
Optimisation over Decision Trees –
A Case Study for the Design

of Stable Direct-Current Electricity Networks

Daria Gutina1, Andreas Bärmann1, Georg Roeder2,
Martin Schellenberger2 and Frauke Liers1

1 Andreas.Baermann@fau.de
Daria.Gutina@protonmail.com

Frauke.Liers@fau.de
Department of Data Science,

Friedrich-Alexander-Universität Erlangen-Nürnberg,
Cauerstraße 11, 91058 Erlangen, Germany

2 Georg.Roeder@iisb.fraunhofer.de
Martin.Schellenberger@iisb.fraunhofer.de

Gruppe Data Analytics, Abteilung Intelligente Energiesysteme,
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB,

Schottkystraße 10, 91058 Erlangen, Germany

Abstract

In many real-world mixed-integer optimisation problems from engineering, the side
constraints can be subdivided into two categories: constraints which describe a certain lo-
gic to model a feasible allocation of resources (such as a maximal number of available as-
sets, working time requirements, maintenance requirements, contractual obligations, etc.),
and constraints whichmodel physical processes and the related quantities (such as current,
pressure, temperature, etc.). While the first type of constraints can often easily be stated in
terms of a mixed-integer program (MIP), the second part may involve the incorporation of
complex non-linearities, partial differential equations or even a black-box simulation of the
involved physical process. In this work, we propose the integration of a trained tree-based
classifier – a decision-tree or a random forest, into a mixed-integer optimization model as a
possible remedy. We assume that the classifier has been trained on data points produced
by a detailed simulation of a given complex process to represent the functional relationship
between the involved physical quantities. We then deriveMIP-representable reformulations
of the trained classifier such that the resulting model can be solved using state-of-the-art
solvers. At the hand of several use cases in terms of possible optimisation goals, we show
the broad applicability of our framework that is easily extendable to other tasks beyond
engineering. In a detailed real-world computational study for the design of stable direct-
current power networks, we demonstrate that our approach yields high-quality solutions
in reasonable computation times.

Keywords: Decision Trees, RandomForests, Mixed-Integer Programming, PowerNetworks

Mathematics Subject Classification: 68T05, 68Q32, 90C11, 90B10

1

Andreas.Baermann@fau.de
Daria.Gutina@protonmail.com
Frauke.Liers@fau.de
Georg.Roeder@iisb.fraunhofer.de
Martin.Schellenberger@iisb.fraunhofer.de


1 Introduction

In recent years, mathematical optimisation methods have been employed very successfully for
the solution of many applied problems. One reason for this success is the enormous progress
in algorithms for the global solution of mixed-integer programs (MIPs). Nowadays, more and
more optimisation problems of the form min{cTx ∣ Ax ≤ b, x ∈ Zp−q ×Rq}, with vectors c and b
and a matrix A of appropriate dimensions, can routinely be solved with modern available soft-
ware, even for large problem instances. However, it is often difficult to develop accurate, ef-
ficiently tractable mixed-integer programming models for more general problem classes that,
for example, incorporate physical processes. These processes often involve non-convex and
non-linear relationships between the variables. For instance, this applies to the behaviour of
electrical grids that are governed by partial differential equations (PDE). While the solution
of PDEs is already complex in itself, the corresponding optimisation problems are even more
challenging. In addition, it might be that the exact laws or procedural rules underlying an op-
timisation task are unknown, may depend on the installed hardware, or may only be given im-
plicitly. On the other hand, typically, historical or simulated datasets are available from which
approximations of these relationships can be derived. Such data can be analysed and prepared
to train a machine learning classifier whose results may then be integrated into an optimisation
procedure. Training refers to the process by which a machine learning classifier autonomously
recognises relationships between the given data in the dataset and extracts the rules needed
to identify them. These rules are then used to categorise new, unseen input data. There are
many types of classifiers and regression methodologies. An overview of many popular ma-
chine learning methods is provided e.g. by Bhavsar and Ganatra (2012); Hastie et al. (2009);
Bishop (2006). Once a trained classifier is available, the task is to integrate its decision rules
into the considered optimisation model.

In this paper, we deal with tree-based classifiers, in particular random forests, which are
ensemble classifiers consisting of multiple decision trees. Each of these decision trees classi-
fies data points according to several hierarchically consecutive linear inequalities, whichmakes
them very well suited for use in a mixed-integer linear optimization context. We exploit this
to replace the implicitly given constraints in the optimisation model by the decisions of trained
decision trees.

Tree-based classifiers can make very accurate predictions in the scope of the training data,
but are normally not suitable for extrapolation. Their prediction performances decrease with
the distance from the training data, see (Shahriari et al., 2016). In order to be independent of the
training data in the optimization model and at the same time to keep the prediction accuracy
constantly high in the entire parameter range considered, we use data points with maximum
distance to each other to train the classification model.

At the hand of a real-world case study, we evaluate the possibilities such a modelling ap-
proach offers, namely the design of stable direct-current (DC) electricity network, DC grids
in brief, which comprise connected DC sources, consumers and storage systems. DC grids
with system voltages below 1500 V, so-called low-voltage DC grids (LVDC grids or networks) are
becoming increasingly important in the context of renewable energies, see International Elec-
trotechnical Commission (2016) for an introduction. For its safe and reliable operation, the
stability of an LVDC grid must be maintained under all planned load scenarios. Network sta-
bility, in turn, is determined by the grid layout, device parameters and control methods. To
assess the stability of a network for various configurations and setup parameters, we generate
the respective stability information from automated circuit modelling to describe the physical
grid and use the state of stability (stable or unstable) as the label for classification (cf. Kumar
et al. (2020)). With increasing grid complexity, novel methods are necessary to enable continu-
ous grid monitoring and automated adjustment in the case of grid instability. This led us to
train a classifier that differentiates the “stable” physical parameter settings from the “unstable”

2



ones.
Incorporating multiple instead of only one decision tree is known to typically achieve a sig-

nificant improvement of the prediction accuracy. Thus, inmanypractical applications ensemble
classifiers consisting of several smaller classifiers are used, for example the random-forest ap-
proach, see Breiman (2001). Multiple decision trees are trained using equally-sized subsets of
the training data, and a joint classification is determined. Random forests have already been
used in many contexts, e.g. statistics, medicine and fault detection, but according to our know-
ledge not yet for studying the stability of electricity networks. The combination of trained clas-
sifiers with optimisation models has been used in similar applications However, to the best of
our knowledge, we are the first to use the structure of trained classifiers to make inferences
about input parameters, especially to find particularly stable regions in the electricity network.

Literature review The combination of machine learning classifiers with optimisation models
is a very active research topic. The corresponding literature referred to in the following is di-
vided into two categories: research articles where a classifier is trained in a globally optimal
fashion using mixed-integer programming methods and works that exploit the decisions of
already trained classifiers within optimisation models.

The first topic is treated e.g. in Bonfietti et al. (2015) and Bertsimas and Dunn (2017) for
random-forest classifiers and in Thorbjarnarson and Yorke-Smith (2020) for neural networks.
In Kumar et al. (2019), optimisation models are used to analyse trained deep neural networks
with ReLU andMax Pooling Layers concerning their decision-making and to identify and visu-
alise input data that are particularly well recognised.

In the second category, to which the present article also belongs, trained machine learning
classifiers are used as inputwithin optimisationmodels of different kinds. A recent overview of
methods to identify the feasible regions in optimisation problems via trained machine learning
classifiers can be found in Maragno et al. (2021), who present it as a more general framework
for data-driven optimisation. The works (Mistry et al., 2021, 2018; Thebelt et al., 2021, 2020;
Ceccon et al., 2022; Thebelt et al., 2022) deal with the integration of trained gradient-boosted
regression trees into optimisation models stemming from different applications There the dis-
tribution of the training data that influences the prediction accuracy is integrated as a penalty
term into the objective function to minimise risk. In contrast, in our work the training set is
chosen such that it samples the whole relevant parameter space. As a consequence, such addi-
tional riskmeasures can be avoided. Bertsimas et al. (2016) show how regressionmodels, more
precisely random forests and support vector machines predicting clinical trial outcomes, can be
incorporated intoMIPmodels in order to determine best possible chemotherapy treatments. In
Ferreira et al. (2015), the development and implementation of a pricing decision support tool
used to maximise sales of novel products are described, where the price-demand ratio was pre-
dicted using random forests. Biggs et al. (2017) maximises over the predicted value of trained
random forests to find the best possible input parameters. As possible applications, they con-
sider maximizing the profitability of estate investments and determining the most appropriate
jury assignment in case studies. A similar approach was taken by Mišić (2020) for applica-
tions from the fields of drug development and customised pricing. Furthermore, the latter two
works consider heuristic methods and Benders decomposition to handle random-forest classi-
fiers with many decision trees, which are used to obtain a better prediction quality. Unlike the
literature cited above, we deal with random forests for classification, where we are particularly
interested in the practical implementation of models incorporating many decision trees. The
work by Halilbašić et al. (2018) is motivated along similar lines. They use decision trees for
classification in order to extract decision rules from data. These decision rules are incorporated
into an optimisation model to study redispatch measures performed by network transmission
system operators in order to ensure network stability.

Our article discusses a closely related approach for larger andmultiple decision trees. In ad-

3



dition, we investigate the possibilities our approach offers with respect to examining the areas
predicted to be feasible by the classifier. This work is part of an approach to create tools and
methods for designing and operating LVDC networks with the support of data analysis meth-
ods. In the design phase, different network configurations are calculated and the optimal con-
figuration of network parameters to achieve grid stability are determined. During operation,
LVDC networks are monitored continuously using a novel impedance measurement method
and stabilized by optimizing feed-in characteristics or software parameters in the converter
systems. For details, see (Roeder et al., 2021).

Contribution Our main contributions are as follows. We summarize how complex or un-
known constraints, implicitly given via a decision tree or random forest, can be incorporated
into a mathematical optimisation problem. Using three exemplary use cases corresponding to
different optimisation goals, we demonstrate the versatility of a random-forest classifier for de-
fining (part of) the feasible set of an MIP. In particular, we show how the closest feasible point
and the largest feasible region represented by the classifier can be determined. In an extensive
case study, we use MIPmodels to determine the best possible adjustment of network control or
circuit parameters, e.g. capacitances, resistances and cable lengths of an LVDC network. Not-
ably, the stability of the network is ensured by incorporating a random-forest classifier into the
model. Within this case study, we find that the number of decision trees plays a significant role
in the solution time of the resulting MIP model. For random forests above a certain size, the
sequential solution of slightly adapted and more and more restricted MIP models is necessary.
We propose efficient algorithms to solve models incorporating random forests that were pre-
viously unsolvable or only solvable with great effort. They produce high-quality solutions for
the design of stable LVDC networks.

Structure This work is organized as follows. Section 2 introduces basic definitions and nota-
tion concerning decision tree and random-forest classifiers. Subsequently, Section 3 proposes
algebraic reformulations of random-forest classifiers to integrate them into an MIP model. In
Section 4, we discuss several practically relevant optimisation-based approaches to examine the
areas predicted to be feasible by a tree-based classifier. Section 5 explains the technical back-
ground on stability requirements in LVDC networks and describes the derivation of random-
forest classifiers for stability prediction. The resulting classifiers are used in Section 6 as part
of an integrated optimisation approach to find the best possible stable designs of an LVDC net-
work. We show that optimal solutions can be obtained within reasonable computation times
for random-forest classifiers with more than 100 trees. We also describe a modelling trick for
solving larger problem instances, which allows us to consider random-forest classifiers with
up to 1, 000 decision trees and discuss the consequences for the application. We conclude in
Section 7 with an outlook on possible extensions of our framework.

2 Preliminaries on Tree-Based Classifiers

We consider a data set (X, Y) ∈ Rn×p ×Rp consisting of n input-output data tuples (Xi, Yi) ∈
R

p ×R, i ∈ {1, . . . , n}. In each such data tuple, the input vector Xi ∈ Rp, with p-many features,
is assigned a binary label Yi ∈ {0, 1}. The data set (X, Y) can be used as training data to fit
(“learn”) a classifier, i.e. a mapping function c∶Rp → {0, 1} to classify data points in Rp into
either 0 or 1. This allows us to classify unseen data points as well. Estimates on the prediction
certainty of the classification can be represented by a function f ∶Rp → [0, 1]. We start by con-
sidering a classifier widely used in practice, namely binary decision trees, and then describe
their extension to random-forest classifiers.

4



2.1 Binary Decision Trees

Decision trees are among the most common data classifiers used in practice. Their advantages
include that they can quickly be trained to satisfactory quality using heuristics, they allow for
“human-interpretable” classification rules which can be expressed in terms of the features of
the input data and they can easily be visualised (cf. Bertsimas et al. (2019)).

For a detailed introduction to decision trees, we refer the reader to EdwardA. Bender (2010),
whose notation we adopt in the following brief recapitulation. A decision tree T = (V, E) is a
connected arborescence, where V is the set of vertices and E the set of edges. It possesses ex-
actly one node without an ancestor, the root. Nodes without outgoing edges, and thus without
descendants, are called leaves, all others are intermediate nodes. For each vertex w ∈ V in a de-
cision tree, there is a unique sequence of edges (v1, v2), (v2, v3), . . . , (vk, w) ∈ E from the root v1
to w, called the path to vertex w. The depth of the tree is the maximum number of edges in a
path from the root to a leaf. The purpose of a decision tree is to classify data points in space
by assigning each point to a leaf in the tree. It recursively subdivides the p-dimensional space
into disjoint regions using logical rules. The node set V is thus partitioned into decision vertices
VDec, comprising the root and the intermediate nodes, and the class vertices VCl formed by the
leaves of the tree.

In binary decision trees, intermediate nodes have exactly two outgoing edges and thus two
descendants. Further, the logical split rule in a node v ∈ V takes the form of a linear constraint
ãT

v x ≤ b̃v with ãv ∈ Rp and b̃v ∈ R. The two descendants of v can be seen as the roots of two
subtrees, where the “left-hand” subtree describes the subregion in space that satisfies the linear
constraint, and the “right-hand” subtree the subregion that does not. In a univariate decision
tree, ãv is a multiple of a standard unit vector, i.e. ãv = k ⋅ ei with k ∈ R and i ∈ {1, . . . , p}. As a
result, each of the decision rules splits the data points at exactly one feature i ∈ {1, . . . , p} in an
axis-parallel fashion.

In this article, we restrict ourselves to binary classifiers with labels representing two differ-
ent categories for ease of exposition. Our approach can, however, be extended to decision trees
with more categories as they are considered in Breiman (1996, 2001) as well as Bertsimas and
Dunn (2017), for example. In the following, each class vertex v ∈ VCl thus corresponds to one of
the two categories 0 and 1, depending on the labels of the data points falling into the subregion
in space which fulfils all linear constraints in the decision vertices on the path from the root
to v. If the majority of the points in that region have label 0, so does v, and 1 otherwise. In case
of a tie, the class with the lowest label is predicted, i.e. class 0, as proposed in Breiman (1996).

2.2 Random-Forest Classifiers

One commonly-used type of multi-tree classifiers are random forests, introduced in Breiman
(2001), which are based on Breiman’s bagging (bootstrap aggregation) idea. In this approach,
multiple predictive classifiers are trained on a subset of the training data. Then the predic-
tions of all classifiers together are used to classify a given data point. Random-forest classifiers
are implemented in many machine learning libraries, e.g. in scikit-learn (see Pedregosa et al.
(2011)). Detailed explanations can be found in Breiman (1996, 2001), of which we give a short
summary in the following.

The classification of a given data point produced by a random forest depends on the clas-
sifications of the individual decision trees. There are two main approaches in the literature
for aggregating them into one decision: voting and averaging. The voting approach is the ori-
ginal version of the random-forest classifier used for categorical responses, andwas introduced
in Breiman (2001). Here, each decision tree predicts a class, and the random-forest classifier
“votes” for the most popular class. The averaging method was previously used in Breiman
(1996, 2001) to solve regression problems. Here, each decision tree predicts a class with a cer-
tain probability. The argmax of the average of these probability estimates determines the pre-

5



diction of the random forest. In Biau et al. (2008), however, the authors prove that both types
of random forests result in consistent classifiers for categorical responses. In this context, “con-
sistent” means that the prediction becomes more accurate as the number of data points used in
training increases. In the following, we will focus on averaging random forests, the type that is
also implemented in scikit-learn, which we will use in the application studied in Section 6.

We consider a random forest T ∶= {Tt ∣ Tt = (Vt, Et), t ∈ {1, . . . , m}}, represented as a set of
m decision trees Tt, the so-called base learners, where each of them is constructed as described in
Section 2.1. The nodesVt of each tree Tt ∈ T are partitioned into decision verticesVt,Dec and class
vertices Vt,Cl. In each decision vertex v ∈ Vt,Dec, there is a split inequality of the form ãT

t,vx ≤ b̃t,v
to recursively subdivide the space Rp into disjoint regions. Let γt,v ∈ [0, 1] be the fraction of
data points in v which belong to class 1. The class predicted by the random forest for a given
point x ∈ Rp then results from the average over the fractions γt,vt,x ∈ [0, 1] for class 1 of each
base learner, where vt,x represents the leaf belonging to the point x in each tree t ∈ {1, . . . , m}.
If the value exceeds 0.5, class 1 is predicted, otherwise class 0:

cRF∶Rp →R, cRF(x) =
⎧⎪⎪⎨⎪⎪⎩

1, if 1
m ∑

m
t=1 γt,vt,x > 0.5

0, otherwise
. (1)

The prediction certainty for the selected class results directly from themean value of the average
over the fractions γt,vt,x ∈ [0, 1], i.e. from the expected value:

f RF∶Rp → [0, 1], f RF(x) =
⎧⎪⎪⎨⎪⎪⎩

1
m ∑

m
t=1 γt,vt,x , if cRF(x) = 1

1− 1
m ∑

m
t=1 γt,vt,x , otherwise

.

We remark that for m = 1, random forests naturally reduce to ordinary decision trees.

3 Using Tree Classifiers to Define Mixed-Integer Constraints

In this section, we model the input-output relation of tree-based classifiers algebraically. The
subdivision of space into polyhedral feasible and infeasible regions inferred from a trained
random forest is converted into mixed-integer linear constraints.

3.1 Problem Setting

We consider a general mixed-integer and possibly non-linear program (MINLP) with decision
variables x ∈ Zp−q ×Rq of the following form:

min cTx (2a)
s.t. Dx ≤ d (2b)

x ∈ F (2c)
x ∈ Zp−q ×Rq, (2d)

where D ∈Rq×p, d ∈Rw, c ∈Rp and q ∈ {0, . . . , p}. The condition x ∈ F represents partially un-
knownor “difficult-to-state” (i.e. algorithmically intractable) constraints. WithoutConstraint (2c),
Model (2) is a classical mixed-integer linear problem (MIP), and thus NP-hard in general.

We now study the question of how it can be decided whether for a concrete variable as-
signment x ∈ Zp−q ×Rq an implicitly given condition x ∈ F holds or not, and how this condition
can be formulated as mixed-integer linear constraints. To this end, we assume in our data-
driven approach that we have n concrete realisations of data points Xi ∈ Zp−q ×Rq, i ∈ {1, . . . , n}
for which it is known whether Xi ∈ F is fulfilled or not, for example through a simulation or
through explicit labelling by an expert. Each data point Xi can thus be assigned to a class

6



Yi ∈ {0, 1}, where Yi = 1 if Xi ∈ F holds, and Yi = 0 otherwise. This results in a training data set
(X, Y)with X ∈ Zn×(p−q) ×Rn×q and Y ∈ {0, 1}n, which can be used to train a classifier. The clas-
sifier canmake a prediction for any x ∈ Zp−q ×Rq whether x ∈ F holds or not. In our exposition,
we assume that the chosen trained classifier is accurate enough to trust its output.

3.2 Algebraic Reformulation of a Random-Forest Classifier

In the following, we introduce a mixed-integer algebraic reformulation of a random forest

T = {Tt ∣ Tt = (Vt, Et), t ∈ {1, . . . , m}}

consisting of m individual binary decision trees, eachwith amaximumdepth of k, as defined in
Section 2.2. In a random-forest classifier, the labelling of a point x̃ ∈ Zp−q ×Rq results from the
individual predictions of the involved decision trees. In order to incorporate these predictions
into a mixed-integer program, we have to model algebraically for each binary decision tree
t ∈ {1, . . . , m} the path

Px̃ = {(vi1 , vi2), (vi2 , vi3), . . . , (vik̃−1
, vik̃

)}, with vi1 , . . . , vik̃−1
∈ Vt,Dec and vik̃

∈ Vt,Cl

of length k̃ ≤ k from the root vi1 ∈ Vt,Dec, along a sequence of intermediate decision nodes
in Vt,Dec to one of the leaves in Vt,Cl. This path depends on the results of the split inequalities
along the k̃ − 1 decision vertices from Vt,Dec. At each decision vertex, if x̃ satisfies ãT

v x ≤ b̃v,
the left descendant is chosen, otherwise the path continues with the right descendant, until
reaching one of the leaves in Vt,Cl.

In order to formulate this classification with the help of mixed-integer constraints, we need
to consider the two mutually exclusive linear inequalities

ãT
v x ≤ b̃v and ãT

v x > b̃v

assigned to each decision vertex v ∈ Vt,Dec within each tree t ∈ {1, . . . , m}. Using a standard
modelling approach, this disjunction can be incorporated into Model (2) by introducing for
eachdecision tree t ∈ {1, . . . , m} and eachdecision vertex v ∈ Vt,Dec two binary auxiliary variables
z(i)t,v ∈ {0, 1}, i ∈ {1, 2}. With these it is possible to activate (z(i)t,v = 1) or to deactivate (z(i)t,v = 0)
such an inequality:

ãT
t,vx ≤ b̃t,v + M(1)t,v (1− z(1)t,v ), ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}, (3)

ãT
t,vx − εt,v ≥ b̃t,v − M(2)t,v (1− z(2)t,v ), ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}. (4)

In this two constraints, the constants M(i)t,v ∈R, for v ∈ Vt,Dec and i ∈ {1, 2} have to be sufficiently
large in order not to rule out otherwise feasible solutions:

M(1)t,v ≥ max
x

{ãT
t,vx} − b̃v, ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}, (5)

M(2)t,v ≥ −min
x

{ãT
t,vx} + b̃v, ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}. (6)

As MIP solvers cannot work with strict inequalities, we introduce a small constant εt,v > 0 in
Equation (4). For numerical stability, εt,v should be chosen as small as necessary, but as large
as possible. For example, in order to ensure, say, six valid digits in the left-hand side of the
inequality, one can choose

β ∶= −5+ ⌊log10 ∣b̃t,v∣⌋ and εt,v ≥ 10β, ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}. (7)

7



Because of the mutually exclusive conditions, at most one auxiliary variable can be activated
per decision node v ∈ Vt,Dec:

z(1)t,v + z(2)t,v ≤ 1 ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}. (8)

After certifying for each decision rule whether the given data point x̃ satisfies it or not, we need
to ensure that classification of the data point follows a connected path within each decision tree
t ∈ {1, . . . , m}. For each node v ∈ Vt,Dec, we thus introduce the shorthand notation l(v) for the
first (left-hand) and r(v) for the second (right-hand) successor. Only if the first split rule of a
vertex v ∈ Vt,Dec is activated, i.e. z(1)t,v = 1, the two inequalities given by Equations (3) and (4) of
its left-hand successor l(v) can be activated, too. The same applies to the second split rule of
such a node and its right-hand successor r(v). Therefore, we add as additional constraints:

z(1)t,l(v), z(2)t,l(v) ≤ z(1)t,v ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}, (9)

z(1)t,r(v), z(2)t,r(v) ≤ z(2)t,v ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}. (10)

To avoid a case distinction in the statement of Equations (9) and (10) to cover the cases l(v) ∈
Vt,Cl and r(v) ∈ Vt,Cl, we introduce the two binary variables z(1)t,v and z(2)t,v also for the class vertices
v ∈ Vt,Cl. For each leaf node, we thus require

z(2)t,v = z(1)t,v ∀v ∈ Vt,Cl,∀t ∈ {1, . . . , m}. (11)

In each of the decision trees belonging to the random forest T , at most one of the binary auxil-
iary variables belonging to a leaf must be active, i.e.

∑
v∈Vt,Cl

z(1)t,v ≤ 1 ∀t ∈ {1, . . . , m}. (12)

We call a tree with an active leaf an active tree. The inequalities along the associated path must
then be satisfied by x̃. To the contrary, a tree is inactive if all the inequalities in its nodes are
deactivated via the corresponding z-variables, such that they are valid for any x ∈ Zp−q ×Rq.
Consequently, if z(1)t,ṽ = 1, the associated decision tree t ∈ {1, . . . , m} is active and x̃ is assigned
to the leaf ṽ ∈ Vt,Cl, which is then the active leaf of the tree. Finally, to ensure feasibility in
Equation (2c), we can only allow solutions which the random forest assigns to class 1. If the
arithmetic mean of the predictions of the individual decision trees for x̃ fulfil 1

m ∑
m
t=1 γt,vt,x̃ > 0.5,

the random forest assigns label 1, otherwise 0. To represent this averaging logic algebraically,
we model the tree certainty of each individual decision tree t ∈ {1, . . . , m} via a binary variable
Γt ∈ [0, 1]. Thanks to the auxiliary variables z(1)t,v we know which leaf is active in the respect-
ive tree. Thus, we can determine the tree certainty by multiplying the given constant fraction
γt,v ∈ [0, 1] at leaf v ∈ Vt,Cl for class 1, described in Section 2.2, via the corresponding auxiliary
variable z(1)t,v :

Γt = ∑
v∈Vt,Cl

γt,v ⋅ z(1)t,v ∀t ∈ {1, . . . , m}. (13)

For x̃ to be assigned to class 1, the sum of tree probabilities must be at least half the number of
decision trees:

m
∑
t=1

Γt ≥ ⌈0.5m⌉. (14)

8



In summary, the following MIP model emerges if we replace Equation (2c) by our MIP repres-
entation of a trained random forest with averaging as the evaluation rule:

min cTx (15a)
s.t. Dx ≤ d (15b)

(3)− (4), (15c)
(8)− (14) (15d)

z(1)t,v , z(2)t,v ∈ {0, 1} ∀v ∈ Vt,∀t ∈ {1, . . . , m}, (15e)
Γt ∈ {0, 1} ∀t ∈ {1, . . . , m}, (15f)
x ∈ Zp−q ×Rq. (15g)

In particular, Inequalities (3)–(4) and (8)–(14) ensure that the random forest predicts label 1,
i.e. feasible, for the chosen solution x̃.

4 Optimisation over Random-Forest Classifiers

In order to demonstrate the modelling capabilities of random-forest classifiers within MIP for-
mulations, we will now investigate three different use cases that are relevant in the real-world
application studied later. They concern in particular the choice of optimization objective, as
summarized in the following:

1. Assume thatwe are given a point x ∈ Zp−q ×Rq which is infeasible according to the trained
classifier. This pointmay e.g. represent a solution candidatewhichwas “manually” found
by some expert planner. An interesting question is now which minimum adjustments
need to be made to x in order to reach a solution x̃ ∈ Zp−q ×Rq that is feasible according
to the classifier. This objective can be formulated straightforwardly, see Section 4.1.

2. As a second setting, let us assumewewant to ensure the “reliability” of a chosen solution
x ∈ Zp−q ×Rq, i.e. the solution should not lie close to the split between two classes of
points separated into feasible and infeasible. For this reason, we determine an optimal
solution x so that a sphere of maximum possible radius around x is fully contained in a
feasible class of the trained classifier, see Section 4.2.

3. Finally, in Section 4.3 we show that for a random forest based on univariate decision trees
we can also find the largest p-dimensional cuboid VQ that is completely contained in a
feasible class of the trained classifier.

In order to obtain meaningful results, we restrict x to the valid range of the classifier, i.e. the
lower (l ∈Rp) and upper (u ∈Rp) bounds on the training data (X, Y). For the sake of simplicity,
we assume that all parameter values are normalised to the interval [0, 1]:

0 = li ≤ xi ≤ ui = 1 ∀i ∈ {1, . . . , p}. (16)

4.1 Smallest Possible Adjustment to Make a Solution Candidate Feasible

In the first setting, we assume that an initial solution candidate xstart ∈ Zp−q ×Rq is given which
is not recognised as feasible by the classifier. We search for a solution xopt ∈ Zp−q ×Rq which
is classified as feasible and which requires the minimum possible adjustment of the candid-
ate xstart. We will exemplarily show two possibilities for such an adjustment – first minimizing
the distance between xstart and xopt and secondminimizing the number of differing coordinates
between the two.

9



x1

x2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

feas iblefeas ible

feasiblefeasible

feasiblefeasible

xstart

optimaloptimal

x1
x2

x3

(a) Smallest normalised distance.

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

feas iblefeas ible

feasiblefeasible

feasiblefeasible

xstart

optimaloptimal

optimaloptimal

(b) Least possible number of coordinates.

Figure 1: Starting at a given point xstart that is infeasible according to the random-forest classi-
fier, find a feasible solution via a smallest possible adjustment (Figure 1a) or via adjusting the
least possible number of coordinates (Figure 1b) in order to reach a feasible point.

The initial situation for both problems is shown in Figure 1a and Figure 1b, respectively,
for a random-forest classifier based on univariate decision trees. The plotted green points x1,
x2 and x3 are potential optimal solutions for the first problem. The continuous green lines in
Figure 1b represent equivalent optimal solutions for the second problem.

Finding the Closest Feasible Point. To find the closest feasible point to xstart, we minimize
the distance

min
x

∥δ∥r ,

where δ is the difference between x and xstart, i.e. δ = x − xstart, and the r-norm is defined as
∥δ∥r ∶= (∑p

i=1 ∣δi∣r)
1
r . The most common norms are the norm `1, the Euclidean norm `2 and the

infinity norm `∞. For instance, to calculate the absolute value of δ in the `1-norm, its entries are
separated into their positive and negative parts, δ+ ∈R+ and δ+ ∈R− respectively:

δi = δ+i − δ−i ∀i ∈ {1, . . . , p},
δ+i , δ−i ≥ 0 ∀i ∈ {1, . . . , p},

∣δi∣ = δ+i + δ−i ∀i ∈ {1, . . . , p}.

Thus, to find the nearest point that is feasible according to the classifier, we can utilize the
following MIP model:

min
p

∑
i=1

(δ+i + δ−i ) (17a)

s.t. Dx ≤ d (17b)
(15c)− (15f) (17c)
δ+i − δ−i = xi − xstart

i ∀i ∈ {1, . . . , p} (17d)
δ+i , δ−i ≥ 0 ∀i ∈ {1, . . . , p} (17e)
0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , p} (17f)
δ+i , δ−i ∈R ∀i ∈ {1, . . . , p} (17g)
x ∈ Zp−q ×Rq, (17h)

10



where the constraints in (17c) represent the feasibility inside the random-forest classifier.

Minimum the Number of Coordinates to be Adjusted Suppose we are looking for the smal-
lest number of coordinates to change in the solution candidate xstart in order to obtain a feasible
solution xopt ∈ Zp−q ×Rq. We introduce a binary variable δoni for each feature i ∈ {1, . . . , p} that
takes value 1 if xi ≠ xstart

i , and 0 otherwise:

M−
δi
⋅ δoni ≤ x − xstart

i ≤ M+
δi
⋅ δoni ∀i ∈ {1, . . . , p}.

Here, M−
δi
and M+

δi
are again sufficiently large constants, which in this case, for example, can be

defined as the distances between the boundary values of x and the initial value:

M−
δi
∶= 0− xstart

i , i ∈ {1, . . . , p},

M+
δi
∶= 1− xstart

i , i ∈ {1, . . . , p}.

In order to minimize the number of adjusted coordinates, we sum over the δoni in the objective
function, which leads to the following optimisation problem:

min
p

∑
i=1

δoni (18a)

s.t. Dx ≤ d (18b)
(15c)− (15f) (18c)
M−

δi
⋅ δoni ≤ xi − xstart

i ≤ M+
δi
⋅ δoni ∀i ∈ {1, . . . , p} (18d)

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , p} (18e)
δoni ∈ {0, 1} ∀i ∈ {1, . . . , p} (18f)
x ∈ Zp−q ×Rq. (18g)

The constraints in (18c) again represent the trained random forest.

4.2 Finding Reliable Solutions

In many applications, a chosen solution x ∈ Zp−q ×Rq is required to be feasible with a high
degree of certainty. Thus, a solution on the boundary of a feasible class, as could be seen
exemplarily in Figure 1a, should be avoided as it may entail infeasibilities due to parameter
fluctuations or uncertainties.

For a single decision tree, all its classification areas result from the paths leading from the
root to the leaves. These areas are determined as the intersection of finitelymany halfspaces and
are thus polyhedra. In turn, all classification areas of a random forest result from intersections
of the areas implied by the individual decision trees and are therefore also polyhedra. Because
of the boundary condition in Equation (16), they are actually polytopes. Thus, any solution
xopt ∈ Zp−q ×Rq lies within a polytope that depends on the classifications of the active decision
trees.

In order to determine a reliable solution that is as far as possible from the boundaries, we
introduce an optimisation variable r ∈ [0, 0.5] which in the optimum models the smallest dis-
tance the point xopt has from any of the edges of the feasible set. Due to convexity, we can shift
each of its edges by r into the interior, as can be seen in Figure 2a:

ãT
t,vx ≤ b̃t,v + M(1)t,v (1− z(1)t,v ) − r ∀t ∈ TDec,

ãT
t,vx − εt,v ≥ b̃t,v − M(2)t,v (1− z(2)t,v ) + r ∀t ∈ TDec,

xi − r ≥ 0 ∀i ∈ {1, . . . , p},
xi + r ≤ 1 ∀i ∈ {1, . . . , p},

11



x1

x2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

feasiblefeasible

feasiblefeasible

feasiblefeasible

xstart

rr

rrrr

(a) Shift all inequalities by r inwards.

increase rÐÐÐÐÐ→

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

rmaxrmax

xstart

feasiblefeasible

feasiblefeasible

optimaloptimal

feasiblefeasible

(b) Shift all inequalities by rmax inwards.

Figure 2: The feasible areas predicted by a random forest. We can reduce the size of the feasible
sets by shifting all inequalities inwards by a value r in order to choose a reliable point (Fig-
ure 2a). If we choose the value of r as large as possible, we can limit ourselves to the most
reliable points (Figure 2b).

where M(1)t,v and M(2)t,v are constants that have to be set as in Equations (5) and (6) and increased
by 0.5, the maximum value of r. Figure 2b shows an exemplary result when maximising over r.
We obtain a point xopt that has the largest possible distance from all active edges and is thus
maximally reliable.

Altogether, we can find a reliable point xopt with predicted class 1, i.e. with cRF(xopt) = 1,
by solving the following MIP:

max r (20a)
s.t. Dx ≤ d (20b)

ãT
t,vx + r ≤ b̃t,v + M(1)t,v (1− z(1)t,v ) ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m} (20c)

ãT
t,vx − εt,v − r ≥ b̃t,v − M(2)t,v (1− z(2)t,v ) ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m} (20d)

xi − r ≥ 0 ∀i ∈ {1, . . . , p} (20e)
xi + r ≤ 1 ∀i ∈ {1, . . . , p} (20f)
(15d)− (15f) (20g)

z(1)t,v , z(2)t,v ∈ {0, 1} ∀v ∈ Vt,∀t ∈ {1, . . . , m} (20h)
r ∈ [0, 0.5] (20i)
x ∈ Zp−q ×Rq. (20j)

where the constraints in (20g) represent the feasibility inside the random-forest classifier.

4.3 Largest Area in Univariate Classifier

The solution of the previously considered problem (20) automatically leads to an approxima-
tion of the largest feasible area with the help of a largest feasible sphere centred at xopt, as can
be seen in Figure 3a. An interesting related task is searching for the largest connected feasible
region Uopt within the classifier. Besides the apparent motivation to identify a largest possible
feasible range, we can also use this knowledge to analyse the trained classifier itself. For ex-
ample, if that region turns out to be very large, it may be because only feasible data exist in it,
but the reason could also be that this region is covered by too little training data. If, on the other

12



hand, the largest feasible area is small, this is also true for all other feasible areas and could thus
indicate difficulty in explaining the feasible areas.

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

xstart

feas iblefeas ible

feasiblefeasible

xoptxopt

feasiblefeasible

roptropt

(a) Approximating the volume of the largest
feasible area for a random forest with general
decision trees via an inscribed sphere.

x1x1

x2x2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

feasiblefeasible

feasiblefeasible

xoptxopt

feasiblefeasible

ropt
1ropt
1

ropt
2ropt
2

xstart

(b) Calcualting the volume of the largest fea-
sible area exactly for a random forest with uni-
variate decision trees via an inscribed cuboid.

Figure 3: Shifting all inequalities inwards is equivalent to finding the point whose maximal
spherical or cuboidal environment also belongs to the feasible class.

Let us consider a general decision-tree-based classifier. To find the largest feasible region,
wemust first calculate the volumes of the polytopes implied by the random forest and compare
them with each other. Computing the volume of a general polytope is a hard task. In practical
applications, on the other hand, usually univariate decision trees are chosen, cf. the implement-
ation of tree-based classfiers in scikit-learn (see Pedregosa et al. (2011)). This simplifies the
arising polytopes to p-dimensional cuboids, whose volumes can by calculated by multiplying
their edge lengths. To find the largest feasible cuboid within a univariate decision tree, its edge
lengths can be determined by computing the centre xopt using auxiliary variables ri ∈ [0, 0.5]
storing the distance to the edges for each parameter i ∈ {1, . . . , p}. Similar as in Section 4.2,
any inequality within a decision tree that depends on parameter i is shifted inwards by ri. The
resulting feasible region consists of points with at least ri distance from each such inequality:

ãT
t,v(x + r) ≤ b̃t,v + M(1)t,v (1− z(1)t,v ) ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m},

ãT
t,v(x − r) − εt,v ≥ b̃t,v − M(2)t,v (1− z(2)t,v ) ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m},

xi − ri ≥ 0 ∀i ∈ {1, . . . , p},
xi + ri ≤ 1 ∀i ∈ {1, . . . , p}.

For univariate decision trees, each decision rule refers to exactly one parameter. Thus, ãT
t,v =

kt,vei is the kt,v-th multiple of a unit vector ei, i ∈ {1, . . . , p}, in this case. The left-hand sides of
the first two inequalities above can then be simplified to

ãT
t,v(x + r) = kt,v(xi + ri) kt,v ∈R,∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}, (22a)

ãT
t,v(x − r) − εt,v = kt,v(xi − ri) − εt,v kt,v ∈R,∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m}. (22b)

The purpose of the constants M(1)t,v and M(2)t,v is to deactivate the first two constraints if z(1)t,v = 0

13



or z(2)t,v = 0. If i ∈ {1, . . . , p} is the corresponding feature, they can be set to

M(1)t,v = kmax
t,v ui − kmin

t,v li = kmax
t,v ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , p},

M(2)t,v = −kmin
t,v li + kmax

t,v ui = kmax
t,v ∀v ∈ Vt,Dec∀t ∈ {1, . . . , m}

in the univariate case, where kmin
t,v ∶= mint,v kt,v and kmin

t,v ∶= mint,v kt,v are the smallest or largest
constant in an inequality associated with parameter i. This further simplification uses Con-
straint (16), which specifies that all parameter values are normalised.

Figure 3b shows an exemplary feasible point xopt which is the centre of an axis-parallel
cuboid. Theminimumdistance to each classifying inequality belonging to parameter i ∈ {1, . . . , p}
is given by ri. Each edge of the cuboid has length 2ri, and its volume is calculated by multiply-
ing the edge lengths. If we search for a feasible cuboid with largest possible volume, we can
thus optimize with respect to the following objective function:

max
p

∏
i=1

ri.

In order to linearise this objective, we rewrite it by using the logarithm and obtain

max log(
p

∏
i=1

ri) = max
p

∑
i=1

log(ri).

It remains to linearise the individual summands log(ri), ormore generally the functions fi∶R+∖
{0} → R, ri ↦ log(ri), for all i ∈ {1, . . . , p}. For this purpose, we use the incremental method by
Markowitz and Manne (1957), see e.g. Vielma (2015) for more recent results on this method.
First, we define si + 1 breakpoints (rik , rlog

ik
), i ∈ {0, . . . , p}, where the rik have to be ascending

and logarithmically distributed in the subset ]0, 0.5] of the domain of fi and the rlog
ik

= log rik

represent the respective logarithmic value. At these breakpoints, we disjointly subdivide the
domain of fi into si-many subdomains. For each of these subdomains, indexed by k ∈ {1, . . . , s},
we further need a binary variable zik ∈ {0, 1} that registers whether it is active or inactive and
a continuous variable δik ∈ [0, 1] that contains the exact proportional location of ri in the k-th
subdomain if it is active. The following mixed-integer linear inequalities can then be used to
track the value of ri:

ri = ri0 +
si

∑
k=1

(rik − rik−1
) δik ∀i ∈ {1, . . . , p}, (23a)

rlog
i = rlog

i0
+

si

∑
k=1

(rlog
ik

− rlog
ik−1

) δik ∀i ∈ {1, . . . , p}, (23b)

zik ≤ δik ∀k ∈ {1, . . . , s − 1},∀i ∈ {1, . . . , p}, (23c)
δik+1 ≤ zik ∀k ∈ {1, . . . , s − 1},∀i ∈ {1, . . . , p}, (23d)
zik ∈ {0, 1} ∀k ∈ {1, . . . , s − 1},∀i ∈ {1, . . . , p}, (23e)
δi1 ≤ 1, δisi

≥ 0 ∀i ∈ {1, . . . , p}. (23f)

Overall, in the case of a univariate random forest with averaging, the following MIP model

14



computes the largest feasible cuboid:

max
p

∑
i=1

rlog
i (24a)

s.t. Dx ≤ d (24b)
(23a)− (23f) (24c)

ãT
t,v(x + r) ≤ b̃t,v + M(1)t,v (1− z(1)t,v ) ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m} (24d)

ãT
t,v(x − r) − εt,v ≥ b̃t − M(2)t,v (1− z(2)t,v ) ∀v ∈ Vt,Dec,∀t ∈ {1, . . . , m} (24e)

xi − ri ≥ 0 ∀i ∈ {1, . . . , p} (24f)
xi + ri ≤ 1 ∀i ∈ {1, . . . , p} (24g)
(15d)− (15f) (24h)

z(1)t,v , z(2)t,v ∈ {0, 1} ∀v ∈ Vt,∀t ∈ {1, . . . , m} (24i)
x ∈ Zp−q ×Rq, (24j)

where the constraints in (24c) represent the incremental method and the constraints in (24h)
the feasibility inside the random-forest classifier. The decision rules defining (24d) and (24e)
stem from univariate decision trees, which makes it possible to simplify the left-hand sides as
in Constraints (22a) and (22b).

5 Improving the Stability of LVDC Networks

Wewill now describe an indicative use case for the optimisationmodels from Section 4, namely
the design of stable direct-current (DC) networks. This application is very well suited to val-
idate the derived MIP reformulation of tree-based classifiers, since it involves a large number
of network parameters to be optimised, which come from a large range of possible values –
from one to several orders of magnitude. Furthermore, different strategies for parameter ad-
justments are required here, according to the precise problem setting.

The overall approach for stability improvement with focus on the generation of the stability
classes and the generation of the random-forest classifiers is described in Roeder et al. (2021).
The remainder of this section summarises the approach and elaborates on some details con-
cerning the input data, classifiers and optimisation scenarios.

5.1 Stability of LVDC Networks

Typically, electricity distribution networks operate with alternating current (AC). AC networks
have been studied intensively in the literature, e.g. in Carpentier (1962); Mary et al. (2012);
Aigner et al. (2021a), also in their linearised version as DC networks, see e.g. Aigner et al.
(2021b). Direct current networks with system voltages below 1500 V (so-called low-voltage
direct-current (LVDC) grids, see Azaioud et al. (2021) for a detailed introduction and Interna-
tional Electrotechnical Commission (2016, Section 4.2, p. 19) for the definition of the technical
standards) are of great importance for the realisation of an efficient, decentralised energy sup-
ply with an increasing share of renewable energy, as explained in Azaioud et al. (2021); Weiss
et al. (2015); Gao et al. (2019). In short, the reason is that renewable energy generators, such
as photovoltaic systems, storage systems such as batteries, and consumers, e.g. charging sta-
tions for e-mobility or computer systems, operate on a DC basis. The interconnection of these
components in DCmicrogrids, which are typically operated as subsystems of AC grids, avoids
unnecessary DC-AC and AC-DC conversion and enables a cost-efficient subgrid design as well
as an increased self-consumption of renewable energies, see Azaioud et al. (2021). An essential

15



element for the reliable design and operation of LVDC microgrids is the preservation of net-
work stability. Switching operations may generate high-frequency AC currents and can cause
the LVDC grid to oscillate, which may occur in particular when networks are reconfigured, e.g.
when adding or removing loads and sources, cf. Ott et al. (2015a). Figure 4 shows a simpli-
fied model of a four-terminal DC microgrid network (4-TLN), as can be realised in an experi-
mental laboratory setup. It serves as a development platform for real-world implementations,
e.g. as operated at the Fraunhofer IISB. The LVDC circuit model comprises two unidirectional
sources – a DC source, which mimics the input from the AC network after conversion and a
photovoltaic source, as well as two unidirectional loads, respectively. In the following, we sum-
marise the necessary details for understanding the application. For details on stability criteria
for DC power distribution systems, we refer to Riccobono and Santi (2014).

DC Supply Bus

380 VDC

Load 2

Load 1

AC/DC 

Interface

AC

DC

Local PV

Generation

DC

DC

DC

DC

DC

DC

Pload1

Pload2

EMI-

Filter

EMI-

Filter

EMI-

Filter

EMI-

Filter

Cable 

Connection

Cable

Connection

Cable 

Connection

Cable 

Connection

�����

����

Figure 4: Model LVDC grid with bus architecture, which can be realised in an experimental
laboratory setup.

The network is realised with a decentralised control structure, which exhibits inherent re-
liability in case of failures (Gao et al., 2019; Wunder et al., 2015). It comprises a current-mode
droop control scheme as primary control (Gao et al., 2019;Wunder et al., 2015; Ott et al., 2015b)
and a decentralised secondary control scheme for power-sharing as well as performance and
voltage regulation (Wunder et al., 2015). The droop control scheme employs characteristic
curves which control the current input from the sources into the network and keep the bus
voltage at 380 V. The voltage droop concept and the characteristic curves are further discussed
in Ott et al. (2015b). The impedance measurement and the subsequent stability analysis, either
by simulation or by measurement, is conducted by injecting a small-signal alternating cur-
rent iinj with varying frequency ω at the bus. In the simulation, we calculate the impedance
ratio Tbus from the source and load impedances ZS, Zl (Riccobono and Santi, 2014) according
to the relationship

Tbus =
ZS

Zl
= VS Il

ISVl
. (25)

The impedances are calculated from the voltages VS, Vl and the currents IS, Il , which are de-
termined at twomeasuring resistors next to the small-signal source feed. Themeasurement de-
termines the complex impedance Tmeas that contains equivalent information on stability as Tbus,
which is used for determining stabilitymargins. The complex impedance spectrum is analysed,
and the system stability is assessed by applying the gain margin and phase margin criterion,
see Riccobono and Santi (2014). The gain margin and phase margin provide sufficient, but not
necessary stability conditions and may be derived from the Nyquist plot, which represents the
impedance ratio in the complex plane, or the Bode plot, which depicts the impedance spectrum

16



as amplitude given in decibel and the phase angle given in degrees, see (Riccobono and Santi,
2014). According to (Riccobono and Santi, 2014), the total input-to-output transfer function
of two cascaded individually stable subsystems, such as the source and load system, may be
written as

Gsl = GsGl
1

1+ TMLG
, (26)

with the minor loop gain TMLG of the system depicted in Figure 4 defined as

TMLG ∶= Zs

Zl
= Tbus. (27)

The interconnected system is stable if the Nyquist contour of TMLG does not encircle the point
(−1, 0) in the complex plane (Riccobono and Santi, 2014). The gain margin and phase margin
criterion allow that ∣Zs∣ > ∣Zl ∣ in certain frequency ranges while ensuring respective margins
such that the Nyquist criterion is satisfied (Riccobono and Santi, 2014). Maintaining a gain
margin ensures that the amplitude ∣Tbus(jωpc)∣ at those phase cross-over frequencies ωpc, where
Im(Tbus(jωpc)), i.e. where the phase angle is −180○, is sufficiently distant from the point (−1, 0).
The gain margin GM is defined as

GM ∶= 1
∣Tbus(jωpc)∣

, (28)

see Åström and Murray (2008). In the Bode plot, where the amplitude is depicted in decibels,
the gain margin can be determined as

GM dB = 20 log10 GM = 0 dB− 20 log10∣Tbus(jωgc)∣. (29)

The phase margin at the gain frequency ωgc is defined as

PM ∶= 180○ − ∣arg Tbus(jωgc)∣, (30)

where ∣Tbus(jωgc)∣ = 1, and denotes the angle between the point (−1, 0) and the intersection of
Tbus(jωgc) with the unit circle, see Riccobono and Santi (2014). The choice of gain and phase
margins depends on the application. Typical values for gain margin are GM = 2 to 6 dB and
PM = 30○−60○, respectively (Åström andMurray, 2008; Riccobono and Santi, 2014). For further
investigations, the networkwas labelled to be stablewhenever the determined gainmargins and
phase margins both exceeded critical values according to

GM ≥ 6 dB, PM ≥ 45○. (31)

Otherwise, the networkwas labelled as unstable. With these parameters, the exciting amplitude
must be damped by at least −6 dB ≈ 0.5, and if this not the case, the phase angle must be at least
45○ distant to 180○, the range of the opposite-phase oscillation in resonance (Riccobono and
Santi, 2014). Figure 5 illustrates the identification of stable and unstable states in the Bode plot
for the circuit model of Figure 4, for a stable state at the default network parameter settings in
Figure 5a, and for parameter settings leading to instability in Figure 5b. With the Bode plot,
the phase margins are determined at GM = 0 and the gain margins are determined at PM =
180○. The margin exceeding the limits where the network is labelled as unstable according to
Equation (31) is indicated in red.

17



��

��

�

���

���

���

���

T B
us

,m
ag

ni
tu
de

/d
B

TBus,magnitude

��
�

��
�

��
�

��
�

��
�

Frequency / Hz

�
���
���
���

����
����
��
�
����
����
��	�

T B
us

,a
ng

le
/° TBus, angle

��
����
������

(a) Stable network

��

��

�

���

���

���

���

T B
us

,m
ag

ni
tu
de

/d
B

TBus,magnitude

�������������
�������������

��
�

��
�

��
�

��
�

��
�

Frequency / Hz

�
���
���
���

����
����
��
�
����
����
��	�

T B
us

,a
ng

le
/° TBus, angle


�������������

�������������

(b) Unstable network

Figure 5: Determination of the gain and phasemargins from the Bode plot for a stable Figure 5a
and an unstable network state Figure 5b. The margin exceeding the limits, which causes the
network to be labelled as unstable, is indicated in red.

5.2 Parameter Variation in the Network

In a simulator, the small-signal DC network impedance was automatically calculated for mul-
tiple input parameter settings and the stability was analysed with the gain and phase margin
limits given in Equation (31), also providing the labels for the stability class. The grid input
parameters are distributed by Latin hypercube sampling (LHS, see (Lin and Tang, 2015)), auto-
scaling the data either on a linear or a logarithmic scale between the minimum and maximum
values. The input parameters of the DC network which are varied in the LHS design and their
possible values are briefly described in Table 8 in the appendix.

For the development of the random-forest surrogate classifier and for testing the optimisa-
tion models, simulations varying the parameter kAC, kPV and Pload1, Pload2 as well as the input
parameters depicted in Table 8 were conducted (Roeder et al., 2021). The summary as well as
the imbalance ratio of stable and unstable states are depicted in Table 1. By automated circuit

Parameter Number of Number of Number of Imbalance
Variation simulation results stable states unstable states ratio (in %)

kAC, kPV, Pload1, Pload2 24, 770 23, 162 1, 608 94.0 (6.0)
all input parameters 49, 018 24, 685 24, 333 50.4 (49.6)

Table 1: Summary and imbalance ratio of the stable and unstable states obtained from the sim-
ulations.

modelling, 24,770 resp. 49,018 input parameter combinations and the resulting stability labels
were calculated, which serve as predictors and labels in the random-forest classifiers, respect-
ively. With the parameter combinations, different ratios of stable and unstable states, i.e. imbal-
ance ratios were obtained. As the training of accurate and reliable classifiers requires balanced
input data, specific measures were taken in the preparation of the random-forest classifiers as
described in the next section.

5.3 Preparation of the Random-Forest Classifiers

The random-forest classifiers were trained on the data as depicted in Table 1. The data sets were
split into a training and an independent test data set with a split ratio of 70% down to 30%.
Hyperparameter optimisation (HPO) of the random-forest classifiers was conducted on the
training data using a grid search strategy and a 10-fold stratified cross-validation to maximise

18



the balanced accuracy and to minimise the false positives, i.e. the cases where an unstable state
is predicted as stable (Roeder et al., 2021). For the investigation of the optimisation models,
two random-forest classifiers were prepared. For both classifiers, the parameters Pload1, Pload2
were excluded from the training to enable optimisation within their complete parameter range.
One classifier, further denoted as the 14-parameter classifier, was trained allowing all other input
parameters to be varied. The second classifier, which is further denoted as the two-parameter
classifier, was trained to allow the variation of kAC, kPV as an example for droop control para-
meter adjustment. The HPO parameters were set differently to investigate the achievement
of a preferably large leaf population and to limit the tree complexity while providing stable,
balanced accuracy. The 14-parameter classifier was adjusted to have a minimum number of
11 samples per leaf, the number of estimators set to 1,000 trees, and the maximum depth of
the trees was set to 20. The two-parameter classifier was adjusted to have a minimum number
of 100 samples per leaf, the number of estimators was limited to 2,000 trees, and no limit was
provided for the tree depth, i.e. the trees may be split until the minimum number of samples
per leaf is obtained. The HPO was enabled to adjust the tree splitting criterion, the maximum
number of features to be sampled and the adjustment of the class weights. The balanced ac-
curacy, the parameters of the confusion matrix, and the selected hyperparameters are given in
Table 2. The classifiers provide well-balanced accuracy on the training and test data and mini-
mise the false-positive rate. During HPO, the class weights are adjusted to compensate for the
imbalance in the data sets. Entropy was selected as the splitting criterion for both classifiers.
All features were selected in the case of the two-parameter classifier, whereas the number of
parameters remained at the default setting for the variation of all input parameters. The bal-
anced accuracy, the parameters of the confusion matrix, the class weights of the input classes
to compensate for their imbalance as well as the splitting criterion and the maximum number
of sampled features are given in Table 2. The classifiers provide high balanced accuracy, which
provides a corrected accuracy measure in the presence of imbalance, on the training and test
data. Additionally, the classifiers specifically minimise the false-positive rate, i.e. the predic-
tion of an unstable network as stable. Overall, accurate and reliable input parameters to the
optimisation are provided.

D
at
a
se
t

Sa
m
pl
e

Ba
la
nc

ed
ac
cu

ra
cy

Tr
ue

po
si
tiv

es
:

pr
ed

ic
ts
ta
bl
e
as

st
ab

le

Fa
ls
e
ne

ga
tiv

es
:

pr
ed

ic
ts
ta
bl
e
as

un
st
ab

le

Tr
ue

ne
ga

tiv
es
:

pr
ed

ic
tu

ns
ta
bl
e
as

un
st
ab

le

Fa
ls
e
po

si
tiv

es
:

pr
ed

ic
tu

ns
ta
bl
e
as

st
ab

le

C
la
ss

w
ei
gh

ts
cl
as
s0

|c
la
ss

1

Sp
lit
tin

g
cr
ite

ri
on

en
tr
op

y
or

gi
ni

M
ax

im
um

nu
m
be

r
of

fe
at
ur

es

Variation of training 93% 81% 12% 7% 0%
0.95 | 0.05 entropy NfeatureskAC, kPV test 92% 82% 12% 6% 0%

Variation of training 93% 46% 5% 48% 2%
0.55 | 0.45 entropy ⌊

√
Nfeatures⌋all input test 86% 42% 9% 45% 5%

Table 2: Balanced accuracy, parameters of the confusion matrix and selected hyperparameters
of the random-forest classifiers.

19



6 Case Study for Determining Stable LVDC Network Settings

In this section, we use mixed-integer optimisation models to find the best possible parameter
setting for an LVDC network starting with an initial setting xstart. The stability of the network is
assessed exclusively from the prediction of the respective random-forest classifiers presented in
Section 5. In addition, from the input table 8 we know theminimum value lp and themaximum
value up for each parameter p in the set of parameters P. To visualise and to describe the solu-
tions from the different mixed-integer problems, we use the smaller two-parameter classifier
trained on the two-dimensional data set with 25,000 instances of kAC and kPV. For predicting
the stability of the whole LVDC network, we use the large 14-parameter classifier trained on the
dataset (X, Y) described in Section 5, which consists of 50,000 concrete network settings. A data
point Xi ∈R14, i ∈ {1, . . . , 50, 000}, represents the value for each of the 14 parameters p ∈ P, and
the corresponding label Yi ∈ {0, 1} describes the resulting network status “stable” (1) or “un-
stable” (0). Apart from the best found random-forest classifier with 1,000 decision trees, each
consisting of 920 to 1,020 paths, and amaximumdepth of 20, wewill also use increasing subsets
of the decision trees to demonstrate and discuss the performance of the MIP models.

Both random-forest classifiers have been trained with the Python machine learning library
scikit-learn (Pedregosa et al., 2011), and consist of individual univariate decision trees, each
trained with an improved CART algorithm (Scikit-Learn, nd). The predictions of the random-
forest classifiers are based on the averagingmethod. AsMIP solver, we have used Gurobi (Gur-
obi Optimization, LLC, 2020), and all presented solution times have been obtained on Intel(R)
Xeon(R) CPU E3-1240 v5 @ 3.50 GHz processors with 4 CPUs and 32 GB RAM.

6.1 The MIP Models

We assume to be given an established LVDC network and a perfect random-forest classifier
representing the relation of the network input parameter values to LVDC network stability.
The latter means that the classifier predicts a stable state exactly when the LVDC network is
stable. Furthermore, we are given the initial input parameter setting of the network. We now
consider several different tasks with respect to choosing the network parameters in order to
obtain a stable network.

6.1.1 Minimal Adjustment of Parameters to Make a Network Stable (Adjust)

The first task, which henceforth will be called Adjust, is to bring the network into a stable
state, using as few parameter changes as possible. Each parameter represents either a network
component that needs to be replaced or a software parameter that needs to be adjusted. The
fewer parameters have to be changed, the easier and less expensive the adaptation is. To solve
this problem, we consider the MIP model described in Equations (18a) to (18g).

20



(a) Change nothing (stable state) (b) Change one parameter (c) Change two parameters

Figure 6: Solving problem Adjust using the two-parameter classifier.

Before we examine the solution times of this task, we first want to ensure the suitability of
the solution. For that purpose, we consider a two-dimensional problem where the distribution
of the stable and unstable areas is easy to visualize and where the parameter decisions and the
correctness of the solution are well comprehensible. For that purpose, we will use the small
random-forest classifier trained only with the two control parameters kAC and kPV that were
introduced in Sections 5.1 and 5.3. After training the random-forest classifier with the given
data set, it can be used to classify an arbitrary point x ∈R2 as stable or unstable within the given
minimum (lp = 0) andmaximum value (up = 2) for p ∈ {kAC, kPV}. The optimal assignment can
be taken from the colour map in Section 6.1.1, which corresponds to the probability of the
network being stable. The deeper the area is in the dark blue, the more confident the random-
forest classifier is that it belongs to the stable class.

An optimal solution for Adjust changes as few parameters as possible, but the magnitude
of the adjustment does not matter, which means that the objective is zero in case we start in a
stable state; see Section 6.1.1. Starting in an unstable state, like in Section 6.1.1, we are returned
the number of parameters to be adjusted and receive the specific changes to make to reach a
stable state. For Section 6.1.1, this means, for example, that all solutions with kAC ≥ koptAC are
equivalent to the point (koptAC, koptPV) found. The optimisation model is only about achieving a
stable network setting. The neighbourhood of the point is unimportant to the solution, as can
be seen in Section 6.1.1, where it lies in a light blue area, close to unstable regions.

We will now consider the same task using the 14-dimensional data set and the larger 14-
parameter classifier. As described in Section 5, we found that a good prediction requires a
random-forest classifier with 1,000 trees, each with 920 to 1,020 paths and a maximum depth
of 20. This number of trees is already a challenge to the solution time of the MIP model. We
verify that this is not due to incorrect modelling by comparing the solution times for differently
sized subsets of the given decision trees with comparable objective values. With 100 decision
trees, the MIP model finds a solution within 120 seconds, the classifier with 500 decision trees
already needs 7,550 seconds, and the model incorporating the full classifier with 1,000 decision
trees is not solvable within 4 hours.

The solution time of the MIP model can be reduced significantly by using the following
iterative process. The integer objective value G = ∑∣P∣i=1 δoni , which determines the number of
parameters to be adjusted, is no longer to be chosen via the MIP model, but instead in an outer
for-loop. The MIP models to be solved inside the loop are fixed to an objective value represent-
ing a certain number of parameters to be adjusted, Gk = ∑∣P∣i=1 δoni = k, and are thus transformed
to feasibility problems. We start with zero parameters to be adjusted and increase this number
by one in each step. If the current MIP with the additional constraint Gk = k, k ∈ {0, . . . , ∣P∣} is
infeasible, then proceed with the fixation Gk+1 = k + 1. On the other hand, if the solver finds a

21



solution for the current k, this value k is the optimal solution for the original MIP problem. The
for-loop can then be terminated. Note that infeasibility of an integer problem can usually be
determined very fast in practice, which is whywe use linear searchwith a constantly increasing
value of k here instead of binary search.

As a result of this approach, even the model incorporating 1,000 decision trees could be
solvedwithin less than 3.5 hours of computation time, see Table 3. The table shows an overview
of the optimisation runs performed. Besides the number of decision trees, the required number
of continuous and binary variables in the MIP model as well as the required computation time
and the number of parameters to be changed (target of Adjust) are documented.

RF classifier / Number of MIP variables Computation Objective value /
number of trees continuous binary time (s) adjusted parameters

10 95 48, 899 4 1
100 185 487, 244 132 1
500 585 2, 427, 989 3, 200 1

1, 000 1, 085 4, 855, 969 12, 223 1

Table 3: Results for improved Adjust procedure

6.1.2 Most Stable Point Possible Within an Already Existing Network (Reliable)

As a second objective, we study determining a network setting that is as stable as possible so
that small fluctuations in the parameters do not affect stability. For this purpose, we determ-
ine a point in the centre of a stable region by using Equations (20a) to (20j). We call this task
RELIABLE. Unlike in the simplified exposition of the optimisation model (20), the considered
parameters p ∈ P are defined on different intervals [lp, up]. In our application, r ∈ [0, 0.5] shall
reflect the normalised safety margin. The conversion of the values is straightforward to incor-
porate by the linear scaling r̄ = (rp − rmin

p )/(rmax
p − rmin

p ) for all parameters p ∈ P. To understand
the solution of the MIP model, we first consider the two-dimensional random-forest classifier
in Figure 7a. The model finds the largest possible intersection of more than 50% of the decision
trees in the classifier such that the corresponding area is predicted to be “stable”. Since all
decision trees are univariate, the intersection is a rectangle. For the objective function of RELI-
ABLE, however, this is not necessary. The green centre of the optimal circle is the most reliable
point w.r.t. the random-forest classifier. In both parameter dimensions, the coordinates of the
center point can be changed additively by rp = 0.36 ⋅ (up − lp) without becoming unstable. All
points within the circle have at least 50.2% certainty and are thus predicted to be stable by the
classifier. The actual certainty, which is the sum of all decision tree predictions of the specific
position, exceeds this value. It is easy to see in Figure 7a that the solution is not unique and
that points (kAC, kPV), with kPV = 1.31 and kPV ∈ [0.89, 1.87] are equivalently reliable solutions
for the MIP model.

Considering only the colour map, one could suppose that it is possible to move the centre
slightly to the upper left and thus increase the circle radius. However, this solution cannot
be found, because almost every decision tree restricts the stable sphere with the inequality
kAC ≈ 0.5, as can be seen from the white dashed lines on the left-hand side. As a result, the total
area cannot be found, even if the stable areas connect seamlessly.

Solving the Reliable problem with the large 14-parameter classifier requires significantly
longer runtimes than Adjust. As a result, a model with a subset of only 250 decision trees still
had a high optimality gap after 4 hours of computation, where we denote by optimality gap the
relative difference between the best solution s found and the best objective bound b obtained
from linear relaxations within the branch-and-bound tree: ∣b − s∣/∣s∣.

22



(a) Reliable: This figure
shows the “most stable” point
(kAC, kPV)⊺ = (1.31, 0.89)⊺ and its
surrounding green circle with nor-
malised radius r = 0.36. Starting
with a random-forest classifier
with 2, 000 trees, the solution
involves 1, 001 active trees.

(b) Volume: The resulting largest
possible stable surface is shaded in
green. The area is composed of the
intersection of 1, 001 out of 2, 000
decision trees. Consequently, these
active decision trees predict it to be
stable with (almost) 100% each.

Figure 7: Solution for the tasks Reliable (Figure 7a) and Volume (Figure 7b) for the two-
parameter classifier. In both tasks, the optimal solution is independent of the starting point.
White and black dashed lines shows the limitations of the active paths of the active trees in the
optimal solution.

RF classifier / No. of MIP variables Computation Optimality Objective value /
no. of trees continuous binary time (s) gap (%) normed radius

10 152 48, 885 31 0.0 0.081
100 242 487, 230 2, 479 0.0 0.075
250 392 1, 215, 180 − 985.0 0.025

Table 4: Results for Reliable with a maximal solution time of 4 hours.

The long runtime of this problem results from the high number of binary variables and
constraints added to the model with each additional large decision tree. For each node in the
path of a decision tree, one binary variable zt,v, the decision rule on the node associated with
that path (Constraint (20c) or (20d)), the relationship between the two binary variables of the
node (Constraint (8) or (11)) as well as the inequalities needed for the connected path (Con-
straint (9) or (10)) are added to the MIP. For a feasible solution, only one of these paths per
decision tree is activated by the associated binary variables, rendering many of the inequalities
non-binding. To reduce the number of variables and constraints in the MIP model, one can try
to identify as many paths as possible that will not be activated in the optimal solution already
before optimisation. We again use an iterative approach to do this, taking advantage of the fact
that the non-feasibility of an optimisation model can usually be decided very quickly in prac-
tice. Let r be the normalised radius of the feasible sphere. We need to consider only those paths
whose decision rules in the nodes together form a polyhedron which is large enough to accom-
modate a sphere with a normalised radius of size r. To decide whether the feasible polyhedron
associated with a given path can enclose such a sphere, we compare whether the distance in
each parameter between the lower and upper bounds given by the decision rules in its nodes
is at least as large as twice the radius r of the sphere. When multiple paths are considered at

23



once, the intersection of their associated feasible polyhedra needs to enclose the sphere. Now,
in the first step of the iterative approach, we start with the largest possible sphere and thus with
only a few paths that together yield a polyhedron which is large enough to accommodate it.
With each iteration, we decrease the size of the sphere, somore andmore paths and the feasible
areas they describe can be taken into account. This is repeated until finally we consider enough
paths to find a feasible region. To this end, the tree probabilities resulting exclusively from
the active subset of the considered paths must sum to at least half the number of the decision
trees such that Constraints (13) and (14) can be satisfied. More precisely, we introduce a lower
bound rk ∈ [0, 0.5] on the radius r ∈ [0, 0.5] as the objective of the current model. In each step k,
we reduce this lower bound by a fixed amount as long as the MIP remains infeasible. Starting
with the highest possible lower bound, r0 = 0.5, we subtract a fixed value, here 0.05, from the
lower bound in each iteration. In addition to the two constraints r ≥ rk and rk = 0.5− 0.05k in
the k-th MIP model, we consider only those variables and constraints that belong to paths of
the decision trees that form a polyhedron which is large enough to accommodate a normalised
sphere with a normalised radius of size rk. If the k-th MIP is infeasible, we continue with the
k + 1-st problem; otherwise, we stop and return the solution found. It is then also the solu-
tion to the overall problem. By placing a lower bound on the normalised radius, we guarantee
that the ignored paths in the optimal solution would have had to be deactivated anyway, since
they do not yields a polyhedron which is large enough to accommodate a normalised sphere
of radius ropt.

The benefit of the iterative optimisation procedure can be seen in Table 5. We are now able
to solve all instances optimally, including the largest one with 1,000 trees, in just under an hour
each. In particular, we also achieved much shorter solution times for the smaller instances.

RF classifier / Number of MIP variables Computation Objective value /
number of trees continuous binary time (s) gap (%) normed radius

10 152 48, 885 5 0.0 0.081
100 242 487, 230 64 0.0 0.075
250 392 1, 215, 180 170 0.0 0.078
500 642 2, 427, 975 3, 647 0.0 0.075

1, 000 1, 142 4, 855, 955 1, 109 0.0 0.076

Table 5: Results for improved Reliable procedure

6.1.3 Finding the Largest Stable Cuboid Volume

Finally, we would like to find the largest possible region that contains only stable network set-
tings w.r.t. the random-forest classifier. We call this optimisation problem VOLUME. We take
advantage of the point that only univariate decision trees are currently considered, and thus
only axis-parallel cuboids can be regarded as a possible solution. We find the largest cuboid
using the slightly adapted MIP model (24). As in the previous optimisation problem in Sec-
tion 6.1.2, the safety values rp chosen individually per parameter must be normalised to r̄p in
the objective function, such that each feature has equal weight. To describe the relationship
between these parameters, we again use linear scaling.

The solution for the two-dimensional problem is shown in Figure 7b. The largest possible
rectangular area found is shaded in green. All points in the interior are thus predicted to be
stable by the classifier. The centre of the rectangle is located such that it is as far away as possible
from the active decision rules of the active decision trees, which are shown as dashed white
lines. The safety margin in kAC can increase independently of that in kPV, which is particularly
interesting when parameters of different importance in the classifier are considered.

In Figure 8, we see the frequency distribution of the 14-dimensional classifier, which results

24



from the number of times each feature occurs across all decision nodes of the decision trees.
There are obviously more and less important parameters, which is also observable in Figure 9.

Figure 8: Distribution of parameter/feature importance for the 14-parameter classifier.

It shows the cuboid found for the 14-parameter classifier in sectional planes. The colours refer
to starting from the centre of the cuboid. Within the limits of the cuboid found, all parameter
combinations can be chosen without losing stability according to the classifier. The cuboid is
of different size in each feature. For the rather important features lload1 and lload2, the cuboid is
very small, while for all features with low importance almost the whole area is green.

Figure 9: In these plots, we demonstrate the solution to problem Volume we found using the
14-parameter classifier. The largest stable area found by the MIP solver, limited by 501 trees, is
green striped. The normalised volume has a size of 0.015, which is 1.5% of the space. Within
this area, there are 475 data points, of which 474 belong to a stable network setting, which is
1.36% of the training data. The area is thus relatively well represented. The artificial selection
of data points on a grid has an important role in this.

After the problem considered in Section 6.1.2 already required a very long optimisation
time, it is not surprising that the runtime is also a problem for Volume. Only up to 100 trees
can be solved using the MIP model within 4 hours, as shown in Table 6.

In order to solve the problem also for the random-forest classifier with 1000 decision trees,
we can again follow a step-by-step approach. Because of the non-linear objective function, we
need two iterative procedures.

Analogously as in the previous problem, wewant to consider only variables and constraints
from a subset of the possible paths in an iterative approach to save computation time. For each

25



RF classifier / MIP variables Computation Objective value /
number of trees continuous binary time (s) gap (%) normed volume

10 264 49, 011 1, 025 0.0 0.03
100 354 487, 356 − 85.0 0.018

Table 6: Results for Volume with a maximal solution time of 4 hours.

path, we first determine the normalised volume of the axis-parallel cuboids resulting from the
decision rules in the nodes. To this end, we consider all decision rules for each path and de-
termine the largest lower bound and the smallest upper bound on each parameter. The bounds
of a constraint kixi ≤ b belonging to the parameter i ∈ {1, . . . p} are obtained by dividing the
right-hand side b by the multiplier ki. This is done equivalently for the constraint kixk ≥ b. The
distance between the upper and lower bound of a parameter is the length of the cuboid in that
parameter. For calculating the normalised volume, we have to normalise this length to the
interval [0, 1] at first. The normalised volume of the axis-parallel cuboid is then obtained by
multiplying the normalised lengths.

We start the iterative approach with the largest possible minimum normalised volume of
W0 ∶= 1. Only variables and constraints of paths whose decision rules form an axis-parallel
cuboid with at least this normalised volume are considered. If we cannot form a feasible region
with the current paths, the current MIP model is infeasible, and we decrease the volume and
consider more paths. Specifically, we halve the minimum normalised volume Wk ∶= Wk−1/2 in
each iteration k ∈N. As soon as we have found a feasible region (an axis-parallel sectional
cuboid) in some iteration k∗, we can calculate its normalised volume Vopt

k∗ . Now we have
achieved a first goal: we know the lower bound Vopt

k∗ and the upper bound Wk∗ for the optimal
axis-parallel sectional cuboid for the global problem.

Between the minimum normalised volume Wk∗ , which constrains the set of paths con-
sidered so far, and the normalised volumeVopt

k∗ , the optimal axis-parallel sectional cuboid found
with these paths lies a (possibly very large) distance Wk∗ ≫ Vopt

k∗ . The largest possible axis-
parallel sectional cuboid has a normalised volume of Vopt lying between this two values. Paths
that form axis-parallel cuboids with their decision rules whose normalised volumes are smal-
ler than Vopt

k∗ can thus safely be ignored. The additional consideration of paths whose decision
rules form an axis-parallel cuboid with a volume of at least Vopt

k∗ can lead to a sectional cuboid
with a larger normalised volume than Vopt

k∗ .
Because the distance between Vopt

k∗ and Wk∗ is possibly very large, we proceed with an-
other, nested iterative procedure. We start again with the largest possible minimum normal-
ised volume of the sectional cuboid W̃0 ∶= Vk∗ . Only variables and constraints of paths whose
decision rules form an axis-parallel cuboid with at least this normalised volume are considered
in the MIP model. In this iterative process, we will always find a feasible optimal sectional
cuboid. After optimisation, we can calculate its normalised volume Ṽopt

k̃
. As long as the norm-

alised volume of the found optimal sectional cuboid Ṽopt
k̃

is smaller than the lower bound W̃k̃
on the axis-parallel cuboids of the considered paths, we will reduce it to W̃k̃ = W̃k̃−1 and thus
iteratively consider more paths. As soon as the volume of the optimal cuboid Ṽopt

k̃∗
is at least as

large as the lower bound W̃k̃∗ on the axis-parallel cuboids of the considered paths for the first
time, we can stop the iterative process. The optimal volume of the global problem is that of
the found intersection cuboid: Vopt = Ṽopt

k̃∗
. This is because adding more paths whose decision

rules form an axis-parallel sectional cuboidwhose normalised volume is smaller than the found
normalised volume Ṽopt

k̃∗
cannot lead to a larger sectional cuboid.

Using this iterativemethod, wewere able to find a high-quality, though not optimal solution
for the optimisation problem corresponding to the large 14-parameter classifier within 4 hours.
The computational results can be seen in Table 7.

After 4 hours, we have reached the following intermediate state for the problem with 1000

26



decision trees: using paths whose decision rules have an axis-parallel cuboid with a volume of
at least W̃k̃ = 0.02, we find an optimal sectional cuboidwhose normalised volume is Ṽopt

k̃
= 0.014.

The best solution found is already very close to the optimal solution.

RF classifier / MIP variables Computation time Solution
number conti- binary time (s) last path lower objective
of trees nuous bound W̃k̃ volume Ṽopt

k̃
10 264 49, 011 5 0.03 0.03

100 354 487, 356 180 0.019 0.019
500 754 2, 428, 101 14400 0.02 0.015

1, 000 1, 254 4, 856, 081 14400 0.02 0.014

Table 7: Improved results for Volume with a maximal solution time of 4 hours.

6.2 Discussion of the Optimisation Models and Practical Implications

Using various mixed-integer models, we developed three strategies to find best possible solu-
tions to random-forest-based classification problems at the example of LVDC network stability.

In the solution strategy Adjust, we provide a minimal adjustment of parameters to find the
optimum solution. It is advantageous that for model Adjust we can determine solutions very
quickly. For the application, Adjust enables a fast assessment of the stability situation in a given
network. If the starting point is unstable, the extended parameter adjustments to reach a stable
region can be estimated. Depending on the parametrisation of the optimisation, i.e. which
parameters are included, adjustments in different parameters, e.g. in software parameters kAC,
kPV may be compared to results where device parameters, e.g. cAC, cPV are changed. When
the starting point belongs to a stable state, the visualisation provides a distance estimate to the
borders, where the network reaches an unstable state (see Figure 6). As a potential drawback,
the obtained solutions may be “at the border” of feasibility, such that perturbations in the data
can potentially lead to infeasibilities.

The Reliable model initially requires more computation time than Adjust. Using the iterat-
ive procedure, we were able to match or outperform the times for the simple Adjust problem.
For our instances, it could always produce a solution that is well contained inside a stable para-
meter region. As a result, solutions remain stable even under small input uncertainties. For
the practical application, the strategy Reliable enables a reliable selection of the input para-
meters to obtain a stable network state. From the radius of the optimal sphere, the tolerance of
the parameters to reach unstable states can be estimated. As possible future improvements, it
might be worth integrating a way to rank the features. Furthermore, it is certainly interesting
in the application to take certain parameters, such as the cable length, out of the optimisation
and assign them fixed realistic values. Depending on these, the other parameters can be chosen
reliably enough with the help of the objective function Reliable.

A most reliable stable point is one that has the largest possible distance to all inequalities.
Parameters with high feature importance typically constrain the feasible set more often and
severely. Therefore, the position of the most reliable point usually depends on these paramet-
ers. Solutions with the same level of certainty in the parameters with high feature importance
and a more reliable position for features with low feature importance could be given special
consideration.

In contrast to Reliable, problem Volume determines large stable regions within which the
network is stable. Here, the intervals of the parameters are considered individually and inde-
pendently of their feature importance. However, due to the initially non-linear objective func-
tion and its linearisation, the optimisationmodel typically requires significantly longer compu-
tation times. If a large number of random forests is to be considered, a stepwise approximation

27



to the optimal solution is required. For the practical application, the strategy Volume is the
most important setting for identifying reliable, stable regions. However, care needs to be taken
in the generation of random-forest classifiers, since areas may differ in the density of calculated
representations, especially when linear and logarithmic scaling points are overlaid. Thanks to
the training data that has been generated to represent realistic problem settings, we were able
to find a representative cuboid in our solution. Starting from a LVDC circuit model, where
typically the device parameters are not fixed, e.g. when identifying a potential dimensioning
of the grid parameters, and are varied within several orders of magnitude, e.g. as done for the
parameters cAC, cPV, reliable, stable areas can be determined. To avoid unequal point dens-
ities as described above, the parameter ranges may be reduced until accurate random-forest
classifiers can be obtained with linear scaling of the input parameters where the point density
is nearly equivalent, and the largest stable region may be more precisely determined for the
refined network setting.

In order to keep themodelmanageable, it is important to determine a relevant set of decision
trees with limited size. Random-forest classifiers can be trained very easily and quickly with
the help of software frameworks, even with many trees. However, above a certain threshold,
increasing the number of trees does not improve the accuracy further. TheGrid_Searchmethod
of scikit-learn can be used to decide howmany decision trees are needed for this purpose so that
the effort can be estimated beforehand. For the network stability application, we have shown
successfully that the optimisation models can still be solved globally even with large classifier.
We have simplified the optimisation problem to an iterative solution of feasibility problems, as
described for Adjust. Furthermore, we have strongly reduced the number of active inequalities
in Reliable and Volume.

The work presented here concludes an initial study towards a new approach for optimizing
stability in LVDCmicrogrids. The challenge here originates from the complexity of stability as-
sessment including the selection of the stability criteria, their parametrisation and the capability
for automated evaluation. Frequently, two parameters are evaluated independently for stability
assessment as depicted in the presented examples – leading to a classification of the network as
sufficiently stable or not. The new optimization approach presented here enables, for example,
the design and parametrisation of new networks or the operation of existing networks target-
ing large stable operation regions or minimised adjustments in the latter case. In an ongoing
experimental work to further validate the approach, an experimental setup was established,
which mimics the network structure as depicted in Figure 4. The modular structure of the ap-
proach allows for flexible modification of the input parameter settings in the digital twin. For
the experimental setup, the individual parameters of the source components need to be char-
acterized. Specifically, the capacitances and line inductances rather than the line lengths were
measured to serve as input parameters to the digital twin and subsequent surrogate modelling
and optimisation. The runtime of the optimisation and the performance of the optimisation
result will be further tested on the experimental setup. Concerning the computational effort, it
is anticipated that for network design the computation time does not impose a restriction such
that the approaches outlined here can be applied. Furthermore, in an existing setup less para-
meters need to be varied as several parameters are fixed, e.g. the capacitances or transmission
line inductances, such that merely the factors kAC and kPV for changing the droop decline or
the cut-off frequencies fCAC and fCPV of the output filter at the source converters need to be
changed. Thus, the case study performed here is very relevant for our future work in network
stability.

7 Conclusions

In this work, we have presented a practical optimization approach for integrating model- and
data-based methods and showed its applicability in practice. For this purpose, we used a com-

28



bined MIP- and machine-learning-based approach. Inequalities that can easily be formulated
as linear mixed-integer inequalities are explicitly modelled in the optimisation problem. To re-
place complex or unknown constraints, we performed two steps. First, using a representative
data set, we trained a classifier, in our case a random-forest classifier, because it has several
advantages to our considered settings. Then we modelled the decisions algebraically and in-
cluded them as additional constraints in the MIP model.

In our case study on the stability of DC networks, we showed that this approach leads to
high-quality results in practical problems. The task was to find stable network settings for a
DC grid with system voltages below 1, 500 V (low-voltage DC grids, LVDC grids) so that the
safety and reliability of the model can be guaranteed. For this approach, a large dataset was
used to train a random-forest classifier for which the resulting classifications were included in
algebraic form in the MIP. As objective functions, we considered different relevant objectives,
namely the closest and the most reliable stable network setting. Furthermore, we determined
the largest possible stable area from the random-forest classifier.

Although modern MIP solvers can optimise large instances, the number of decision trees
naturally plays a significant role in the performance of solving these optimisation problems.
In this work, we have shown how the solution of the MIPs can be enhanced by sequential exe-
cution of slightly adapted MIP models that are at first strongly constrained and thus typically
infeasible. Then the constraints are iteratively relaxed until the appropriate model is found
from which the solution can be determined. This approach significantly reduces the runtime,
because testing the infeasibility of a model is typically fast. As future work, it is interesting
to analyse whether the runtime can be improved further, possibly by a better encoding of the
random forests.

References

Aigner, K.-M., Burlacu, R., Liers, F., and Martin, A. (2021a). Solving AC optimal power flow
with discrete decisions to global optimality. Preprint.

Aigner, K.-M., Clarner, J.-P., Liers, F., and Martin, A. (2021b). Robust approximation of chance
constrained DC optimal power flow under decision-dependent uncertainty. European Journal
on Operations Research, 301(1):318–333.

Azaioud, H., Claeys, R., Knockaert, J., Vandevelde, L., and Desmet, J. (2021). A low-voltage
DC backbone with aggregated res and bess: Benefits compared to a traditional low-voltage
AC system. Energies, 14(5).

Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning, 106(7):1039–
1082.

Bertsimas, D., Dunn, J., and Mundru, N. (2019). Optimal prescriptive trees. INFORMS Journal
on Optimization, 1(2):164–183.

Bertsimas, D., O’Hair, A., Relyea, S., and Silberholz, J. (2016). An analytics approach to design-
ing combination chemotherapy regimens for cancer. Management Science, 62(5):1511–1531.

Bhavsar, H. and Ganatra, A. (2012). A comparative study of training algorithms for supervised
machine learning. International Journal of Soft Computing and Engineering (IJSCE), 2:74–81.

Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random forests and other averaging
classifiers. Journal of Machine Learning Research, 9:2015–2033.

Biggs, M., Hariss, R., and Perakis, G. (2017). Optimizing objective functions determined from
random forests. SSRN Electronic Journal.

29



Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, Berlin, Heidelberg.

Bonfietti, A., Lombardi, M., and Milano, M. (2015). Embedding decision trees and random
forests in constraint programming. In Michel, L., editor, Integration of AI and OR Techniques
in Constraint Programming, pages 74–90, Cham. Springer International Publishing.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Carpentier, J. (1962). Contribution a l’etude du dispatching economique. Bulletin de la Societe
Francaise des Electriciens, 3(1):431–447.

Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., Laird, C. D., and Misener, R. (2022).
OMLT: Optimization & Machine Learning Toolkit.

Edward A. Bender, S. G. W. (2010). Lists, Decisions and Graphs. University of California at San
Diego.

Ferreira, K., Lee, B., and Simchi-levi, D. (2015). Analytics for an online retailer: Demand fore-
casting and price optimization. Manufacturing & Service Operations Management, 18(1):69–88.

Gao, F., Kang, R., Cao, J., and Yang, T. (2019). Primary and secondary control in DCmicrogrids:
a review. Journal of Modern Power Systems and Clean Energy, 7(2):227–242.

Gurobi Optimization, LLC (2020). Gurobi optimizer reference manual. https://www.
gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/
refman.pdf. (Accessed on 14.10.2020).

Halilbašić, L., Thams, F., Venzke, A., Chatzivasileiadis, S., and Pinson, P. (2018). Data-driven
security-constrained AC-OPF for operations and markets. In 2018 Power Systems Computation
Conference (PSCC), pages 1–7.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning - Data
Mining, Inference, and Prediction, Second Edition. Springer Science & Business Media, Berlin
Heidelberg.

International Electrotechnical Commission, editor (2016). Protection against electric shock – Com-
mon aspects for installations and equipment, volume IEC 61140:2016. VDE, Geneva, Switzerland,
4 edition.

Kumar, A., Serra, T., and Ramalingam, S. (2019). Equivalent and approximate transformations
of deep neural networks. CoRR, abs/1905.11428.

Kumar, A. L., Indragandhi, V., and Maheswari, U. Y. (2020). Software Tools for the Simulation of
Electrical Systems. Academic Press, San Diego, CA, USA, 1 edition.

Lin, C. D. and Tang, B. (2015). Latin Hypercubes and Space-Filling Designs, chapter 17, pages
593–625. CRC Press, Boca Taton, Florida, UNITED STATES.

Maragno, D., Wiberg, H. M., Bertsimas, D., Birbil, S. I., den Hertog, D., and Fajemisin, A. O.
(2021). Mixed-integer optimization with constraint learning. CoRR, abs/2111.04469.

Markowitz, H.M. andManne, A. S. (1957). On the solution of discrete programming problems.
Econometrica, 25(1):84.

Mary, A., Cain, B., and O’Neill, R. (2012). History of optimal power flow and formulations.
Federal Energy Regulatory Commission, 1:1–36.

30

https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf


Mistry, M., Letsios, D., Krennrich, G., Lee, R. M., andMisener, R. (2021). Mixed-integer convex
nonlinear optimization with gradient-boosted trees embedded. INFORMS Journal on Com-
puting, 33(3):1103–1119.

Mistry, M., Letsios, D., Misener, R., Krennrich, G., and Lee, R. (2018). Optimization with
gradient-boosted trees and risk control.

Mišić, V. V. (2020). Optimization of tree ensembles. Operations Research, 68(5):1605–1624.

Ott, L., Han, Y., Stephani, O., Kaiser, J., Wunder, B., März, M., and Rykov, K. (2015a). Modelling
andmeasuring complex impedances of power electronic converters for stability assessment of
low-voltage DC grids. In 2015 IEEE First International Conference on DC Microgrids (ICDCM),
pages 51–56.

Ott, L., Han, Y., Wunder, B., Kaiser, J., Fersterra, F., Schulz, M., and März, M. (2015b). An
advanced voltage droop control concept for grid-tied and autonomous dc microgrids. In
2015 IEEE International Telecommunications Energy Conference (INTELEC), pages 1–6.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Riccobono, A. and Santi, E. (2014). Comprehensive review of stability criteria for dc power
distribution systems. IEEE Transactions on Industry Applications, 50(5):3525–3535.

Roeder, G., Ott, L., Meier, A., Wunder, B., Wienzek, P., Bärmann, A., Liers, F., and Schellen-
berger, M. (2021). Analysis and improvement of lvdc-grid stability using circuit simulation
and machine learning - a case study. NEIS 2021; Conference on Sustainable Energy Supply and
Energy Storage Systems, pages 1–7.

Scikit-Learn (n.d.). Decision trees — scikit-learn 0.24.2 documentation. https://
scikit-learn.org/stable/modules/tree.html. (Accessed on 08/03/2021).

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). Taking the human
out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175.

Thebelt, A., Kronqvist, J., Lee, R. M., Sudermann-Merx, N., and Misener, R. (2020). Global
optimization with ensemble machine learning models. In Pierucci, S., Manenti, F., Bozzano,
G. L., andManca, D., editors, 30th European Symposium on Computer Aided Process Engineering,
volume 48 of Computer Aided Chemical Engineering, pages 1981–1986. Elsevier.

Thebelt, A., Kronqvist, J., Mistry, M., Lee, R. M., Sudermann-Merx, N., and Misener, R. (2021).
ENTMOOT: A framework for optimization over ensemble treemodels. Computers & Chemical
Engineering, 151:107343.

Thebelt, A., Tsay, C., Lee, R. M., Sudermann-Merx, N., Walz, D., Tranter, T., and Misener, R.
(2022). Multi-objective constrained optimization for energy applications via tree ensembles.
Applied Energy, 306:118061.

Thorbjarnarson, T. andYorke-Smith, N. (2020). On training neural networkswithmixed integer
programming. CoRR, abs/2009.03825.

Vielma, J. P. (2015). Mixed integer linear programming formulation techniques. SIAM Review,
57(1):3–57.

31

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html


Weiss, R., Ott, L., and Boeke, U. (2015). Energy efficient low-voltage DC-grids for commercial
buildings. In 2015 IEEE First International Conference on DC Microgrids (ICDCM), pages 154–
158.

Wunder, B., Ott, L., Han, Y., Kaiser, J., andMaerz,M. (2015). Voltage control and stabilization of
distributed and centralized dc micro grids. In Proceedings of PCIM Europe 2015; International
Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy
Management, pages 1–8.

Åström, K. J. and Murray, R. M. (2008). Feedback Systems - An Introduction for Scientists and
Engineers, chapter 9, pages 278–282. Princeton University Press, New York, United States.

A List of Network Parameters

Element Parameter
Name Lower Upper Unit Description

AC-DC
conversion
(source 1)

and
PV system
(source 2)

CAC 1E − 5 5E − 3 F Output capacitance of the source convertersCPV 1E − 5 1.5E − 3
RCAC 1E − 3 1E − 2 Ω

Equivalent series resistance of the output
capacitance of the source convertersRCPV

kAC 1E − 1 2E + 0
Factor for changing the droop decline at the
source converterskPV

fCAC 1E + 2 5E + 3 Hz
Cut-off frequency of the output filter at the
DC-DC converterfCPV

nAC 1E + 0 1E + 1
Multiplication factor of the sampling time for
dead time of the DC-DC converter regulation.nPV

lAC 1E + 0 2E + 2 m
Wire length from AC source or PV system to
bus nodelPV

Load groups

lload1 1E + 0 2E + 2 m Wire length from the load groups to bus node.lload2
Pload1 0E + 0 1E + 4 W Load value 1 and load value 2.Pload2

Table 8: DC grid input parameters for stability analysis.

Acknowledgements

We thank the DFG for their support within Projects B06 and Z01 in CRC TRR 154. Furthermore,
we acknowledge financial support by the Bavarian Ministry of Economic Affairs, Regional De-
velopment and Energy through the Center for Analytics – Data – Applications (ADA-Center)
within the framework of “BAYERN DIGITAL II” (20-3410-2-9-8).

32


	1 Introduction
	2 Preliminaries on Tree-Based Classifiers
	2.1 Binary Decision Trees
	2.2 Random-Forest Classifiers

	3 Using Tree Classifiers to Define Mixed-Integer Constraints
	3.1 Problem Setting
	3.2 Algebraic Reformulation of a Random-Forest Classifier

	4 Optimisation over Random-Forest Classifiers
	4.1 Smallest Possible Adjustment to Make a Solution Candidate Feasible
	4.2 Finding Reliable Solutions
	4.3 Largest Area in Univariate Classifier

	5 Improving the Stability of LVDC Networks
	5.1 Stability of LVDC Networks
	5.2 Parameter Variation in the Network
	5.3 Preparation of the Random-Forest Classifiers

	6 Case Study for Determining Stable LVDC Network Settings
	6.1 The MIP Models
	6.1.1 Minimal Adjustment of Parameters to Make a Network Stable (Adjust)
	6.1.2 Most Stable Point Possible Within an Already Existing Network (Reliable)
	6.1.3 Finding the Largest Stable Cuboid Volume 

	6.2 Discussion of the Optimisation Models and Practical Implications

	7 Conclusions
	A List of Network Parameters

