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Abstract. Bilevel problems are used to model the interaction between two de-
cision makers in which the lower-level problem, the so-called follower’s problem,
appears as a constraint in the upper-level problem of the so-called leader. One
issue in many practical situations is that the follower’s problem is not explicitly
known by the leader. For such bilevel problems with unknown lower-level model
we propose the use of neural networks to learn the follower’s optimal response
for given decisions of the leader based on available historical data of pairs of
leader and follower decisions. Integrating the resulting neural network in a
single-level reformulation of the bilevel problem leads to a challenging model
with a black-box constraint. We exploit Lipschitz optimization techniques from
the literature to solve this reformulation and illustrate the applicability of the
proposed method with some preliminary case studies using academic and linear
bilevel instances.

1. Introduction

Bilevel optimization has been a highly active field of research in the last decades
and has gained increasing attention over the last years. The main reason is that this
class of optimization problems can serve as a powerful modeling tool in situations in
which one has to model hierarchical decision making; see, e.g., the recent surveys by
Beck et al. (2022) and Kleinert et al. (2021) as well as the annotated bibliography by
Dempe (2020) to get an overview of the many applications of bilevel optimization.
However, this ability also renders bilevel optimization problems very hard to solve
both in theory and practice. For instance, even linear bilevel problems are strongly
NP-hard (Hansen et al. 1992).

As discussed in the survey by Beck et al. (2022), bilevel optimization problems
can also be subject to uncertainty. Moreover, the sources of potential uncertainties
are even richer compared to usual, i.e., single-level, optimization. The reason is
that not only the problem’s data can be uncertain but also the (observation of
the) decisions of the two players can be noisy or uncertain. For instance, it might
be the case that the leader is not sure about whether the follower can solve the
respective lower-level problem to global optimality and might want to hedge against
possibly occurring near-optimal solutions; see, e.g., Besançon et al. (2019, 2021).
In this short paper, we go even one step further and assume that the leader has
no knowledge about an explicit formulation of the lower-level problem. Hence, the
leader needs to solve a bilevel optimization problem and the lower level is unknown.
What might sound impossible at a first glance can be done, at least approximately,
if the bilevel game is repeatedly played so that past pairs of leader decisions and
respective responses of the follower can be observed and collected. The obtained
set of pairs of decisions can then be used as training data to train a neural network
that learns the best-response function of the follower.
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The downside of this approach is that the input-output mapping of the neural
network can again not be stated using a closed-form expression. This leads to
the field of optimization under black-box constraints (Rios and Sahinidis 2013).
Fortunately, there is some recent research on deep neural networks with specific
activation functions that shows that the input-output mapping of the neural network
is Lipschitz continuous and that Lipschitz constants can actually be computed using
specifically chosen semidefinite programs (Fazlyab et al. 2019; Pauli et al. 2022). This
paves the way for applying the Lipschitz optimization method proposed in Schmidt
et al. (2019), see Schmidt et al. (2021) as well, in order to solve the single-level
reformulation of the bilevel problem with unknown lower level in which the optimal
response of the follower is replaced by the mapping that describes the input-output
behavior of the trained neural network. In the Lipschitz-based approach, the only
nonlinearity, which is the one given by the input-output mapping of the neural
network, is outer-approximated using the Lipschitz constant of the mapping. This
outer approximation is tightened from iteration to iteration, leading to a union of
polyhedra that form a relaxation of the graph of the nonlinearity, which enables the
application of powerful state-of-the-art mixed-integer solvers.

The main contribution of this short note is the combination of the recent results
about the Lipschitz continuity of special neural networks with recent publications on
Lipschitz optimization. By carrying this out in a careful way and by slightly adapting
the method proposed in Schmidt et al. (2019), we obtain a convergent algorithm
for this highly challenging situation. We further illustrate the applicability of our
approach in a case study based on academic bilevel instances from the literature.

Although there have been some applications of bilevel optimization problems
for machine learning (see, e.g., Table 1 in Khanduri et al. (2021)), this is, to the
best of our knowledge, the first paper that uses neural networks to solve general
bilevel optimization problems. The only other paper we are aware of following
this idea is the one by Vlah et al. (2022), who apply deep convolutional neural
networks to classic bilevel bidding problems in power markets. However, they focus
on the specific application and the specific type of network and its training. In
contrast, we focus on the general mathematical idea of replacing unknown lower levels
with neutral networks. Furthermore, the work by Borrero et al. (2022) presents a
sequential learning method for linear bilevel problems under incomplete information.
Provided that the strategic players interact with each other multiple times, the
authors develop feedback mechanisms to update the missing information for the
lower-level objective. Nevertheless, this way to address uncertainty and learning
clearly differs from our neural-network based approach. The main idea of this short
paper is to give a proof of concept for the proposed method and we, thus, make some
simplifications such as that we only consider linear bilevel problems with a scalar
upper-level variable and without coupling constraints. We discuss these assumptions
in more detail in Section 2 and how the setting can be generalized in Section 6. Let
us finally comment on that our approach is related to other methods for solving
bilevel optimization problems that rely on using optimal-value or best-response
functions (see, e.g., Lozano and Smith (2017) and the references therein). However,
our approach is different since we do not work with these functions themselves but
with surrogates that we obtain from training a neural network.

The remainder of the paper is structured as follows. In Section 2, we introduce
the class of bilevel problems that we consider and pose the main assumptions that
are required in what follows. Afterward, in Section 3, we then review the recent
literature about computing Lipschitz constants for deep neural networks, which is
a prerequisite for the overall solution approach discussed in Section 4. Section 5
contains the case studies that illustrate the applicability of our approach for small
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instances from the literature. Finally, we conclude in Section 6 and discuss some
topics for future research.

2. Problem Statement

We consider linear bilevel problems of the general form
min
x∈X,y

c>x+ d>y (1a)

s.t. Ax ≥ a, (1b)
x ≤ x ≤ x̄, x ∈ Rnx , (1c)
y ∈ Ψ(x), (1d)

where Ψ(x) is the set of optimal solutions of the x-parameterized problem
min
y∈Y

f>y (2a)

s.t. Cx+Dy ≥ b, (2b)

with c ∈ Rnx , d, f ∈ Rny , A ∈ Rm×nx , C ∈ R`×nx , D ∈ R`×ny , a ∈ Rm, and b ∈ R`.
Problem (1) is called the upper-level or leader’s problem. The decision variables of
the leader are x ∈ Rnx . Problem (2) is called the lower-level or follower’s problem
and has the decision variables y ∈ Rny . Note that we consider the optimistic bilevel
problem. Hence, the leader also optimizes over y if the lower-level problem is not
uniquely solvable. The set Ω := {(x, y) ∈ X × Y : (1b), (1c), (2b)} is called the
shared constraint set and the set F := {(x, y) ∈ Ω: y ∈ Ψ(x)} is called the bilevel
feasible set. With Fx, we denote its projection onto the x variables. For what
follows, we make the ensuing assumptions.
Assumption 1. (i) The upper-level decision x ∈ Rnx is scalar, i.e., nx = 1.

(ii) For all upper-level decisions x for which Ψ(x) is non-empty, we have
|Ψ(x)| = 1. Hence, if the lower level is feasible and bounded, then it has a
unique optimal solution y. Consequently, we can write y = Ψ(x) instead
of y ∈ Ψ(x).

(iii) The solution-set mapping Ψ(·) is Lipschitz continuous.
According to Assumption 1, Ψ(x) is a singleton, leading to a one-to-one correspon-

dence between follower’s optimal responses and the upper-level decisions. Moreover,
the mapping Ψ(·) is polyhedral, i.e., its graph is a finite union of polyhedra; see
Theorem 3.1 in Dempe (2002). Furthermore, the bilevel feasible set is connected
because we have no coupling constraints and, thus, Ψi(x) is a Lipschitz continuous
and piecewise linear function in x for all i ∈ [ny] := {1, . . . , ny}.

Lower-level uniqueness is particularly important when it comes to training a
neural network to learn the optimal response of the follower for a given upper-level
decision. It ensures that, during supervised learning, there is only a single output y
to be learned for a given input x. The assumption of a scalar leader’s decision can
be generalized and is mainly taken for the ease of presentation. We will discuss this
in more detail in our conclusion in Section 6.

3. Using Neural Networks to Approximate the Follower’s Response

Stating the bilevel problem (1) relies on the knowledge about an explicit formula-
tion for the lower-level problem (2). In the case in which the follower’s problem (2)
is not known by the leader but past pairs (x, y) of leader and follower decisions are
available, we propose using this historical data to learn the optimal response y = Ψ(x)
of the follower using neural networks.

Such (x, y)-pairs naturally arise in many applications. For instance, for pricing
models, the upper-level variable x is the price set by the leader for a certain good
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and y is the amount of this good bought by the follower. Both the price and
the bought goods can be observed and collected to obtain (x, y)-pairs to train a
neural network. Similar situations appear in many other fields such as in bilevel
optimization for market design, transportation, or security. Obviously, it is required
that the game modeled by the bilevel problem is played repeatedly so that large
enough training sets can be collected over time.

In what follows, we use a neural network to learn Ψ(·), which will then replace
the lower level and turn the bilevel model into the single-level problem

min
x,y

cx+ d>y (3a)

s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ R, (3b)
gi(x) = yi, i ∈ [ny], (3c)

where gi is the function corresponding to the neural network for the ith follower’s
response yi, i ∈ [ny]. Thus, we assume gi(x) ≈ Ψi(x). In what follows, we exploit
some recent results from the literature to show that gi is Lipschitz continuous and
that Lipschitz constants can indeed be computed. This property of the used neural
networks is vital for the decomposition method we use to solve Problem (3); see
Section 4.

3.1. Lipschitz Constants of Neural Networks. In this paper, we use the LipSDP-
Neuron method published in Fazlyab et al. (2019) to compute Lipschitz constants of
the neural network functions gi, i ∈ [ny]. That is, we compute a constant Li ≥ 0
that satisfies

|gi(x1)− gi(x2)| ≤ Li|x1 − x2| for all x1, x2 ∈ R
and for all i ∈ [ny]. The main idea in Fazlyab et al. (2019) is to replace the nonlinear
activation functions at the nodes of a neural network by so-called incremental
quadratic constraints, which then allows to state the problem of estimating Lipschitz
constants as a semidefinite program (SDP). It is worth noting that the most complex
and, hence, the most accurate version of LipSDP in Fazlyab et al. (2019) is shown
to be wrong in Pauli et al. (2022). Thus, we use the second of the three versions of
LipSDP, namely LipSDP-Neuron.

We now describe the quadratic constraints that we use to replace all activation
functions φ(x) = [ϕ(x1), . . . , ϕ(xn)]> : Rn → Rn in a network layer, where the same
slope-restricted function ϕ : R→ R is applied to each component of φ. Here and in
what follows, we call a function ϕ slope-restricted w.r.t. 0 ≤ α < β <∞ if

α ≤ ϕ(y)− ϕ(x)
y − x

≤ β (4)

holds for all x, y ∈ R. This definition states that the slope of the line connecting any
two points x and y on the graph of ϕ is bounded by α and β. It is easy to see that
the Rectified Linear Unit (ReLU) activation function defined as ϕ(x) := max{0, x}
is slope-restricted with α = 0 and β = 1; see Goodfellow et al. (2016). Furthermore,
if the activation function ϕ is slope-restricted w.r.t. [α, β] = [0, 1], then so is the
vector-valued function φ(x) = [ϕ(x1), . . . , ϕ(xn)], which contains all activation
functions in a network layer (Fazlyab et al. 2022), if we apply the definition in (4)
component-wise.

The following lemma shows that the slope property (4) can be written as a
quadratic constraint. We use the notation Sn for the set of all symmetric n × n
matrices.
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Lemma 1 (Based on Lemma 1 in Fazlyab et al. (2019)). Suppose ϕ : R → R is
slope-restricted w.r.t. α and β. Moreover, we define the set

Tn :=
{
T ∈ Sn : T =

n∑
i=1

λiieie
>
i , λii ≥ 0

}
(5)

of diagonal matrices T with nonnegative entries. Then, for any T ∈ Tn, the function
φ(x) = [ϕ(x1), . . . , ϕ(xn)]> : Rn → Rn satisfies the quadratic constraint(

x− y
φ(x)− φ(y)

)> [ −2αβT (α+ β)T
(α+ β)T −2T

](
x− y

φ(x)− φ(y)

)
≥ 0 (6)

for all x, y ∈ Rn.

The statement of the lemma above is based on Lemma 1 in Fazlyab et al. (2019)
and has been modified according to the corrections published in Pauli et al. (2022).
There, the authors give a counterexample that shows that the original lemma in
Fazlyab et al. (2019) is wrong. To be more specific, they show that there exists a
matrix T built according to the definition of the set Tn given in Fazlyab et al. (2019)
that violates (6).

Assuming that all activation functions ϕ : R→ R are the same, a feed-forward
neural network f(x) : Rn0 → R`+1 can be written compactly as

Bx = φ(Ax + b) and f(x) = Cx + b`, (7)
where x = [(x0)>, . . . , (x`)>]> is the concatenation of the input values at every
layer of the network, ` is the number of layers, xi ∈ Rni for all i ∈ {1, . . . , `}, φ is
the vector-valued function which applies the activation function ϕ to every entry of
the input vector, and

A =


W 0 0 . . . 0 0
0 W 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . W `−1 0

 , B =


0 In1 0 . . . 0
0 0 In2 . . . 0
...

...
...

. . .
...

0 0 0 . . . In`

 ,
C =

[
0 . . . 0 W `

]
, b =

[
(b0)>, . . . , (b`−1)>

]>
(8)

holds, where W i is the weight matrix connecting layer i with layer i+ 1, and Ini is
the ni × ni identity matrix. The next theorem is the central result in Fazlyab et al.
(2019) and shows that the Lipschitz constant of a neural network is the solution of
an SDP in which the matrix T defined in Lemma 1 serves as a decision variable.

Theorem 2 (Theorem 2 in Fazlyab et al. (2019)). Consider an `-layer and fully
connected neural network given by (7). Let n =

∑`
k=1 nk be the total number of

hidden neurons and suppose that the activation functions are slope-restricted w.r.t. α
and β. Define Tn as in (5), A and B as in (8), and consider the matrix inequality

M(ρ, T ) =
[
A
B

]> [ −2αβT (α+ β)T
(α+ β)T −2T

] [
A
B

]
+R � 0 (9)

with

R =


−ρIn0 0 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 (W `)>W `

 .
If (9) holds for some (ρ, T ) ∈ R≥0 × Tn , then ‖f(x)− f(y)‖2 ≤

√
ρ‖x− y‖2 holds

for all x, y ∈ Rn0 .
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As a result of Theorem 2, a Lipschitz constant for multi-layer networks can be
computed by solving

min
ρ,T

ρ s.t. M(ρ, T ) � 0, T ∈ Tn, (10)

where (ρ, T ) ∈ R+ × Tn are the decision variables. Furthermore, M(ρ, T ) is linear
in ρ and T and the set Tn is convex. Hence, Problem (10) is a semidefinite program.

4. Solution Approach

The neural network constraint (3c) turns model (3) into a challenging problem.
In particular, for complex and large neural networks, it cannot be expected to get a
closed-form expression for gi, i ∈ [ny], that has reasonable properties required for
optimization. In any case, the resulting constraints will be nonlinear, nonconvex,
and nonsmooth. However, we can evaluate these constraints and we can compute
their Lipschitz constants. Thus, it is reasonable to make the following assumption.

Assumption 2. An oracle is available that evaluates gi(·) for all i ∈ [ny] and
all gi are globally Lipschitz continuous on x ≤ x ≤ x̄ with known global Lipschitz
constant Li.

To solve Problem (3), we use the decomposition method published in Schmidt
et al. (2019) but modify it slightly so that we can apply it to our setting. We assume
Lipschitz continuity of the problematic nonlinearities and use the corresponding
Lipschitz constants to build a mixed-integer linear problem (MILP) that is a
relaxation of the original model (3). We refine this relaxation in every iteration
until a satisfactory solution is found or until the problem is shown to be infeasible.
A satisfactory solution is formally defined to be an ε-feasible point, i.e., a point that
solves

min
x,y

cx+ d>y (11a)

s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ R, (11b)
|gi(x)− yi| ≤ ε, i ∈ [ny], (11c)

where ε ≥ 0 a user-specified tolerance. Note that this relaxation of Problem (3)
only affects the nonlinear functions gi, i ∈ [ny].

4.1. Core Ideas and Notation. The main idea of the decomposition method
is to relax the graphs of gi with help of a set Ωi. The set Ωi is given by linear
constraints built around gi using the corresponding Lipschitz constant Li. The
resulting relaxation Ωi is then refined in each iteration k such that Ωki can be written
as a union of polytopes

Ωki =
⋃
j∈Jk

i

Ωki (j),

which converges towards the graph of gi for k → ∞. The union of polytopes is
uniquely defined in each iteration k by a set of points on the x-axis,

X ki :=
{
xk,0i , xk,1i , . . . , x

k,|Jk
i |

i

}
,

where xk,ji ∈ R are scalar values for j ∈ {0} ∪ Jki = {0} ∪ {1, . . . , |Jki |} and

xi =: xk,0i < xk,1i < · · · < x
k,|Jk

i |
i := x̄i.

Note that while xi are scalar, the index i indicates that the sets Xi can develop
differently from each other, specifically to every i ∈ [ny]. In other words, the
relaxations of gi can be refined individually in each iteration k. This relaxation Ωki
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x = xk,0i xk,1i = x

gi

yi

x

Ωk
i

dki

ωki

ω̃ki

x = xk,0i xk,2i = x

yi

x

gi

Ωk+1
i

Figure 1. Left: The subproblem is solved on the set Ω̃ki , which
is bounded by the dashed, vertical lines. Right: The feasible set
of the master problem in iteration k + 1, after x̃i has been added
to X ki . The dashed lines depict the old feasible set.

of gi is improved by adding a new point xk,ji to X ki . The polytopes of the union
mentioned above are given by

Ωki (j) =
{

(x, yi) ∈ R2 :xk,j−1
i ≤ x ≤ xk,ji ,

yi ≤ gi
(
xk,j−1
i

)
+ Li

(
x− xk,j−1

i

)
,

yi ≥ gi
(
xk,j−1
i

)
− Li

(
x− xk,j−1

i

)
,

yi ≤ gi
(
xk,ji

)
+ Li

(
xk,ji − x

)
,

yi ≥ gi
(
xk,ji

)
− Li

(
xk,ji − x

)}
(12)

for j ∈ Jki . Visually speaking, (12) states that the polytopes Ωk
i (j) are all quadri-

laterals with two vertices xk,j−1
i and xk,ji on the graph of gi; see Figure 1. To

understand how a point is added to Xi, we discuss the two problems solved in each
iteration of the algorithm.

4.2. The Master Problem. The master problem (M(k)) is solved in each iteration
over the sets Ωki . The problem is formally given by

min
ω

cx+ d>y

s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ R,

ωi ∈ Ωki , i ∈ [ny],

(M(k))

with ω = (x, y) and ωi := (x, yi). Note that ωi is not the ith entry in ω,
since ω ∈ R1+ny is the vector containing x and y while ωi ∈ R2 contains x and yi.
If the solution ωk with xk ∈ R and yk ∈ Rny of (M(k)) is ε-feasible, then Prob-
lem (3) is approximately solved. According to Schmidt et al. (2019), the master
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problem (M(k)) can be modeled as the mixed-integer linear problem
min

ω
cx + d>y (13a)

s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ R, (13b)

−M
(
1− zk,j

i

)
+ xk,j−1

i ≤ x ≤ xk,j
i + M

(
1− zk,j

i

)
, i ∈ [ny], j ∈ Jk

i , (13c)

yi ≤ gi

(
xk,j−1

i

)
+ Li

(
x− xk,j−1

i

)
+ M

(
1− zk,j

i

)
, i ∈ [ny], j ∈ Jk

i , (13d)

yi ≥ gi

(
xk,j−1

i

)
− Li

(
x− xk,j−1

i

)
−M

(
1− zk,j

i

)
, i ∈ [ny], j ∈ Jk

i , (13e)

yi ≤ gi

(
xk,j

i

)
+ Li

(
xk,j

i − x
)

+ M
(
1− zk,j

i

)
, i ∈ [ny], j ∈ Jk

i , (13f)

yi ≥ gi

(
xk,j

i

)
− Li

(
xk,j

i − x
)
−M

(
1− zk,j

i

)
, i ∈ [ny], j ∈ Jk

i , (13g)∑
j∈Jk

i

zk,j
i = 1, i ∈ [ny], (13h)

zk,j
i ∈ {0, 1}, i ∈ [ny], j ∈ Jk

i . (13i)

The constraint ωi ∈ Ωki , i ∈ [ny], in (M(k)) is modeled here using big-M constraints.
The binary variables z in (13i) and (13h) ensure that only one polytope is active
for all i ∈ [ny].

4.3. The Subproblem. On the other hand, if the solution ωk is not ε-feasible, the
relaxation Ωki of the graph of gi needs to be refined. This is achieved by solving a
subproblem to find a point on the graph of gi, which is as close as possible to the
solution ωki ∈ Ωk

i of the master problem (M(k)). We then use this point to refine
the relaxation.

Our subproblem differs from the original method described in Schmidt et al. (2019).
There, an optimization problem over nonlinearities and other linear constraints is
solved. This is not possible in the setting we consider here, or is at least extremely
challenging, due to the nonconvex and nonsmooth nature of neural networks.

The subproblem is solved only for the particular polytope Ωk
i (jki ) ⊂ Ωk

i with
ωki ∈ Ωk

i (jki ). That is, we look for a point on the graph of gi, which is contained
in Ωk

i (jki ). Additionally, the feasible set of the subproblem is further reduced to
only allow for a solution in an inner-approximation of the respective polytope. This
way we ensure that newly found points do not accumulate at an already existing
value in X ki . For a given j ∈ Jki , this subset is defined as

Ω̃ki (j) = Ωki (j) ∩ Ω̂ki (j),
with

Ω̂ki (j) =
{

(x, yi) ∈ R2 : xk,j−1
i + 1

4d
k,j
i ≤ x ≤ x

k,j
i −

1
4d

k,j
i

}
and dk,ji = xk,ji − x

k,j−1
i is the length of the corresponding segment on the x-axis.

The constant 0.25 can be replaced by any value in (0, 0.5). The left plot in Figure 1
indicates the set Ω̂ki with vertical dashed lines.

To solve the subproblem, we sample points x̃i on the x-axis segment corresponding
to Ω̃ki (jki ) and evaluate gi at these points. Then, the solution of the subproblem
is given by the computed point ω̃i := (x̃i, gi(x̃i)) that is closest to the solution
ωki = (xk, yki ) of the master problem w.r.t. the Euclidean distance; see Figure 1. In
other words, we choose from a finite set of points in Ω̃ki (jki ) the one that is on the
graph of gi and as close as possible to the solution ωki of (M(k)). Note that we solve
the subproblem only for those i ∈ [ny] that are not ε-feasible, i.e., if |gi(xk)−yki | > ε
holds.

The solution x̃ki of the subproblem is added to the set X ki and thus refines the
relaxation of gi; see Figure 1 (right). While xk in ωki is the solution of (M(k)) and
thus shared by all i ∈ [ny], the solution x̃ki of the subproblem unique to i ∈ [ny].
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4.4. Algorithm and Convergence Properties. The Lipschitz decomposition
method is formally given in Algorithm 1. There, the master problem (M(k)) is
solved in each iteration k and the algorithm checks if the solution ωk is ε-feasible. If
this is not the case for all i ∈ [ny], the polytope Ωki (jki ) containing the solution ωki is
identified using the index of the variables zk,ji in the MILP (13) for all ε-infeasible
i ∈ [ny]. Then, a new point ω̃ki = (x̃ki , ỹki ) is found on a subset Ω̃ki (jki ) ⊂ Ωki (jki ) and
x̃ki is added to X ki , refining the approximation of gi. Notice that while x is scalar,
the index i in x̃ki signals that the new point found on the x-axis in iteration k is
specific to the relaxation of function gi. Moreover, the number of points in X ki is at
most k in every iteration, which means that |Jki | ≤ k for all i ∈ [ny].

Algorithm 1 Lipschitz Decomposition Method
Input: Problem (3) and ε > 0
Output: An approximate globally optimal and ε-feasible point for Problem (3) or

indication of infeasibility
1: Set k ← 1 and initialize X ki = {x, x̄} for all i ∈ [ny].
2: while true do
3: Solve the master problem (13) to global optimality.
4: if (13) is infeasible then
5: return “Problem (3) is infeasible.”
6: end if
7: Let ωk = (xk, yk) denote the optimal solution of (13).
8: if |gi(xk)− yki | ≤ ε for all i ∈ [ny] then
9: return ωk.

10: end if
11: Determine the polytopes jki ∈ Jki for all i ∈ [ny].
12: Solve the subproblems for all i ∈ [ny] with |gi(xk) − yki | > ε and let

ω̃ki = (x̃ki , ỹki ) denote the optimal solution.
13: for i ∈ [ny] do
14: if |gi(xk)− yki | > ε then
15: Set X k+1

i ← X ki ∪ {x̃ki }.
16: else
17: Set X k+1

i ← {X ki }.
18: end if
19: end for
20: Increase k ← k + 1.
21: end while

We remark that the new point x̃ki found by the subproblem splits the original
quadrilateral Ωki (jki ) into two smaller ones; see Figure 1. For the two new polytopes,
we use the notations Ωki (jk1 ) and Ωki (jk2 ). Hence, the union of polytopes Ωk+1

i that
approximates gi in iteration k + 1 is given by

Ωk+1
i = Ωki (jk1 )

⋃
Ωki (jk2 )

⋃
j 6=jk

i
∈Jk

i

Ωki (j).

and we have the following lemma.

Lemma 3 (See Lemma 4 in Schmidt et al. (2019)). There exists a constant δ > 0
depending only on ε and L such that as long as Algorithm 1 does not terminate in
Line 5 or 9, there exists a constant δk > δ for every k with

Vol
(

Ωki (jk1 )
)

+ Vol
(

Ωki (jk2 )
)

= Vol
(

Ωki (jki )
)
− δk.
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Theorem 4 (See Theorem 1 in Schmidt et al. (2019)). There exists a K <∞ such
that Algorithm 1 either terminates with an approximate globally optimal point ωk or
with the indication of infeasibility in an iteration k ≤ K.

Similarly to Theorem 1 in Schmidt et al. (2019), Theorem 4 follows from the fact
that, according to Lemma 3, the volume of Ωki decreases by a positive value δk in
each iteration that is uniformly bounded away from zero.

However, due to the fact that Ωi is refined in each iteration to better approxi-
mate gi, the master problem (M(k)) grows linearly over the course of the iterations,
leading to one additional binary variable zk,ji and some additional linear constraints.
Consequently, the computational effort increases in every iteration.

5. Case Study

In this section, we illustrate the applicability of Algorithm 1 on the basis of a set
of exemplary case studies. We first discuss some implementation details and then
present the results of the algorithm.

5.1. Implementation Details. We now explain how we generate the (x, y)-pairs
for the considered instances. We also discuss the used neural networks and their
training, the sampling of points for the subproblem, and how we verify the solutions
obtained with our algorithm.

We generate the (x, y)-pairs as follows. First, we solve the high-point relaxation
of the bilevel problem but with a different objective function in which we either
minimize or maximize the upper-level variable x to get the set Fx. Then, we
equidistantly sample in this interval and solve the parametric lower-level problem
for the given values of x, obtain the lower-level problem’s solution y, and store the
point (x, y) with y = Ψ(x) in our data set. The resulting data set entirely consists
of bilevel feasible points. The obtained (x, y)-pairs are then used to train neural
networks to learn the optimal follower’s response. Note that using the modified
high-point relaxation to obtain the x-interval used for sampling is not possible in
reality if the lower-level problem is not known. However, a generation procedure
would not be required in reality at all since the set of (x, y)-pairs for training the
neural networks consist of observed data from the past.

The lower-level problem of every instance is then assumed to be unknown. Instead,
for every considered problem, the optimal follower’s response for a given leader’s
decision x, i.e., Ψi(x), is learned with feed-forward neural networks with ReLU
activation functions at every node, for all i ∈ [ny]; see, e.g., Goodfellow et al. (2016).
The functions learned with ReLU networks are inherently piecewise linear and, thus,
Lipschitz continuous. Moreover, for all instances the weights of the network are
updated via the Adam optimizer (Ruder 2016). We vary the learning rate, the
number of epochs, and the network architecture depending on the instance at hand.

The bilevel feasible set F and its projection Fx onto the x-variables also depend
on the unknown lower level. Hence, we attempt to deduce F and Fx from the
available (x, y)-pairs. Due to the fact that the interval [x, x̄] with x ≤ x ≤ x̄ can be
larger than Fx, we do not use x and x̄ to initialize Ωi; see (12). Instead, we use the
closed interval generated by the smallest and the largest x-values in the available
training set as a proxy for Fx.

Given the trained networks gi, we solve the master problem and, subsequently,
the subproblems as described in Section 4. To solve the subproblem, we evaluate
the functions gi at p = 100 points on the corresponding x-axis segment. If s points
have already been evaluated on this segment in earlier iterations, then only p− s
new equidistantly distributed points (x, gi(x)) are computed.
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Table 1. Basic information about the instance-specific neural net-
works. All networks are trained for 200 epochs and have training
losses close to zero. The learning rates are rounded to three deci-
mals.

Instance Training Network Learning
set size architecture rate

Bard (1984) 30 [1, 15, 10, 15, 1] 0.055
Bialas and Karwan (1984) 30 [1, 20, 10, 20, 1] 0.049
Clark and Westerberg (1988) 30 [1, 10, 15, 10, 1] 0.023
Haurie et al. (1990) 30 [1, 10, 15, 10, 1] 0.049
Liu and Hart (1994) 30 [1, 20, 10, 20, 1] 0.094
Moore and Bard (1990) 30 [1, 5, 5, 1] 0.074

Table 2. Lipschitz constants as computed with the LipSDP-Neuron
method using MOSEK 9.3.20; see Section 3.

Instance Lipschitz constant Computation time
Bard (1984) 5.77 0.049
Bialas and Karwan (1984) 7.69 0.052
Clark and Westerberg (1988) 0.98 0.045
Haurie et al. (1990) 7.3 0.059
Liu and Hart (1994) 21.65 0.081
Moore and Bard (1990) 3.02 0.022

Finally, Algorithm 1 stops with the indication that Problem (3) is infeasible or
with an ε-feasible solution, where ε = 10−5 is used in our experiments. The solution
computed by our algorithm is compared with the solution obtained by solving the
mixed-integer KKT reformulation with sufficiently large big-M constants; see, e.g.,
Kleinert et al. (2021).

We implemented the LipSDP-Neuron method using the cvxpy 1.1.13 package and
the SDP solver MOSEK 9.3.20. All occurring linear or mixed-integer linear problems
(in particular, (M(k))) are solved using Gurobi 9.5.1. All neural networks have been
trained using the Python library torch 1.11.0. All computations have been executed
on a Intel© CoreTMi7-10510U CPU with 8 cores of 1.8GHz each and 32GB RAM.

5.2. Discussion of the Results. We apply the Lipschitz decomposition method to
6 instances of linear bilevel problems from the literature. All instances have a scalar
upper-level decision variable x so that Assumption 1 is satisfied. For all 6 instances
we use 60 % of the (x, y)-pairs for training and the rest for validation. Alternative
proportions of training and validation set sizes could be used as well if appropriate.
Furthermore, given that Ψi(·), i ∈ [ny], is piecewise linear in our context, rather
small data sets are often already enough to find good solutions for the considered
instances.

Table 1 shows the training set sizes, the configurations of the neural networks,
and the used learning rates. Table 2 contains the corresponding Lipschitz constants
computed for the networks described in the previous table as well as the time
required to compute them. Finally, Table 3 displays the solutions obtained with
Algorithm 1 (as well as the required number of iterations) next to the ones computed
by solving the KKT reformulation. All computation times are given in seconds.
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Table 3. Algorithm 1 solves the instances above using the networks
in Table 1 and the corresponding Lipschitz constants in Table 2.

Instance Solution of Solution of Nr. of Comp.
KKT reform. Algorithm 1 iterations time

Bard (1984) (7.2, 1.6) (7.07, 1.54) 12 0.3
Bialas and Karwan (1984) (16, 11) (15.67, 10.34) 55 2.23
Clark and Westerberg (1988) (19, 14) (18.63, 13.76) 33 1.42
Haurie et al. (1990) (12, 3) (11.79, 3.15) 49 4.44
Liu and Hart (1994) (4, 4) (3.92, 3.67) 58 3.22
Moore and Bard (1990) (0, 1.5) (0, 1.4999) 31 1.21

5.2.1. The Performance of Algorithm 1. As discussed in Section 4.4, the computa-
tional effort of solving the master problem naturally increases over the course of
the iterations. This can also be seen clearly in Figure 2 for 4 exemplarily chosen
instances. Furthermore, the computed Lipschitz constants determine the volume
of the polytopes Ωk

i , i ∈ [ny]. Thus, according to Lemma 3 and Theorem 4, the
convergence of Algorithm 1 directly depends on the constants Li.

One way to keep Algorithm 1 most efficient is to compute Lipschitz constants Li
that are as small as possible. To illustrate this, we consider the instance (Moore
and Bard 1990)

max
x,y

F (x, y) = −x− 2x (14a)

s.t. y ∈ Ψ(x), (14b)
where Ψ(x) is the set of optimal solutions of the x-parameterized linear lower-level
problem

max
y

f(x, y) = y (15a)

s.t. − x+ 2.5y ≤ 3.75, (15b)
x+ 2.5y ≥ 3.75, (15c)
2.5x+ y ≤ 8.75, (15d)
x, y ≥ 0, (15e)
x, y ∈ R. (15f)

The optimal solution of Problem (14) is (0, 1.5). As explained in Section 5.1,
we use the smallest and the largest x-values in the available data set to initialize
[x, x̄], which is required in Line 1 of Algorithm 1. For this instance, the unknown
lower level is substituted by a neural network that has 2 hidden layers with 5 nodes
each and is trained on a set of 30 points. The learning rate is approximately 0.074.
Using the trained network’s weights, we compute a Lipschitz constant of about 3.02.
Finally, Algorithm 1 finds the approximate solution (0, 1.4999) in 1.21 seconds
and 31 iterations for ε = 10−5. Table 4 captures how different Lipschitz constants
influence the computation time and the number of iterations of Algorithm 1 when
applied to Problem (14). For all computations, we keep the tolerance ε = 10−5.
This table clearly shows that the algorithm performs better, the closer the used
Lipschitz constant is to the true value of 2.5.

Moreover, constants smaller than 2.5 seemingly perform even better. For instance,
using 0.5, Algorithm 1 finds a solution in only 10 iterations. Nevertheless, using
values smaller than the Lipschitz constant of function gi(·) can potentially lead to
false infeasibilities reported by the algorithm.
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(a) Moore and Bard (1990)

(b) Bialas and Karwan (1984)

(c) Clark and Westerberg (1988)

(d) Liu and Hart (1994)

Figure 2. The computational effort of Algorithm 1 grows linearly
in the number of constraints in each iteration. The x-axis shows
the number of iterations required by Algorithm 1.
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Table 4. Computation times in dependence of the Lipschitz con-
stant. The second row corresponds to the Lipschitz constant ob-
tained with LipSDP-Neuron, and the third one to the true Lipschitz
constant of Ψ(·) for instance (14).

Lipschitz constant Iterations Computation time Solution
5 65 3.67 (0, 1.4999)

3.02 31 1.08 (0, 1.4999)
2.5 33 1.06 (0, 1.5)
1.5 20 0.45 (0, 1.4999)
0.5 10 0.13 (0, 1.4999)
0.1 - - -

Figure 3. Two neural networks trained on the same set with
different learning rates. Consequently, the learned function g (blue
curves) is different and Algorithm 1 computes two different solutions
(blue stars) for instance (14) using these functions.

5.2.2. The Accuracy of Algorithm 1. According to (11), an ε-feasible solution of an
instance is ε-close to the graph of all functions gi(·). This does not mean that it is
also necessarily close to the true optimal response Ψi(·), i ∈ [ny]. Consequently, the
accuracy of the method depends on the ability of the neural network to approximate
the true optimal responses as good as possible.

Figure 3 illustrates the importance of a good approximation. There you can see
in the bottom plot that the ε-feasible solution, in this case (0.03, 1.67), obtained for
instance (14), is ε-close to (0.03, g(0.03)) but not to (0.03,Ψ(0.03)).
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Table 5. Lipschitz constants and solutions in dependence of the
size of the training set for the instance in Bard (1984).

Training set size Lipschitz constant Solution
6 5.04 (6.5, 1.25)
12 6.64 (6.87, 1.43)
30 5.77 (7.07, 1.54)
60 6.35 (7.01, 1.5)
120 8.43 (7.17, 1.58)

In this context, it is also interesting that we observed that larger training sets
can lead to better solutions. Table 5 shows how the computed Lipschitz constants
and the solutions obtained for the instance in Bard (1984) change with increasing
data sets. For this instance, the true solution is (7.2, 1.6). Due to the fact that the
solution is located at an extreme point of Fx, the accuracy of Algorithm 1 directly
depends on the proxy for Fx in this specific example.

6. Conclusion

In many practical situations, the leader of a bilevel optimization problem is not
aware of an explicit formulation of the follower’s problem. To cope with this issue, we
proposed a method that uses neural networks to learn the follower’s optimal reaction
from past bilevel solutions. After training of the network, we compute Lipschitz
constants for the learned functions and use a Lipschitz decomposition method to
solve the reformulated, single-level problem with neural-network constraints.

This short paper should serve as a proof of concept for the ideas sketched above.
However, many aspects can be improved. First of all, the assumption of a scalar
leader’s decision seems rather strong. Very recently, a follow-up paper (Grübel et al.
2022) of Schmidt et al. (2019) appeared, in which a similar Lipschitz decomposition
method is developed that can tackle the multi-dimensional case. This method can
now be used to also consider bilevel optimization problems with an unknown follower
problem and multiple decision variables of the leader. Second, we restricted ourselves
in this paper to the case in which we have no coupling constraints. Fortunately, it
is rather straightforward to use Algorithm 1 also for linear bilevel problems with
coupling constraints as well. Even if the bilevel feasible set is disconnected due to
the presence of coupling constraints, the follower’s optimal response function Ψi(·)
is learned to be a piecewise linear function by the corresponding neural network.
Due to the fact that solutions are found at vertices of the feasible set, at least one
feasible point is always available to serve as solution, even if the line connecting two
points is not bilevel feasible. On the other hand, this is getting more complicated if
nonlinear bilevel problems are considered. Hence, the setting of nonlinear problems
with coupling constraints is a topic of future research. Third, the overall idea should
be reasonable also in the mixed-integer case, at least if no coupling constraints
are present. Fourth, there has been some recent work (Bolusani et al. 2020) on
the relation between multilevel mixed-integer linear optimization problems and
multistage stochastic mixed-integer linear optimization problems with recourse.
Hence, it might be possible to exploit these relations to carry over learning-based
techniques for two-stage stochastic optimization to bilevel optimization. Fifth and
finally, it would be very interesting to see an application of the concept discussed in
this paper to a real-world situation, which is, however, out the of the scope of this
short paper.
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