
−,f (0, ξ

Si
f

+ (0, v, t
Si
e

+ (x, t)))e−
µ
2 t

Si
e

+ (x,t)|

+ 3
2µSmax

∫ t
Si
e

+ (x,t)

0
e−

µ
2 (t

Si
e

+ (x,t)−r)dr + Tσmax (31)

≤ Bmax + 3Smax
1
12

1
1+C(n) + Tσmax ∀f ∈ E(v).

Therefore

|Si+1
+,e (s, ξ

Si
e

+ (s, x, t))|

≤ 3Smax
1
12

1
1+C(n) + Tσmax +max

{
Bmax, C(n)

(
Bmax + 3Smax

1
12

1
1+C(n) + Tσmax

)}
≤ (1 + C(n))Bmax +

1
4Smax + (1 + C(n))Tσmax.

Now, if Bmax ≤ 1
2

1
1+C(n)Smax and Smax is sufficiently small such that (1+C(n))Tσmax ≤ 1

4Smax,

then

|Si+1
+,e (s, ξ

Si
e

+ (s, x, t))| ≤ Smax.

Analogously, we can show |Si+1
−,e | ≤ Smax. Thus, |Φ(Si)| ≤ Smax for Si ∈ M(Smax, LR), if Smax

and Bmax are sufficiently small.
Next, we want to show that the Lipschitz-constant of Si with respect to x is uniformly bounded

in i, i.e, if Si has the Lipschitz-constant LR with respect to x, then we have to show that Si+1

has the same Lipschitz-constant with respect to x. From (28) we know that

Si+1
+,e (t, x) = Si+1

+,e (t
Si
e

+ (x, t), ξS
i

+ (t
Si
e

+ (x, t), x, t))e−
µ
2 (t−t

Si
e

+ (x,t))

+

∫ t

t
Si
e

+ (x,t)
e−

µ
2 (t−r)

(
µ
2 (R+,e −R−,e + Si

−,e)(r, ξ
Si
e

+ (r, x, t))− σ(Si
e)(r, ξ

Si
e

+ (r, x, t))
)
dr

=: f1,e(t, x) + f2,e(t, x)

for all e ∈ E . Let x1, x2 ∈ [0, ℓe] with t
Si
e

+ (x1, t) ≤ t
Si
e

+ (x2, t). Then

|Si+1
+,e (t, x1)− Si+1

+,e (t, x2)| ≤ |f1,e(t, x1)− f1,e(t, x2)|+ |f2,e(t, x1)− f2,e(t, x2)|
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with

|f2,e(t, x1)− f2,e(t, x2)|

≤
∫ t

t
Si
e

+ (x2,t)
e−

µ
2 (t−r)

∣∣∣µ2 (R+,e −R−,e + Si
−,e)(r, ξ

Si
e

+ (r, x1, t))

− µ
2 (R+,e −R−,e + Si

−,e)(r, ξ
Si
e

+ (r, x2, t))

− (σ(Si
e)(r, ξ

Si
e

+ (r, x1, t))− σ(Si
e)(r, ξ

Si
e

+ (r, x2, t)))
∣∣∣dr

+

∫ t
Si
e

+ (x2,t)

t
Si
e

+ (x1,t)
e−

µ
2 (t−r)

∣∣∣µ2 (R+,e −R−,e + Si
−,e)(r, ξ

Si
e

+ (r, x1, t))− σ(Si
e)(r, ξ

Si
e

+ (r, x1, t))
∣∣∣dr

≤
∫ t

t
Si
e

+ (x2,t)
e−

µ
2 (t−r)(µ

23LR + Lσ2LR

)
|ξS

i
e

+ (r, x1, t)− ξ
Si
e

+ (r, x2, t)|dr

+

∫ t
Si
e

+ (x2,t)

t
Si
e

+ (x1,t)
e−

µ
2 (t−r)(µ

23Smax + σmax

)
dr,

where Lσ is the Lipschitz-constant of the friction term σ with respect to the Riemann invariants,

see (30). Now, we want to estimate |ξS
i
e

+ (r, x1, t) − ξ
Si
e

+ (r, x2, t)|. Analogously to Lemma 5.1 in
[24] we can show that that the characteristics ξ± are Lipschitz-continuous with respect to x with
Lipschitz-constant Lx = exp(2LRTLλ), i.e.,

|ξS
i
e

+ (r, x1, t)− ξ
Si
e

+ (r, x2, t)| ≤ Lx|x1 − x2|.

In addition, as in [24, Lemma 5.1] we can show that tS+(x, t) is Lipschitz-continuous with respect
to x with the Lipschitz-constant

Lt =
1

¯
Λ(Smax)

exp(2LRTLλ) =
1

¯
Λ(Smax)

Lx.

This implies

|f2,e(t, x1)− f2,e(t, x2)| ≤
(

1
123LR + 2TLσLR

)
Lx|x1 − x2|+ Lt|x1 − x2|

(µ
23Smax + σmax

)
≤
(
1
4LRLx + 2TLσLRLx + Lt

µ
23Smax + Ltσmax

)
|x1 − x2|

=: L2|x1 − x2|.

Thus, if we choose Smax and LR sufficiently small such that Lx ≤ 3
2 , 3TLσ ≤ 1

24 , Lt
µ
23Smax ≤

1
24LR and Ltσmax ≤ 1

24LR, then

L2 ≤ 1
2LR. (32)

Now, we will estimate the Lipschitz-constant of

f1,e(t, x) = Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))e−
µ
2 (t−t

Si
e

+ (x,t)).

Here, we distinguish between three cases.
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Case 1: t
Si
e

+ (x1, t) = 0 = t
Si
e

+ (x2, t).
Then f1,e(t, x1) and f1,e(t, x2) are given by the initial condition, i.e.,

|f1,e(t, x1)− f1,e(t, x2)| = |Si+1
+,e (0, ξ

Si
e

+ (0, x1, t))e
−µ

2 t − Si+1
+,e (0, ξ

Si
e

+ (0, x2, t))e
−µ

2 t|

≤ |e−
µ
2 t| |ye+(ξ

Si
e

+ (0, x1, t))− ye+(ξ
Si
e

+ (0, x2, t))|

≤ LI |ξS
i
e

+ (0, x1, t)− ξ
Si
e

+ (0, x2, t)|
≤ LILx|x1 − x2|

with LILx ≤ 1
2LR for LI sufficiently small.

Case 2: t
Si
e

+ (x1, t) > 0 and t
Si
e

+ (x2, t) > 0.

Then ξ
Si
e

+ (t
Si
e

+ (x1, t), x1, t) = ξ
Si
e

+ (t
Si
e

+ (x2, t), x2, t) is either a boundary node or an inner node of
the network, i.e., f1,e(t, x1) and f1,e(t, x2) are given by the boundary condition or the coupling
conditions.

Case 2a: If f1,e(t, x1) and f1,e(t, x2) are given by the boundary conditions, we have

|f1,e(t, x1)− f1,e(t, x2)|

= |Si+1
+,e (t

Si
e

+ (x1, t), 0)e
−µ

2 (t−t
Si
e

+ (x1,t)) − Si+1
+,e (t

Si
e

+ (x2, t), 0)e
−µ

2 (t−t
Si
e

+ (x2,t))|

≤ |ue+(t
Si
e

+ (x1, t))− ue+(t
Si
e

+ (x2, t))| |e−
µ
2 (t−t

Si
e

+ (x1,t))|

+ |Si+1
+,e (t

Si
e

+ (x2, t), 0)| |e−
µ
2 (t−t

Si
e

+ (x1,t)) − e−
µ
2 (t−t

Si
e

+ (x2,t))|

≤ LI |tS
i
e

+ (x1, t)− t
Si
e

+ (x2, t)|+Bmax
µ
2 |t

Si
e

+ (x1, t)− t
Si
e

+ (x2, t)|
≤ (LILt +Bmax

µ
2Lt)|x1 − x2|.

Case 2b: If ξ
Si
e

+ (t
Si
e

+ (x1, t), x1, t) = ξ
Si
e

+ (t
Si
e

+ (x2, t), x2, t) is an inner node v ∈ V \ V∂ , then we
can estimate

|f1,e(t, x1)− f1,e(t, x2)|

= |Si+1
+,e (t

Si
e

+ (x1, t), v)e
−µ

2 (t−t
Si
e

+ (x1,t)) − Si+1
+,e (t

Si
e

+ (x2, t), v)e
−µ

2 (t−t
Si
e

+ (x2,t))|

≤ |Si+1
+,e (t

Si
e

+ (x1, t), v)| |e−
µ
2 (t−t

Si
e

+ (x1,t)) − e−
µ
2 (t−t

Si
e

+ (x2,t))|

+ |Si+1
+,e (t

Si
e

+ (x1, t), v)− Si+1
+,e (t

Si
e

+ (x2, t), v)| |e−
µ
2 (t−t

Si
e

+ (x2,t))|

≤ |Si+1
+,e (t

Si
e

+ (x1, t), v)|µ2Lt|x1 − x2|+ C(n)|Si+1
− (t

Si
e

+ (x1, t), v)− Si+1
− (t

Si
e

+ (x2, t), v)|∞

with

|Si+1
+,e (t

Si
e

+ (x1, t), v)| ≤ C(n)|Si+1
− (t

Si
e

+ (x1, t), v)|∞

≤ C(n)
(
Bmax + 3Smax

1
12

1
1+C(n) + Tσmax

)
≤ C(n)Bmax +

1
4Smax + C(n)Tσmax
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and

|Si+1
−,f (t

Si
e

+ (x1, t), v)− Si+1
−,f (t

Si
e

+ (x2, t), v)|

≤
∣∣Si+1

−,f (0, ξ
Si
f

− (0, v, t
Si
e

+ (x1, t)))e
−µ

2 t
Si
e

+ (x1,t) − Si+1
−,f (0, ξ

Si
f

− (0, v, t
Si
e

+ (x2, t)))e
−µ

2 t
Si
e

+ (x2,t)
∣∣

+
∣∣∣ ∫ t

Si
e

+ (x1,t)

0
e−

µ
2 (t

Si
e

+ (x1,t)−r)
(
− µ

2 (R+,f −R−,f − Si
+,f )(r, ξ

Si
f

− (r, v, t
Si
e

+ (x1, t)))

+ σ(Si
e)(r, ξ

Si
f

− (r, v, t
Si
e

+ (x1, t)))
)
dr

−
∫ t

Si
e

+ (x2,t)

0
e−

µ
2 (t

Si
e

+ (x2,t)−r)
(
− µ

2 (R+,f −R−,f − Si
+,f )(r, ξ

Si
f

− (r, v, t
Si
e

+ (x2, t)))

+ σ(Si
e)(r, ξ

Si
f

− (r, v, t
Si
e

+ (x2, t)))
)
dr
∣∣∣

≤ Bmax
µ
2Lt|x1 − x2|+ LI |ξ

Si
f

− (0, v, t
Si
e

+ (x1, t))− ξ
Si
f

− (0, v, t
Si
e

+ (x2, t))|

+
(

1
12

1
1+C(n)

4
9 ¯
Λ(Smax)
Λ(Smax)

3LR + 2TLσLR

)
max

r∈[0,tS
i
e

+ (x1,t)]

|ξ
Si
f

− (r, v, t
Si
e

+ (x1, t))− ξ
Si
f

− (r, v, t
Si
e

+ (x2, t))|

+ (32µSmax + σmax)T
µ
2Lt|x1 − x2|+ Lt|x1 − x2|(32µSmax + σmax).

Using that for all r ∈ [0, t
Si
e

+ (x1, t)]

|ξ
Si
f

− (r, v, t
Si
e

+ (x1, t))− ξ
Si
f

− (r, v, t
Si
e

+ (x2, t))|

= |ξ
Si
f

− (r, v, t
Si
e

+ (x1, t))− ξ
Si
f

− (r, ξ
Si
f

− (t
Si
e

+ (x1, t), v, t
Si
e

+ (x2, t)), t
Si
e

+ (x1, t))|

≤ Lx|v − ξ
Si
f

− (t
Si
e

+ (x1, t), v, t
Si
e

+ (x2, t))| ≤ LxLsLt|x1 − x2|,

where Ls ≤ Λ(Smax) is the Lipschitz-constant of ξ± with respect to s, this implies

|f1,e(t, x1)− f1,e(t, x2)|

≤
(
(C(n)Bmax +

1
4Smax + C(n)Tσmax)

µ
2

+ C(n)
(
Bmax

µ
2 + LILxLs +

(
1
12

1
1+C(n)

4
9 ¯
Λ(Smax)
Λ(Smax)

3LR + 2TLσLR

)
LxLs

+ (32µSmax + σmax)(1 +
µ
2T )

))
Lt|x1 − x2|

≤
(
C(n)Bmaxµ+ µ

8Smax + C(n)T µ
2σmax + C(n)LxLsLI

+ C(n)(32µSmax + σmax)(1 +
µ
2T )

)
Lt|x1 − x2|

+ LtLxLs

(
4
9 ¯
Λ(Smax)
Λ(Smax)

1
4 + C(n)2TLσ

)
LR|x1 − x2|.

Since the bounds from above imply that LtLxLs ≤ 9
4
Λ(Smax)

¯
Λ(Smax)

for LR sufficiently small, we can

choose Bmax, Smax, LI and LR sufficiently small such that

|f1,e(t, x1)− f1,e(t, x2)| ≤ 1
2LR|x1 − x2|.

Case 3: t
Si
e

+ (x1, t) = 0 < t
Si
e

+ (x2, t).

Then ξ
Si
e

+ (t
Si
e

+ (x2, t), x2, t) = 0 and f1,e(t, x1) is given by the initial condition, while f1,e(t, x2) is
given by the boundary condition or the coupling conditions. This case can be treated similarly



16 J. GIESSELMANN, M. GUGAT, T. KUNKEL

to case 2. Therefore we do not present the details here. Note that in the case that f1,e(t, x2) is
given by the coupling conditions the compatibility of the initial data with the coupling conditions
has to be used.

Summing up the cases 1–3 shows that the Lipschitz-constant of f1,e is bounded by 1
2LR, if

Bmax, Smax, LI and LR are sufficiently small. Together with (32) this shows that the Lipschitz-
constant of Si+1

+,e is bounded by LR for every e ∈ E . Analogously it can be shown that the

Lipschitz-constant of Si+1
− is bounded by LR. In other words, we have shown that the Lipschitz-

constant of S with respect to x remains bounded under the fixed-point mapping. Therefore
Φ(S) ∈ M(Smax, LR) for S ∈ M(Smax, LR). In particular, the fixed-point mapping is well-
defined.

In order to apply the Banach fixed-point theorem, it remains to show the contraction property.
We will only show the estimation for S+, the estimation for S− can be done similarly. Let
Si, S̃i ∈ M(Smax, LR) and denote Si+1 := Φ(Si), S̃i+1 := Φ(S̃i). Let e ∈ E and assume without

loss of generality t
S̃i
e

+ (x, t) ≤ t
Si
e

+ (x, t). Then

Si+1
+,e (s, ξ

Si
e

+ (s, x, t))− S̃i+1
+,e (s, ξ

S̃i
e

+ (s, x, t))

=

∫ s

t
Si
e

+ (x,t)
e−

µ
2 (s−r)

(
µ
2

(
(R+,e −R−,e)(r, ξ

Si
e

+ (r, x, t))− (R+,e −R−,e)(r, ξ
S̃i
e

+ (r, x, t))
)

+ µ
2

(
Si
−,e(r, ξ

Si
e

+ (r, x, t))− S̃i
−,e(r, ξ

S̃i
e

+ (r, x, t))
)

− (σ(Si
e)(r, ξ

Si
e

+ (r, x, t))− σ(S̃i
e)(r, ξ

S̃i
e

+ (r, x, t)))
)
dr

−
∫ t

Si
e

+ (x,t)

t
S̃i
e

+ (x,t)
e−

µ
2 (s−r)

(
µ
2 (R+,e −R−,e + S̃i

−,e)(r, ξ
S̃i
e

+ (r, x, t))− σ(S̃i
e)(r, ξ

S̃i
e

+ (r, x, t))

)
dr

+
(
Si+1
+,e (t

Si
e

+ (x, t), ξ
Si
e

+ (t
Si
e

+ (x, t), x, t))e−
µ
2 (s−t

Si
e

+ (x,t))

− S̃i+1
+,e (t

S̃i
e

+ (x, t), ξ
S̃i
e

+ (t
S̃i
e

+ (x, t), x, t))e−
µ
2 (s−t

S̃i
e

+ (x,t)))
=:

∫ s

t
Si
e

+ (x,t)
e−

µ
2 (s−r)

(
(Fa) + (Fb) + (Fc)

)
dr + (Fd) + (Fe).

Using the Lipschitz-constant of R± with respect to x, we can estimate (Fa) by

|(Fa)| = µ
2

∣∣(R+,e −R−,e)(r, ξ
Si
e

+ (r, x, t))− (R+,e −R−,e)(r, ξ
S̃i
e

+ (r, x, t))
∣∣

≤ µ
2 2LR|ξS

i
e

+ (r, x, t)− ξ
S̃i
e

+ (r, x, t)|.

Analogously to Lemma 5.1 in [24] we can show that

|ξS
i
e

+ (r, x, t)− ξ
S̃i
e

+ (r, x, t)| ≤ TLλ exp(2LRTLλ)∥Si
e − S̃i

e∥M = LλTLx∥Si
e − S̃i

e∥M . (33)

This implies

|(Fa)| ≤ µLRLλTLx∥Si
e − S̃i

e∥M .
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For (Fb), we can estimate

|(Fb)| ≤ µ
2

(
|Si

−,e(r, ξ
Si
e

+ (r, x, t))− S̃i
−,e(r, ξ

Si
e

+ (r, x, t))|+ |S̃i
−,e(r, ξ

Si
e

+ (r, x, t))− S̃i
−,e(r, ξ

S̃i
e

+ (r, x, t))|
)

≤ µ
2∥S

i
e − S̃i

e∥M + µ
2LR|ξS

i
e

+ (r, x, t)− ξ
S̃i
e

+ (r, x, t)|

≤ µ
2 (1 + LRLλTLx) ∥Si

e − S̃i
e∥M .

The friction term (Fc) can be bounded by

|(Fc)| = |σ(Si
e)(r, ξ

Si
e

+ (r, x, t))− σ(S̃i
e)(r, ξ

S̃i
e

+ (r, x, t))|

≤ Lσ2LR|ξS
i
e

+ (r, x, t)− ξ
S̃i
e

+ (r, x, t)|+ Lσ∥Si
e − S̃i

e∥M

≤ Lσ (1 + 2LRLλTLx) ∥Si
e − S̃i

e∥M .

The integral (Fd) can be estimated by

|(Fd)| ≤
(3µ

2 Smax + σmax

)
|tS̃

i
e

+ (x, t)− t
Si
e

+ (x, t)| ≤
(3µ

2 Smax + σmax

)
Lλ

¯
Λ(Smax)

TLx∥Si
e − S̃i

e∥M ,

where we have used in the last step that |tS̃
i
e

+ (x, t)− t
Si
e

+ (x, t)| can be estimated as in Lemma 5.1
of [24]. Therefore we can summarize∣∣∣ ∫ s

t
Si
e

+ (x,t)
e−

µ
2 (s−r)

(
(Fa) + (Fb) + (Fc)

)
dr + (Fd)

∣∣∣
≤
(

1
12

1
1+C(n)

(
1 + 3LλLRTLx

)
+ TLσ(1 + 2LλLRTLx)

+
(3µ

2 Smax + σmax

)
Lλ

¯
Λ(Smax)

TLx

)
∥Si

e − S̃i
e∥M

≤
(

1
12 +

(
1
4LR + (3µ2 Smax + σmax)

1

¯
Λ(Smax)

)
LλTLx + TLσ(1 + 2LλLRTLx)

)
∥Si

e − S̃i
e∥M .

Now, we choose Smax > 0 and LR > 0 sufficiently small such that

1
12 +

(
1
4LR + (3µ2 Smax + σmax)

1

¯
Λ(Smax)

)
LλTLx + TLσ(1 + 2LλLRTLx) ≤ 2

3 ,

i.e., the contraction constant of the terms (Fa)− (Fd) is bounded by 2
3 .

For the estimation of term (Fe) we distinguish three cases.

Case 1: t
Si
e

+ (x, t) = 0 = t
S̃i
e

+ (x, t).
In this case we have

|(Fe)| = |Si+1
+,e (0, ξ

Si
e

+ (0, x, t))e−
µ
2 s − S̃i+1

+,e (0, ξ
S̃i
e

+ (0, x, t))e−
µ
2 s|

≤ |ye+(ξ
Si
e

+ (0, x, t))− ye+(ξ
S̃i
e

+ (0, x, t))| |e−
µ
2 s|

≤ LI |ξS
i
e

+ (0, x, t)− ξ
S̃i
e

+ (0, x, t)| ≤ LI LλTLx∥Si
e − S̃i

e∥M .

Case 2: t
Si
e

+ (x, t) > 0 and t
S̃i
e

+ (x, t) > 0.

Then ξ
Si
e

+ (t
Si
e

+ (x, t), x, t) = ξ
S̃i
e

+ (t
S̃i
e

+ (x, t), x, t) is a boundary node or an inner node.
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Case 2a: If ξ
Si
e

+ (t
Si
e

+ (x, t), x, t) = ξ
S̃i
e

+ (t
S̃i
e

+ (x, t), x, t) is a boundary node, we have

|(Fe)| = |Si+1
+,e (t

Si
e

+ (x, t), 0)e−
µ
2 (s−t

Si
e

+ (x,t)) − S̃i+1
+,e (t

S̃i
e

+ (x, t), 0)e−
µ
2 (s−t

S̃i
e

+ (x,t))|

= |ue+(t
Si
e

+ (x, t))− ue+(t
S̃i
e

+ (x, t))| |e−
µ
2 (s−t

Si
e

+ (x,t))|

+ |ue+(t
S̃i
e

+ (x, t))| |e−
µ
2 (s−t

Si
e

+ (x,t)) − e−
µ
2 (s−t

S̃i
e

+ (x,t))|

≤ LI |tS
i
e

+ (x, t)− t
S̃i
e

+ (x, t)|+Bmax
µ
2 |t

Si
e

+ (x, t)− t
S̃i
e

+ (x, t)|

≤ (LI +Bmax
µ
2 )

Lλ

¯
Λ(Smax)

TLx∥Si
e − S̃i

e∥M .

Case 2b: If ξ
Si
e

+ (t
Si
e

+ (x, t), x, t) = ξ
S̃i
e

+ (t
S̃i
e

+ (x, t), x, t) is an inner node v of the network, then

|(Fe)| = |Si+1
+,e (t

Si
e

+ (x, t), v)e−
µ
2 (s−t

Si
e

+ (x,t)) − S̃i+1
+,e (t

S̃i
e

+ (x, t), v)e−
µ
2 (s−t

S̃i
e

+ (x,t))|

≤ |Si+1
+,e (t

Si
e

+ (x, t), v)| |e−
µ
2 (s−t

Si
e

+ (x,t)) − e−
µ
2 (s−t

S̃i
e

+ (x,t))|

+ |Si+1
+,e (t

Si
e

+ (x, t), v)− S̃i+1
+,e (t

S̃i
e

+ (x, t), v)| |e−
µ
2 (s−t

S̃i
e

+ (x,t))|

≤ Smax
µ
2

Lλ

¯
Λ(Smax)

TLx∥Si
e − S̃i

e∥M

+ C(n)|Si+1
− (t

Si
e

+ (x, t), v)− S̃i+1
− (t

S̃i
e

+ (x, t), v)|∞

with

|Si+1
−,f (t

Si
e

+ (x, t), v)− S̃i+1
−,f (t

S̃i
e

+ (x, t), v)|

≤ |Si+1
−,f (0, ξ

Si
f

− (0, v, t
Si
e

+ (x, t)))e−
µ
2 t

Si
e

+ (x,t) − S̃i+1
−,f (0, ξ

S̃i
f

− (0, v, t
S̃i
e

+ (x, t)))e−
µ
2 t

S̃i
e

+ (x,t)|

+
∣∣∣ ∫ t

Si
e

+ (x,t)

0
e−

µ
2 (t

Si
e

+ (x,t)−r)
(
− µ

2 (R+,f −R−,f − Si
+,f )(r, ξ

Si
f

− (r, v, t
Si
e

+ (x, t)))

+ σ(Si
f )(r, ξ

Si
f

− (r, v, t
Si
e

+ (x, t)))
)
dr

−
∫ t

S̃i
e

+ (x,t)

0
e−

µ
2 (t

S̃i
e

+ (x,t)−r)
(
− µ

2 (R+,f −R−,f − S̃i
+,f )(r, ξ

S̃i
f

− (r, v, t
S̃i
e

+ (x, t)))

+ σ(S̃i
f )(r, ξ

S̃i
f

− (r, v, t
S̃i
e

+ (x, t)))
)
dr
∣∣∣

≤ LI |ξ
Si
f

− (0, v, t
Si
e

+ (x, t))− ξ
S̃i
f

− (0, v, t
S̃i
e

+ (x, t))|+Bmax
µ
2

Lλ

¯
Λ(Smax)

TLx∥Si
e − S̃i

e∥M

+ ( 1
12

1
1+C(n)3LR + 2TLσLR) max

r∈[0,tS̃
i
e

+ (x,t)]

|ξ
Si
f

− (r, v, t
Si
e

+ (x, t))− ξ
S̃i
f

− (r, v, t
S̃i
e

+ (x, t))|

+ ( 1
12

1
1+C(n) + 2TLσ)∥Si

f − S̃i
f∥M + (3µ

2Smax + σmax)(1 +
µ
2T )

Lλ

¯
Λ(Smax)

TLx∥Si
e − S̃i

e∥M ,
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where we used in the last step the estimation of |tS
i
e

+ (x, t)−t
S̃i
e

+ (x, t)| as in (Fd) and estimated the

integral terms similar to (31). For the characteristic curves we can estimate for r ∈ [0, t
S̃i
e

+ (x, t)]

|ξ
Si
f

− (r, v, t
Si
e

+ (x, t))− ξ
S̃i
f

− (r, v, t
S̃i
e

+ (x, t)|

≤ |ξ
Si
f

− (r, v, t
Si
e

+ (x, t))− ξ
S̃i
f

− (r, v, t
Si
e

+ (x, t))|+ |ξS̃
i
f

− (r, v, t
Si
e

+ (x, t))− ξ
S̃i
f

− (r, v, t
S̃i
e

+ (x, t)|

≤
(33)

LλTLx∥Si
f − S̃i

f∥M + |ξS̃
i
f

− (r, v, t
Si
e

+ (x, t))− ξ
S̃i
f

− (r, ξ
S̃i
f

− (t
Si
e

+ (x, t), v, t
S̃i
e

+ (x, t)), t
Si
e

+ (x, t))|

≤ LλTLx∥Si
f − S̃i

f∥M + LxLs
Lλ

¯
Λ(Smax)

TLx∥Si
e − S̃i

e∥M .

In the second step we used ξ
S̃i
f

− (r, v, t
S̃i
e

+ (x, t)) = ξ
S̃i
f

− (r, ξ
S̃i
f

− (t
Si
e

+ (x, t), v, t
S̃i
e

+ (x, t)), t
Si
e

+ (x, t)). This
yields

|(Fe)| ≤
(
Smax

µ
2 + C(n)LI(

¯
Λ(Smax) + LsLx) + C(n)Bmax

µ
2

+ (14LR + 2TC(n)LσLR)(
¯
Λ(Smax) + LsLx) + C(n)(3µ

2Smax + σmax)(1 +
µ
2T )

)
· Lλ

¯
Λ(Smax)

TLx∥Si − S̃i∥C([0,T ]×E)2 + ( 1
12 + 2TC(n)Lσ)∥Si − S̃i∥C([0,T ]×E)2 .

Case 3: t
Si
e

+ (x, t) = 0, t
S̃i
e

+ (x, t) > 0.

Then ξ
S̃i
e

+ (t
S̃i
e

+ (x, t), x, t) = 0 is either a boundary node or an inner node. Again, this case can be
treated similar to case 2.

In all cases 1, 2 and 3 we can choose Smax, Bmax, LI and LR sufficiently small such that

|(Fe)| ≤ 1
6∥S

i−S̃i∥C([0,T ]×E)2 . Together with the estimates for terms (Fa)−(Fd) above this shows

that the fixed-point map Φ is a contraction with contraction constant bounded by 2
3 +

1
6 < 1, if

Smax, Bmax, LI and LR are sufficiently small. Therefore the Banach fixed-point theorem shows
the existence of a unique fixed-point, which solves the observer system (19) together with the
initial and boundary conditions (23)-(24) and the coupling conditions (21)-(22). □

Using Theorem 3.3 we can now show the existence of semi-global solutions on any finite time
interval [0, T ] (cf. Theorem 6.1 in [24]).

Theorem 3.6. Let some T > 0 be given and assume that the conditions of Theorem 3.3 (apart
from the restriction on T ) are satisfied. Then there exist a constant CT > 0 and constants
c1(T ), c2(T ), c3(T ), c4(T ) > 0 such that, if

Bmax ≤ c1(T ), LI ≤ c2(T ), Smax ≤ c3(T ), and LR ≤ c4(T ),

then the observer system (19) for velocity measurements together with the initial and boundary
conditions (23)-(24) and the coupling conditions (21)-(22) admits a solution on [0, T ] satisfying

∥S±∥L∞([0,T ]×[0,ℓ]) ≤ CT .

Proof. Let T1 > 0 such that T1 < mine∈E
ℓe

Λ(Smax)
and 1 − e−

µ
2 T1 ≤ 1

12 min{1, 1
1+C(n)

4
9 ¯
Λ(Smax)
Λ(Smax)

}.
The main idea of the proof of Theorem 3.6 is to apply Theorem 3.3 ⌈ T

T1
⌉-times.

First, let us note that in addition to the bounds on Bmax, LI , Smax and LR in the proof of
Theorem 3.3 we have also bounds on these variables that depend on each other, which can be
summarized as

Bmax ≤ min{c̃1Smax, c̃2LR}, LI ≤ c̃3LR, Smax ≤ min{c̃4LR, c̃5
√

LR}. (34)
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Now, consider the interval [0, T1] and let some initial and boundary data be given that are
bounded by Bmax,1 and are Lipschitz-continuous with respect to x with Lipschitz-constant
bounded by LI,1. Let

Smax,1 :=
1
c̃1
Bmax,1 =: f1(Bmax,1),

LR,1 := max{ 1
c̃2
Bmax,1,

1
c̃3
LI,1,

1
c̃4

1
c̃1
Bmax,1,

1
c̃25

1
c̃21
B2

max,1} =: f2(Bmax,1, LI,1).

Then, Bmax,1, LI,1, Smax,1 and LR,1 satisfy the bounds (34) and we can choose Bmax,1 and LI,1

sufficiently small such that Bmax,1, LI,1, Smax,1 and LR,1 satisfy the bounds of Theorem 3.3, i.e.,
Theorem 3.3 provides existence of solutions S± on the time interval [0, T1].

Next, we consider the time interval [T1, 2T1] and use S±(T1) as initial data, which is bounded
by Bmax,2 := Smax,1 and its Lipschitz-constant is bounded by LI,2 ≤ LR,1. Again we define

Smax,2 := f1(Bmax,2), LR,2 := f2(Bmax,2, LI,2).

In particular, Smax,2 and LR,2 can be written as a monotonically increasing function ofBmax,1 and
LI,1. Thus, we can choose Bmax,1 and LI,1 sufficiently small such that Theorem 3.3 provides the
existence of solutions also on the time interval [T1, 2T1]. Proceeding in the same way, we can show
existence of a solution S = (S+, S−) on the time interval [0, T ] satisfying ∥S±∥L∞([0,T ]×[0,ℓ]) ≤
Smax,N =: CT with N = ⌈ T

T1
⌉, if Bmax := Bmax,1 ≤ c1(T ), LI := LI,1 ≤ c2(T ), Smax := Smax,1 ≤

c3(T ) and LR := LR,1 ≤ c4(T ) with c1(T ), c2(T ), c3(T ), c4(T ) sufficiently small. □

4. Exponential synchronization

In this section, we show convergence of solutions of the observer system (8)-(9) towards
solutions of the original system (3)-(4) for the case of measurement of one of the fields velocity,
density or mass flow, i.e., for observer terms given by (10), (11) or (12). In general, (3)-(4) and
(8)-(9) have different initial data, since usually only an approximation of the initial data of the
exact solution is known. In the first part of this section, we consider the observer system on a
single pipe with length ℓ and complement the equations for the original system and the observer
system by the boundary conditions

m(t, 0) = m̂(t, 0) = mb(t), h(t, ℓ) = ĥ(t, ℓ) = hb(t), 0 ≤ t ≤ T, (35)

for the mass flow m at the left end of the pipe and the total specific enthalpy h at the right end
of the pipe.

For the proof of exponential synchronization we use the following assumptions:

(A1) Bounded state solution of original system: For the system (3)-(4) together with
the boundary conditions (35) there exists a classical solution, i.e., a pair of functions

(ρ, v) ∈
(
C1([0, T ];L∞(0, ℓ)) ∩ C0([0, T ];H1(0, ℓ))

)2
that satisfies (3)-(4) in a pointwise sense a.e., such that there exist

¯
ρ, ρ̄, ṽ > 0 so that

0 < ρ ≤ ρ(t, x) ≤ ρ̄ and − ṽ ≤ v(t, x) ≤ ṽ

for all 0 ≤ x ≤ ℓ and 0 ≤ t ≤ T .
(A2) Subsonic condition: The velocity bound ṽ satisfies

ρP ′′(ρ) ≥ 4|ṽ|2 ∀ ρ ≤ ρ ≤ ρ.

(A3) Bounded state solution of observer system: The observer system (8)-(9) with the
boundary conditions (35) admits a classical solution

(ρ̂, v̂) ∈
(
C1([0, T ];L2(0, ℓ)) ∩ C0([0, T ];H1(0, ℓ))

)2
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that satisfies

0 < ρ ≤ ρ̂(t, x) ≤ ρ̄ and − ṽ ≤ v̂(t, x) ≤ ṽ

for all 0 ≤ x ≤ ℓ and 0 ≤ t ≤ T .
(A4) Smallness-condition: Assume that both solutions satisfy the following a priori bounds

∥∂tρ∥L∞([0,T ]×[0,ℓ]) + ∥∂tv∥L∞([0,T ]×[0,ℓ]) ≤ Ct,

∥v∥L∞([0,T ]×[0,ℓ]), ∥v̂∥L∞([0,T ]×[0,ℓ]) ≤ v̄,

for Ct, v̄ > 0 sufficiently small. This means that both solutions have small velocity and
the exact solution has sufficiently small time derivatives.

These assumptions are reasonable in practice, since in the usual operational range of gas pipes
the gas velocities are small and only slow changes in the gas flow occur. Moreover, existence of
semi-global Lipschitz-continuous solutions of the observer system for measurement of v or ρ and
of the original system has been shown in Section 3. These solutions satisfy bounds on density
and velocity that are of the same form as the bounds in (A1) and (A3).

Now we can state the main theorem of this section.

Theorem 4.1. Consider a solution u = (ρ, v) of (3)-(4) and a solution û = (ρ̂, v̂) of (8)-(9)
with observer terms given by (10), (11) or (12) satisfying the boundary conditions (35), the
properties stated in (A1)-(A3) and the bounds in (A4) with Ct, v̄ > 0 sufficiently small.

Then there exist constants C1, C2 > 0 such that

∥u(t, ·)− û(t, ·)∥L2(0,ℓ) ≤ C1∥u0 − û0∥L2(0,ℓ)e
−C2t

for all 0 ≤ t ≤ T .

Remark 4.2. Note that we have the bound ṽ on the velocity, which asserts that we have
subsonic flow, see assumption (A2), and in addition the bound v̄ ≤ ṽ in Theorem 4.1 ensures
that the velocity is sufficiently small in order to control certain terms in our analysis.

In other words, Theorem 4.1 asserts that the state of the observer system converges exponen-
tially towards the exact solution, provided that the time derivative of the exact solution and the
velocity in both systems is sufficiently small. The rest of this section is devoted to the proof of
this theorem and to the extension to star-shaped networks.

4.1. General strategy of the proof of Theorem 4.1. In order to measure the distance
between the exact solution and the solution of the observer system, we will use the relative
energy, which is defined by

H(û|u) := H(û)−H(u)− ⟨H′(u), û− u⟩,
cf. [20, 22]. Here, u = (ρ, v), û = (ρ̂, v̂) denote the solution of the original system and of
the observer system, respectively, ⟨·, ·⟩ denotes the L2-scalar product on [0, ℓ] and H′(u) is the
variational derivative of the energy H, see (5), that is given by

δρH(ρ, v) =
1

2
v2 + P ′(ρ) = h, δvH(ρ, v) = m. (36)

Using these derivatives we can write the system (3)-(4) in the Hamiltonian form(
∂tρ
∂tv

)
+

(
0 ∂x
∂x 0

)(
δρH
δvH

)
=

(
0

−γ|v|v

)
,

which will be crucial in the estimation of the time derivative of the relative energy.
Due to the convexity of the pressure potential P , the relative energy is positive and defines

a distance measure on subsonic states. The proof of the following result can be found in [22,
Lemma 9].
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Lemma 4.3. Under the assumptions (A1)–(A3) there exist constants c0, C0 > 0 such that

c0∥u1 − u2∥2L2(0,ℓ) ≤ H(u1|u2) ≤ C0∥u1 − u2∥2L2(0,ℓ)

for all u1 = (ρ1, v1), u2 = (ρ2, v2) ∈ L2(0, ℓ) with

0 < ρ ≤ ρ1(x), ρ2(x) ≤ ρ̄, −ṽ ≤ v1(x), v2(x) ≤ ṽ, ∀x ∈ (0, ℓ).

The main idea of the proof of Theorem 4.1 is to use an extension of the relative energy
method, i.e., we estimate ∂tH(û|u) using a similar strategy as in [22] and then, motivated by
an extension of the energy functional used in [25], we add a suitable functional to the relative
energy in order to get decrease also with respect to the variables that are not measured. As a
first step, we estimate the time derivative of the relative energy.

Lemma 4.4. Under the assumptions of Theorem 4.1 the time derivative of the relative energy
can be bounded by

∂tH(û|u) ≤ 2γ
(
max{∥v∥L∞([0,ℓ]), ∥v̂∥L∞([0,ℓ])}

)3 1

¯
ρ∥ρ− ρ̂∥2L2([0,ℓ])

+ C̃ (∥∂tρ∥L∞([0,ℓ]) + ∥∂tv∥L∞([0,ℓ])) ∥u− û∥2L2([0,ℓ]) − ⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩
(37)

with C̃ := max(12 , CP ′′′).

Proof. Using the definition of the relative energy, we can compute

∂tH(û|u) =⟨H′(û), ∂tû⟩ − ⟨H′(u), ∂tu⟩ − ⟨H′′(u)∂tu, û− u⟩ − ⟨H′(u), ∂tû− ∂tu⟩
=⟨H′(û)−H′(u), ∂tû− ∂tu⟩+ ⟨H′(û)−H′(u)−H′′(u)(û− u), ∂tu⟩.

Now we can use that the variational derivatives of the energy H are given by (36). Together
with the equations (3)–(4) and (8)–(9), this leads to

∂tH(û|u) =⟨h− ĥ, ∂tρ− ∂tρ̂⟩+ ⟨m− m̂, ∂tv − ∂tv̂⟩+ ⟨H′(û)−H′(u)−H′′(u)(û− u), ∂tu⟩
=− ⟨m− m̂, γ|v|v − γ|v̂|v̂⟩+ ⟨H′(û)−H′(u)−H′′(u)(û− u), ∂tu⟩ (38)

− ⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩,

where we have used

⟨h− ĥ, ∂xm̂− ∂xm⟩+ ⟨∂xh− ∂xĥ, m̂−m⟩ = (h− ĥ)(m̂−m)|ℓx=0 = 0

due to the boundary conditions for m and h. For the first term we note that |v|v − |v̂|v̂ =

2(v − v̂)
∫ 1
0 |v̂ + s(v − v̂)|ds with

1
4(|v̂|+ |v|) ≤

∫ 1

0
|v̂ + s(v − v̂)|ds ≤ 1

2(|v̂|+ |v|),

compare [22]. This implies

− ⟨m− m̂, γ|v|v − γ|v̂|v̂⟩ ≤
∫ ℓ

0
γ|v||ρ− ρ̂||v − v̂|(|v|+ |v̂|)dx−

∫ ℓ

0

1
2γρ̂(v − v̂)2(|v|+ |v̂|)dx

≤ 2γ
(
max{∥v∥L∞([0,ℓ]), ∥v̂∥L∞([0,ℓ])}

)3 1

¯
ρ∥ρ− ρ̂∥2L2([0,ℓ]) −

∫ ℓ

0

1
4γρ̂(|v|+ |v̂|)(v − v̂)2dx.

where the second term in the last line is nonpositive. Since

H′(û)−H′(u)−H′′(u)(û− u) =

(
P ′(ρ̂|ρ) + 1

2(v̂ − v2)
(ρ̂− ρ)(v̂ − v)

)
,
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the second term in (38) can be estimated by

⟨H′(û)−H′(u)−H′′(u)(û− u), ∂tu⟩
≤ max(12 , CP ′′′) (∥∂tρ∥L∞([0,ℓ]) + ∥∂tv∥L∞([0,ℓ])) ∥u− û∥2L2([0,ℓ]). □

We expect that the observer terms −⟨Lρ, h− ĥ⟩−⟨Lv,m−m̂⟩ in the estimate of ∂tH(û|u) lead
to decrease with respect to the measured variables. In order to get decrease also with respect to
the variables that are not measured, we introduce an additional functional G (cf. the extension
of the energy functional in [25]).

Lemma 4.5. Assume that the assumptions of Theorem 4.1 are satisfied and assume that there
are observer terms Lρ,Lv and a functional G so that

c0
2 ∥u(t, ·)− û(t, ·)∥2L2(0,ℓ) ≤ H(û|u)(t) + G(û|u)(t) ≤ 3

2C0∥u(t, ·)− û(t, ·)∥2L2(0,ℓ) (39)

and there exists a constant c̄ > 0 so that

− ⟨Lρ(t, ·), h(t, ·)− ĥ(t, ·)⟩ − ⟨Lv(t, ·),m(t, ·)− m̂(t, ·)⟩+ ∂tG(û|u)(t)
≤ −c̄ (H(û|u)(t) + G(û|u)(t))

(40)

for all 0 ≤ t ≤ T .
Then there exist constants C1, C2 > 0 such that

∥u(t, ·)− û(t, ·)∥L2(0,ℓ) ≤ C1∥u0 − û0∥L2(0,ℓ)e
−C2t.

Proof. Combining (40) with Lemma 4.4 yields

∂tH(û|u)(t) + ∂tG(û|u)(t)

≤ 2γ v̄3

¯
ρ ∥ρ(t, ·)− ρ̂(t, ·)∥2L2 + C̃Ct∥u(t, ·)− û(t, ·)∥2L2 − c̄ (H(û|u)(t) + G(û|u)(t)) .

By Lemma 4.3, the first and second term can be absorbed into the last term for sufficiently
small Ct, v̄ > 0. This yields

∂tH(û|u)(t) + ∂tG(û|u)(t) ≤ −C (H(û|u)(t) + G(û|u)(t))

for some C > 0. Then, using (39) and the Gronwall Lemma shows the assertion. □

In the following, we state possible functionals G that allow to verify the conditions (39) and
(40) for the observer terms (10), (11) and (12) corresponding to measurements of m, v or ρ,
respectively. For velocity measurements we present the proof in detail, while for density and
mass flow measurements we just present the main idea of the proof. Once it is shown that the
conditions (39) and (40) are satisfied, Theorem 4.1 follows directly from Lemma 4.5.

4.2. Proof for measurement of v. First, we show exponential convergence of the state of the
observer system towards the original system state for measurement of the velocity. In this case,
we use the observer terms

Lρ = 0, Lv = µ(v − v̂)

with µ > 0. Under the assumption that |v|, |v̂| ≤ v̄, we can estimate

−⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩ ≤ −µ
¯
ρ∥v − v̂∥2L2 − ⟨µ(v − v̂), v̂(ρ− ρ̂)⟩

≤ −1
2µ

¯
ρ∥v − v̂∥2L2 + 1

2µ
v̄2

¯
ρ
∥ρ− ρ̂∥2L2 .

(41)

In order to show decrease with respect to ∥ρ− ρ̂∥2L2 , we use the following additional functional,
where the construction of F1 is inspired by the construction of the additional functional used
for a linear problem in [25].
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Definition 4.6. Let

F1(û|u)(t) :=
∫ ℓ

0
(M(x, t)− M̂(x, t))(v(x, t)− v̂(x, t))dx

with

M(x, t) :=

∫ t

0
m(x, t′)dt′ −

∫ x

0
ρ0(x

′)dx′.

The strategy for the proof of Theorem 4.1 in the case of measurement of v is that we will
estimate ∂tH(û|u) + δ∂tF1(û|u) with a constant δ > 0 and show that ∂tF1(û|u) guarantees
decrease with respect to ∥ρ− ρ̂∥2L2(0,ℓ), i.e., we will use Lemma 4.5 and verify the conditions

(39) and (40) for G := δF1. As a first step, let us note that for δ sufficiently small, the term
H(û|u) + δF1(û|u) is equivalent to ∥u− û∥2L2(0,ℓ).

Lemma 4.7. Suppose that the assumptions (A1)–(A3) hold and

δ ≤ c0
CPoinℓ

with the constant CPoin from the Poincaré inequality. Then
c0
2 ∥û(t, ·)− u(t, ·)∥2L2(0,ℓ) ≤ H(û|u)(t) + δF1(û|u)(t) ≤ 3

2C0∥û(t, ·)− u(t, ·)∥2L2(0,ℓ)

for all 0 ≤ t ≤ T .

Proof. Since

M(0, t) =

∫ t

0
m(0, t′)dt′ =

∫ t

0
mb(t

′)dt′ = M̂(0, t),

we can apply the Poincaré inequality to ∥M − M̂∥2L2 . Therefore we can compute

|F1(û|u)| ≤ ∥M − M̂∥L2∥v − v̂∥L2 ≤ CPoinℓ∥∂xM − ∂xM̂∥L2∥v − v̂∥L2

≤ 1
2CPoinℓ∥ρ− ρ̂∥2L2 + 1

2CPoinℓ∥v − v̂∥2L2 ,

where we have used the fact that ∂xM(x) =
∫ t
0 ∂xm(x, t′)dt′ − ρ0(x) = −ρ(x) and Young’s

inequality in the last step. If δ ≤ c0
CPoinℓ

, we have

δ|F1(û|u)| ≤
c0
2
∥u− û∥2L2 .

Applying Lemma 4.3 yields the assertion. □

Remark 4.8. Lemma 4.7 can be generalized to functions u1 = (ρ1, v1), u2 = (ρ2, v2) ∈ L2(0, ℓ)
with

0 < ρ ≤ ρ1(x), ρ2(x) ≤ ρ̄, −ṽ ≤ v1(x), v2(x) ≤ ṽ, ∀x ∈ (0, ℓ),

and M1(ℓ, t) = M2(ℓ, t) instead of M1(0, t) = M2(0, t). In this case the definition of M has
to be modified, i.e., the integral

∫ x
0 ρ0(x

′)dx′ has to be replaced by
∫ x
ℓ ρ0(x

′)dx′ and boundary
conditions for m have to be prescribed at the right end of the pipe.

Thus, we have shown that condition (39) is satisfied. It remains to verify condition (40).

Lemma 4.9. Consider a solution u = (ρ, v) of (3)-(4) and a solution û = (ρ̂, v̂) of (8)-(9) with
observer terms given by (10) satisfying the boundary conditions (35), the properties stated in
(A1)-(A3) and the bounds in (A4) with Ct, v̄ > 0 sufficiently small.

Then there exist constants δ, c̄ > 0 with δ ≤ c0
CPoinℓ

such that

−⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩+ δ∂tF1(û|u) ≤ −c̄ (H(û|u) + δF1(û|u)) .
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Proof. We start by computing the time derivative of F1, which is given by

∂tF1(û|u) =
∫ ℓ

0
(∂tM − ∂tM̂)(v − v̂)dx+

∫ ℓ

0
(M − M̂)(∂tv − ∂tv̂)dx

=

∫ ℓ

0
(m− m̂)(v − v̂)dx+

∫ ℓ

0
(M − M̂)(∂xĥ− ∂xh)dx

+

∫ ℓ

0
(M − M̂)(−Lv)dx+

∫ ℓ

0
(M − M̂)(−γ|v|v + γ|v̂|v̂)dx

=(E1) + (E2) + (E3) + (E4),

where the first term can be estimated by

(E1) =

∫ ℓ

0
(m− m̂)(v − v̂)dx =

∫ ℓ

0

(
ρ(v − v̂)2 + v̂(ρ− ρ̂)(v − v̂)

)
dx

≤ 1
2
v̄2

ρ̄ ∥ρ− ρ̂∥2L2 + 3
2 ρ̄∥v − v̂∥2L2 .

Using integration by parts and the boundary conditions (35) we can estimate

(E2) =

∫ ℓ

0
(∂xM − ∂xM̂)(h− ĥ)dx =

∫ ℓ

0
(ρ̂− ρ)

(
1
2(v

2 − v̂2) + P ′(ρ)− P ′(ρ̂)
)
dx

≤ −
¯
CP ′′∥ρ− ρ̂∥2L2 +

∫ ℓ

0

1

2
(v + v̂)(v − v̂)(ρ̂− ρ)dx

≤ −
(
¯
CP ′′ − v̄2

2
¯
ρ

)
∥ρ− ρ̂∥2L2 + 1

2
¯
ρ∥v − v̂∥2L2 .

Applying the Poincaré inequality to (E3) yields

(E3) ≤ CPoinℓ∥ρ− ρ̂∥L2 µ∥v − v̂∥L2 ≤ 1
4 ¯
CP ′′∥ρ− ρ̂∥2L2 + C2

Poinℓ
2µ2 1

¯
CP ′′

∥v − v̂∥2L2 .

Finally, the last term can be bounded by

(E4) =

∫ ℓ

0
(M − M̂)(−γ|v|v + γ|v̂|v̂)dx ≤ CPoinℓ∥ρ− ρ̂∥L2 2γv̄∥v − v̂∥L2

≤ 1
4 ¯
CP ′′∥ρ− ρ̂∥2L2 + 4γ2C2

Poinℓ
2 v̄2

¯
CP ′′

∥v − v̂∥2L2 .

Assume that v̄2 ≤ 1
4
¯
ρ
¯
CP ′′ . Then summing the contributions from (E1)–(E4) yields

∂tF1(û|u) ≤ −1

4 ¯
CP ′′∥ρ− ρ̂∥2L2 + (2ρ̄+ C2

Poinℓ
2µ2 1

¯
CP ′′

+ C2
Poinℓ

2γ2

¯
ρ)∥v − v̂∥2L2 .

Combining this with (41) leads to

− ⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩+ δ∂tF1(û|u)

≤
(
−1

4
δ
¯
CP ′′ + 1

2µ
v̄2

¯
ρ

)
∥ρ− ρ̂∥2L2

+

(
−1

2µ
¯
ρ+ δ

(
2ρ̄+ C2

Poinℓ
2µ2 1

¯
CP ′′

+ C2
Poinℓ

2γ2

¯
ρ

))
∥v − v̂∥2L2 .

Now, we choose δ sufficiently small such that

δ
(
2ρ̄+ C2

Poinℓ
2µ2 1

¯
CP ′′

+ C2
Poinℓ

2γ2

¯
ρ
)
≤ 1

4µ
¯
ρ (42)
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and the bound δ ≤ c0
CPoinℓ

from Lemma 4.7 is satisfied. Then, for this δ we choose the velocity

bound v̄ sufficiently small such that

1
2µ

v̄2

¯
ρ

≤ 1

8
δ
¯
CP ′′ .

This yields

−⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩+ δ∂tF1(û|u) ≤ −1

8
δ
¯
CP ′′∥ρ− ρ̂∥2L2 − 1

4µ
¯
ρ∥v − v̂∥2L2 ,

which together with Lemma 4.7 implies the statement of the lemma. □

Applying Lemma 4.5 finishes the proof of Theorem 4.1 for the case of velocity measurement.

Remark 4.10. Increasing the parameter µ in the observer term does not necessarily improve
the speed of convergence of the state of the observer system towards the original system state:
In the proof of Lemma (4.9) we see that −⟨Lρ, h− ĥ⟩−⟨Lv,m−m̂⟩+δ∂tF1(û|u) has the decrease
rate min{1

8δ¯
CP ′′ , 14µ

¯
ρ} and due to the bound (42) on δ a large µ enforces a small δ.

Remark 4.11. In the proof of Lemma 4.9 we see that we need at one end of the pipe boundary
conditions for m and at the other end boundary conditions for h, i.e., (35) or

m(t, ℓ) = m̂(t, ℓ) = m̃b(t), h(t, 0) = ĥ(t, 0) = h̃b(t), 0 ≤ t ≤ T.

The reason for this is that we want to use the Poincaré inequality for M in the estimation of
(E3), so that we need M = M̂ at at least one point in the interval (0, ℓ). Due to the definition
of M in Definition 4.6, this is satisfied at x = 0, if we choose boundary conditions for m at the
left end of the pipe. Then, if we want to have vanishing boundary contributions in the partial
integration in the estimation of (E2), we need (M − M̂)(ĥ− h)(x = ℓ) = 0. Since in general

M(ℓ, t) =

∫ t

0
m(ℓ, t′)dt′ −

∫ ℓ

0
ρ0(x

′)dx′ ̸= M̂(ℓ, t),

we need boundary conditions for h at the other end of the pipe.

4.3. Idea of proof for measurement of ρ or m. In the case of measurements of ρ the nudging
terms are given by

Lρ = µ
c√
p′(ρ̂)

ρ̂(P̃ (ρ)− P̃ (ρ̂)), Lv = 0, µ > 0.

The proof of Theorem 4.1 for measurements of ρ is similar to the proof for measurements of v.
Again, we start by estimating the last two terms of (37), i.e.,

− ⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩

≤ −1

2
µ¯
ρ

ρ̄ ¯
CP ′′

√
¯
Cp′√
C̄p′

∥ρ− ρ̂∥2L2 +
1

2
µ

(
ρ̄

¯
ρ

)3 v̄2

¯
CP ′′

(
C̄p′

¯
Cp′

)3/2

∥v − v̂∥2L2 ,

where we have used the bounds in assumptions (A1)–(A3) as well as the assumption |v|, |v̂| ≤ v̄
for some constant v̄ > 0. In order to ensure decrease also with respect to ∥v − v̂∥2L2 , we define
the functional

F2(û|u) :=
∫ ℓ

0
(N − N̂)(ρ− ρ̂)dx

with

N(x, t) :=

∫ t

0
h(x, t′)dt′ −

∫ x

ℓ
v0(x

′)dx′ +

∫ x

ℓ

∫ t

0
γ|v(x′, t′)|v(x′, t′)dt′dx′.
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Using that (N − N̂)(ℓ, t) = 0 and the Poincaré inequality, we can show that

c0
2 ∥u(t, ·)− û(t, ·)∥2L2(0,ℓ) ≤ H(û|u)(t) + δF2(û|u)(t) ≤ 3

2C0∥u(t, ·)− û(t, ·)∥2L2(0,ℓ) (43)

for all 0 ≤ t ≤ T for δ sufficiently small. Finally, it can be shown that, if |v|, |v̂| ≤ v̄ with v̄
sufficiently small, then there exist constants δ, c̄ > 0 such that (43) is satisfied and

−⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩+ δ∂tF2(û|u) ≤ −c̄(H(û|u) + δF2(û|u)),
i.e., condition (40) is satisfied for G := δF2. This finishes the proof for measurement of v.

For the case of measurement of the mass flow m we use the nudging terms

Lρ = 0, Lv = µ(m− m̂)

with µ > 0. This implies

−⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩ ≤ −1
2µ

¯
ρ2∥v − v̂∥2L2 + 2µv̄2 ρ̄

2

¯
ρ2
∥ρ− ρ̂∥2L2 .

Again, the observer terms give decrease only with respect to one state variable. We use the same
functional as for the velocity measurement, i.e. the functional F1 defined in Definition 4.6, in
order to achieve decrease also with respect to the other state variable. Since the equivalence to
the L2-norm was already shown in Lemma 4.7, it remains to show that the decrease condition
(40) is satisfied. This can be shown similar to the proof of Lemma 4.9.

4.4. Extension to star-shaped networks. Now we extend the convergence results that are
shown in Theorem 4.1 for a single pipe to star-shaped networks. Such networks have only one
inner node, which we denote by v0. We assume that the edges are oriented such that they start
in the central node v0 and end at a boundary node. For the case of measurements of v or m, we
prescribe at every boundary node the boundary conditions

me(t, v) = m̂e(t, v) = me
b(t, v) ∀v ∈ V∂ , (44)

while for density measurements we prescribe the boundary conditions

he(t, v∂) = ĥe(t, v∂) = heb(t, v∂) (45)

for one arbitrary, but fixed boundary node v∂ ∈ V∂ and

me(t, v) = m̂e(t, v) = me
b(t, v) ∀v ∈ V∂ \ {v∂}. (46)

Together with the energy conserving coupling conditions (13) this allows us to extend the re-
sults obtained above for a single pipe to star-shaped networks, up to some limitations detailed
below. The main idea in the proof is summing the estimates over all edges, where we have to
pay attention to the application of the Poincaré inequality in the proof of Lemma 4.7 and of
equation (43) as well as to the partial integration used in the verification of condition (40). For
measurements of v we present the proof in detail, while for measurements of m or ρ we just
present the idea of the proof.

We start with the result for measurements of v or m. In this case, we get exponential
synchronization up to some error that is proportional to the difference between the total mass
in the original system and the total mass in the observer system at the initial time t = 0.

Theorem 4.12. Let ue = (ρe, ve) and ûe = (ρ̂e, v̂e), e ∈ E, be Lipschitz continuous solutions of
(3)-(4) and (8)-(9), respectively, on the network (V, E) with boundary conditions (44) and source
terms Lρ, Lv given by (10) or (12), that satisfy the coupling conditions (13), the properties stated
in the assumptions (A1)–(A3) and the bounds in (A4) with Ct, v̄ > 0 sufficiently small on all
pipes e ∈ E.

Then there exist constants C1, C2, C3 > 0 such that

∥u(t, ·)− û(t, ·)∥2L2(E) ≤ C1∥u0 − û0∥2L2(E) exp(−C2t) + C3|∆M0|
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for all 0 ≤ t ≤ T with mass difference at time t = 0

∆M0 :=
∑
e∈E

∫ ℓe

0
ρe0(x)dx−

∑
e∈E

∫ ℓe

0
ρ̂e0(x)dx.

Remark 4.13. In contrast to the result on a single pipe, in Theorem 4.12 there is the additional
term C3|∆M0| depending on the initial total mass difference. Due to the choice of the boundary
conditions for m at each boundary node and the choice Lρ = 0 for measurement of v or m, there
is no chance that this contribution vanishes: For the mass difference at time t

∆M(t) :=
∑
e∈E

∫ ℓe

0
ρe(x, t)dx−

∑
e∈E

∫ ℓe

0
ρ̂e(x, t)dx

we have

∂t(∆M(t)) =
∑
e∈E

∫ ℓe

0
(−∂xm

e(x, t) + ∂xm̂
e(x, t))dx =

∑
e∈E

(me(v0)− m̂e(v0)) = 0,

where we have used the boundary conditions (44) and the coupling conditions (13). This implies
that ∆M(t) = ∆M0 for all t ∈ [0, T ], i.e. the total mass difference at time t is the same as the
total mass difference at the initial time t = 0.

Proof of Theorem 4.12. By summing over all edges e ∈ E , the proof in Section 4.2 for measure-
ment of v transfers almost verbatim to star-shaped networks except for the application of the
Poincaré inequality in the proof of Lemma 4.7 and the partial integration used in the proof of
Lemma 4.9, which we will detail in the following. In order to transfer Lemma 4.7 to networks,
we define analogously to Definition 4.6

F1(û|u)(t) :=
∑
e∈E

∫ ℓe

0
(M e(x, t)− M̂ e(x, t))(ve(x, t)− v̂e(x, t))dx

with

M e(x, t) :=

∫ t

0
me(x, t′)dt′ −

∫ x

ℓe
ρe0(x

′)dx′, e ∈ E .

Due to the boundary conditions (44) we have

M e(v) =

∫ t

0
me(v, t′)dt′ = M̂ e(v) ∀v ∈ V∂ , e ∈ E(v).

Since the network is star-shaped, every edge e ∈ E is incident to some boundary node. Therefore,
we can apply the Poincaré inequality to each edge separately and show similarly to Lemma 4.7
that

c0
2 ∥û(t, ·)− u(t, ·)∥2L2(E) ≤

∑
e∈E

H(ûe|ue)(t) + δF1(û|u)(t) ≤ 3
2C0∥û(t, ·)− u(t, ·)∥2L2(E)

for all 0 ≤ t ≤ T , if δ ≤ c0
CPoinℓmax

with ℓmax := maxe∈E ℓ
e.
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Next, we consider the partial integration that is used in the estimation of term (E2) in the
proof of Lemma 4.9. For star-shaped networks, we get

(E2) =
∑
e∈E

∫ ℓe

0
(M e − M̂ e)(∂xĥ

e − ∂xh
e)dx

=
∑
e∈E

∫ ℓe

0
(∂xM

e − ∂xM̂
e)(he − ĥe)dx+

∑
e∈E

(M e − M̂ e)(ĥe − he)|ℓe0

=
∑
e∈E

∫ ℓe

0
(∂xM

e − ∂xM̂
e)(he − ĥe)dx+

∑
v∈V∂

∑
e∈E(v)

(M e(v)− M̂ e(v))(ĥe(v)− he(v))

− (ĥ(v0)− h(v0))
∑

e∈E(v0)

(M e(v0)− M̂ e(v0)),

where we have used the coupling conditions (13) in the last step. The sum over the boundary
nodes vanishes due to the boundary condition (44) and for the last term we can compute∑

e∈E(v0)

(M e(v0)− M̂ e(v0))

=

∫ t

0

 ∑
e∈E(v0)

me(v0, t
′)−

∑
e∈E(v0)

m̂e(v0, t
′)

 dt′ +
∑
e∈E

∫ ℓe

0
ρe0(x

′)dx′ −
∑
e∈E

∫ ℓe

0
ρ̂e0(x

′)dx′,

where the first term vanishes due to the coupling conditions (13). Using the estimation of (E2)

in the proof of Lemma 4.9 and the fact that by Assumption (A2) the term ĥ(v0) − h(v0) is
bounded by a constant Ch depending only on the bounds in the assumptions, this implies

(E2) ≤ −
(
¯
CP ′′ − v̄2

2
¯
ρ

)
∥ρ− ρ̂∥2L2(E) +

1
2
¯
ρ∥v − v̂∥2L2(E) + Ch|∆M0|.

For measurements of v, we can proceed as in the proof of Lemma 4.9. This yields

− ⟨Lρ, h− ĥ⟩ − ⟨Lv,m− m̂⟩+ δ∂tF1(û|u)

≤ −1

8
δ
¯
CP ′′∥ρ− ρ̂∥2L2(E) −

1
4µ

¯
ρ∥v − v̂∥2L2(E) + δCh|∆M0|.

As in the proof of Lemma 4.5, we can then apply a Gronwall Lemma, which yields the assertion.
The statement for measurement of m follows similarly. □

Now, we want to extend the exponential synchronization for measurement of ρ to star-shaped
networks. Here, we do not get an additional term depending on the initial mass difference, but
we will use a slightly adapted definition of the functional F2, which makes use of the continuity
of the specific enthalpy h included into the coupling conditions.

Theorem 4.14. Let ue = (ρe, ve) and ûe = (ρ̂e, v̂e), e ∈ E, be Lipschitz continuous solutions
of (3)-(4) and (8)-(9), respectively, on the network (V, E) with boundary conditions (45)-(46)
and source terms Lρ, Lv given by (11), that satisfy the coupling conditions (13), the properties
stated in the assumptions (A1)–(A3) and the bounds in (A4) with Ct, v̄ > 0 sufficiently small
on all pipes e ∈ E.

Then there exist constants C1, C2 > 0 such that

∥ue(t, ·)− ûe(t, ·)∥2L2(E) ≤ C1∥ue0 − ûe0∥2L2(E) exp(−C2t) (47)

for all 0 ≤ t ≤ T .
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Idea of proof. For measurements of ρ, we define similar to the definition in Section 4.3

F2(û|u) :=
∑
e∈E

∫ ℓe

0
(N e − N̂ e)(ρe − ρ̂e)dx

with

N e(x, t) :=

∫ t

0
he(x, t′)dt′ −

∫ x

v∂

ve0(x
′)dx′ +

∫ x

v∂

∫ t

0
γ|ve(x′, t′)|ve(x′, t′)dt′dx′,

where we integrate along the unique path from v∂ to x ∈ e. It can be shown that

c0
2 ∥u(t, ·)− û(t, ·)∥2L2(E) ≤

∑
e∈E

H(ûe|ue)(t) + δF2(û|u)(t) ≤ 3
2C0∥u(t, ·)− û(t, ·)∥2L2(E)

for all 0 ≤ t ≤ T for δ sufficiently small. Finally, using the coupling conditions (13) we can show
that all boundary terms at inner nodes of the network vanish and (40) is satisfied for G = δF2

for suitable constants δ, v̄, c̄ > 0. □

Remark 4.15. For measurements of v or m we use the boundary conditions (44), i.e., we
prescribe the value of the mass flow at every boundary node. Due to this choice of the boundary
conditions it is possible to apply the Poincaré inequality in order to show equivalence of H+δF1

to the L2-norm (see the proof of Theorem 4.12), but this boundary conditions also lead to the
mass difference ∆M0 in Theorem (4.12). In contrast to this, for measurements of the density
we use the boundary conditions (45)-(46), i.e. at one fixed boundary node we use boundary
conditions for h, while at all other boundary nodes we prescribe the value of m. This can be done
since the continuity of h is included in the coupling conditions such that the Poincaré inequality,
which is needed in order to show the norm equivalence, can be applied. In combination with the
coupling conditions this choice of boundary conditions has the advantage that we do not have a
term of the form ∆M0 at the right hand side of (47).
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