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Abstract. We consider dynamic gas transport optimization problems, which lead to
large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on
graphs. Usually, the resulting instances are too challenging to be solved by state-of-
the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple
optimization problems on smaller blocks, which can be solved in parallel and which may
result in simpler classes of optimization problems since not every block necessarily contains
mixed-integer or nonlinear aspects. For achieving feasibility at the interfaces of the several
blocks, we employ a tailored consensus-based penalty alternating direction method. Our
numerical results show that such decomposition techniques can outperform the baseline
approach of just solving the overall MINLP from scratch. However, a complete answer to
the question of how to decompose MINLPs on graphs in dependence of the given model
is still an open topic for future research.

1. Introduction

Many countries around the world strive towards a carbon-free energy supply but this
energy turnaround is not yet accomplished. Hence, modern societies and economies still need
to use energy carriers with a significant carbon footprint such as coal or natural gas, where
the latter is often characterized as some kind of a bridging technology. To achieve their
energy and climate goals, these societies and economies need to use resources like natural
gas as efficiently as possible—an aspect that got even more important due to Russia’s 2022
attack on Ukraine and the subsequent energy crisis in Europe. Obviously, not only the
energy-saving usage of natural gas is important but also a highly efficient operation of the
transport infrastructure is necessary. In this paper, we consider the latter aspect and derive
novel algorithms to dynamically control gas transport networks.

From a mathematical point of view, this leads to very challenging optimization problems
due to at least three reasons. First, appropriate models of gas physics are highly nonlinear.
Second, the control of certain elements in gas transport networks such as valves or compressor
stations introduce mixed-integer aspects. Third, dynamic effects lead to large-scale problems
after the discretization of the considered time horizon. This all results in large-scale and
nonconvex mixed-integer nonlinear models (MINLPs) that need to be solved on large transport
networks if real-world problems are considered. Usually, the resulting instances are beyond
the scope of what can be tackled even with today’s most sophisticated MINLP solvers.

Our contribution is to exploit the special structure of the studied MINLPs that is induced
by the transport networks, which are modeled by graphs. We decompose these graphs so that
multiple smaller optimization problems can be solved on the resulting blocks. In addition
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to the reduced size of the graphs, and depending on the specific graph decomposition, the
resulting optimization problems on the smaller blocks may also be in a simpler class of
optimization problems because they, e.g., only contain mixed-integer linear, or nonlinear but
purely continuous models. Of course, the graph decompositions lead to couplings between the
different blocks that need to be satisfied to obtain a feasible solution on the overall transport
network. We ensure this by a problem-tailored and consensus-based penalty alternating
direction method (PADM) that allows for solving the problems on the separate components
in parallel in every iteration of the PADM.

The main idea just sketched is motivated by related works on the infinite-dimensional
level, where non-overlapping domain decompositions have been studied a lot in the last
years [13, 14, 16]. In this contribution, however, we focus on finite-dimensional MINLPs
obtained by a full discretization as they are also considered in, e.g., [2, 10, 26]. In contrast to
such non-overlapping decomposition methods, overlapping methods have also been applied
with great success in the recent years; see [24] for an application to power networks, [25]
for decentralized schemes for general graph-structured problems, [17] for applications in
nonlinear optimal control, [23] for some theoretical foundations for these overlapping methods,
and [12] for a recent Julia implementation of the general ideas. At the core of many of these
contributions are the key ideas of alternating directions methods of multipliers (ADMMs);
see [1] for an overview. In the latter paper, the authors discuss so-called sharing and consensus
methods, which we also exploit in our contribution. However, due to the mixed-integer
nature of the problems we want to solve, ADMMs are not directly applicable and we thus
resort to alternating direction methods (ADMs) that do not rely on duality reasoning, which
is not available in our setting. ADMs have been already used to solve gas transport problems;
see, e.g., [8, 9]. However, the decomposition of the model used in [9] is not graph- but
physics-based and in [8], very specific graph-decompositions are used that we generalize in
the present paper. Moreover, both papers tackle the stationary case whereas we now consider
a time-dependent model based on the partial differential equations (PDEs) given by the
Euler equations.

The remainder of this paper is structured as follows. In Section 2, we present the PDE-
constrained optimization model that we consider and also discuss the used discretization of
the Euler equations to obtain a finite-dimensional MINLP. Afterward, we review the basics
of penalty alternating direction methods in Section 3 and then show in Section 4 how we can
reformulate our original model so that it fits into the format to which the PADM can be
applied. The numerical results are presented and discussed in Section 5 and the paper closes
with a brief discussion of open research questions for future work in Section 6.

2. Gas Network Modeling

We consider a fixed and finite time horizon [0, T ] in which we control a gas network. The
network itself is given as a directed and weakly connected graph (V,A). The nodes V consist
of entries V+, exits V−, and inner nodes V0, i.e.,

V = V+ ∪ V− ∪ V0,

while the arcs are made up of pipes, short pipes, valves, compressor stations, and control
valves:

A = Ap ∪Asp ∪Av ∪Acs ∪Acv.

In what follows, we introduce models for the separate gas network components and state
possible objective functions. To this end, we require some main physical quantities that
will appear in all of the components’ models: gas pressure p = p(x, t) and gas mass flow
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q = q(x, t), which both depend on space x (in pipes) and time t. Often, we omit these
dependencies in the following for the ease of better reading.

2.1. Pipes. The one-dimensional semi-linear Euler equations that we use to model the gas
flow in a pipe a ∈ Ap are given by

∂tpa +
c2

Aa
∂xqa = 0, (t, x) ∈ (0, T )× (0, L), (1a)

∂tqa +Aa∂xpa = − λac
2

2DaAa

qa|qa|
pa

− gAah
′
a

c2
pa, (t, x) ∈ (0, T )× (0, L); (1b)

see, e.g., [11]. They consist of the continuity equation (1a) and the momentum equation (1b).
Here and in what follows, A, D, L, and h′ describe the cross-sectional area, the diameter,
the length, and the slope of the pipe. Furthermore, c and g are the speed of sound in natural
gas and the gravitational acceleration. In what follows, the notation pa,u(t) stands for the
pressure in the pipe a at time t directly at the interface to node u.

There is a multitude of ways to model the friction coefficient λa; see, e.g., [6, 22]. For the
modeling in this paper, we use the flow-independent law of Nikuradse, i.e.,

λa =

(
2 log10

(
Da

ka

)
+ 1.138

)−2

,

where the parameter ka describes the roughness of the pipe’s inner wall.
Finally, we assume that the mass flow inside of every pipe and every other element of the

network is uniformly (over time) bounded from below and above, i.e.,

qa(t, x) ∈
[
q−a , q

+
a

]
(2)

holds on (0, T )× (0, L). The same holds true for pressures, i.e.,

pa(t, x) ∈
[
p−a , p

+
a

]
(3)

holds on (0, T )× (0, L).

2.2. Short Pipes. A short pipe a = (u, v) ∈ Asp is an artificial modeling tool to directly
connect two nodes so that there is no pressure loss, i.e.,

pa,u(t) = pa,v(t), t ∈ [0, T ], (4)

and there is only one mass flow variable qa(t) = qa,u(t) = qa,v(t) for every point in time t ∈ T .

2.3. Valves. At each point in time t ∈ [0, T ], a valve a = (u, v) ∈ Av is either open or closed.
If it is open, it is modeled as a short pipe. If the valve is closed, gas flow is blocked and
the pressures at both incident nodes are decoupled. Thus we have pa,u(t) = pa,v(t) if the
valve a is open and qa(t) = 0, if the valve a is closed. This can be modeled by using a binary
variable oa(t) ∈ {0, 1} that indicates if the valve is open (oa(t) = 1) or closed (oa(t) = 0).
The mixed-integer model for valves then reads

pa,u(t) ≥ pa,v(t)− (p+
a − p−a )(1− oa(t)), (5a)

pa,u(t) ≤ pa,v(t) + (p+
a − p−a )(1− oa(t)), (5b)

qa(t) ≥ q−a oa(t), (5c)

qa(t) ≤ q+
a oa(t) (5d)

for all a ∈ Av and all t ∈ [0, T ].
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2.4. Compressor Stations. Similar to valves, compressor stations a ∈ Acs can be open or
closed. If they are open, they can be either active or in bypass mode. Active compressor
stations can increase the pressure by a controlled amount ∆pa ∈ [0,∆p+

a ], while compres-
sor stations in bypass mode behave like short pipes. The flow direction of a compressor
station a ∈ Acs is fixed, i.e., q−a = 0. It holds

pa,u(t) + ∆pa(t) = pa,v(t), if the compressor station a is active,
pa,u(t) = pa,v(t), if the compressor station a is in bypass mode,
qa(t) = 0, if the compressor station a is closed.

To simplify the modeling, we assume that compressor stations are always open, which
allows us to use the linear compressor station model

pa,u(t) + ∆pa(t) = pa,v(t), (6)

where ∆pa(t) = 0 corresponds to the bypass mode.
If we want the pressure increase to be bounded via 0 < ∆p−a ≤ ∆pa(t) ≤ ∆p+

a if the
compressor station is active, we have to introduce a binary variable ba(t) ∈ {0, 1}. This
variable indicates if the compressor station is active (ba(t) = 1) or in bypass mode (ba(t) = 0).
The mixed-integer compressor station model then reads

∆pa(t) ≥ ∆p−a ba(t), (7a)

∆pa(t) ≤ ∆p+
a ba(t), (7b)

pa,u(t) + ∆pa(t) = pa,v(t). (7c)

We will analyze the computational impact of the different presented compressor models
later in our numerical study. Note, however, that there are much more realistic nonlinear
compressor station models in the literature; see, e.g., [18, 19]. These highly accurate models
are, however, out of the scope of this paper.

2.5. Control Valves. We model control valves a = (u, v) ∈ Acv similar to compressor
stations, but instead of increasing the pressure they can decrease it. This can be modeled by
using the compressor station model (6) or (7) with ∆p ∈ [∆p−, 0].

2.6. Nodes. At nodes u ∈ V , we have to model pressure continuity, which is given by

pu(t) = pa,u(t) for all a ∈ δ(u) (8)

for all t ∈ [0, T ]. It states that the node pressure pu(t) is equal to the adjacent arc
pressures pa,u(t) at the interface to the respective node u. Here, we use δ(u) = δin(u)∪δout(u),
where δin(u) and δout(u) are the sets of in- and outgoing arcs of node u. In addition, the
pressure at all nodes are bounded from below and above via

pu(t) ∈
[
p−u , p

+
u

]
(9)

for all t ∈ [0, T ].
Furthermore, at nodes, we have to model mass balance via

qu(t) +
∑

a∈δin(u)

qa,u(t)−
∑

a∈δout(u)

qa,u(t) = 0 (10)

for u ∈ V and t ∈ [0, T ], where qu(t) is the mass flow that is supplied or withdrawn from the
network at node u. It holds

qu(t)


≥ 0 for entries u ∈ V+,

≤ 0 for exits u ∈ V−,
= 0 for inner nodes u ∈ V0
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and the mass flow at nodes is also bounded from below and above, i.e.,

qu(t) ∈
[
q−u , q

+
u

]
(11)

for all u ∈ V and t ∈ [0, T ].

2.7. Objective Function. A classic objective function in gas transport optimization is to
minimize the operational costs of the compressor stations, i.e., one wants to minimize

fc =
∑
a∈Acs

∫ T

0

∆pa(t) dt. (12)

Another possibility is the tracking-type objective function on entries V+ and exits V−,

ft =
∑

u∈V+∪V−

η (pu(T )− p̂u)
2

+ θ (qu(T )− q̂u)
2
, (13)

for given factors η, θ and target pressures p̂ and mass flows q̂.

2.8. Problem Statement. Combining all the parts presented before, we arrive at the
optimization problem

min (12) or (13)
s.t. Euler equations: (1),

short pipe model: (4),
valve model: (5),
compressor station and control valve model: (6) or (7),
pressure continuity equations: (8),
mass balance equation: (10),
variable bounds: (2), (3), (9), (11).

(14)

The variables of this problem are the following. We have pressure pa(·, ·) and mass flow
variables qa(·, ·) for all pipes a ∈ Ap. Moreover, the model includes variables pa,u, pa,v,
and qa for short pipes, valves, compressor stations, and control valves, i.e., for a = (u, v) ∈
Asp ∪ Av ∪ Acs ∪ Acv. Finally, we have variables oa for valves a ∈ Av, ∆pa for compressor
stations a ∈ Acs and control valves a ∈ Acv as well as pressure variables pu for all nodes u ∈ V .
Depending on the modeling choice, we may also include the variables ba for compressor
stations a ∈ Acs.

2.9. Discretization. Model (14) is a time-dependent mixed-integer optimization problem
that is further constrained by partial differential equations. In this paper, we follow the first-
discretize-then-optimize approach. To this end, we have to discretize the Euler equations (1)
in space and time. For both dimensions, we apply the implicit Euler method. For time,
we use the grid given by the points tκ, κ = 0, . . . , Nt, with t0 = 0, tNt

= T , and tκ < tκ+1.
We assume that all variables at time point t0 = 0 are fixed as they constitute the initial
state of the system. For the spatial discretization, we use the grid given by the points xa,ν ,
ν = 0, . . . , Na

x , with xa,0 = 0, xa,Na
x

= La, and xa,ν < xa,ν+1. Note that the spatial grid
depends on the specific pipe a ∈ Ap. For the ease of presentation, we consider an equidistant
discretization in time and space with a fixed time step

∆t = T/Nt = tκ+1 − tκ for all κ = 0, . . . , Nt − 1

and spatial step

∆xa = La/N
a
x = xa,ν+1 − xa,ν for all ν = 0, . . . , Na

x − 1, a ∈ Ap.
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Using this notation, we get the fully discretized set of Euler equations
pa(tκ+1, xa,ν+1)− pa(tκ, xa,ν+1)

∆t
+
c2

Aa

qa(tκ+1, xa,ν+1)− qa(tκ+1, xa,ν)

∆xa
= 0, (15a)

qa(tκ+1, xa,ν+1)− qa(tκ, xa,ν+1)

∆t
+Aa

pa(tκ+1, xa,ν+1)− pa(tκ+1, xa,ν)

∆xa

+
λac

2

2DaAa

qa|qa|
pa

(tκ+1, xa,ν+1) +
gAah

′
a

c2
pa(tκ+1, xa,ν+1) = 0 (15b)

for all a ∈ Ap, κ = 0, . . . , Nt, and ν = 0, . . . , Na
x . We now replace (1) in Model (14) with (15)

and further discretize the remaining algebraic constraints by simply writing them for all time
points tκ with κ = 1, . . . , Nt. Moreover, we discretize the objective function (12) via the
right Riemannian sum

fc =
∑
a∈Acs

Nt∑
κ=1

∆t∆pa(tκ).

Note that ∆pa(t0) is given and thus not part of the sum in the objective function. The
tracking-type objective function (13) stays unchanged because it only depends on the time
point tNt

= T . In this way, we obtain a large-scale but finite-dimensional and structured
mixed-integer nonlinear optimization problem. Here, the nonlinearities are all contained in
the model of the pipes, namely in the discretized momentum equation (15b).

3. Penalty Alternating Direction Method

In this section, we briefly review penalty alternating direction methods (PADM). We first
sketch the original version of the method as introduced in [7] and then present a modified
variant for so-called quasi-separable problems, which we will then apply to the discretized
gas transport problem in the next section.

3.1. Classic Penalty Alternating Direction Methods. For the moment, let us consider
the optimization problem

min
x,y

f(x, y) (16a)

s.t. g(x, y) = 0, (16b)
x ∈ X, y ∈ Y (16c)

with X ⊆ Rnx as well as Y ⊆ Rny being non-empty and compact sets and f : Rnx+ny → R as
well as g : Rnx+ny → Rm are continuous functions. Classic PADMs try to compute so-called
partial minima of this problem, which are points (x∗, y∗) that satisfy

f(x∗, y∗) ≤ f(x, y∗) for all x ∈ X with g(x, y∗) = 0,

f(x∗, y∗) ≤ f(x∗, y) for all y ∈ Y with g(x∗, y) = 0.

For what follows, we introduce the penalized objective function

φ(x, y;µ) = f(x, y) +

m∑
j=1

µjgj(x, y)2 (17)

with penalty parameters µ ∈ Rm>0 and the penalty problem

min
x,y

φ(x, y;µ) s.t. x ∈ X, y ∈ Y. (18)

Note that we have a separate penalty parameter for every constraint. With this, we can
state the PADM, which is formally given in Algorithm 1.
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Algorithm 1 Penalty Alternating Direction Method

Require: x0,0 ∈ X, y0,0 ∈ Y , and penalty parameters µ0 ∈ Rm>0.
1: for k = 0, 1, 2, . . . do
2: Set l = 0.
3: while (xk,l, yk,l) is not a partial minimum of (18) do
4: Compute xk,l+1 ∈ arg minx{φ(x, yk,l;µk) : x ∈ X}.
5: Compute yk,l+1 ∈ arg miny{φ(xk,l+1, y;µk) : y ∈ Y }.
6: Set l← l + 1.
7: end while
8: Choose new penalty parameters µk+1 ≥ µk.
9: Set (xk+1,0, yk+1,0)← (xk,l, yk,l).

10: end for

Let us also briefly sketch the convergence properties of Algorithm 1. To this end, we first
make the following assumption that has already been mentioned above.

Assumption 1. The objective function f : Rnx+ny → R and the constraint func-
tion g : Rnx+ny → Rm are continuous and the sets X and Y are non-empty and compact.

With this assumption, we can state the main convergence theorem for Algorithm 1, which
is taken from [7].

Theorem 1. Suppose that Assumption 1 holds and that µkj ↗ ∞ for all j = 1, . . . ,m.
Moreover, let (xk, yk) be a sequence of partial minima of (18) (for µ = µk) generated by
Algorithm 1 with (xk, yk)→ (x∗, y∗). Then, there exist µ̄ ≥ 0 such that (x∗, y∗) is a partial
minimizer of the weighted `1 feasibility measure

χµ̄(x, y) :=

m∑
j=1

µ̄j |gj(x, y)|.

If, in addition, (x∗, y∗) is feasible for the original problem (16), the following holds:
(a) If f is continuous, then (x∗, y∗) is a partial minimum of (16).
(b) If f is continuously differentiable, then (x∗, y∗) is a stationary point of (16).
(c) If f is continuously differentiable as well as convex and if the feasible set of Prob-

lem (16) is convex, then (x∗, y∗) is a global optimum of (16).

3.2. A Penalty Alternating Direction Method for Quasi-Separable Problems. We
now present a reformulation for problems of the form

min
x1,...,x`,z

∑̀
i=1

fi(x
i) (19a)

s.t. (xi, z) ∈ Xi for i = 1, . . . , `, (19b)
z ∈ Z (19c)

with Xi ⊆ Rni ×Rnz , fi : Rni → R for i = 1, . . . , `, and a convex set Z ⊆ Rnz . The problem
consists of ` constraint blocks Xi that are connected via the so-called linking variables z ∈ Z.
In the next section, we will see that we can put the fully discretized gas transport problem (14)
in this format in order to then apply a tailored PADM to solve it. Informally speaking, we
call such problems “quasi-separable” if the dimension of the coupling variables in (19c) is not
too large.
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We reformulate problem (19) by introducing a copy zi of z for each block, which yields
the equivalent problem

min
x1,...,x`,z1,...,z`,z

∑̀
i=1

fi(x
i) (20a)

s.t. (xi, zi) ∈ Xi for i = 1, . . . , `, (20b)
z ∈ Z, (20c)

zi = z for i = 1, . . . , `, (20d)

zi ∈ Z for i = 1, . . . , `. (20e)

Next, we apply Algorithm 1 to Problem (20) with x = (x1, z1, . . . , x`, z`), y = z, X =
(X1 ∩ (Rn1 × Z)) × · · · × (X` ∩ (Rn` × Z)), and Y = Z. Moreover, the constraints g
are identified with the equality constraints (20d). The optimization problem in Step 4 of
Algorithm 1 is then given by

min
x1,...,x`,z1,...,z`

∑̀
i=1

fi(xi) +

nz∑
j=1

µij
(
zij − (zj)

k,l
)2

s.t. (xi, zi) ∈ Xi for i = 1, . . . , `,

zi ∈ Z for i = 1, . . . , `.

This problem is completely separable. Therefore, we can instead solve

min
xi,zi

fi(x
i) +

nz∑
j=1

µij
(
zij − (zj)

k,l
)2

(21a)

s.t. (xi, zi) ∈ Xi, (21b)

zi ∈ Z (21c)

for all blocks i = 1, . . . , `, which can be done in parallel. The optimization problem in Step 5
of Algorithm 1 reads

min
z∈Z

∑̀
i=1

nz∑
j=1

µij

((
zij
)l+1

k
− zj

)2

.

The solution for this so-called consensus problem is the weighted arithmetic mean

zj =
1∑`
i=1 µ

i
j

∑̀
i=1

µij
(
zij
)l+1

k

for all j = 1, . . . , nz, since Z is convex and
(
zi
)l+1

k
∈ Z for all i = 1, . . . , ` because of (20e);

see, e.g., [1].

4. PADM Tailored Reformulation of the Gas Network Problem

In this section, we describe how we can state the gas transport problem introduced in
Section 2 in the format derived in the last section to then apply the PADM.
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u
a

pa,u

qa,u

Figure 1. The vertical red line represents a possible decomposition at
node u that minimizes the number of linking variables.

4.1. Decomposition of Gas Networks. To efficiently apply the PADM to the discretized
version of Problem (14), we need to identify a quasi-separable structure as in (19). To this
end, we can utilize the fact that we model the problem on a graph. As each variable can
be associated with a certain location in this graph it follows that decomposing the graph
yields corresponding blocks (indexed with i) of variables with respective constraint sets Xi.
If the network is decomposed in a way that the resulting sub-networks are only coupled in
a sparse way, then the number of linking variables z stays small and we have the desired
quasi-separable structure.

The question is still open on how to decompose the graph. One might assume that it
is a good idea to decompose a network at selected nodes of the network. This, however,
significantly increases the number of linking variables if the degree of the respective nodes is
large since the pressures and mass flows of all adjacent arcs are connected across the node by
the pressure continuity equation (8) and the mass balance equation (10). This undesired
aspect can be avoided by splitting the network at points that lie on arcs instead of nodes.
To still assign each arc to exactly one sub-network, we decide to only split an arc at the
interface to its start or end node. Figure 1 depicts a possible decomposition at the interface
to a node of degree three. The only linking variables in this situation are pa,u and qa,u for
all time points tκ.

More precisely, we decompose the graph (V,A) into blocks (Vi, Ai) for i = 1, . . . , ` with

V =
⋃̀
i=1

Vi, A =
⋃̀
i=1

Ai

and

Vi ∩ Vj = ∅ for i, j = 1, . . . , `, i 6= j,

Ai ∩Aj = ∅ for i, j = 1, . . . , `, i 6= j.

Thus, each node u ∈ V and each arc a ∈ A belongs to exactly one block (Vi, Ai). Note that
a block (Vi, Ai) itself is not a graph, as a = (u, v) ∈ Ai does not imply u ∈ Vi and v ∈ Vi.
Vice versa, it can happen that a 6∈ Ai for some arc a ∈ δin(u) ∪ δout(u) with u ∈ Vi. These
cases appear exactly at the interfaces of the blocks. We define the interfaces of a single
block i ∈ {1, . . . , `} as
Ii := {(u, a) ∈ Vi ×A : a ∈ δ(u) and a 6∈ Ai} ∪ {(u, a) ∈ V ×Ai : a ∈ δ(u) and u 6∈ Vi} .

The set of all interfaces is then given by

I :=
⋃̀
i=1

Ii.
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We now use this graph decomposition for gas networks. The constraint system of Problem (14)
can then be written as

Euler equations: (1) for Ap ∩Ai,
short pipe model: (4) for Asp ∩Ai,
valve model: (5) for Av ∩Ai,
compressor station and control valve model: (6) or (7) for (Acs ∪Acv) ∩Ai,
pressure continuity equations: (8) for Vi,
mass balance equation: (10) for Vi,
variable bounds: (2), (3), (9), (11) for (Vi, Ai).

to fit to the constraints (20b) and (20e) for all i = 1, . . . , `. The objectives (12) and (13) can
be rewritten as

fc =
∑̀
i=1

∑
a∈Acs∩Ai

∫ T

0

∆pa(t) dt

and

ft =
∑̀
i=1

∑
u∈(V+∪V−)∩Vi

η (pu(T )− p̂u)
2

+ θ (qu(T )− q̂u)
2

to fit into the form of (20a). The linking constraints (20d) read

pia,u = pa,u for (u, a) ∈ Ii, i = 1, . . . , `,

qia,u = qa,u for (u, a) ∈ Ii, i = 1, . . . , `.

Finally, the constraints (20c) of the consensus problem are given by

pa,u ∈
[
p−a , p

+
a

]
for (u, a) ∈ I,

qa,u ∈
[
q−a , q

+
a

]
for (u, a) ∈ I.

It is easy to see that the resulting optimization problem satisfies Assumption 1 if the original
gas network problem (14) is feasible. The objective function and the constraint functions
are all continuous. The blocks X and Y are non-empty because a feasible point of (14) can
directly be transformed into a feasible point of the reformulated problem. Compactness
follows from the variable bounds as well as the constraints in (14). Therefore, the convergence
result of Theorem 1 can still be applied. Note, however, that the optimization problems
in Step 4 and Step 5 of Algorithm 1 need to be solved to global optimality. For general
nonconvex NLPs or MINLPs, this can be a challenging task in practice. Nevertheless, even if
we do not solve all sub-problems to global optimality, we can use Algorithm 1 to compute
feasible solutions of good quality if the algorithm converges. We will see in Section 5 that
this is almost always the case for the instances that we test in our numerical experiments.

Remark 1. (1) Note that there are multiple strategies to decompose a gas network.
If more sub-networks are created, the number of linking variables increases, which
potentially makes it harder to find a point that is feasible at all the sub-networks’
interfaces. This can lead to a higher number of iterations required by Algorithm 1
and, therefore, longer computation times. However, multiple smaller problems may
be easier to solve than a few larger ones. This trade-off needs to be considered when
choosing the number of sub-networks.
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(2) Another relevant question is which properties the sub-networks should have for
Algorithm 1 to converge quickly. One of the approaches that we later test is to
separate the active elements of the network, i.e., valves, compressor stations, and
control valves, from the passive pipe network. The problems on the resulting sub-
networks then contain either discrete variables and no nonlinearities, or no discrete
variables but nonlinear constraints. Therefore, these problems are MIPs or NLPs but
not MINLPs anymore, which are usually much harder to solve. One drawback of
this approach is that the sub-networks containing active elements are rather small
compared to larger passive sub-networks, which may lead to many iterations that
are required to obtain points that are feasible at the blocks’ interfaces. A different
approach is to create problems on sub-networks that are roughly equally hard to solve.
Then, the fact that the sub-problems (21) can be solved in parallel can be utilized
most effectively. We will explore these approaches further in multiple case studies in
Section 5.

4.2. Penalty Update Strategies. Theorem 1 requires the penalty parameters µ to go to
infinity for Algorithm 1 to converge. This is ensured by updating µ in Step 8 of the algorithm.
However, it is not obvious what a good update strategy for these parameters is. One the
one hand, large µ can lead to numerical instability and worse objective values as the penalty
term will dominate the original objective function in (17). On the other hand, slowly growing
µ may lead to slow convergence rates because the feasibility violations at the interfaces of
the blocks are not penalized strong enough. Therefore, it is reasonable to increase those µij
stronger for which ((zij)

l+1
k − zj)2 is large while increasing those µij with small ((zij)

l+1
k − zj)2

only a little.
While it is theoretically possible to use a separate penalty parameter µij for each linking

variable zij of block i, it might be a good idea to use a combined parameter µ for multiple
variables zij of the same block that represent similar quantities. In the case of gas networks,
the linking variables consist of pressure values pia,u and mass flow values qia,u at different
time points and different locations in the network. Our preliminary numerical tests showed
that having different penalty parameters for different pressure variables (or flow variables,
respectively) can lead to strange and unintuitive controls in a block. To avoid this, it therefore
makes sense to introduce a single penalty parameter µip for the pressures and a single penalty
parameter µiq for the mass flows of each block i. Note that for different blocks we still use
different penalty parameters as these blocks should be clearly separated from each other
while only exchanging information through the linking variables at their interfaces.

The combination of these ideas leads to the following update formulas for the penalty
parameters in Step 8 of Algorithm 1:(

µip
)
k+1

=

(
1 + ωµ

mp,i

max`j=1mp,j

)(
µip
)
k
, i = 1, . . . , `,

(
µiq
)
k+1

=

(
1 + ωµ

mq,i

max`j=1mq,j

)(
µiq
)
k
, i = 1, . . . , `,

with

mp,i := max
(u,a)∈Ii,κ=0,...,Nt

(
pia,u(tκ)− pa,u(tκ)

)2
, i = 1, . . . , `,

mq,i := max
(u,a)∈Ii,κ=0,...,Nt

(
qia,u(tκ)− qa,u(tκ)

)2
, i = 1, . . . , `,
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where we omitted the iteration indices k and l on the pressure and mass flow variables for
the ease of presentation. Finally, ωµ > 0 serves as a scaling factor.

5. Numerical Results

In this section, we apply the PADM for quasi-separable problems to transient gas network
optimization. To this end, we implemented the method in Python 3.8. We use GAMS 36.2.0 [3]
to model the optimization problems, which we then solve using the solver CPLEX 20.1.0.1 [5]
for LPs and MIPs and the solver KNITRO 12.4.0 [4] for NLPs and MINLPs.

Let us briefly comment on the choice of KNITRO as the (MI)NLP solver. We also tested
other MINLP solvers but KNITRO delivered the best results. However, KNITRO is a not a
global solver but only solves nonconvex (MI)NLPs to local optimality. Since the different
decompositions tested in the following lead to different models, the used solver might end up
in different local minimizers, which is important for understanding the reported objective
function values. In our opinion, the choice of KNITRO, even if it is a local solver, is legitimate
since we are mainly interested in running times and since the overall objective values of
KNITRO are rather good.

All computations were done on nodes of the HPC cluster Woody at FAU Erlangen-Nürnberg
with Xeon E3-1240 v6 CPUs on 4 cores, 3.7 GHz, and 32 GBRAM. For the discretization, we
choose a time step size of ∆t = 3600 s = 1 h and a spatial step size of ∆x = 5000 m. For each
problem, we set a time limit of 1000 s.

To speed up the convergence of Algorithm 1, we limited the number of ADM loops
(Steps 3–7) to 5. Additionally, we stop the ADM loop if the progress of two consecutive
iterations is smaller than a given threshold ε1 ≥ 0, i.e., if∥∥zi,k,l+1 − zi,k,l

∥∥
∞ ≤ ε1 for i = 1, . . . , `.

In our case, we choose ε1 := 0.01 (which is either bar or kg s−1). We consider a solution to
be feasible if all copies zi of the linking variables z are close enough to z, i.e., if

‖zi − z‖∞ ≤ ε2 for i = 1, . . . , ` (22)

holds with ε2 := 0.1 (again in bar or kg s−1). For each considered gas network we will
compare multiple decompositions that split the network at different places and into differently
many blocks. It follows that the relaxation (22) is not applied in the same way for each
decomposition, which could lead to an unfair advantage to some of them. To counteract
this, we introduce additional relaxations as follows: To each non-linking variable x of a
given decomposition that is a linking variable in another decomposition we add a slack
variable s ∈ [−ε2, ε2]. This gives x the same tolerance as the corresponding linking variable
in (22), which makes the results comparable again.

We initialize all penalty parameters µ with ∆t/T . In this way, a different time discretization
does not change the overall weight of the penalty term in the objective function. For a similar
reason, we also divide the cost objective (12) by T . For the tracking-type objective (13), we
use the factors η = 1 bar−2 and θ = 1 s2 kg−2. The penalty scaling factor is set to ωµ = 2.
If a penalty parameter µ reaches a value of 109, all penalty parameters get re-scaled by a
factor of 10−6; see, e.g., [20], where a similar re-scaling was done with the help of sigmoidal
functions. The problem data, Python code, and result data used in this section can be found
in [15].

5.1. Transient Gas Network Data. The gas network instances for our numerical experi-
ments are taken from the GasLib [21]. It contains network data as well as stationary scenarios
for these networks. We use this information to create transient scenarios on a time horizon
of T = 24 h. For each network, we fix the mass flow qu of each exit node u ∈ V− and the
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Figure 2. Decompositions of GasLib-11: Active (red), Valve (blue),
Left Arm (green), Right Arm (yellow), Both Arms (orange), 1 o’clock
(purple), 2 o’clock (brown), 4 o’clock (cyan), 5 o’clock (lime)

pressure pu for each entry node u ∈ V+. For the mass flow at an exit node at t = 0 we use
the value given in the stationary scenario. Then, we apply a vertically shifted sine curve
with period T and an amplitude of 0.1 to this initial value to receive the mass-flow curve for
the complete time horizon:

qu(t) =

(
1 + 0.1 sin

(
t
2π

T

))
qu(0), u ∈ V−, t ∈ [0, T ].

The pressure at the entry nodes stays constant over the time horizon. For the first three
test networks we consider, namely GasLib-11, GasLib-24, and GasLib-40, which come with only
one stationary scenario, we choose these values manually. For the last instance, GasLib-134,
which represents the gas network of Greece, however, there are 1234 different stationary
scenarios given in the GasLib. Here, we first solve all stationary scenarios by using the
discretized version of Problem (14) with only one time point t = 0 = T . To this end, we use
the stationary Euler equations

∂xqa = 0,

∂xpa = − λac
2

2DaA2
a

qa|qa|
pa

− gh′a
c2

pa,

where all time derivatives vanished, the linear compressor station model (6), and the objective
function (12), which now reads

fc =
∑
a∈Acs

∆pa.

Then, we fix the entry pressures to the corresponding values of the obtained stationary
solution. Since for two of the stationary problems, the solver reported infeasibility, this
results in 1232 transient scenarios for the GasLib-134 network.

For the initial conditions of each scenario we used the solution of the corresponding
stationary model. The same holds for the terminal condition that are needed for the tracking-
type objective function (13). This stationary solution is also used to initialize all variables
including the linking variables.

5.2. GasLib-11. The first test network we consider is the GasLib-11. It contains 11 nodes
including 3 entries and 3 exits, 8 pipes, 2 compressor stations, and 1 valve. The total pipe
length is 440 km. We fixed the entry pressures to 53 bar, 51 bar, and 52 bar, respectively.
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GasLib-11 has a cycle containing the valve in the middle and one arm containing a
compressor station on the left and right side, respectively. We apply several decompositions
to this network, which we depict through colored cuts in the network graph in Figure 2. If
there are multiple cuts at the same location, the corresponding line has multiple colors. Each
decomposition gets its own name to be easily identifiable.

The first decomposition, which we apply to every network, is called “Active”, which creates
a block for each active element (compressor stations, valves, and control valves) and each
connected sub-network of the other elements (pipes, short pipes, and nodes). The resulting
blocks of active elements are all LPs (or QPs) and MIPs (or MIQPs), depending on the
chosen objective function, and the remaining pipe networks are NLPs, which, in the case of
GasLib-11, do not contain cycles. The next decomposition approach, called “Valve”, separates
the valve from the rest of the network. The two resulting blocks are an MIP and an NLP or
MINLP, depending on the compressor station model and the chosen objective function. Both
blocks do not contain a cycle. Then, there are the decompositions “Left Arm”, “Right Arm”,
and “Both Arms” which separate either one or two arms containing a compressor station from
the cycle in the middle of the network. The block containing the cycle is always an MINLP
and the separated arm-blocks are NLPs or MINLPs, depending on the compressor station
model. Next, we introduce four decompositions that create cycle-free blocks by cutting the
cycle at two opposite locations. The position of the first cut in the cycle inspire the names
“1 o’clock”, “2 o’clock”, “4 o’clock”, and “5 o’clock”. The block containing the valve is again an
MINLP and the other block is again an NLP or MINLP, depending on the compressor station
model. Finally, we tried applying no decomposition (“No decomp.”) and, thus, solving the
MINLP as a whole to have a baseline comparison for our method applied to the different
graph decompositions. Here, the same relaxations as for the decompositions are used to
ensure that the results are comparable w.r.t. computation time and objective value; see also
the discussion of this aspect at the beginning of this section.

Now, we apply these decompositions to all combinations of compressor station (CS)
models and objective functions. The numerical results are given in Table 1. It contains the
computation time (Time (s)), the objective value without the penalty term (Objective), the
largest final constraint violation due to the linking variables in the pressure maxi|pia,u − pa,u|
(called Violation p) and the mass flow maxi|qia,u − qa,u| (called Violation q), the number
of penalty iterations (#outer), and the total number of ADM-loops (#inner). The fastest
computation time and the best objective value for each part of the table are printed in bold
font. If for a decomposition no feasible solution was found within the time limit of 1000 s,
the corresponding row does not appear in the table.

To better understand the given objective values we recall their meaning. The “CS cost”
objective value is the mean value over time of the pressure increases ∆p in all compressor
stations in bar. For the tracking-type objective we use the squared distance of the pressure
and mass flow at entry and exit nodes to given target values. Here, we use the factors
η = 1 bar−2 and θ = 1 s2 kg−2, respectively, for scaling the different terms.

For the LP compressor station model, a solution was found for every decomposition. For
the compressor station cost objective, the “Valve” decomposition was by far the fastest with
8.42 s, followed by the “Active” decomposition with 45.78 s, and “No decomp.” with 54.93 s.
It even has a better objective value compared to “No decomp.”; see again the discussion of
KNITRO being a local MINLP solver at the beginning of this section. The best objective
value is achieved by the “2 o’clock” decomposition, though at the price of a much longer
computation time. For the tracking-type objective, most computations terminate in less
than 5 s while “1 o’clock” is the fastest with only 1.47 s. The best objective value belongs to
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Table 1. Numerical results for GasLib-11

Decomposition Time (s) Objective Violation p Violation q #outer #inner

LP CS model; CS cost objective

No decomp. 54.93 0.48312 – – – –
Active 45.78 1.01738 0.09695 0.08587 6 28
Valve 8.42 0.47833 0.07905 0.05382 1 4

Left Arm 571.24 0.59130 0.09372 0.06290 3 14
Right Arm 944.77 0.62175 0.08152 0.06134 4 16
Both Arms 464.27 0.74183 0.09675 0.05359 4 17

1 o’clock 64.98 0.49287 0.07973 0.04720 3 11
2 o’clock 127.68 0.45954 0.08531 0.08029 3 13
4 o’clock 343.93 0.63797 0.09706 0.07133 4 17
5 o’clock 333.57 0.56293 0.06911 0.06172 4 17

LP CS model; tracking objective

No decomp. 4.15 0.00000 – – – –
Active 32.92 0.10707 0.03590 0.08650 5 22
Valve 2.23 0.00000 0.00012 0.00004 1 1

Left Arm 3.97 0.00000 0.00137 0.00137 1 1
Right Arm 3.65 0.00002 0.00035 0.00110 1 1
Both Arms 118.26 0.00109 0.07458 0.08709 1 3

1 o’clock 1.47 0.00000 0.01910 0.00113 1 1
2 o’clock 20.35 0.00007 0.06902 0.02955 1 3
4 o’clock 3.28 0.00000 0.06841 0.03208 1 2
5 o’clock 3.02 0.00000 0.05693 0.01174 1 2

MIP CS model; CS cost objective

No decomp. 289.26 0.80878 – – – –
Active 301.96 4.42851 0.09718 0.09317 40 195
Valve timeout 0.79566 0.05970 0.07864 1 5

1 o’clock 326.31 0.82131 0.08855 0.09632 7 34

MIP CS model; tracking objective

No decomp. 5.37 0.00000 – – – –
Active 45.24 0.24734 0.09959 0.05930 6 28
Valve 4.38 0.00000 0.00016 0.00003 1 1

Left Arm 5.03 0.00000 0.00006 0.00019 1 1
Right Arm 292.04 0.00076 0.07938 0.06592 1 1
Both Arms 182.14 0.00111 0.08576 0.08568 1 4

1 o’clock 49.28 0.00095 0.04168 0.04569 2 6
2 o’clock 87.79 0.00364 0.01343 0.08440 2 6
4 o’clock 5.60 0.00000 0.06059 0.02642 1 2
5 o’clock 3.27 0.00000 0.07170 0.01790 1 1
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the “Left Arm” decomposition but most values are very close to 0 so that the differences are
less than the displayed accuracy of 10−5.

Now, we take a closer look at the MIP compressor station model. Here, the combination
with the compressor station cost objective seems to be the hardest problem as only four
decompositions find a feasible point. The fastest solution comes from “No decomp.” with
289.26 s but “Active” with 301.96 s and “1 o’clock” with 326.31 s are at least comparable. The
“Valve” decomposition does not terminate within the time limit of 1000 s and is stopped after
5 ADM-loops.

For the tracking-type objective, all decompositions terminate within the time limit. Some
of them terminate in a few seconds while “5 o’clock” is the fastest with 3.27 s. Again, most
objective values are very close to 0.

For all cases we can see that the “Active” decomposition finds a solution with a comparably
bad objective value. This could be due to the fact that the active elements that are used to
control the network now only have a very small scope, i.e., their respective blocks are very
small. The decomposition “Both Arms” is never competitive due to its slow solution times
and bad objective values.

Next, we take a closer look at the development of linking variables over the iterations of
Algorithm 1. To this end, we plot all copies and the consensus of the mass flow variables of the
right compressor station in the beginning of for four different penalty iterations in Figure 3.
Here, we used the “Active” decomposition with the LP compressor station model and the
compressor station cost objective, which took 6 penalty iterations and overall 28 ADM-loop
iterations to produce a feasible point. In the figure, one can clearly see the consensus as the
weighted arithmetic mean of the three variables and how these variables change until they
converge to the same curve.

5.3. GasLib-24. Next, we consider the GasLib-24 network. It contains 24 nodes including
3 entries and 5 exits, 19 pipes, 1 short pipe, 3 compressor stations, 1 control valve, and
1 resistor, which we replace with a short pipe. There are two cycles in the network. The
total pipe length is 820.01 km. For this network, we fixed the pressure of the second entry
to 49 bar.

We introduce the decompositions as depicted in Figure 4. We, again, use “No decomp.” as
well as the decomposition “Active”. Besides this, the decomposition “Halves” splits the network
in two parts of roughly the same size. In the same manner, the decomposition “Thirds” splits
the network in three parts of roughly the same size. Finally, the decomposition “Tree” cuts
both cycles in a way that the resulting three blocks are trees.

Table 2 contains the numerical results for the aforementioned decompositions. For the LP
compressor station model, using “No decomp.” produces solutions very fast. In the case of
the compressor station cost objective, the second-fastest option is “Tree” with 71.70 s. For
the tracking-type objective, however, the decomposition “Halves” is able to beat the “No
decomp.” time of 3.98 s with 2.82 s and basically the same objective value. It seems that the
initial values of the variables at the interface were already so close to the optimal solution
that it took only one iteration.

For the MIP compressor station model with compressor station cost objective, all de-
compositions find a global optimal solution with an objective of 0. “No decomp.” takes
the shortest amount of time with 88.26 s followed by “Active” with 128.24 s. In the case of
the MIP compressor station model combined with the tracking-type objective, the “Tree”
decomposition scores the fastest time (21.69 s). However, the much slower “Halves” approach
(653.80 s) produces a slightly better objective value.
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Figure 3. The linking variables representing the mass flow qa (in kg s−1)
in the left compressor station of GasLib-11 for the decomposition “Active” at
the beginning of different penalty iterations

5.4. GasLib-40. The last of the three test networks of the GasLib library is GasLib-40. It
contains 40 nodes including 3 entries and 29 exits, 39 pipes, and 6 compressor stations. Its
total pipe length is 1112.47 km. The network contains multiple cycles. One key point is a
node of degree 5, which connects the passive lower part of the network with the three arms
that contain the entries and all compressor stations. While the left and upper arm have one
compressor station each, the right arm has four of them. All three entry pressures are fixed
to 67 bar.

Figure 5 shows our decompositions of GasLib-40. Next to “No decomp.” and “Active”, we
introduce four additional decompositions. The first one, “All Arms”, separates the three
arms containing compressor stations from the passive lower part of the network. The second
decomposition, “Lower”, does something similar but cuts towards the passive lower part
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Figure 4. Decompositions of GasLib-24: Active (red), Halves (blue), Thirds
(green), Tree (cyan)

Table 2. Numerical results for GasLib-24

Decomposition Time (s) Objective Violation p Violation q #outer #inner

LP CS model; CS cost objective

No decomp. 4.48 0.00000 – – – –
Active 127.36 0.13531 0.09777 0.08709 10 47
Halves 112.23 0.00000 0.09792 0.08936 6 28
Thirds 112.97 0.00000 0.09882 0.08582 7 34
Tree 71.70 0.07795 0.09862 0.08832 6 26

LP CS model; tracking objective

No decomp. 3.98 0.00000 – – – –
Active 39.06 0.00006 0.08032 0.07988 3 13
Halves 2.82 0.00000 0.02660 0.00041 1 1
Thirds 11.43 0.00006 0.06521 0.01035 1 4
Tree 7.61 0.00010 0.08357 0.03889 1 3

MIP CS model; CS cost objective

No decomp. 88.26 0.0 – – – –
Active 128.24 0.0 0.09955 0.06807 10 48
Halves 173.47 0.0 0.09550 0.08749 6 26
Thirds 295.76 0.0 0.09694 0.08652 7 32
Tree 259.25 0.0 0.09951 0.07350 5 25

MIP CS model; tracking objective

No decomp. 284.93 0.00001 – – – –
Active 66.12 0.01578 0.09921 0.06549 5 22
Halves 653.80 0.00000 0.01120 0.00006 1 1
Thirds 317.83 0.00516 0.09836 0.03645 3 14
Tree 21.69 0.00006 0.08277 0.03525 1 3
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Figure 5. Decompositions of GasLib-40: Active (red), All Arms (blue),
Lower (green), Right Arm (orange), Right Arm 2 (cyan)

instead of the three arms. The third one, “Right Arm”, only separates the right arm from the
rest of the network because it is the most complicated one containing the most compressor
stations. The last decomposition, “Right Arm 2”, follows the same idea but also adds an
additional cut in the right arm to further simplify the resulting blocks.

Since GasLib-40 is already rather large, not all details can be displayed in Figure 5. Hence,
we also show the block information of the different decompositions in Table 3. Here, the
numbers of nodes, entries, exits, pipes, and compressor stations are given together with the
model type of each block, which might still depend on the compressor station model in use.

We show the numerical results for GasLib-40 in Table 4. For the LP compressor station
model together with the compressor station cost function, a feasible solution was found for
only three settings. The fastest time of 126.81 s is achieved by applying “Right Arm 2”. The
three objective values are all really close but the best one belongs to “No decomp.”. For the
tracking-type objective, the clear winner w.r.t. computation time and objective value is “No
decomp.”.

In the case of the MIP compressor station model, only “No decomp.” produces solutions.
However, the time limit of 1000 s was reached in both cases and only a feasible point
with no optimality guarantee is returned. For all four combinations for GasLib-40, the
decomposition “Active” never resulted in a feasible solution within the time limit. This could
be due to the small scope of the active elements and the large size of the remaining passive
network. The decompositions “All Arms” and “Lower” also did not perform very well.
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Table 3. Information on the decompositions of GasLib-40

Block Nr. #nodes #entries #exits #pipes #cs Type

No decomp.

1 40 3 29 39 6 MINLP

Active

1 3 1 2 2 0 NLP
2–3 1 1 0 0 0 LP

4 22 0 20 25 0 NLP
5 2 0 1 1 0 NLP
6 11 0 6 11 0 NLP

7–12 0 0 0 0 1 LP/MIP

All Arms

1 4 1 2 3 1 NLP/MINLP
2 6 1 4 6 1 NLP/MINLP
3 14 1 7 12 4 NLP/MINLP
4 16 0 16 18 0 NLP

Lower

1 15 0 15 18 0 NLP
2 25 3 14 21 6 NLP/MINLP

Right Arm

1 14 1 7 12 4 NLP/MINLP
2 26 2 22 27 2 NLP/MINLP

Right Arm 2

1 3 0 2 2 1 NLP/MINLP
2 26 2 22 27 2 NLP/MINLP
3 11 1 5 10 3 NLP/MINLP

5.5. GasLib-134. In our case studies for the test networks GasLib-11, GasLib-24, and GasLib-
40, we have seen that applying Algorithm 1 to transient gas network problems can yield
a significant benefit w.r.t. the solution times as well as the objective value. However, the
results can vary strongly and are dependent on a number of factors including the compressor
station model, the objective function, the network’s structure, and the chosen decomposition.
Therefore, the generalizability of these results is limited, especially since there was only a
single transient scenario for each of the networks. Thus, we now apply our decomposition
strategies to the real-world gas network of Greece GasLib-134. For this network, we have
constructed 1232 different transient scenarios based on the stationary scenarios given in the
GasLib. Each of these scenarios represents a day between the 1st of November 2011 and the
17th of February 2016.

GasLib-134 consists of 134 nodes including 3 entries and 45 exits, 86 pipes, 45 short pipes,
1 compressor station, and 1 control valve. The total pipe length is 1447.02 km. The network
is a tree with the compressor station in the north and the control valve in the south east.
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Table 4. Numerical results for GasLib-40

Decomposition Time (s) Objective Violation p Violation q #outer #inner

LP CS model; CS cost objective

No decomp. 174.45 5.43501 – – – –
Right Arm 126.81 5.69835 0.08847 0.04462 4 17

Right Arm 2 146.31 5.81410 0.09957 0.06121 4 20

LP CS model; tracking objective

No decomp. 184.93 8.44500 – – – –
All Arms 793.95 69.33519 0.07043 0.09671 24 119

Lower 501.64 13.53845 0.09875 0.08132 8 39
Right Arm 310.75 12.49074 0.08609 0.09528 7 33

Right Arm 2 239.61 15.59417 0.08633 0.06746 8 36

MIP CS model; CS cost objective

No decomp. timeout 11.15985 – – – –

MIP CS model; tracking objective

No decomp. timeout 3874.66251 – – – –

Figure 6. Decompositions of GasLib-134: Active (red), Halves (blue), CS
Arm (cyan), CV Arm (green), Both Arms (orange)
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Table 5. Decompositions of GasLib-134

Block Nr. #nodes #entries #exits #pipes #sp #cs #cv Type

No decomp.

1 134 3 45 86 45 1 1 NLP/MINLP

Active

1 42 2 13 28 13 0 0 NLP
2 81 1 28 52 28 0 0 NLP
3 11 0 4 6 4 0 0 NLP
4 0 0 0 0 0 1 0 LP/MIP
5 0 0 0 0 0 0 1 LP/MIP

Halves

1 65 1 23 41 23 0 1 NLP/MINLP
2 69 2 22 45 22 1 0 NLP/MINLP

CV Arm

1 11 0 4 6 4 0 1 NLP/MINLP
2 123 3 41 80 41 1 0 NLP/MINLP

CS Arm

1 42 2 13 28 13 1 0 NLP/MINLP
2 92 1 32 58 32 0 1 NLP/MINLP

Both Arms

1 42 2 13 28 13 1 0 NLP/MINLP
2 11 0 4 6 4 0 1 NLP/MINLP
3 81 1 28 52 28 0 0 NLP

Figure 6 shows GasLib-134 and the decompositions that we use. We again use the already
known “No decomp.” and the “Active” decomposition. Additionally, we introduce the “Halves”
decomposition which splits the network in two blocks of roughly the same size. Then, there
are “CS Arm” and “CV Arm”, which split the network directly after the compressor station in
the north or directly before the control valve in the south. The decomposition “Both Arms”
combines the two aforementioned ideas. Since GasLib-134 is a large network, all block details
of the proposed decompositions are shown in Table 5. This includes the number of nodes,
entries, exits, pipes, short pipes, compressor stations, and control valves as well as the model
type of each block.

Figure 7 shows the percentage of instances that can be solved in which amount of time
for each decomposition, compressor station model, and objective. For the cases with the
LP compressor station model, applying no decomposition is dominating most of the time.
Consequently, there is not much gain by using a decomposition. However, the picture is
completely different for the MIP compressor station model. Here, the decompositions “Active”,
“Halves”, “CV Arm”, and “Both Arms” outperform “No decomp.” for most of the scenarios.
For both objective models, “CV Arm” and “Both Arms” perform especially well while the
overall worst results are produced by “CS Arm” and “No decomp.”. For the tracking-type
objective, also “Halves” can lead to some benefit for some scenarios‘.
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Figure 7. Percentage of solved instances of GasLib-134 in the time limit
of 1000 s for different decompositions, the LP (6) and MIP (7) compressor
station (CS) models, and compressor station cost (12) and tracking-type (13)
objective functions.

For most of the scenarios, “No decomp.”, “Halves”, and “CS Arm” only produce mediocre
results even though they were the best performers in the LP compressor station model cases.

Noteworthy is also that for the CS cost objective, the “Active” decomposition solves
the least amount of scenarios within the time limit for the LP compressor station model
but the most scenarios for the MIP compressor station model. The corresponding curves
in Figure 7 stay almost identical when the compressor station model is changed. For the
tracking objective, the computation times even decrease when the MIP compressor station
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model is used. While the MIP model has a negative impact on the other decompositions,
this does not seem to be the case for “Active”.

Overall, the two decompositions “CV Arm” and “Both Arms” are the clear winners for
the MIP compressor station model. Separating the mixed-integer parts of the control valve
from the large middle part of GasLib-134 seems to generate blocks that are not too hard to
solve while simultaneously do not require too much time for getting feasible couplings at the
blocks’ interfaces.

6. Conclusion

We considered the dynamic optimization of gas transport networks. After a full discretiza-
tion in space and time, the resulting model is a nonconvex MINLP that needs to be solved
on large-scale transport networks. This puts a challenging burden even on today’s most
sophisticated MINLP solvers. Hence, we proposed a graph decomposition and a tailored
consensus-based PADM to compute feasible controls of good quality as fast as possible.

The interpretation of the numerical results is somewhat tricky. On the one hand, we
clearly show that using graph decompositions together with a tailored solution method can
outperform the baseline method, which just solves the large MINLP from scratch using a
state-of-the-art MINLP solver. However, whether this is the case seems to depend on very
many aspects such as the chosen objective function, the chosen decomposition, or the chosen
model for compressor stations (continuous vs. mixed-integer). This directly leads to the
main open research question (for which we think that answering it is out of the scope of this
paper): Given a large-scale MINLP defined on a graph, what is the best way to decompose
the network so that a tailored decomposition method outperforms the baseline method?
Although this paper provides a first step to understanding the relevant effects, we leave a
complete answer to this question for future work. An interesting further question in this
context is to analyze if multiple decompositions can be started in parallel so that simply
the fastest method can be used—either as a standalone approach or for warm-starting the
overall MINLP.
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