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1. Introduction

The optimal control of gas transport networks was and still is a very important
topic for modern economies and societies. Accordingly, a lot of research has been
carried out on this topic during the last years and decades. Besides mixed-integer
aspects in gas transport network optimization, one of the main challenges is that
a physically and technically detailed modeling of transient gas dynamics leads to
theoretically and computationally highly demanding models involving nonlinear
partial differential equations (PDEs). For further background on the application,
historical notes and a detailed discussion of mixed-integer aspects for stationary
descriptions we refer to Hante and Schmidt [18]. In this chapter, we focus on the
most common modeling approaches concerning transient descriptions, point out the
challenges, and summarize important contributions concerning the optimization of
the most relevant control parameters for this particular class of problems.

2. Pipe Modeling

For modeling gas networks, a key modeling decision concerns the governing
equations for the gas flow in pipes. Long sections of cylindrical pipes are commonly
modeled as one-dimensional objects parameterized in length from inlet to outlet by
the spatial variable x ∈ [0, L], featuring a (constant) diameter D and a height-profile
h : [0, L] → R. As a compressible fluid, the gas flow through the pipe under the
assumption of a constant temperature T is then described in terms of density ρ,
velocity v, and pressure p with the governing equations

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(p+ ρv2) = − λ

2D
ρv |v| − gρh′,

(1)

together with the constitutive law

p = RsρTz(p, T ),

where g models gravitational forces, λ is the friction factor of the pipe’s inner wall,
and where Rs denotes the specific gas constant and z(p, T ) the compression factor
for the underlying gas composition [3, 29, 36]. The dependency of z(p, T ) on p and
T is often approximated by empirically derived models, e.g., by the AGA [27] or
the Papay [33] formula.

These equations yield a system of nonlinear and hyperbolic balance laws with two
characteristics λ1 = v − c and λ2 = v + c, where c is the speed of sound within the
gas given by c2 = ∂ρp. They are often considered in the variables of gas pressure p
and of mass flow q = Aρv with the pipe’s cross-sectional area A = πD2/4.
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Most optimal control problems concern subsonic regimes |v| � c. An often used
simplification concerns the idealization z(p, T ) ≡ const. The neglection of the ram
pressure term ρv2 on the left-hand side in (1) then yields the semilinear model

∂tp+
c2

A
∂xq = 0,

∂tq +A∂xp = −
λc2

2DA

q |q|
p
− gA

c2
h′p.

(2)

Dropping ∂tq in (2) leads to the quasi-stationary (so-called friction dominated)
model

∂tp+
c2

A
∂xq = 0,

A∂xp = −
λc2

2DA

q |q|
p
− gA

c2
h′p.

(3)

Dropping all time derivatives in (2) yields q ≡ const and, when further neglecting
the gravity term, one obtains the so-called Weymouth equation

p2in − p2out =
λc2L

DA2
q |q|

for the pressure at the in- and outlet of the pipe often used for a stationary modeling;
see [18]. The relevant pipe model depends on the specific application and desired
(modeling) accuracy. This isothermal model hierarchy also extends to temperature-
dependent models and port-Hamiltonian descriptions are available as well. For
further details see [3, 4].

For well-posedness, the dynamic gas flow pipe models are to be complemented
with initial conditions, e.g., at t = 0 via

p(0, x) = p0(x), q(0, x) = q0(x), x ∈ [0, L].

Moreover, when transmission or boundary conditions for p and/or q at the in- and/or
outlet are prescribed, they have to respect the characteristics of the chosen flow
model in the strong or corresponding weak form of these equations. For a single
pipe, typically either p or q is prescribed at both in- and outlet.

3. Network Modeling

The dynamics of a gas network over a time period [0, T ] is modeled using a
directed graph G = (V,A) with node set V and arc set A. For transient descriptions
arcs a ∈ A are associated with pipes of length La; with pressures pa and flows
qa being governed by either (1), (2), or (3). The nodes u ∈ V model junctions,
boundary nodes, or active elements such as compressors, valves, and the like by
prescribing additional algebraic conditions using δin(u) and δout(u) for the set of in-
and outgoing arcs.

Typical junction conditions are the continuity of pressure, i.e.,
pa(t, 0) = pu(t) for all a ∈ δout(u),

pa(t, La) = pu(t) for all a ∈ δin(u),
(4)

for some function pu(t), which can be interpreted as the pressure at that node at
time t, and the balance of flows, i.e.,∑

a∈δout(u)

qa(t, 0)−
∑

a∈δin(u)

qa(t, La) = qu(t), t ∈ [0, T ], (5)

where qu(t) is an in- or outflow at that node at time t.
Boundary nodes are in many cases required to have edge degree 1 and typically

prescribe either pressure or flow on the respective end of its incident arc via (4)
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or (5) as a boundary condition for the associated pipe. The values pu(t) or qu(t)
are sometimes considered as a control wu(t) of the system.

Nodes u modeling active elements are usually required to have exactly one in-
and one outgoing arc (ain, aout) and impose certain parameter-dependent linear or
nonlinear coupling conditions for the pressure or flow across the node. For instance,
for u in a subset Vc ⊂ V modeling compressors, one can use the model

qaout(t, 0) = qain(t, Lain), paout(t, 0) = pain(t, Lain) exp

(
wu(t)

qaout(t, 0)

)
, t ∈ [0, T ],

where wu(t) is proportional to the energy of the compression process [1]. The
value wu(t) is often also considered as a control. More detailed models of compressor
machines as well as transient models for (control) valves, resistors, and the like are
presented in [4]. Sometimes, active elements such as compressors are also placed on
special (non-pipe) arcs [2], as it is common for stationary modeling [18].

All controls are typically bounded from below and above via

w−u (t) ≤ wu(t) ≤ w+
u (t), t ∈ [0, T ],

with given w±u (t). Certain control parameters may also be required to be binary- or
integer-valued to model opening/closing of valves or more complex routing options
within compressor stations consisting of several machines [14, 16, 24]. Moreover,
within the network, pressures are often required to also obey bounds such as

p−a ≤ pa(t, x) ≤ p+a , (t, x) ∈ [0, T ]× [0, La], a ∈ A,
with typically constant and given values p±a . Similar restrictions may apply for flows
at the boundary nodes as to model, e.g., certain minimal or maximal demands.

Classic objective functions then consist of a sum of tracking-type objectives
eventually combined with standard control regularization terms such as of Tikhonov-
type [8, 16]. Usual goals are to steer the system as close as possible to a desired
network state, e.g., close to stationary, to minimize a specific demand gap, or to
minimize the necessary compression power, e.g., in the sense that [1]∑

u∈Vc

∫ T
0

‖wu(t)‖2 dt→ min,

while respecting all governing equations and all bounds. The resulting problems
then belong to the class of state-constrained optimal control problems for nonlinear
PDEs.

4. Contributions in the Field

When the modeling presented in Sections 2 and 3 is applied to a real-world gas
network with hundreds or thousands of pipes, the resulting problems are large-scale
dynamical optimization problems. In this case, already the evaluation of the network
state for a fixed control using numerical methods is a challenging task [2]. Any
optimization approach therefore needs to balance accuracy and tractability. The
important issue thereby is to handle the nonlinear pressure-drop term in the right-
hand side of (1), (2), or (3) appropriately. Often, additional simplifications such as
assumptions on network sizes or certain network topologies are made. Whenever
transient models are employed, the time horizons under considerations are also
typically short. Many available studies concern so-called day-ahead operation, which
is then applied in a receding or moving horizon fashion [34]. For approaches based on
mathematical optimization, an important distinction is whether the problem is either
first discretized in order to directly apply methods from finite-dimensional nonlinear
optimization or to tackle the problem indirectly using suitable reformulations as to
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apply tailored infinite-dimensional optimality conditions from the field of optimal
control and to then solve these numerically using discretizations.

4.1. Direct Methods. In these approaches, all governing equations are first re-
placed by finite-dimensional approximations and are subsequently solved using
methods from nonlinear optimization. A majority of work is based on methods from
classic nonlinear optimization but differs in the used methods for discretization, for
the computation of gradients, and the specific algorithms used to compute stationary
points:

• Standard sequential quadratic programming can be applied to (adaptive)
implicit box-schemes, where gradients are computed using a discrete adjoint
approach [5];

• Standard interior-point methods can be applied to pseudospectral collocation
methods, where gradients then come in sparse form [42]. Such approaches
can also incorporate uncertainties using a two-stage stochastic programming
method [41];

• The structure of Euler discretizations can also be exploited in tailored
primal-dual interior-point solvers [37];

• Gradient information for certain discretizations can also be obtained from
formal adjoint approaches [19, 22].

Alternatively, after discretization, different reformulations can be used to apply
other, also non-local, methods from mathematical optimization. This includes mixed-
integer linear optimization, where nonlinearities are approximated by piecewise linear
functions [31], or instantaneous control approaches, where tailored mixed implicit-
explicit Euler discretization yield linear constraints for every time-step [11]. A similar
approach is followed in [24], using approximations leading to linear constraints over
several time steps and incorporating this into a moving-horizon scheme. Further
global approaches are simulated annealing [32] or, for simple network topologies,
dynamic programming [40].

Most of these approaches are capable to provide reasonable solutions on small-
to medium-size benchmark problems such as available in [2] and some even proved
success on real networks.

4.2. Theory for Indirect Approaches. A particular focus for PDE-constrained
gas network optimization problems is on developing adequate indirect solution
approaches. They heavily rely on regularity properties of the underlying control-to-
state map, its gradient representations using adjoint equations, and an appropriate
treatment of both integer and state constraints in order to obtain suitable optimality
conditions and their discretizations. Standard methods from PDE-constrained
optimization [23, 30, 38] cannot be apply directly due to the heterogeneous domain
of functions on graphs, the hyperbolic character of (1)–(2), the nonlinearities in
(1)–(3), and the coupling conditions (4)–(5). Key contributions concern the following:

• Existence and regularity of solutions [1, 12, 13] and structural analysis such
as steady-state characterizations and stabilization [9, 10], controllability [6],
as well as turnpike properties [8];

• Adjoint calculus, e.g., for classical solutions of hyperbolic systems based on
Riemann invariants [7] or for entropy solutions of balance laws [35];

• State-constraint handling by Moreau–Yosida type regularizations [21, 35];
• Optimality conditions obtained using linearization [8] or parabolic regulariza-

tion [20]. These can then be solved using semismooth Newton-methods [39];
• Domain decomposition techniques as to keep larger systems or longer time

horizons tractable [25, 26, 28];
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• Mixed-integer control handling using relaxation and combinatorial integral
approximation [14, 15, 17].

Most of these techniques were already be successfully applied to academic problems
motivated from PDE-constrained gas network problems.
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