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Abstract

We propose an algorithm which appears to be the first bridge between the fields of conditional
gradient methods and abs-smooth optimization. Our problem setting is motivated by various applications
that lead to nonsmoothness, such as ¢; regularization, phase retrieval problems, or ReLU activation in
machine learning. To handle the nonsmoothness in our problem, we propose a generalization to the
traditional Frank-Wolfe gap and prove that first-order minimality is achieved when it vanishes. We
derive a convergence rate for our algorithm which is identical to the smooth case. Although our algorithm
necessitates the solution of a subproblem which is more challenging than the smooth case, we provide
an efficient numerical method for its partial solution, and we identify several applications where our
approach fully solves the subproblem. Numerical and theoretical convergence is demonstrated, yielding
several conjectures.

Keywords: Frank-Wolfe algorithm, Active Signature Method, abs-smooth functions, nonsmooth optimiza-
tion, convergence rate

1 Introduction

Many applications, see, e.g., [28, 37], involve the minimization of a function f: R™ — R subject to a compact
and convex constraint C' C R™. That is, one has to solve problems of the form

min f(z) . (1)
We address (1) for the case when f is an abs-smooth function (see Definition 1.1). In a nutshell, the class
of abs-smooth functions captures all nonsmooth functions whose nondifferentiability arise as a result of the
absolute value function. Hence, this class also includes smooth functions, max, min, and compositions/linear
combinations thereof. Since functions remain in this class when used recursively [17], one can readily show
that many important nonsmooth objective functions reside in this class like piecewise linear models [25],
¢1-regulariation as for LASSO problems and phase retrival problems [10]. It was shown in [17] that, for
abs-smooth functions, one can generate local piecewise linear models with approximation properties up to
second order similar in quality to a Taylor expansion; furthermore, all required information to define these
approximants are derivatives in the classical sense and can be computed easily by an extended version
of algorithmic differentiation (AD) [19]. By considering this subclass of nonsmooth nonconvex objectives,
efficient optimization algorithms with guarantees such as first-order stationarity have been pioneered in the
last decade, see, e.g., [12, 17, 18]. However, it appears to be an open question as to whether or not one
can enforce closed convex constraints in an abs-smooth optimization routine. In fact, even if one restricts to
the subclass of piecewise linear objective functions, it is currently only possible to enforce piecewise linear
constraints [23].

To address this gap, we will draw upon the theory of Frank-Wolfe (or conditional gradient) algorithms. In
contrast to more computationally-intensive methods which enforce the constraint C' by evaluating proximity
operators or projections, the Frank-Wolfe algorithm, see, e.g., [7, 13, 26], only needs to solve a linear
optimization subproblem over C. In traditional settings, the objective function f is assumed to be smooth,



i.e., Lipschitz-continuously differentiable, and the Linear Minimization Oracle (LMO) computes for the
gradient ¢ = Vf(z) € R™ at a current iterate £ € R™, a point in argmin,c-(c, v). The Frank-Wolfe
algorithm and its variants have gained popularity because this linear minimization often requires fewer
numerical computations when compared to projection-based methods. For instance, computing a projection
onto the spectrahedron C' = {z € S | Tr(x) = 1} requires a full eigendecomposition; on the other hand,
linear minimization over C only requires computing one dominant eigenpair [15].

Frank-Wolfe approaches have been extensively studied for the smooth case and various results are avail-
able for a myriad of settings [8, 11, 13, 22]; see also [7] for an overview. However, despite their significant
computational advantages, to-date, conditional gradient algorithms have rarely been studied outside of the
smooth setting. The approach proposed in [31] extends Frank-Wolfe methods to cover objective functions
with continuous, albeit non-Lipschitz, gradients. However, for our applications, the target function f is
not differentiable at all. A typical approach to overcome this problem is to repeatedly minimize smoothed
approximations of the objective function [30]. Then, the resulting algorithm essentially encodes a proximity-
type operator, which (as demonstrated above) can be more costly than an LMO. Furthermore, as a smoothed
version of a nonsmooth function grows in fidelity to the original, typically the Lipschitz constant of its gra-
dient grows arbitrarily large, so smooth optimization methods, whose rates often depend on this smoothness
constant, can exhibit poor behavior in practice. Another approach to the nonsmooth setting relies on the
ability to compute a complete set of generalized derivatives of f at a given point [35], — a capability which
is rarely available in practice. The obvious approach, i.e., using a subgradient instead of a gradient for the
LMO model, has been shown to fail in general [29, Example 1]. There are subgradient-based approaches [4,
16, 32|, but they are restricted to the convex case or a somewhat special function class. It appears that the
analysis and theoretical tools from the abs-smooth literature including algorithmic differentiation and piece-
wise linear approximation have not been considered in conjunction with conditional gradient algorithms. To
our knowledge, this is the first work bridging this gap in the literature.

In this article, we propose a generalization of the Frank-Wolfe algorithm for abs-smooth functions. Our
analysis broadens the traditional nonconvex smooth setting of the Frank-Wolfe algorithm, which shows that
an optimality criterion known as the Frank-Wolfe gap, whose definition relies on a gradient, asymptotically
vanishes at a rate of O(1/v/t) [33]. Due to the nonsmoothness inherent to our problem class, we propose a
generalization of the Frank-Wolfe gap for abs-smooth functions that captures the original Frank-Wolfe gap
as a special case. We extend the current theory by proving that first-order optimality is achieved when our
generalized Frank-Wolfe gap vanishes. Furthermore, we establish that our algorithm converges with a rate
which is identical to that of the Frank-Wolfe algorithm when applied to nonconvex smooth objectives. This
is consistent with previous results, since the smooth Frank-Wolfe algorithm arises as a particular case of our
algorithm.

While the smooth Frank-Wolfe setting requires the solution of a linear minimization subproblem, it turns
out that in general, our nonsmooth analogue of the Frank-Wolf algorithm necessitates the solution of a
piecewise linear subproblem. In order to solve this task, we adapt the Active Signature Method of [18] to
produce a locally minimal solution of our subproblem. We also establish that for several applications,
including all constrained LASSO problems, our subroutine Algorithm 3 yields a global solution to the
piecewise linear subproblem. We show that our new subroutine is computationally faster than other state-
of-the-art methods on constrained piecewise linear problems, and we also benchmark our full algorithm on
several standard nonsmooth test problems.

It is important to note that the ingredients of our method can be easily provided once the function to
be optimized is given as computer program. Hence, it is readily applicable to such functions even if the
requirements of the convergence theory provided in this paper can not be verified apriori. This is in contrast
to many algorithms for solving nonsmooth optimization problems.

This article is structured as follows. In the remaining part of this section, we introduce abs-smooth
functions and their properties. In Section 2, we present our Frank-Wolfe algorithm for abs-smooth functions
(Section 2.1), propose the generalized Frank-Wolfe gap, derive guarantees of first-order optimality (Sec-
tion 2.2), and provide convergence guarantees for our algorithm (Section 2.3). We also discuss the wide
applicability of our approach to yield abs-smooth versions of many variants of the vanilla Frank-Wolfe al-
gorithm in Remark 2.6. Section 3 is dedicated to the analysis and solution of our algorithm’s piecewise
linear subproblem. Our strategy for solving the piecewise linear subproblem is discussed in Section 3.1,



and potential relaxations are discussed in Section 3.2. Finally, numerical results are shown in Section 4. A
summary and outlook are contained in Section 5.

1.1 Abs-smooth functions

Throughout we will consider the following class of target functions.

Definition 1.1 (C% _(R"), abs-smooth functions). For any d € N, the set of locally Lipschitz continuous

abs

functions f: R™ - R, y = f(z), defined by an abs-smooth form

z=F(z,z2,|z]),
y=p(,2),

(2)
with F € CHR™ T+ R%) and p € CHR"T*,R), such that z; is determined only by the values of zj, 1 < j < i,
is denoted by C& (R™). For any d > 1, a function f € C4 (R") is called abs-smooth. The components z;,
1 <i<s, of z are called switching variables.

For d = 1, Definition 1.1 encapsulates the original definition in [17] defining abs-smooth functions in
a more formal way. This enables for example the convergence analysis contained in [18]. For the results
derived in this paper, any value of d > 1 suffice. Despite the fact that the definition of abs-smoothness seems
to be rather technical, the class of abs-smooth functions is quite broad. It encompasses a large subset of
piecewise smooth functions in the sense of Scholtes [36] since the evaluation of max(.,.) and min(.,.) can be
expressed using the absolute value function. Furthermore, abs-smooth functions capture a wide variety of
nonsmooth functions used in machine learning applications, e.g., the ¢;-norm, i.e.,

n
[TR"=R, zi=x;, 1<i<n, Zn+1:Z|Zi| and  f(z) = zn41,
i—1

as well as the ReLU activation function given by
f:R=R, 2z =2, 20=|z1| and f(z)=max(z,0)=0.5(z+ |z|) =0.5(x+ 22) = 0.5(21 + 22) .

Using the recursive evaluation procedure from [17], it follows that the composition of abs-smooth functions
remains abs-smooth. Therefore, using the absolute value function and smooth univariate functions as building
blocks, one can combine them via recursion and linear combination to construct a rich class of abs-smooth
functions comprinsing, e.g., also min and max. As a result, provided a neural network uses abs-smooth
activation functions, its resulting squared f5-loss is also abs-smooth.

Also complementarity conditions or equilibrium constraints can be formulated in an abs-smooth form via

0<zly>0 <= 0= f(z,y)=min(z,y)=05(z+y+|r—1vy|), z21=2—y, 20 =]|21] -

Finally, it is important to note that, for the application of the generalized Frank-Wolfe method proposed in
this paper, the user does not have to state the function evaluation in the form (2), since correspondingly
adapted AD tools can generate this representation from a straight-line code using only smooth operations
and the absolute value in a completely automated fashion.

The main advantage of formulating all these applications as abs-smooth functions is the localization of
the nonsmoothness as argument of an otherwise smooth function. In this way, the nonsmoothness can be
explicitly exploited in combination with standard smooth optimization theory. For example, if an abs-smooth
function is nonsmooth at a given point = then at least one of the switching variables as argument of the
absolute value is evaluated at zero — motivating also the name for these variables.

Example 1.2 (Simple example). The function f : R — R, f(z) = max(0,z, 2z + 1) is abs-smooth since it
can be stated in the following form

f(x) =max(0,z,22 4+ 1) =0.25(3x + 1+ |z + 1|+ |3z + 1 + |z + 1]|)



such that one obtains as one abs-smooth representation

z1=x+1,
2o =3z + 1+ |z],
z3 = |z1] + |22/,
f(x) =0.25(3x 4+ 1+ 23) .

As can be seen, at the only nonsmooth point x = —0.5, the switching variable zo is zero. Note, that it can
happen that a switching variable is evaluated at zero but the function itself is smooth.

Example 1.3 (Mifflin II). The ezample Mifflin II given by the function
f:R? =R, fl@)=—214+2 27+ 25— 1)+ 1.75|2f + 23 — 1] , (3)

see, e.g., [1], is a well-established test case for mnonsmooth optimization. It is abs-smooth since it has the
representation

z1 :x%—i—x% -1
zg = |21
y=—x1+ 22z + 1.7525 .

1.2 The abs-linearization

For an abs-smooth function f and a point Z, Griewank proposed in [17] the so-called abs-linearization
Af(Z;-) which can be used to construct a piecewise linear model

froz()=f@)+Af(z;-—z)~ f(z+-).

This model can be viewed as a generalized Taylor expansion at Z which simultaneously accounts for non-
smoothness and maintains second-order accuracy:

Theorem 1.4. Suppose f is abs-smooth on D C IC C R"™, D open, K compact and convex. Then there exists
~v > 0 such that for all x,Z € D

1f(2) = frra(@)ll = [If(z) - f(z) = Af(z50 - 2)|| < yllz — 2]* . (4)
Proof. See [17, Proposition 1]. O

For detailed explanation of the methodologies for generating A f, we refer to [17] as well as the Algorithmic
Differentiation tools like ADOL-C [3], CppAD [5], and Tapenade [20] which have been extended to generate
abs-linearizations and local piecewise linear models in an automated fashion. It is important to emphasize
that, once a function f is available as a C or Fortran program, its piecewise linear approximant fpr.z(-)
at a given point T is accessible in an easy way. For our proof-of-concept implementation, a dense-matrix
representation of the piecewise linear approximant fpr.z(-) is used requiring O((n+s)(s+1)) memory. Hence,
it is only feasible for small to medium size problems. However, the involved derivative matrices are usually
very sparse such that an efficent implementation would require O((s+ 1) N) space, where N is the maximum
number of nonzero entries in a row and expected to be rather small. We observed this behavior, e.g., for the
robust optimization of the Greek gas network in [24]. Once the representation of A f(Z; -) is stored for a base
point T, the cost of re-evaluating the abs-linear form is quite cheap requiring only matrix-vector products.

In contrast to many optimization approaches for the nonsmooth setting, our advantage is that the piece-
wise linearization approximates f by explicitly taking its nonsmoothness into account. For intuition of how
the abs-linearization behaves geometrically, we provide the abs-linearization of Example 1.3.

Example 1.5 (Mifflin II, continued). For the Mifflin II function, its abs-linearization is given by Af(Z;-) :
R? — R with

Af(Z; Az)=—Aw1+2 (221 Aw1 +2T2Awy)+1.75 (|27 + 25 — 14221 Az + 222 Axs | — |27 +25-1]) . (5)

The function itself together with its piecewise linear model fpr, z(.) at the point T = (—1.8,1.8) are illustrated
in Figure 1.



Figure 1: Abs-smooth function (3) from Example 1.5 and its piecewise linear model (5).

While abs-smooth functions may lack gradients, they are guaranteed to possess directional derivatives;
furthermore, within a neighborhood around the development point Z, their directional derivatives coincide
with the abs-linearization:

Proposition 1.6. Let f € C% (R™) and Z € R™. Then there erists a constant p > 0 such that, for every

abs

d € R", the directional (Bouligand) derivative f'(Z;d) exists and if ||d|| < p then

Af(z;d) = f'(z;d) . (6)
As a result, for every o € [0,1], ||d|| < p implies positive homogeneity Af(Z; ad) = aAf(Z;d).
Proof. See [17, Section 3.2], the final claim follows from positive homogeneity of f'(Z;-). O

Whether or not Z resides on a kink, p basically describes the distance to the next-closest kink of Af(z; ).
Hence, even though p > 0 is guaranteed, p can tend towards 0 as T approaches a point where f is nondiffer-
entiable. Proposition 1.6 illuminates the connection between the abs-linearization and a first-order minimal
point Z which satisfies, for all v € C,

f(Zv—2)>0. (7)

2 A Frank-Wolfe algorithm for abs-smooth functions

We begin in Section 2.1 by presenting our Abs-Smooth Frank-Wolfe algorithm (ASFW) and describing the
guiding principles in its design. Sections 2.2 and 2.3 establish its theoretical footing by, respectively, providing
optimality conditions and convergence guarantees. When the objective function f is smooth, the original
Frank-Wolfe algorithm can be viewed as a special case of our algorithm; in this setting, the optimality and
convergence guarantees for the nonconvex Frank-Wolfe algorithm would arise as corollaries to our results.

2.1 Motivating the algorithm

A vanilla Frank-Wolfe algorithm for the smooth setting is shown in Algorithm 1 (see also [7]). The hallmark
of the Frank-Wolfe algorithm is in Line 3 — the so-called LMO step which, at iteration ¢ € N, solves

max (=Vf(ze), v—my) . (8)
The optimal value of (8) is called the Frank-Wolfe gap. An advantage of Frank-Wolfe algorithms is that
the subproblem (8) is oftentimes computationally cheaper than evaluating the projection onto C'. However,
since gradients are not available in the nonsmooth setting, this step of Frank-Wolfe algorithms must be
changed. As far as we are aware, there is no generic replacement of (8) for the fully nonsmooth setting of
Frank-Wolfe algorithms. For instance, Nesterov pointed out in [29, Example 1] that the simple approach of
replacing the gradient V f(z;) in (8) with a subgradient — similar to subgradient descent methods — fails in



Algorithm 1 Frank-Wolfe algorithm
Require: Point zg € C, smooth function f
1: fort=0to ... do
2:  Choose step size oy € (0,1]
3:  Compute v; € argmin, o (Vf(z:), v)
4: w1 = (1 — ag)ay + oy
5: end for

general. However, it was recently shown that a subgradient-based approach does work for some nonsmooth
functions [32].

A key component in deriving a comprehensive convergence theory for Algorithm 1 in the smooth noncon-
vex setting is the smoothness inequality, which provides a quadratic upper-bound on the difference between
a function and its first-order Taylor approximation. Even though we do not have this inequality, the abs-
linearization provides a piecewise linear model which also has second order accuracy (Theorem 1.4); in fact,
this model is the Taylor series approximation in the smooth case. Hence, it is reasonable to consider a
generalization of Algorithm 1, Step 3 which relies on the abs-linearization.

Our approach in Algorithm 2 is to (a) generalize the Frank-Wolfe gap for abs-smooth functions, and (b)
solve its corresponding piecewise linear optimization problem as a subroutine in our algorithm. As we further
illustrate in Section 2.2, we propose the following generalized Frank-Wolfe gap for abs-smooth functions

Hax —Af(zy0n(v—2¢))
veC (o7

; 9)

whose corresponding optimization problem is formally equivalent to Line 3 in Algorithm 2.

As we will see in Section 2.2, just as in the smooth setting, first-order minimality is achieved when
the generalized Frank-Wolfe gap vanishes. Furthermore, Section 2.3 demonstrates that the approximation
properties in Theorem 1.4 can be leveraged to acquire identical convergence rates to the smooth setting.

Algorithm 2 Abs-Smooth Frank-Wolfe (ASFW) algorithm
Require: Point g € C, abs-smooth function f

1: fort=0to ... do

2:  Choose step size oy € (0, 1]

3:  Compute v; € argmin, o Af(zy, ar(v — x4))

4: Ti+1 = (1 — Oét)l't + Ut

5: end for

2.2 Optimality criterion: Generalizing the Frank-Wolfe gap

In this section, we establish that, just as in the smooth setting, first-order optimality is acquired when the
generalized Frank-Wolfe gap (9) vanishes.

We note that (9) is consistent with the original Frank-Wolfe gap (8). Indeed, if f is smooth, then for
every T € R", Af(z;-) = (Vf(Z), ) [17]. Hence, under the assumption of smoothness, at every iteration
t € N we have

_Af(ft; Olt(vt - xt)) _ —<vf($t) s at(vt - xt)>

Qi Qi

=(=Vf(@), v —z) . (10)

In other words, our generalization captures the traditional Frank-Wolfe gap (8) as a special case. This
generalization from a linear gap to a nonlinear gap also mirrors the form of the perspective function from
nonlinear analysis [9].

In the smooth setting, if the Frank-Wolfe gap vanishes this implies first-order optimality. Hence, our goal
is to show the same for our generalization. To-date, it was only possible to infer that f is Clarke-stationary
at T, if Af(z;-) was Clarke-stationary at 0 [12, Lemma 1]. However, since there are no guarantees that the



solution to our problem will lie on a vertex of C'; we do not have a guarantee that v; —z; — 0. In fact, there
are concrete examples where this never occurs — even for the smooth setting of Algorithm 1 [7, Figure 2.4].
We therefore provide a new result below.

Theorem 2.1 (First-order minimality). Let C C R™ be nonempty and convez, let & € C, let a € (0,1], and
let f € C4 (R™). Suppose that

Then f is first-order minimal at T, i.e., for everyv € C, f'(Z;v—) > 0. In particular, min,ec Af(Z;v—2) =
0 implies first-order minimality at T.
Proof. For the sake of contradiction, suppose that there exists a point v € C yielding a descent direction
f'(Z;v—7) < 0. Recall that Proposition 1.6 guarantees Af(Z;-) = f'(Z;-) for arguments with norm bounded
by p > 0. So, for 7 € (0,1) satisfying at|v — Z|| < p we have arv + (1 — a7)Z € C and hence
—-Af(Z; (atv+ (1 —ar)z) —2) —Af(z;ar(v—1)) —f(z;ar(v—12))
e e e

which is absurd since it contradicts (11). O

Note that first-order minimality is sometimes also called d-stationarity, see, e.g., [32]. Hence, if (11)
holds for Z, then Z is d-stationary.

Corollary 2.2 (Convex optimality). Let C C R™ be a nonempty compact convez set, let & € C, and let
fecd (R™) be conver. Suppose that min,ec Af(Z;v —z) = 0. Then f(Z) = mingec f(z).

Proof. From Theorem 2.1, we can conclude that
fl(@v—-2)>0 YveC,

which is a sufficient optimality condition for convex functions. O

2.3 Convergence results

In this section, we provide convergence proofs for Algorithm 2 under various settings. As we will see in this
section, our O(1/+/t) convergence results achieve the same optimal rate as for the nonconvex smooth setting
[33], even though our functions are nonsmooth. For this purpose, we show some important basic properties.

Corollary 2.3 (Sign of Af(z;a(ve —x))). Letz € C, let a > 0, and let f € C& (R™). Suppose that v, € C
satisfies one of the following statements

() Af(z,a(v. — o)) < Af(2,0)
(ii) vy € argmin,cc Af(z; a(v — 2)).
Then Af(z;a(ve —x)) < 0.
Proof. Theorem 1.4 implies that A f(z;0) = 0 proving (i). To show (ii), since z € C, we know
Af(z;a(ve —2)) < Af(z;ale — x) = Af(z;0),
so using (i) we obtain the required estimate. O

Lemma 2.4. Let C be a nonempty compact convex set with diameter D € Rsq. Assume that f € C4 (R™).
Then, for every t € N, the iterates generated by Algorithm 2 satisfy

—Af(x; o (ve — 24)) < f@) = f(@e11)

0< < + ayyD? (12)
o Qi
A B _A B t—1 t—1
¢ min f(xk7 ak(vk xk < Z f({Ek, Oék Vk !Ek < f $k+1) + A/DQ Z ag . 13)
0<k<t—1 (677 k=0 ap k=0 k=0



Proof. Since C' is compact, one can find an open set D with C' C D. Then, it follows from Theorem 1.4 that
there exists a v > 0 such that

—Af(zy (v —a0)) < f@r) = fl@e) + Y|z — z)?

independent of the iteration counter . Now, Corollary 2.3 yields

0 < =Af(xsap(ve —20) < flae) = f(@een) F 2o — 2l? = f(2) = F@e) + afy|loe — x4
Division by «a; yields (12), and summing over all iterations from 0 to ¢t — 1 yields (13). O

These properties already suffice to show the first nonconvex convergence result, where no additional
assumptions on the piecewise linear model are required.

Theorem 2.5 (Open-loop convergence). Let C' be a nonempty compact convex set with diameter D € Rxq.
Assume that f € C4_(R™). Then, for every t € N, the iterates generated by Algorithm 2 with oy = 1//1+1
satisfy

—-A ; — 1« 1
0< min f (e o (v — @) 72 f @y o (v — ) <o(L). (14)
0<k<t—1 Qg t o Vi

Proof. Let x, be a minimizer of f over C, and for every t € N, let g: = f(x) — f(z.). Corollary 2.3 and
Lemma 2.4 yield

—Af (g o (v — 2k)) li fl@y; o (v — )
0<k<t—1 Qg t P ag

t
% (Z 9k — Gk+1 7D2Zak> .
k=0

Since f is continuous and C'is compact, f has a Lipschitz constant 5 > 0 over C'. Hence, since Zz;lo ar < Vi,

(15)

t—1 g g t—1 g g t—1 1 1 t—1
k — Yk 0
S
=0 (75 =0 &%) -1 T \Ck O —
1

k=0
1 (1 1
<BD +Z(— ) +yD*V/t
ap = \an g
= (BD +yD*)Vt , (16)
and substituting (16) into (15) yields the result. O

Remark 2.6. Slight modifications in the proof of Theorem 2.5 also yield convergence results for the abs-
smooth version of existing variants of the smooth Frank-Wolfe algorithm.

(i) The fixed-horizon Frank-Wolfe algorithm (see [7]), where a horizon T € N is chosen and, for all
iterations, the fixed step size oy = 1/\@ is used. This simplifies (16) and guarantees that the gap is
bounded by O(1/V/T) after T iterations — consistent with the results which require differentiability [7].

(ii) The monotone Frank-Wolfe algorithm [8], wherein we keep the open-loop step sizes ay = 1/4/1+ 1 and
modify the iterate to update xr11 = aqvy + (1 — ap)xy if flogve + (1 — ap)xy) < f(xt) and otherwise
set xry1 = x¢. Simple case analysis reveals that, in both update scenarios, (15) holds, and the proof
proceeds identically as before.



(iii) For the setting when Af(xy;-) is convex, one can derive an abs-smooth version of the short-step Frank-
Wolfe algorithm (see [7]). In the smooth setting, the step size is adaptively selected in order to minimize
the smoothness inequality over [0, 1]; for the abs-smooth setting, the step size oy = min{1, Af(xs; vy —
xy)/2v||v — 24]|?} adaptively minimizes the upper bound arising from Theorem 1.4 over the same
set. Just as in the smooth nonconvex case (33|, the function values (f(x¢))ien are guaranteed to
monotonically decrease, and O(1/+/t) convergence is acquired. While only local convexity of Af(wy;-)
is guaranteed in general (cf. Proposition 1.6), convexity of Af(xy;-) is guaranteed in a variety of
applications as detailed in the beginning of the next section.

If one uses the open-loop step size strategy a; = 2/(t + 2), we have also observed O(1/t) convergence in
experiments on both convex and nonconvex objectives. This can be proven to hold under the convexity-type
inequality A f(zy; 2. —xt) < f(ax)— f(2+), which is not guaranteed to hold in the general abs-smooth setting.

3 The piecewise linear subproblem

This section concerns the central generalization from the linear subproblem in Line 3 of Algorithm 1 to the
piecewise linear subproblem in Line 3 of Algorithm 2. In particular, for Z € R™, and a > 0 we must solve
min Af(Z;a(v—1I)) . (17)
veC
While our theoretical analysis demonstrates that one can achieve the same per-iteration rate of convergence as
in the smooth setting of Frank-Wolfe, this nonetheless requires solving the more challenging subproblem (17).
As can be seen, instead of a constrained linear problem, one now has to solve a constrained piecewise linear
problem. This can be a challenging optimization problem on its own, and there is no off-the-shelf algorithm
for its solution; see [2] for a recent overview of nonsmooth optimization approaches and [23] for the case of
piecewise linear constraints.

In Section 3.1, we discuss our approach for numerically solving (17) in the case when C' is polyhedral.
Our methodology is guaranteed to find a local minimizer, hence for the case when Af(z;-) is convex, we
solve (17) exactly. As will be shown in Section 4, all constrained LASSO problems (in the sense of [14])
have convex piecewise linearizations. This also holds, e.g., for the Mifflin II problem in Examples 1.3 and 1.5
and the counterexample by Nesterov [29, Example 1]. In practice, we observe convergence to a first-order
minimal solution even without the assumption of convexity. So, we conjecture that a relaxation of (17)
may be sufficient to yield convergence, and we discuss this gap between theory and observations further in
Section 3.2.

3.1 Solving the piecewise linear subproblem

In this subsection, we present an approach to minimize piecewise linear functions on a polyhedral feasible set.
To better explain our methodology, we introduce the abs-linearization in more detail. Due to the smoothness
in Definition 1.1, the following matrices and vectors are well-defined

7 = 2F(x,z,w) e R |

ox

M= gF(w, z,w) € R**®  strictly lower triangular ,
z

L= a—F(x, z,w) € R®**®  strictly lower triangular ,
w

az%ap(m,z)ER”, bz%gp(m,z)eRs.

For f € Cgbs (R™), these matrices define the abs-linear form of its piecewise linear model fpy, localized at

Z € R” that is given by
z=c+ ZAx+ Mz + L|z|,

18
fro(@;Az) =d+a'Az+b'z, (18)



for every Ax € R™, where the constants ¢ € R® and d € R are chosen appropriately [17]. Such an abs-linear
form can be generated using appropriate variants of AD [3, 5, 20]. The switching variables z in (18), which
technically depend on Az € R™, are used to define the signature matriz of fpr(z;-), given by

Y(Azx) = diag(o(Ax)), where o(Ax)=signz(Ax).
For a fixed signature o € {—1,0,1}* and ¥ = diag(c), the inverse image
P, = {Az € R" : sgn(z(Ax)) = o}

is called a signature domain. These regions (Py),cf—1,0,1} are relatively open polyhedra that form a partition
of R™. It follows from [36, Proposition 2.2.2] that each piecewise linear function can be written in an abs-
linear form with appropriately-sized vectors and real lower-triangular matrices. Since every abs-linear form
has a switching variable z, it also gives rise to signature domains.

Note that the minimization of the piecewise linear function fpr,(Z;-) is equivalent to the minimization of
Af(Z;- — %), and their abs-linear forms only differ in the constants ¢ and d. Since both functions are affine
when restricted to a particular signature domain P,, constrained minimization over P, is achieved via the
solution of one linear program (provided a solution exists).

Our approach is to adapt the Active Signature Method (ASM) of [18], which computes an unconstrained
local minimizer of a given piecewise linear function ¥ (for our applications, we will set ¥ = Af(Z; a(- — x))).
The key idea of the ASM as proposed in [18] is to perform successive linear minimization over the signature
domains of 1. Initializing on the signature domain ¢ which contains £, ASM then computes a minimizer
of a regularized strongly convex problem (-) + || - [|, (where @ > 0) subject to the constraint P,. Note
that (a) the quadratic penalty term ensures the existence of a minimizer, and (b) the solution may have a
different signature than 7 if it resides on the boundary of a signature domain. A major feature of the ASM
is that, in polynomial time, it can determine if the constrained minimizer over P, is a local minimizer of
over R™, see [18]. If local optimality is detected, ASM terminates. Otherwise, ASM identifies an adjacent
polyhedron P,+ which ensures descent of the target function 1), see [18], in the sense that

S, V) < i 0(0)
and repeats an iteration. Since there is a finite number of signature domains, ASM is guaranteed to terminate.

For our setting, Algorithm 3 performs successive minimization of ¢ over the signature domains intersected
with C. Since our feasible domain C' is described by linear equalities and inequalities, they can be added
as additional constraints to the description of the signature domain P,, effectively encoding the constraint
P, N C as a single polyhedron. Since C is compact, 1 is guaranteed to possess a minimizer on every
subdomain P, N C (provided it is nonempty). Therefore, we can remove the quadratic regularization term
from ASM which was needed to guarantee existence of a solution. Since v is affine on every subdomain,
computing a minimizer in Line 3 of Algorithm 3 is performed by a single LP call. The LP over C' N P may
(in the worst case) include s more linear inequality constraints than minimizing over C. Next, Algorithm 3
proceeds as in the ASM by checking the optimality conditions of [18] with @ = 0. Algorithm 3 terminates

Algorithm 3 Adapted Active Signature Method (AASM)
Require: Point Z € R", piecewise linear function

1: Initialize P < Py (z)

2: fort=0to ... do

3. Compute v, € argmin, 5 Y(v)

4 if v, is a local minimizer of 1 over C' then
5: Return v..
6
7
8
9

else
P < P_+ which guarantees P,+ N C # & and descent of ¢
end if
: end for

10



if optimality is detected, and otherwise it proceeds to a new polyhedron which guarantees descent of ¥,
see [18].

Under the assumption that Af(xy;-) is a convex function, local minima coincide with global minima so
we solve (17) in Algorithm 2 by applying Algorithm 3 with ¥(-) = Af(xy;- — 2¢) and T = ;. We have also
observed good algorithmic performance and convergence in settings where A f(zy; ) is not guaranteed to be
convex. The theoretical analysis of this behavior is the subject of future work.

3.2 Alternative subproblems

Most of the computational effort in Algorithm 2 comes from computing an abs-linearization (performed once
per iteration), and solving the sequence of linear programs in the inner solver Algorithm 3. Our experiments
indicate that Algorithm 3 often terminates after a low number of iterations, and hence it uses a low number
of LP calls in-practice. Nonetheless, for some specific problems, solving (17) may require Algorithm 3 to
visit all signature domains in a Klee-Minty exhaustive search [18], costing one LP call per signature domain.
Since, in worst case settings, the number of signature domains is exponential in the number of switching
variables s, the theoretical upper-bound on the number of LP calls per iteration of Algorithm 2 is quite
high. Since this does not reflect what we see is required in-practice, this begs the question, does Algorithm 2
produce a first-order minimal solution of (1) when, in Line 3, v; is only a partial solution to (17)¢ In the
smooth setting, a similar question was answered in the affirmative via “lazified” variants of the Frank-Wolfe
Algorithm 1 [6].

We provide a partial negative answer to this question by establishing that one iteration of the inner solver
Algorithm 3 is insufficient to find a solution. This is demonstrated by considering an abs-linear objective
function f. In this setting, at every iteration of Algorithm 2, Af(Z;-) is equal to f(-) (modulo translation),
and hence the signature domains of the abs-linear model remain unchanged. Note that, if we only use one
inner iteration of Algorithm 3, every vertex (vi):cn of Algorithm 2 resides in the closure of the same signature
domain, i.e., the initial signature domain. Therefore, the iterates (z):cny will also remain in the same closed
convex set. So, unless Algorithm 2 is initialized on a signature domain whose closure contains a first-order
minimal solution of (1), it cannot yield a solution.

Interestingly, even though replacing Line 3 in Algorithm 2 with one iteration of Algorithm 3 will not
yield a solution in general, this algorithm is sufficient to guarantee that Af(x; ap(vy — 2¢)) /s converges to
zero! Indeed, the proof of Theorem 2.5 only relies on Theorem 1.4 and negativity of our generalized gap,
which we point out below.

Lemma 3.1. Let o > 0, let € R", and let f € C% (R™). After one iteration of Algorithm 3 with
Y =Af(Z;a(- — 7)) and o = T, we have

Af(Za(vy —Z)) <0.
Proof. Since vy is the result of minimizing over P, 3 Z, we know Af(zZ;a(v. —2)) < Af(Z;a(2—2)) =0. O

In view of Lemma 3.1, one could use the same proof technique in Theorem 2.5 to show that A f(x¢; ay (v —
x¢)) /oy converges to zero. However, since vy is no longer a solution to (11), Af(x¢; ar(vy — 1))/ is not our
generalized Frank-Wolfe gap, so we can not infer first-order minimality via Theorem 2.1.

In all of our experiments, we have observed convergence to a solution even when Af(Z;-) was not
guaranteed to be convex. Therefore, since Algorithm 3 terminates when it detects local optimality, we
conjecture that Algorithm 2 will still yield a first-order minimal solution of (1) when provided a locally
minimal solution to (17).

4 Numerical examples

To verify our theoretical findings, we implemented the Frank-Wolfe approach for abs-smooth functions as
stated in Algorithm 2 in C+-+. In Section 4.1, we benchmark our subproblem solver Algorithm 3. In
Section 4.2, we test our full algorithm on a suite of scalable problems from nonsmooth optimization, and
particular attention is given to constrained LASSO problems in Section 4.3. For the generation of the local
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piecewise linear model with abs-linearization we used ADOL-C [3]. For Linear Programming, we employed
the solver HIGHS [21].

4.1 Algorithm 3 (AASM): Rosenbrock-Nesterov 11

In this section, we analyze the performance of our inner solver AASM on the Rosenbrock-Nesterov II function.
According to [27], Nesterov suggested the Rosenbrock-like test function defined as

n—1

YR >R, @) =7l —1] + Z |wiy1 — 2[zs| + 1] , (19)

i=1

which is piecewise linear and nonconvex. The analysis presented in [27] shows that this test function has
(a) a unique global minimizer z* = (1,1,...,1) € R™ and (b) 2"~ — 1 other stationary points which are
not local minima, at which nonsmooth optimization algorithms may get stuck. Numerical tests showed that
with the initial point

xo,1 = —1, oy =1 2<i<mn,

it is very likely to encounter all of the stationary points; see again [27]. This also explains the high number
of iterations required by AASM since it visits all the stationary points and verifies the non-optimality of all
of them, except for the last one. One has to note that for the examples solved with our Frank-Wolfe methods
the number of iterations in each inner solve is in almost all cases less than five.

Comparisons of three different solvers, i.e., a bundle method, an adapted quasi-Newton method, and
ASM were presented for 1 < n < 10 in [18]. It was found that the bundle method and the adapted quasi-
Newton method got trapped at one of the stationary points for 3 < n < 10 after a high number of iterations.
That is, they were not able to find the minimizer. On the other hand, for all values of n considered, ASM
reached the minimizer exactly after 2" iterations. Larger values of n were not considered due to numerical
difficulties for these higher dimensions.

To validate the proposed Frank-Wolfe algorithm for abs-smooth functions, we introduced artificial bounds
on the variables such that we have a compact convex feasible set. That is, we consider

C={zeR"| —-20<x;<20,1<i<n}.

Note that the constraint C' excludes neither the suboptimal stationary points nor the global minimizer.

We coded the function evaluation exactly as stated in (19). That is, the required abs-linear form (18) was
generated by ADOL-C. When applying Algorithm 3 to minimize ¢ as defined in (19), we obtain the behavior
shown in Table 1, where we also state the number of existing polyhedra for n < 10 but skip this number for
n > 10 due to the very large value. As compared to ASM which took 2™ iterations 18], the iteration numbers
reduced significantly to 27! corresponding exactly to the number of stationary points. Hence, due to the
LP solve, AASM actually visits a very small fraction of all existing polyhedra (cf. Table 1). Furthermore,
the dimension n could be increased considerably more than in [18]. It is very interesting to note that the
presolve of the linear solver HIGHS reduces the linear optimization problem on each polyhedron to an empty
one such that a solution could be computed without performing a simplex step at all — as seen in Table 1.
This is a tremendous advantage in comparison to ASM which can be seen as an adapted QP solver. We
observe this behavior of the linear solver also for other test problems. Due to this fact, even the largest
instance which required more than 500,000 iterations could be solved in less than three minutes.

4.2 Algorithm 2: Standard nonsmooth problems

We tested our abs-smooth Frank-Wolfe (ASFW) Algorithm 2 on several standardized test cases (for details,
see [1]). For that purpose, we implemented the two convex examples MAXQ and Chained LQ as well as the
four nonconvex examples: Number of active faces, Chained Mifflin 2, Chained Crescent 1, and Chained Cres-
cent 2. Furthermore, we tested the first nonsmooth and nonconvex Rosenbrock-Nesterov function analyzed
in [27]. For all benchmark objectives except for MAXQ, we add bounds

C={zeR"| —-5<x;<51<i<n},

12



n 1 2 3 4 ) 6 7 8 9 10
# polyhedra 1 8 32 128 512 2048 | 8192 | 32768 | 131072 | 524288
# iter (AASM) 1 2 4 8 16 32 64 128 256 512
# iter (simplex) 0 0 0 0 0 0 0 0 0 0

n 11 12 13 14 15 16 17 18 19 20
# iter (AASM) | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144 | 524288
# iter (simplex) 0 0 0 0 0 0 0 0 0 0

Table 1: Number of signature domains and iteration counts for Rosenbrock-Nesterov II example and Algo-
rithm 3, i.e., the adapted active signature method (AASM).

which do not interfere with the optimal solution, allowing us to properly test our implementation. Sec-
tion 4.2.1 reports on the results for MAXQ and considers different feasible sets in which constraints are
active at the solution. All example functions are scalable such that we could examine various dimensions n.
For all test cases, we observe a very similar convergence behavior for the step size ay = 1/4/1 + ¢, namely
the convergence rate O(1/v/%).

Since the results are very similar for all test cases, we illustrate the convergence behavior just for two
convex examples (Sections 4.2.1 and 4.2.2) and two nonconvex examples (Sections 4.2.3 and 4.2.4).

4.2.1 MAXQ problem
The MAXQ problem is given by

f:R" =R, f(z) = max. 7 (20)

i ifie{l,...,|n/2]},

(Vie{1,2,...,n}) (Io)i—{_i if ie{|{n/2]+1,...,n}.

For this academic test case, we also consider the following feasible sets:

Ci={zeR"| -5<x;<2i—2forie{l,...,|n/2]}; —-2i+2<z;<5forie{|n/2]+1,..,n}},
Co={zeR"| 0<uz;<2i—2foriec{l,...,|n/2]}; —20+2<x;<0forie{|n/2]+1,....,n}},
C3={zeR"| 1<z;<2i—1forie{l,...,|n/2]}; —2i+1<ax;<-1forie{|n/2]+1,...,n}}.

The constraints in C are inactive at the global solution z, = 0 € R", while constraints in C5 are active
precisely at z.. For C3 we obtain the new optimal solution whose ith component is given by

(52); = 1 for ie{l,...,|n/2]},
Ul -1 for de{(n/2] +1,...,n}.

Once more, we coded the function evaluation exactly as stated in (20). That is, the abs-smooth form was
used only internally in ASFW to generate the numerical results. For the step size oy = 1/v/1+ ¢, the
observed convergence history is shown in Figure 2. Algorithm 2 terminated regularly with a norm of the
generalized Frank-Wolf gap being smaller than 107!°. For all combinations considered here, the function
values also converged to the optimal value.

13



102 H 102
- -
3 3
~ ~
= =
> 2
R 8

| 102 N | 102
3 3
S S
pe =
3 3

&2 1076 n B 10°6
= =
< <
| |

10— 10 10— 10

0 20 40 60
Iteration ¢ Iteration ¢t
(a) feasible set Cq (b) feasible set Cs

—Af(ze; (v — 1)) /ay

Iteration t

(c) feasible set C3

Figure 2: Generalized Frank-Wolfe gap —Af(xs; ap(vr — x4)) /o versus iteration count ¢ displaying the
convergence behavior of Algorithm 2 with a; = 1/4/1 4+ ¢ on the MAXQ problem (Section 4.2.1) for various

values of n.

4.2.2 Chained LQ problem
The convex Chained LQ objective problem is given by

n—1
fz)= Z max { —x; — Tiy1, —T — Tip1 + T + i — 1} (21)
i=1
n—1
:Z%(—Qwi—QwiH +altal, — 1+ |2l +a27, —1]), (22)
i=1
29, =—05 forall i=1,...,n,

where (21) is the version usually stated for this test problem and also used here for the implementation,
whereas (22) can be used to derive a corresponding abs-smooth form. For a fixed Z, the abs-linearization
generated in an automated fashion by ADOL-C is given by

n—1
Af(i'7 A(ﬂ) = Z ( — AZL’Z — Al'i+1 -+ f1A$1 + ji—&-lei—&-l
i=1

+ 3|37 + 7 — 14288 + 2% Awia | — 5|37 + 35, — 1]) :

As can be seen, this function is convex in Az. Hence, Algorithm 3 indeed solves (17) globally such that
our convergence theory holds. For different values of n, the convergence history for the first 500 iterates is
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Figure 3: Convergence behavior of Algorithm 2 with oy = 1/4/1+t on the Chained LQ problem (Sec-
tion 4.2.2) in various dimensions n.

illustrated in Figure 3. One can clearly observe the convergence rate O(1/+/t), where the rate coefficients
vary with n, as can be seen from the proof of Theorem 2.5. Furthermore, we also observe convergence of the
function value to the optimal quantity —(n — 1)\/5 for all considered dimensions n.

4.2.3 Nonconvex Rosenbrock-Nesterov problem
Next, we present the results for the nonconvex Rosenbrock-Nesterov function

n—1

fl@) =31 =12+ | —

i=1

~05 if mod (4,2) =1 .
L= for ie{l,...,n}.
(o) { 0.5 if mod (i,2) =0 or i€ {ln)

For different values of n, the convergence history for the first 500 iterates is illustrated in Figure 4. Once
more, the convergence rate O(1/+/t) is clearly visible and the heights of the lines vary with n, which is
consistent with the prefactor’s dependence on the set diameter D in the proof of Theorem 2.5. We again
observe convergence of the function value to the optimal value 0 for all considered dimensions n.

4.2.4 Nonconvex Chained Crescent 1 problem

The nonconvex Chained Crescent 1 problem is given by

f(z) = max{fi(z), f2()},
n—1 n—1

with fi(z) = > (27 4 (i1 — 1)’ + 21— 1), fol@) =Y (—2f — (@1 — 1> + 21 +1)
i=1 i=1

15 if mod (4,2) =1 ,
L= for ie{l,...,n}.
(o) { 2.0 if mod (,2) =0 or €L}

For this problem, we tested the step size ay = 2/(t + 2) since, according to the theory developed for Frank-
Wolfe methods, one may expect to observe a convergence rate of O(1/t). We can verify this convergence
behavior numerically; see Figure 5 for the convergence history of the first 500 iterates. However, it is currently
unknown if one can always expect this convergence rate.
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4.3 Constrained LASSO problems
Finally, we consider the constrained LASSO problem

in 3 sl Az —y|15 + pllz|x (23)
st. Br=b and Mx<d,

where y € RP is the response vector, A € RP*™ is the design matrix, z € R" is the vector of unknown

regression coeflicients, and p > 0 is a regularization parameter. The matrices B € R™*" M € R2*™ and the

vectors b € R", d € R? describe additional equality and inequality constraints. As its name suggests, the

constrained LASSO augments the standard LASSO [34] with additional constraints that allow to take prior

knowledge into account. This could be, for example, an ordering of the regression coefficients leading to an

ordered LASSO problem or the requirement of positive regression coefficients yielding the positive LASSO.
The abs-linearization of the objective function (23) given by

Af(z,Ax) = (2" AT —y)ADz + p (|7 + Azl — z]1)

is convex in Az. While this fact is not exploited in the convergence analysis of Theorem 2.5, this does mean
that our subproblem solver Algorithm 3 will yield a global minimizer.

To test the performance of our algorithm, we use random data so that we can scale the dimension
arbitrarily. The entries of the design matrix A and the response are generated as independent and identical
standard normal variables. We examine two variants of (23). First, we add again the bound constraints

C={zeR"| -5<z;<5 1<i<n}.

Hence, for n and p large enough one expects 0 € R™ as the optimal solution. As initial point, we use a
randomly generated vector with entries which are identically standard normal distributed.

For the step size ay = 1/4/1 + ¢, the results using various values of n and p are shown in Figure 6. All
optimizations terminated at the optimal solution with the criterion A f(z;, ot (v —2¢)) = 0, i.e., when a first-
order minimal point was found (cf. Theorem 2.1). For several combinations of n and p, Algorithm 2 reached
a first-order minimal point early and therefore the corresponding curve ends. Once more, the convergence
rate of O(1/+/t) proven in Theorem 2.5 is clearly visible in all scenarios.

Furthermore, we also tested the step size oy = 2/(t + 2). The optimization history for various values
of n and p are shown in Figure 7. Once more, all optimizations terminated at the optimal solution with
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Figure 5: Convergence behavior of Algorithm 2 with step sizes ay = 2/(t + 2) on the Chained Crescent 1
problem (Section 4.2.4) in various dimensions n.

the stopping criterion A f (x4, at(vy — 2¢)) = 0. The observed convergence rate is O(1/t), motivating further
research in this direction.
For the second setting, we studied a LASSO problem where the feasible set is given by

C={zeR"| -5<azy<ay < <z, <5},

This setting corresponds to the requirement that the parameters grow monotonically, which is reasonable
for example in some climate models [14]. As initial point, we use

2(i — 1)

i=—1
(o) + n—1

1<1<n,
i.e., a feasible vector with equality distributed values from —1 to 1.

For the combinations (n,p) € {125} x {250, 375,500}, (n,p) € {250} x {500, 750, 1000}, (n,p) € {500} x
{1500, 2000} and the step size oy = 1/4/1 +t, Algorithm 2 determined the optimal solution z, = 0 € R
within two iterations, hence we do not plot the convergence for this experiment. Note that all constraints
except for the lower and upper bound are active at the optimal solution found. Using the step size oy =
2/(t + 2), we also observed the same convergence rate of O(1/t) as in Figure 7. Near the end of our
experiments in both Figures 6 and 7, the algorithm terminates because the generalized Frank-Wolfe gap
is zero. This sudden stopping is reminiscent of the smooth Frank-Wolfe literature [7] — in certain simple
settings (e.g., for a linear or quadratic objective when the algorithm reaches the optimal face of C'), one
iteration of the Frank-Wolfe algorithm exactly solves the optimization problem. Also note that for n = 250
the termination order of the algorithm for the different values of p changes. While the early termination may
happen when using Frank-Wolfe algorithms, we actually have no guarantee that the point of termination
has to satisfy an order based on the dimension.

5 Summary and outlook

Even nowadays the solution of nonsmooth constrained optimization problems forms a challenge and corre-
spondingly there is no off-the-shelf algorithm available. For a compact convex feasible set, we have shown
that Algorithm 2, which appears to be the first connection between the fields of abs-smooth optimization and
conditional gradient algorithms, can exhibit the same per-iteration rate of convergence as the Frank-Wolfe
algorithm for smooth nonconvex objectives.

We have shown that, in generalizing from the smooth setting to the abs-smooth setting, the Frank-Wolfe
gap becomes nonlinear and nonsmooth, and computing this gap necessitates the solution of a piecewise linear
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Figure 6: Convergence behavior of Algorithm 2 with a; = 1/4/1+¢ on the bound-constrained LASSO
problem (Section 4.3) for various values of (n,p).

minimization problem as opposed to linear minimization in the smooth case. Our methodology stands in
contrast to recent approaches which identify subclasses of nonsmooth functions for which, when one performs
linear minimization against a subgradient, the Frank-Wolfe algorithm converges [4, 16, 32]. The approaches
in [4, 16] only consider convex objectives, and [32] considers a class of functions which does not even contain
the convex piecewise linear counterexample by Nesterov [29, Example 1]. Instead of finding a smaller class
of functions for which subgradient-approaches work, we have generalized the Frank-Wolfe algorithm itself
and shown that it will still converge on a broader class of functions.

The proposed algorithm can be implemented easily based on an AD tool that provides the required
abs-linearization and an LP solver. The numerical illustrations in Sections 4.2 and 4.3 exhibit that the
theory developed in this work is consistent with the rates observed in practice. Furthermore, we observed
experimentally that improved rates are possible with the step size strategy oy = 2/(t + 2).

As mentioned earlier, the current form of our algorithm comes with the drawbacks that (A) storing
Af(T;-) scales quadratically with s, and (B) computing Af(Z;-) requires roughly an amount of work pro-
portional to computing a gradient. While our algorithm is effective on moderately-sized problems, these are
the central bottlenecks preventing the algorithm from solving very high-dimensional problems. However,
we are hopeful that (A) can be resolved because we have observed that the matrices decribing A f(Z; ) are
often very sparse. Furthermore, we are hopeful that A f(7; ) could be reasonably approximated using block
activation strategies similar to SGD or prox-based methods, which would yield an avenue for the resolution
of (B). If these algorithmic challenges are addressed, our approach would be more readily applicable on very
large-scale problems.

As part of this line of work, we are left with several questions which we are eager to study in future work.
Firstly, based on numerical experimentation and existing Frank-Wolfe literature, we believe that showing an
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Figure 7:  Convergence behavior of Algorithm 2 with oy = 2/(¢ + 2) on the bound-constrained LASSO
problem (Section 4.3) for various values of (n, p).

O(1/t) convergence rate may be possible with a step size strategy of oy = 2/(¢t + 2). We also believe that
the convergence analysis in Theorem 2.5 could be refined to directly incorporate the number of switching
variables s. This would be particularly useful for improving convergence rates for functions with a low
number of switching variables. Finally, our numerics indicate that Algorithm 2 works as long as one has
a local minimizer to our ASFW-subproblem (17). If this is true in general, our approach of Algorithm 2
using Algorithm 3 as a subproblem solver would always converge to a solution, whether or not the objective
function’s piecewise linear model is convex.
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