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Abstract

Due to the transition towards climate neutrality, energy markets are rapidly
evolving. New technologies are developed that allow electricity from renewable
energy sources to be stored or to be converted into other energy commodities.
As a consequence, new players enter the markets and existing players gain
more importance. Market equilibrium problems are capable of capturing these
changes and therefore enable us to answer contemporary research questions
with regard to energy market design and climate policy.

This cumulative dissertation is devoted to the study of different market
equilibrium problems that address such emerging aspects in liberalized energy
markets. In the first part, we review a well-studied competitive equilibrium
model for energy commodity markets and extend this model by sector coupling,
by temporal coupling, and by a more detailed representation of physical laws
and technical requirements. Moreover, we summarize our main contributions of
the last years with respect to analyzing the market equilibria of the resulting
equilibrium problems.

For the extension regarding sector coupling, we derive sufficient conditions
for ensuring uniqueness of the short-run equilibrium a priori and for verifying
uniqueness of the long-run equilibrium a posteriori. Furthermore, we present
illustrative examples that each of the derived conditions is indeed necessary to
guarantee uniqueness in general.

For the extension regarding temporal coupling, we provide sufficient conditions
for ensuring uniqueness of demand and production a priori. These conditions
also imply uniqueness of the short-run equilibrium in case of a single storage
operator. However, in case of multiple storage operators, examples illustrate
that charging and discharging decisions are not unique in general. We conclude
the equilibrium analysis with an a posteriori criterion for verifying uniqueness
of a given short-run equilibrium. Since the computation of equilibria is much
more challenging due to the temporal coupling, we shortly review why a tailored
parallel and distributed alternating direction method of multipliers enables to
efficiently compute market equilibria.

For the extension regarding physical laws and technical requirements, we
show that, in nonconvex settings, existence of an equilibrium is not guaranteed
and that the fundamental welfare theorems therefore fail to hold. In addition,
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we argue that the welfare theorems can be re-established in a market design in
which the system operator is committed to a welfare objective. For the case of
a profit-maximizing system operator, we propose an algorithm that indicates
existence of an equilibrium and that computes an equilibrium in the case of
existence. Based on well-known instances from the literature on the gas and
electricity sector, we demonstrate the broad applicability of our algorithm. Our
computational results suggest that an equilibrium often exists for an application
involving nonconvex but continuous stationary gas physics. In turn, integralities
introduced due to the switchability of DC lines in DC electricity networks lead
to many instances without an equilibrium. Finally, we state sufficient conditions
under which the gas application has a unique equilibrium and the line switching
application has finitely many.

In the second part, all preprints belonging to this cumulative dissertation are
provided. These preprints, as well as two journal articles to which the author
of this thesis contributed, are referenced within the extended summary in the
first part and contain more details.
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1. Introduction

To achieve climate neutrality, many countries are striving for an energy supply
that is free of fossil fuels and nuclear power and that has a high share of
renewable energy sources such as wind and solar power. As a consequence, new
technologies including, e.g., storage devices and renewable synthetic fuels are
needed to compensate for fluctuations in renewable production. In addition,
the role of energy transportation is becoming increasingly important since the
locations of renewable generation are often determined by external factors.
Thus, centers of demand diverge from centers of generation. All of this leads
to new players entering energy markets while some existing players gain more
importance. To assess contemporary research questions with regard to energy
market design and climate policy, optimization models are required that cover
the behavior of these emerging players and capture the interaction with other
market participants.

This cumulative dissertation is dedicated to this topic and analyzes classic
energy market equilibrium problems extended by new players or new side-
constraints for already existing players. In particular, we consider operators of
sector-coupling production plants, operators of storage devices, and network
operators facing nonconvex physical laws. In the following, we review the related
literature and provide an overview of the key types of optimization models that
have been studied so far in the literature on energy market modeling. Afterward,
we elaborate in more detail on the mathematical challenges addressed in this
dissertation and on the structure of this thesis.

Literature Survey on Energy Market Modeling A major strand in the litera-
ture focuses on optimizing the energy system as a whole. The respective models
are usually referred to as energy system models. Typically, the objective of
these models is to find the cost-minimal operation for the given system, while
investment is either fixed or co-optimized. Specific political or technical goals
are often imposed as constraints. Political goals might be climate targets such
as a certain percentage of renewable production in the system. Technical goals
might be stability aspects such as sufficient operating reserve to compensate for
possible network or supply outages. The considered time horizon can vary from
a few minutes to several decades and the geographic scope can also vary widely,
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ranging from a municipal to an international level. One of the drawbacks of all
these models is that neither the market design nor the energy pricing in the
respective energy systems is included but, of course, different players interact
in the systems’ markets and pursue individual objectives that may not be in
line with those of the overall system. Therefore, the market outcome is not
necessarily related to the system optimum and market equilibria are generally
not assessed by energy system models. Since there is an enormous amount
of articles in this area, we only mention selected contributions below that are
relevant to the applications studied in this dissertation.

Early energy system models focusing on sector coupling are provided by,
e.g., Correa-Posada and Sanchez-Martin (2014), Geidl and Andersson (2007),
Li et al. (2008), and Unsihuay et al. (2007). For more recent works see, e.g.,
Deane et al. (2017), Zhang et al. (2015), and Zlotnik et al. (2017) or the review
articles by Bloess et al. (2018) and Ramsebner et al. (2021) as well as the
references therein. For articles on storage devices that are operated to achieve
specific political goals, we refer the reader to, e.g., Cebulla et al. (2017) and
Zerrahn, Schill, and Kemfert (2018), while specific technical goals are addressed,
e.g., in Banshwar et al. (2019), Gayme and Topcu (2013), Muzhikyan et al.
(2016), or Samsatli and Samsatli (2015). A comprehensive overview of further
energy system models addressing power storage in systems with high shares
of renewable generation can be found in Zerrahn and Schill (2017). Finally,
concerning the nonconvex optimization of gas networks we refer the interested
reader to Koch et al. (2015) and Rios-Mercado and Borraz-Sanchez (2015) and
concerning transmission line switching models to, e.g., Fisher et al. (2008) and
Hedman et al. (2008, 2009) or Bienstock and Munoz (2015) as well as Brown
and Moreno-Centeno (2020) for more recent contributions.

Besides energy system models, another strand of the literature focuses on
mixed complementarity problems (MCPs) as a modeling framework. For a
general overview of complementarity modeling in energy markets see Gabriel,
Conejo, et al. (2013). A specific overview of MCPs in gas markets is given by
Gabriel and Smeers (2006) in Seeger (2006). For coupled markets of multiple
sectors, Conejo et al. (2020) provide complementarity-based models. An ad-
vantage of complementarity models is that the energy pricing, the individual
objectives of all players, and their interaction can be fully captured. One of the
core focuses of papers in this research area is on the computation of equilibria.
In the context of sector coupling, Abrell and Weigt (2012) compute, for example,
short-run market equilibria in coupled electricity and gas markets. Abrell and
Weigt (2016) extend this approach by additionally considering different time
intervals for trading as well as investment in transport and production capacity.
More recently, Roach and Meeus (2020) analyze the investment in coupling



capacity between the electricity and gas sector using an iterative procedure
based on solving MCPs for the clearing of each sector’s market. Chen, Conejo,
Sioshansi, et al. (2020b) use an MCP-based approach to model independent
operations of the electric power and natural gas system that are coupled due
to natural gas-fired power plants. Concerning energy storage applications,
Awad et al. (2014) state an MCP to study the impact of energy storage size
and location on market prices and players’ rents. In contrast, Fomeni et al.
(2019) focus on the concept of energy storage operators as service providers that
support the overall system and stabilize electricity prices during peak periods.

All of the aforementioned articles on energy market modeling by MCPs have
one thing in common: the assumption of perfect competition. We focus on
this aspect as perfect competition is also one basic assumption throughout
this dissertation. Corresponding market models under perfect competition
have also been studied extensively in a more general form in the economic
literature, where these models are usually referred to as market equilibrium
problems (MEPs). We provide a brief history of MEPs and of the strongly
related fundamental welfare theorems in Section 2.1.

For the sake of completeness, we also give a brief link to the literature that
analyzes strategic behavior and market power in energy systems based on
complementarity models. Again, we only state selected contributions that are
relevant with regard to the context of this dissertation. The interested reader is
referred, e.g., to Chen, Conejo, Sioshansi, et al. (2020a) and Huppmann and
Egging (2014) for sector-coupling applications, to Sioshansi (2014) for an energy
storage application, and to Boots et al. (2004), Cremer and Laffont (2002),
Egging et al. (2008), Xu et al. (2017), Yang et al. (2016), or Yao et al. (2008)
for gas market applications. Among the numerous contributions to gas market
applications, we like to highlight especially the work of Gabriel, Kiet, et al.
(2005), in which perfect competition is also assumed in almost all modeled
markets except for marketer sales to consumers. In particular, Gabriel, Kiet,
et al. (2005) conduct a thorough existence and uniqueness analysis for their
studied mixed nonlinear complementarity problem.

However, most papers refrain from a detailed equilibrium analysis of the
respective MCPs. Exceptions are Grimm, Schewe, et al. (2017), Krebs, Schewe,
et al. (2018), and Krebs and Schmidt (2018). In Grimm, Schewe, et al. (2017),
the electricity market model of Hobbs and Helman (2004) is studied in continuous
time. In this MEP, firms operate in different market regions and face fluctuating
demand while deciding on their production, which is constrained by their
invested capacity. In addition, a network operator runs the network with the
aim of maximizing congestion rents subject to predefined transmission capacities.
As a major contribution, Grimm, Schewe, et al. (2017) derive general conditions
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under which uniqueness of the short- and long-run market equilibrium holds.
Since we study several extensions of their setup in this dissertation and also
partly rely on their theoretical results, we review those in Section 3.3. The
setup of Grimm, Schewe, et al. (2017) is enhanced by Krebs and Schmidt
(2018), who additionally take into account piecewise linear and symmetric
transport costs and prove uniqueness of the resulting short-run equilibrium
under mild assumptions. Finally, in Krebs, Schewe, et al. (2018), physical
laws are incorporated in the MEP of Hobbs and Helman (2004) by adding
the classic direct current (DC) lossless approximation to the system operator’s
optimization problem. The authors establish uniqueness of the short-run market
equilibrium on tree and cycle networks under certain assumptions. Furthermore,
it is shown by counterexamples that uniqueness fails to hold in general and a
posteriori criteria for uniqueness are derived. Their setup is reviewed in more
detail in Section 6.1 of this dissertation, where we also investigate the inclusion
of other physical laws in the framework of Hobbs and Helman (2004).

Finally, we review literature that analyzes the design of energy markets by
multilevel computational equilibrium frameworks. Often, an MCP as described
above forms a lower level of these multilevel optimization problems. Thus, a
thorough uniqueness study is a prerequisite for tackling such problems; see, e.g.,
Colson et al. (2007), Dempe (2002), and Gabriel, Conejo, et al. (2013) for more
information on the importance of lower-level uniqueness in multilevel problems.
There are numerous examples from the literature on power markets; see, among
others, Ambrosius et al. (2020), Asensio et al. (2017), Baringo and Conejo
(2012), Egerer et al. (2021), Grimm, Kleinert, et al. (2019), Grimm, Martin,
et al. (2016), Grimm, Riickel, et al. (2021), Hu and Ralph (2007), Huppmann
and Egerer (2015), Jenabi et al. (2013), Kleinert and Schmidt (2019), Rider
et al. (2013), Ruiz and Conejo (2015), Sauma and Oren (2006), or Zeng et al.
(2016). Respective work in the context of sector coupling is provided by, e.g.,
Chen and Conejo (2020), Cong et al. (2019), and Wang et al. (2018), in the
context of power storage by, e.g., Abrell, Rausch, et al. (2019) and Grimm,
Griibel, et al. (2020), and in the context of gas markets by Bottger et al. (2021),
Grimm, Schewe, et al. (2019), Heitsch et al. (2021), and Schewe et al. (2021).

Mathematical Challenges and Structure As argued at the beginning, many
extensions of the above addressed MEP of Hobbs and Helman (2004) are
becoming increasingly important due to the transition to an energy supply free
of fossil fuels and nuclear power. We have seen that only few of them have
been examined in the literature so far. Therefore, this cumulative dissertation
is dedicated to close this gap by analyzing the following three extensions: sector



coupling, temporal coupling, and nonconvex physical laws. In particular, we
consider the following players with challenging side-constraints:

(i) operators of sector-coupling production plants (see Chapter 4),

(ii) operators of storage devices, whose actions couple successive trading
periods (see Chapter 5), and

(iii) a system operator that faces nonconvex physical laws at the spot markets
(see Chapter 6).

Similar to Grimm, Schewe, et al. (2017), we conduct an equilibrium analysis for
the aforementioned cases with a focus on the following challenging questions:

(i) Does a market equilibrium exist in the short- and long-run?

(ii) If so, is this market equilibrium unique or, at least, partly unique? If not,
which circumstances lead to multiplicities?

(iii) How can we compute market equilibria?

Part I of this cumulative dissertation summarizes our main contributions to
the stated questions for the three mentioned extensions. In this summary, we
refrain from presenting detailed results and proofs. Those can be found in the
original journal articles and preprints, the latter forming Part II. The summary
in Part I is structured in the following way. First, we provide a brief history of
the economic concept of MEPs and of the strongly related fundamental welfare
theorems in Chapter 2. Furthermore, we discuss an alternative formulation of
the welfare theorems shown by Harks (2020), which is based on Lagrangian
duality and forms the foundation for several results derived in this dissertation.
In Chapter 3, we introduce the unified notation and basic assumptions used
throughout Part I. Moreover, we introduce the MEP of Hobbs and Helman
(2004) and review the main results of the equilibrium analysis conducted by
Grimm, Schewe, et al. (2017). Afterward, we address the three mentioned
extensions of the model of Hobbs and Helman (2004) and summarize our main
findings with respect to existence, uniqueness, and the computation of equilibria.
We start with sector coupling in Chapter 4, continue with temporal coupling in
Chapter 5, and conclude with the extension regarding nonconvex physical laws
in Chapter 6. Finally, we highlight the key conclusions of this dissertation and
discuss the next research challenges in Chapter 7.






2. Foundations of the Theory of
Market Equilibria

This chapter focuses on market equilibrium problems (MEPs) and the funda-
mental welfare theorems. We start with a brief history in Section 2.1 that
follows the historical survey of Aliprantis et al. (2002). We conclude with pre-
senting a special type of MEPs in Section 2.2 that covers all MEPs considered
in this dissertation. For this kind of MEPs, we provide a formulation of the
fundamental welfare theorems based on Lagrangian duality.

2.1. Brief History

The theory of general equilibrium as known today was founded by Léon Walras
in his seminal work “Elements of Pure Economics”, which consists of four
successive editions published between the years 1874 and 1900; see, e.g., Walras
(1900) for the fourth edition or Walras (1954) for an English translation. In
his work, Walras formulated a system of equations, whose solutions constitute
equilibria of an entire economy. This Walrasian general equilibrium model covers
the demand of consumers, the supply of producers, and the clearing of markets,
i.e., that demand equals supply on each market. As it is still commonly done
in modern equilibrium theory, Walras made the following basic assumptions:
All consumers maximize their utility and all producers maximize their profit,
while all markets are perfectly competitive. Walras already observed that an
equilibrium to the presented system of equations might in general neither be
unique nor exist at all. This observation initiated a research route that many
great economists of the 20th century followed: Under which conditions can
existence and uniqueness of general market equilibria be obtained?

The first general existence results have been established by Abraham Wald
in a series of papers appearing between 1933 and 1936; see Wald (1933-1934,
1934-1935, 1936) or Wald (1951) for the English translation of Wald (1936).
However, it took another twenty years until, due to the advances in game
theory and the mathematical fields of topology and linear programming, “it
was perceived independently by a number of scholars that existence theorems
of greater simplicity and generality than Wald’s were now possible.”; see Arrow
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and Hahn (1971, p. 11). Exemplary contributions are Debreu (1962), Gale
(1955), and McKenzie (1959). One of the most famous existence results is
the one of Arrow and Debreu (1954). The model formulated in this work is
seen as the archetype of general equilibrium models and is often referred to as
the Arrow—Debreu—McKenzie general equilibrium model. In addition to this
seminal contribution on the existence of equilibria, Debreu also made one of
the first outstanding contributions on the uniqueness of a general equilibrium;
see Debreu (1970). For an overview of earlier contributions under much more
restrictive assumptions see Chapter 9 in Arrow and Hahn (1971).

Several generalizations of the Arrow—Debreu—McKenzie model have been stud-
ied in the literature. Examples include the case of intransitive and incomplete
preferences as in Gale and Mas-Colell (1975), Mas-Colell (1974), and Shafer
and Sonnenschein (1975a,b), or the case of an infinite number of commodities
as in Debreu (1954) and Radner (1967). All of the contributions mentioned
so far have one thing in common: They analyze convex economies. Another
strand of the literature extends these results to the case of nonconvex economies.
Nonconvexities on the consumer side are studied, e.g., by Aumann (1964) and
Hildenbrand (1974). Nonconvexities on the producer side most commonly arise
due to indivisibilities, increasing returns to scale, and fixed costs. Examples
that tackle such nonconvexities are, e.g., Bikhchandani and Ostroy (2002, 2006),
Leonard (1983), and Shapley and Shubik (1971) for assignment problems, Bald-
win and Klemperer (2019) as well as Bikhchandani and Mamer (1997) for
general exchange economies with indivisibilities, Guo et al. (2021) and O’Neill
et al. (2005) for discrete markets, Fleiner et al. (2019) and Hatfield et al. (2013,
2019) for trading networks, and Beato (1982), Bonnisseau and Cornet (1988,
1990) as well as Brown, Heal, et al. (1986) for economies with increasing returns
to scale.

Besides existence and uniqueness, the economic efficiency of general equilibria
has also been intensively studied in the literature. The results of these studies
are known today as the first and second welfare theorem. Again, Arrow and
Debreu were the first to prove these theorems in reasonable generality; see
Arrow (1951) and Debreu (1951, 1954). The assumptions imposed, e.g., in
Debreu (1954) are

(i) the convexity of the consumption sets,

)

(ii) the convexity of preferences,

(iii) the continuity of preferences,
)

(iv) the convexity of the aggregate production set, and
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(v) the existence of an interior point of the aggregate production set.

Given these assumptions, the first welfare theorem establishes that every equi-
librium is Pareto optimal, while the second welfare theorem states that every
Pareto optimal allocation is an equilibrium. Consequently, there is an equiva-
lence of equilibria and Pareto optimal solutions, where the latter are typically
referred to as welfare-maximal solutions. In the following, we study in more
detail the relation of the fundamental welfare theorems and Lagrangian duality.

2.2. The Relation Between Welfare Theorems and
Lagrangian Duality

We consider a special type of MEPs for which we present an alternative for-
mulation of the fundamental welfare theorems based on Lagrangian duality.
This connection of the theory of market equilibria to Lagrangian duality in
optimization is shown by Harks (2020). Our presentation in this section follows
Harks (2020) and [JG4].

Let the set of perfectly competitive players I be finite. The preferences of
each player i € I are described by the utility function u;: R™ — R and the
strategy set is denoted by X; C R™. In addition, the function h;: R™ — R™"
with z; — h;(x;) maps the player’s decision variables to the actual consumption
vector. Hence, for a given price vector m € R"", every player ¢ € I faces the
optimization problem

max wi(xy) + 7 hi(x) st x € X (2.1)

To obtain an equilibrium, the best responses of all players have to satisfy
predefined market-clearing conditions that depend on the variables of all players.
We model these market-clearing conditions as

> hi(z;) =0, (2.2)
el
i.e., we assume, in contrast to Harks (2020), that there is no excess demand or
supply.
In total, we consider the following MEP:

Optimization problems of the players: (2.1) for all i € I, (MEP)
Market-clearing conditions: (2.2).

In the following, we use = := (2;);er € R™ with n, := > ;c;n; to abbreviate

the decision variables of all players. Analogously, X := X el X, denotes the

Cartesian product of the individual strategy sets.
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Based on this notation, the pair (x,7) is a market equilibrium of (MEP) if
the decision variables x; are best responses to the prices 7 for all players i €
and if, additionally, the market-clearing conditions are satisfied by these best
responses. Prices 7 are called market-clearing prices if decision variables x € X
exist such that (x,7) is a market equilibrium.

The corresponding welfare maximization problem of (MEP) is obtained by
jointly maximizing the objectives of all players subject to the constraints of all
players and the market-clearing conditions. Hence, the welfare problem reads

max Zuz(fm) st. xeX, Zhl(azz) =0. (WFP)
il icl
Now, the question that arises is the following. Under which conditions do the
fundamental welfare theorems apply in our setting? In other words, when do the
market equilibria of (MEP) correspond to the solutions of (WFP)? Note that
answering this question is not trivial since no further assumptions are imposed
on the utility functions, strategy sets, and decision variables, i.e., nonconvexities
are possible. Nevertheless, as Harks (2020) proves, a general answer to the
raised question can be found by applying Lagrangian duality. In particular,
Harks (2020) shows that the equivalence of welfare maxima and equilibria holds
if and only if the duality gap of the welfare problem is zero.
To establish this result formally, let the Lagrangian of the welfare prob-
lem (WFP) be defined by

Lz, m) =Y (uz(xz) + ﬂ'ThZ’(:L'i)) :
i€l
The corresponding Lagrangian dual problem thus reads
inf 2.3
nf - p(m), (2.3)
where p(7) := sup,cx L(z, 7) holds.

The welfare problem has zero duality gap if a global solution x of the primal
problem (WFP) and a global solution 7 of the dual problem (2.3) exist for
which the respective objective function values are the same. In the presence
of nonconvexities, such primal-dual solution pairs with zero duality gap might
not exist. However, if such a pair exists, the following result of Harks (2020)
guarantees that (z,7) is then a market equilibrium of (MEP).

Theorem 2.2.1 (Harks (2020, Theorem A.1 Part 1)). The pair (z*,7*) is
a market equilibrium of (MEP) if and only if x* and 7 are solutions of the
welfare optimization problem (WEP) and the corresponding dual problem (2.3),
respectively, with zero duality gap.
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This result has several important implications. If a market equilibrium
of (MEP) exists, we can directly conclude that this market equilibrium is
economically efficient in the sense that the welfare of the overall system is
maximized. Moreover, if we know for given applications that the duality gap of
the welfare problem is always zero, we have an equivalence of (MEP) and the
welfare maximization problem as in the fundamental welfare theorems. Hence,
we can then solve the corresponding welfare maximization problem to obtain a
market equilibrium.

To conclude, we consider the special case that the optimization problems (2.1)
of all players are convex for all prices 7. In this case, the fundamental welfare
theorems apply if a constraint qualification as, e.g., Slater’s condition holds for
the welfare problem since the duality gap of the welfare problem is then always
zero. Thus, we obtain the following alternative formulation of the fundamental
welfare theorems based on Lagrangian duality.

Corollary 2.2.2 (Harks (2020, Corollary A.4)). Let the strategy sets X; of all
players i € I be nonempty convex sets. Furthermore, assume that the utility
functions u; are concave and the functions h; are affine for all playersi € I. In
addition, assume that Slater’s condition holds for the welfare problem (WFP)
and that the welfare problem (WFP) is bounded. Then, an equilibrium (x*, ) of
(MEP) exists. Moreover, if 3 ;cru; is strictly concave over X, this equilibrium
is unique. In addition, each equilibrium of (MEP) corresponds to a welfare-
mazximal solution of (WFP) and vice versa.
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3. A Market Equilibrium Problem to
Model Liberalized Energy Markets

Here, we present the equilibrium model for energy commodity markets as dis-
cussed in Hobbs and Helman (2004). This model is an application of the market
equilibrium problem (MEP) introduced in the previous chapter and forms the
basis for all equilibrium models considered in the subsequent chapters. We start
with an overview of our basic notation and main assumptions in Section 3.1.
Afterward, we describe the addressed equilibrium model in Section 3.2 and
review the results from the literature with respect to existence, uniqueness, and
the computation of market equilibria in Section 3.3.

3.1. Basic Notation and Assumptions

In this section, we provide the basic notation that we keep general enough to
cover the setup of all articles included in this cumulative dissertation. Moreover,
we collect the main assumptions used throughout this thesis.

Basic Notation The transport network of the considered energy commodity
is modeled as a directed and weakly connected graph G5 = (V;, As) with node
set Vs and arc set A;. The index s represents the respective energy sector
of the energy commodity such as electricity or natural gas. The set of all
considered sectors is denoted by S. We further partition the set of nodes into
the set V" of nodes at which producers are located, the set V,~ of nodes at
which consumers are located, and the set V¥ of inner network nodes. If we
speak, e.g., of producer v € V7, we actually refer to the producer located at
this node. Analogously, we refer to all producers of a given sector by the set V. .
Finally, we follow common notation and define the set §"(v) of all ingoing arcs
and the set §2"(v) of all outgoing arcs at a node v € V; by

05 (w) i={a = (w,v) € As[we Vi}, 0"(v) = {a=(v,w) € A |w € Vi}.

To capture the market structure, we now consider the bidding zones Z; of
the sector s € S. Each bidding zone z € Z; is the subset of the producers and
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@

@

Figure 3.1.: An example for the graph G5 = (Vs, As) modeling the network infrastructure
(left) and the graph G, = (Zs, Ks) modeling the market structure (right);
inner network nodes are colored white while a bidding zone as well as all
producers and consumers that trade in this bidding zone are colored alike,
i.e., z(v1) = z(v2) = z1 and z(vy) = z(vs) = 22 hold

consumers V" UV, that trade in this bidding zone. For the ease of presentation,
we assume that each producer and each consumer trades in exactly one bidding
zone, i.e., Zs is a partition of V;F U V.. Given a bidding zone z € Z; of the
sector s € S, we denote by V" all producers and by V,~ all consumers that
trade in this bidding zone. For all sectors s € S, we indicate by the function z
in which bidding zone the producer or consumer v € V;© UV~ trades:

= UJWruv) - Uz

seS seSs

Besides the graph G4 to model the network infrastructure, we introduce
the directed and weakly connected graph G, = (Zs, K;) to model the market
structure of the energy sector s € S. The arc set Ky C Z; X Z; represents the
trading connections between the different bidding zones of this sector. More
specifically, if trade between the bidding zone z € Z; and another bidding
zone z' € Zs is possible at the spot market, either (z,z") or (2, 2) is an element
of the arc set. The level of trade on an arc k € K is limited by the minimum
and maximum trading capacity g, and q,j. To account for the possibility that
there is no trading between adjacent bidding zones in certain trading periods,
we assume that ¢, < 0 and q,j > 0 hold. Again, we use the standard J-notation
as introduced above to define the set 6*(z) of all ingoing and the set §9¢(z) of
all outgoing trading connections of a bidding zone z € Zj.

Figure 3.1 illustrates the graphs G5 and G, modeling the network infrastruc-
ture and the market structure for an exemplary instance.
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For the further economic framework, we consider 7' := {0, 1,...,t¢} C Ny
successive trading periods. The variable production costs of the producer v € V©
are described by the function ¢j*": R>¢9 — R>p. In case of no production,
variable costs are zero, i.e., ¢;*(0) = 0 holds. Moreover, all functions ¢;*(-)
are monotonically increasing, convex, and continuously differentiable. The
investment costs of the producer v € V' linearly increase in the invested
capacity by ci,n" € R>p. The inverse demand function F;,: R>¢p — R models
the demand of the consumer v € V™ in trading period ¢t € T'. All functions P; ,(+)
are continuous and strictly decreasing. Modeling demand by elastic demand
functions is a standard approach in economic literature; see, e.g., Mas-Colell
et al. (1995).

Main Assumptions Equilibrium problems that result from jointly modeling
private investment and spot-market behavior are challenging problems. Ad-
ditionally considering aspects like temporal and spatial coupling, as done in
this dissertation, further complicates the equilibrium analysis. Hence, to keep
the analysis tractable, we assume perfect competition at all markets. This is a
standard assumption in related contributions; see, e.g., Boucher and Smeers
(2001), Daxhelet and Smeers (2007), and Grimm, Martin, et al. (2016). As-
suming perfect competition has the two following direct implications. First,
all players act as price-takers, i.e., each individual player views the market
prices as exogenously given and does not anticipate the impact of the own and
the rivals’ decisions on these market prices. Second, all players are perfectly
informed. Thus, the system operator is, e.g., informed about the capacities of
all production facilities in the considered network.

In addition, we assume that each player has perfect foresight. This implies
that, e.g., all producers correctly anticipate the outcomes of the spot markets
in which they operate when deciding on their investment. Moreover, all storage
operators correctly anticipate the future spot-market outcomes when deciding
on their level of charging and discharging in the current trading period. More
precisely, perfect foresight implies that the spot-market results are not subject
to any kind of uncertainty. As discussed in [JG1], the assumption of perfect
foresight might be relaxed by using robust or stochastic optimization techniques.
Resulting robustified complementarity problems have only recently received
increased attention in the literature and still need to be better understood
theoretically. For more information on this topic see, e.g., Biefel et al. (2021),
Krebs, Miiller, et al. (2021), Krebs and Schmidt (2020), and Sierra-Aguilar
et al. (2021) or Celebi et al. (2021) and Kramer et al. (2020) in the context
of energy market modeling. For uncertain complementarity problems studied
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using stochastic optimization we refer the reader to, e.g., Chen and Fukushima
(2005), Chen, Wets, et al. (2012), Chen, Zhang, et al. (2009), and Lin and
Fukushima (2006).

3.2. Producers, Consumers, System Operators, and
Market Clearing

We now continue with the description of the equilibrium model for energy
commodity markets as discussed in Hobbs and Helman (2004). The three
types of players considered in this model are producers, consumers, and system
operators. Before we state the MEP, we present in detail the objectives and
strategy sets of the individual players. To simplify notation, we use quantities
without an index to denote the vector of indexed quantities. For example,
dy = (diw)ier is the vector of all consumption of the consumer v € V= and
d := (dv),cy- is the vector of overall consumption.

The goal of the producer v € VT is to maximize the profit from trading, i.e.,
the revenues from selling the considered energy commodity minus the costs of
production and investment. Thus, the optimization problem of the producer
reads

mae Y (mooyon — (1)) — e, (3.12)
Yoo er
St. Yo > >0, teT, (3.1b)

where 7, .,y denotes the price of trading period ¢ in the bidding zone 2(v) in
which the producer is trading. When deciding on the production level y; ., the
producer is constrained by the invested production capacity y,.

Consumers aim at choosing the demand levels d, that maximize their gross
consumer surpluses less their purchasing costs. Hence, the consumer v € V-
faces the optimization problem

dt,v
max Z ( Pry(p) dp — Wt,z(u)dt,v> (3.2a)
dv 0
te’T
st. diy >0, teT. (3.2b)

A system operator is responsible for allocating the trading capacities between
adjacent bidding zones of the same sector. The goal of the system operator is
to maximize the profit from congestion rents, which is achieved by allocating as
much trade as the trading capacities allow from low price bidding zones to high

18



3.2. Producers, Consumers, System Operators, and Market Clearing

price bidding zones. Hence, the optimization problem of the system operator of
sector s € S is given by

max Z Z (Tt2 = o) Qe ke (3.3a)

teT k=(z,2')€Ks
st. g <@r<q, k€K, teT. (3.3b)

A positive trading value ¢, > 0 on k = (2,2') € K, implies that the respective
amount of the energy commodity is delivered in trading period t from bidding
zone z to bidding zone 2’. In turn, a negative trading value g < 0 implies a
delivery from bidding zone 2’ to bidding zone z.

We like to note that only congestion rents between bidding zones and not
within bidding zones are considered. Therefore, the resulting allocation might
violate transport constraints. If this is the case, the system operator adjusts
production and consumption in a cost-minimal way such that transport becomes
feasible. Typically, these adjustments are assumed to be cost-based since the
decisions of other players are then not affected by the adjustments; see, e.g.,
Grimm, Martin, et al. (2016), Grimm, Riickel, et al. (2021), or [JG1] for more
information on this topic.

Finally, the market-clearing conditions require that all trades are balanced in
each trading period and in each bidding zone of each sector s € S:

Z Gk — Z Gtk = Z dip — Z Ytw, 2 € Zs, t€T. (3.4)

keoin(z) keogut(z) veV, veVyh

In total, we obtain for each sector s € S the energy market equilibrium

problem
Producers: (3.1) for all v € VT,
Consumers: (3.2) for all v € V7,
(MEP-E)
System operator: (3.3),
Market-clearing conditions: (3.4).
The corresponding welfare optimization problem reads
diw .
max S (Y [ Radi- Y e | - 3 A,
vida o \ ey 70 eVt yt (WFP-E)

st. (3.1b), veV,, (32b), veV,, (3.3b), (3.4).
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3.3. Equilibrium Analysis

In this section, we analyze (MEP-E) with respect to existence, uniqueness, and
the computation of equilibria. Grimm, Schewe, et al. (2017) study (MEP-E)
in continuous time and conduct a detailed equilibrium analysis. Most of their
theoretical results carry over to the case of discrete time studied here and are
therefore reviewed in the following.

Existence of an equilibrium is easily obtained for (MEP-E) and follows directly
by applying Corollary 2.2.2. The strategy sets of all players are described by
linear inequalities and are, by definition, nonempty since the zero vector is a
feasible strategy for all players. Furthermore, the utility functions are concave
for all players and the functions that map the players’ decision variables to
their actual consumption vectors are affine for all players. The market-clearing
conditions and therefore all constraints of (WFP-E) are linear and satisfied by
the zero vector. Hence, if the welfare problem is bounded, a market equilibrium
of (MEP-E) exists. In reality, the welfare problem is always bounded due to
technical transport restrictions and limited resources.

Concerning uniqueness of the market equilibrium, we first like to note that
uniqueness of demand directly follows from Theorem la of Mangasarian (1988).
This result can also be applied to establish uniqueness of production in case
that the variable production costs are strictly convex. Consequently, all players’
decisions except for the trading flows are unique. Multiplicities in the trading
flows arise if and only if it is possible to modify a given solution with a flow along
a cycle while remaining within the trading capacities; see also the discussion
before Theorem 3 in Grimm, Schewe, et al. (2017). However, such multiplicities
are in line with the optimal decisions of the other players since the market
is cleared nonetheless. These multiplicities are thus negligible. Therefore,
uniqueness is easily obtained for strictly convex variable costs.

For this reason, we restrict our analysis in the following to linear variable
costs and additionally assume that these costs are pairwise distinct.

Assumption 1 (Grimm, Schewe, et al. (2017, Assumption 2)). The variable
costs of producer v € V& are given in any trading period t € T by ¢} yt.,, where
" € R holds. Moreover, the variable production costs are pairwise distinct

for the considered sector s € S, i.e., c¥* % ¥ for all v # w with v,w € V.

This assumption is sufficient to establish uniqueness of the short-run market
equilibrium, i.e., in the case of fixed investment decisions.

Theorem 3.3.1 (Grimm, Schewe, et al. (2017, Theorem 3)). Let a sector s € S
be given. Suppose Assumption 1 holds. Then, there exists a short-run market
equilibrium of (MEP-E) with unique demand and production.
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We refer the interested reader to Krebs and Schmidt (2018) for a generalization
of this short-run result to the case of a system operator facing piecewise linear
and symmetric transport costs.

When proving the uniqueness of the long-run market equilibrium in the
continuous time setting, Grimm, Schewe, et al. (2017) rely on the assumption
that sets of scenarios in which specific demand values are realized must have
zero measure; see Assumption 3 in Grimm, Schewe, et al. (2017). In the setting
of finitely many trading periods, this assumption obviously does not hold in
general. However, by using an alternative proof, the author of this dissertation
has shown in [JG1] that the theoretical results of Grimm, Schewe, et al. (2017)
are nevertheless transferable to the case of discrete time. In order to see this, we
need some more notation and therefore introduce the concept of price clusters.

Definition 3.3.1 (Grimm, Schewe, et al. (2017, Definition 1), [JG1, Defi-
nition 4.2]). Let = be a market equilibrium of (MEP-E). Furthermore, let
Ci,s = {C1,...,Cl,,|} be a partition of the bidding zones Z of the considered
sector s € S in trading period ¢t € T'. We call C; 5 a partition into price clusters
if prices are equal for all bidding zones in each cluster C' € C; ;. To emphasize
that price clusters may depend on the considered market equilibrium, we use
the notation C; s(z).

As shown in Grimm, Schewe, et al. (2017), such a partition into price clusters
can be constructed from a given market equilibrium z of (MEP-E) by deleting
all arcs with binding trading capacities from the graph G’,. Then, the remaining
weakly connected components of the obtained graph GY = (Zs, K?) with
Kps =1k € Ks|q, <aqui < q,j} yield the partition into price clusters for
trading period ¢t € T. We call this partition capacity-induced since it is induced
by the binding trading capacities in the given market equilibrium.

To establish uniqueness of the long-run market equilibrium, we impose a final
assumption based on the occurrence of the same capacity-induced partition
over multiple trading periods. To this end, let ’y;fv denote the dual variable of
the capacity bound in (3.1b) for a given producer v € V" and a given trading
period t € T'. For the ease of presentation, we address all producers that operate
in the same price cluster by ng, ie., Vg :=U,ec V2 holds.

Assumption 2 (Grimm, Schewe, et al. (2017, Assumption 4), [JG1, Assump-
tion 3]). Let = be a market equilibrium of (MEP-E). Then, for the considered
sector s € S, there exists a subset of trading periods T C T for which the
capacity-induced partitions Cy s(x), t € T, are the same. Moreover, for each
price cluster C € C; ¢(x), there exists a bijective function

fciTc%Vg with TC = {Zl,fg,...,fﬁc‘}gT
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Figure 8.2.: Illustration of Assumption 2 for the case that three producers trade in

the cluster (merit-order in blue, aggregated demand functions in orange;
adapted from [JG1])

such that the following holds for a given j € {1,...,|T¢|}:

(i) All producers fc (ty) with j < j, j' € {1,...,|Tc|}, produce in trading
period t; at maximum capacity, while strict complementarity is satisfied,
. _ _ = _ . +
€ Y, (i) = Yie (i) holds with ’Yij,fc(fj/) > 0.

(i) All producers fc (t) with ' > j, j € {1,...,|T¢c|}, produce in trading
period t; zero, i.e., ygjjc@/) =0 holds.

In economic terms, Assumption 2 implies that there exists at least one
trading period for each producer in which this producer generates the lowest
but still positive contribution margin. To explain this relation more precisely,
we consider the merit-order ¢;i" < ¢2" < -+ < ¢ of the price cluster C
with n = \V(jf |. Assumption 2 imposes that there exists one trading period
in which the associated price in the cluster is greater than CX?‘T but smaller

var 3
than Coryps 1€
var . var . var . var 7
C’Ul < 7Tt17C < C,U2 < ﬂ-tg,C < CU3 < < Cvn < ﬂ-t\fcrc

holds. This relation is especially violated if two producers do not produce
or always produce at the same time once they are in the same price cluster.
However, as soon as producers are sufficiently different and consumer demand is
sufficiently fluctuating, such cases should actually not occur and Assumption 2
should be satisfied. In Figure 3.2, the case of sufficiently different economic data
is illustrated. For a more detailed discussion of Assumption 2 in the context of
a single sector, we refer the interested reader to Grimm, Schewe, et al. (2017).
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Based on Assumption 2, we can verify uniqueness of a given long-run market
equilibrium of (MEP-E) a posteriori.

Theorem 3.3.2 (Grimm, Schewe, et al. (2017, Theorem 5), [JG1, Theorem
4.20]). Let a sector s € S and a long-run market equilibrium x of (MEP-E)
be given. Suppose Assumptions 1 and 2 hold. Then, (MEP-E) has a unique
solution in demand, production, and investment.

Finally, we like to comment on how to compute an equilibrium of (MEP-E).
As argued above, Corollary 2.2.2 applies for (MEP-E). Consequently, each
equilibrium of (MEP-E) corresponds to a welfare-maximal solution of (WFP-E)
and vice versa. Hence, state-of-the-art quadratic programming solvers can be
applied to the single-level welfare problem (WFP-E) in order to obtain a market
equilibrium of (MEP-E). This is done, e.g., in Grimm, Martin, et al. (2016),
where the above introduced MEP forms a lower level of a multilevel equilibrium
problem. Even for large-scale instances, this approach is easily applicable in the
short-run since all trading periods are decoupled over time and can therefore be
solved separately. In the long-run, problem-tailored clustering methods can be
applied for large-scale instances to reduce the input data size to a manageable
number of representative scenarios as done, e.g., in Ambrosius et al. (2020).
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4. First Extension: Operators of
Sector-Coupling Technologies

In the following, we consider the case of coupled energy sectors as a first
extension of the market equilibrium problem (MEP-E) described in Chapter 3.
So far, the transport networks and markets of the different energy commodities
have not been coupled. Introducing operators of sector-coupling technologies as
additional players leads to such coupling aspects in the equilibrium model. As a
consequence, the equilibrium analysis becomes more complicated. In [JG1], we
show that additional assumptions are necessary to ensure uniqueness of the short-
and long-run market equilibrium compared to the single-sector case described
in the previous chapter. For a more compact presentation of these results, we
refrain from distinguishing between existing and candidate production facilities
as in [JG1] and only take candidate facilities into account. Otherwise, the setup
and all presented results in this chapter are based entirely on [JG1].

We proceed in this chapter as follows. First, we introduce the extension
of (MEP-E) regarding sector coupling in Section 4.1. In Section 4.2, we provide
a priori conditions for uniqueness of the short-run equilibrium in coupled markets
of multiple energy sectors. Finally, we consider the long-run in Section 4.3 and
derive a posteriori conditions for verifying the uniqueness of a given long-run
market equilibrium.

4.1. The Market Equilibrium Problem

A sector-coupling technology transforms the energy commodity of one sector s
into the energy commodity of another sector s, where s # s' and s, s’ € S hold.
Thus, a sector-coupling production facility is characterized by the tuple (v, w)
of the network location v € Vi at which the input factor is withdrawn and
the network location w € Vy at which the production output is injected. We
denote the set of all sector-coupling facilities by A* C U, ycs. s (Vs X V).
Each facility a = (v,w) € AT has an efficiency 7, € (0,1) and investment costs
that linearly increase in the invested capacity by ¢™ € R>o. Given a bidding
zone z € Z, of the sector s € S, we denote by A7 C AT all sector-coupling
producers that obtain their input factors from this bidding zone. Analogously,
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we denote by A C A7 all sector-coupling producers that sell their production
output in this bidding zone.

An operator of a sector-coupling facility aims at maximizing the profit from
trading such as the sector-specific producers introduced in the previous chapter.
However, the difference between these two types of producers is that, for the
sector-specific producers, the energy markets from which they obtain their
input factors are not modeled endogenously in our setup, while the input factor
markets of the sector-coupling producers are. Hence, the operator of the sector-
coupling production facility a = (v, w) € AT faces the following optimization
problem

Vol t; (1 2() Y0 = T2 i) = € (4.1a)
s.t. nadt,a = Yt,a» teT, (41b)

Ya = Yt.a >0, telT, (41C)
dia>0, teT, (4.1d)

where 7, ,(,) denotes the price of the bidding zone in which the input factor is
obtained and 7 ,(,,) denotes the price of the bidding zone in which the production
output is sold. In accordance with constraints (4.1b), the production output
equals the purchased input multiplied by the facility’s efficiency. In addition,
the production output is limited by the invested capacity.

Finally, we include the operators of sector-coupling technologies in the market-
clearing conditions and therefore have

Z qt.k — Z Gtk = Z di v — Z Yo + Z diq — Z Yta (4.2)

keoi(2) keagut(z) veV; veVzh acA; acAY

forallze Z;,, se S,andt € T.

In total, we obtain the following market equilibrium problem for coupled
markets of multiple energy sectors:

Sector-specific producers: (3.1) for allv € V7, s € S,
Consumers: (3.2) forallv eV, , s€ S,
System operators: (3.3) for all s € S, (MEP-SC)
(4.1)
(4.2).

Sector-coupling producers: for all a € AT,

Market-clearing conditions:
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The corresponding welfare optimization problem reads

dt,v
max Y[ X [ Pude— X @)

v,9,d,q
teT seS veVy veV,t
inv - inv -
- Z Z Cy Yo — Z Ca Ya (WFP-SC)
s€S eVt acA*

st. (3.1b), veVS, se€S, (32b), veV,, scS,
(3.3b), s€S, (41b)(4.1d), ac A%, (4.2).

Existence of an equilibrium is easily obtained for (MEP-SC) by applying
Corollary 2.2.2 as in the single-sector case. Moreover, Corollary 2.2.2 implies
that each equilibrium of (MEP-SC) corresponds to a welfare-maximal solution
of (WFP-SC) and vice versa. Hence, as in the single-sector case, state-of-
the-art quadratic programming solvers can be applied to the welfare problem
(WFP-SC) to compute a market equilibrium of (MEP-SC) and, if necessary,
problem-tailored clustering methods can be used to reduce the input data size
to a manageable number of representative scenarios. In contrast to existence
and computation, uniqueness of the market equilibrium is not as easy to achieve
for multiple coupled sectors, which we discuss below.

4.2. A Priori Conditions for Short-Run Uniqueness

Here, we present conditions that are sufficient for guaranteeing uniqueness of
the short-run market equilibrium of (MEP-SC). These conditions are obtained
by extending the assumptions required for a single sector to multiple sectors.
Before we start with deriving these conditions, we like to point out that all
demand is again unique due to Theorem la of Mangasarian (1988). Moreover,
if the variable cost functions are strictly convex, sector-specific production is
also unique due to Mangasarian (1988). Since the additional assumptions for
uniqueness of the sector-coupling production are covered by the assumptions for
uniqueness of overall production in the case of linear variable costs, we refrain
from presenting the special case of strictly convex costs and directly restrict
our argumentation to linear costs. To this end, we assume for the rest of this
chapter that the variable costs of producer v € V' are given in any trading
period t € T' by ¢;™y; , where ¢ € Rx>¢ holds.

The first condition that is required for establishing short-run uniqueness
relates to the sector-specific demand and reads as follows.

Assumption 3 ([JG1, Assumption 1]). The demand d;. = 3 .y~ div in
bidding zone z € Zs in sector s € S is positive in all trading periods t € T'.
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4. First Extension: Operators of Sector-Coupling Technologies

As argued in [JG1], this assumption can be justified by the fact that, in
real applications, there should always be consumers in a bidding zone who are
willing to pay more than the resident operators of sector-coupling facilities.

Assumption 3 allows us to conclude uniqueness of the market prices; see
Lemma 4.9 in [JG1]. Since the market prices are unique, we have multiple
equilibria if and only if individual players have multiple best responses to these
unique market prices. As in the single-sector case, this situation is avoided if the
variable production costs are pairwise distinct for all producers. To guarantee
this in sector-coupled markets, the following assumption is imposed.

Assumption 4 ([JG1, Assumption 2|). All variable production costs and all
efficiencies of the sector-coupling facilities satisfy the following five properties.

(i) The variable production costs are pairwise distinct in each sector, i.e.,
CVA £ eV for all v # w with v,w € V;F, s € S.

(ii) The efficiencies of the sector-coupling facilities are pairwise distinct, i.e.,
Na # N for all a # o' with a,a’ € A*.

(iii) Consider the sector-coupling facility a € AT that produces the commodity
of sector s € S from the commodity of sector s’ € S with s # s'. Then,
the variable production costs across the two sectors are—taking into ac-
count the efficiency of the sector-coupling facility—pairwise distinct, i.e.,
NaC™ # V3 with v € V& and w € V,f.

(iv) It holds
J J'
o H Na; 7 Cup- H Ta;
i=1 i=j+1

for all {ay,...,a;} C A with2 < j' <3, .4 |Zs| and for all v # w with
veVS, seS, andweV,, s €S.

(v) It holds
J J’
Hnai ' H Na,;
i=1 i=j+1
for all {a1,...,a;} C AT with2 < j' <3, cq|Zs|.

Assumption 4 (i) covers the single-sector short-run assumption of pairwise
distinct variable costs for all sector-specific producers.
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4.3. A Posteriori Conditions for Long-Run Uniqueness

To explain Assumption 4 in more detail, we now consider the variable pro-
duction costs of an operator a = (v, w) of a sector-coupling technology. This
operator obtains the technology’s input factor in bidding zone z(v) and sells
the production output in bidding zone z(w). If this operator produces the
quantity € > 0, the respective variable costs of production amount to 7 .\ /7a-
Thus, Assumption 4 (ii) must hold to avoid that two sector-coupling producers
with the same input and output bidding zone operate at the same variable costs.
Moreover, if a sector-specific production technology sets the price in the input
bidding zone, i.e., T () = c;" holds for some v’ € V;(FU), Assumption 4 (iii)
prevents that any sector-specific producer in the output bidding zone has the
same variable costs as the given sector-coupling producer.

The considered operator might sell the technology’s production output to
another sector-coupling producer a’ € A* that takes this output as input for
producing the quantity € > 0 of another energy commodity. In this case, the
respective variable costs amount to m; .’/ (Nafar) if Tt 2(w) = Tt 2(0)/7a is true.
Hence, Assumption 4 (iv) naturally extends Assumption 4 (iii) to chains of
successively producing sector-coupling technologies. Finally, Assumption 4 (v)
avoids that such chains with the same initial input and final output bidding
zone yield the same variable production costs. In summary, Assumption 4
imposes that the variable costs are pairwise distinct for all producers.

Under the stated conditions, we finally obtain uniqueness of the short-run
equilibrium in coupled markets of multiple energy sectors.

Theorem 4.2.1 ([JG1, Theorem 4.16]). Suppose Assumptions 3 and 4 hold.
Then, there exists a short-run market equilibrium of (MEP-SC) with unique
sector-specific and sector-coupling demand and production.

Examples B.1-B.5 in [JG1] illustrate that each of the conditions imposed
in Assumption 4 is indeed necessary to guarantee uniqueness of demand and
production in general. Note that, as in the single-sector case, the trading flows
of the system operators can be ambiguous. Using the same arguments as in
Section 3.3, it is easy to see that these multiplicities are negligible.

4.3. A Posteriori Conditions for Long-Run Uniqueness

We continue with studying uniqueness of the long-run market equilibrium. The
fact that a priori conditions for long-run uniqueness have not yet been derived
for a single sector indicates that such conditions are difficult to obtain. In
addition, it is even more difficult to obtain a priori criteria for coupled markets
of multiple energy sectors than for a single sector. Therefore, we focus only on
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4. First Extension: Operators of Sector-Coupling Technologies

a posteriori conditions for long-run uniqueness in this section. Again, we extend
the assumptions required for a single sector to multiple sectors. To this end,
we denote by 'y;fv the dual variable of the capacity bound in (3.1b) for a given
sector-specific producer v € V" and a given trading period ¢ € T. Analogously,
we denote by tha the dual variable of the capacity bound in (4.1c) for a given
sector-coupling production facility @ € A* and a given trading period t € T.

Assumption 5 ([JG1, Assumption 3]). Let x be an equilibrium of (MEP-SC).
Then, for each sector s € S, there exists a subset of trading periods T C T for
which the capacity-induced partitions Cys(z), t € T, are the same. Moreover,
for each price cluster C € Cy4(x), there exists a bijective function

fo:Te = Vi UALUAL  with TC::{E,%Z,...,%@C‘}QT

such that the following holds for a given j € {1,...,|T¢c|}:

(i) All producers fc (ty) with i < j, j' € {1,...,|Tc|}, produce in trading
period t; either zero or at mazimum capacity, where in the latter case
strict complementarity is satisfied, i.e., either Yt fo (i) = 0 or

’ J

+ e (7 +

G =G with el b (? )€ ve,

tne(ly) = Yie(iy) ey >0 i fo () € ALUAG.
3 4!

(it) The producer fc (t;) produces in trading period t; at mazimum capacity,
while strict complementarity is satisfied, i.e.,

_ . t',fc(Z'
e (7)) = <\ with ’ ! _
Yij.0c(t5) = Yic(t) ey >0, if fo(t) € AL U Ag.
tj.fe ()
(iii) All producers fc (t;) with 7' > j, 7 € {1,...,|[T¢cl|}, produce in trading
period t; zero, i.e., Vi, (i) = 0 holds.
’ J

The above stated long-run uniqueness condition cannot be as easily inter-
preted via the merit-order as in the case of a single sector. Of course, it must
still hold that, given the merit-order ¢ < ;3" < --- < ¥, n = |VC+ |, of
sector-specific production facilities in each cluster, there must exist at least one
trading period in which the associated price is greater than o5 but smaller
than ¢! . However, this condition alone is not sufficient since the sector-

coupling production facilities also enter this merit-order but at which positions
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is not clear a priori. This depends heavily on the relation of the prices between
the coupled sectors. Nevertheless, as soon as sector-specific and sector-coupling
producers are sufficiently different and consumer demand is sufficiently fluc-
tuating in all sectors, Assumption 5 should also be satisfied in the context of
multiple sectors; see Examples C.1 and C.2 in [JG1] for illustrative instances in
which this is not true. For a more detailed discussion of Assumption 5, we refer
the interested reader to [JG1].

Finally, given a long-run market equilibrium of (MEP-SC), we can verify a
posteriori that this market equilibrium is unique if all stated assumptions are
fulfilled.

Theorem 4.3.1 ([JG1, Theorem 4.20]). Let a long-run market equilibrium x of
(MEP-SC) be given. Suppose Assumptions 3, 4, and 5 hold. Then, (MEP-SC)

has a unique solution in sector-specific and sector-coupling demand, production,
and investment.

31






5. Second Extension: Operators of
Storage Technologies

In what follows, we consider temporal coupling as a second extension of the
market equilibrium problem (MEP-E) described in Chapter 3. Temporal cou-
pling results from, e.g., introducing operators of storage technologies as ad-
ditional players since their actions couple successive trading periods. This
time-dependency complicates the equilibrium analysis. Therefore, we focus on
the short-run and on the basic case of a single bidding zone in a single energy
sector. To simplify the presentation, we drop the index for the sector and for
the bidding zone. The setup and all presented results in this chapter are entirely
based on [JG2].

We first introduce the extension of (MEP-E) regarding temporal coupling in
Section 5.1. Afterward, we study the corresponding equilibria in Section 5.2.
While uniqueness of demand and production is established under additional
assumptions, storage operations generally remain ambiguous. However, we
show that uniqueness can be verified a posteriori under certain conditions. In
Section 5.3, we discuss the computation of equilibria for the problem at hand.
We propose a tailored parallel and distributed alternating direction method of
multipliers (ADMM) and argue why an ADMM is particularly suitable for the
given problem.

5.1. The Market Equilibrium Problem

Let V* C V denote the set of nodes at which operators of storage technologies
are located. Each storage device v € V* is characterized by the capacity £, > 0,
the maximal charging and discharging s, > 0 per trading period, and the
charging efficiency 7, € (0,1). For the ease of presentation, we assume that
all losses occur during charging. The initial and final states of charge /_;,
and {4 ,, are assumed to be zero for all v € VE.

The objective of a storage operator v € V¥ is to maximize the profit from
trading. Hence, charging si, of the storage is best carried out in low-price
trading periods and discharging s‘ti’v in high-price trading periods. While doing
so, the state of charge ¢;, at the end of each trading period is not allowed
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5. Second Extension: Operators of Storage Technologies

to exceed the capacity of the storage device. Consequently, the optimization
problem of the storage operator reads

max Z Tt (sgv - s;v) (5.1a)
85,89, Lv
vt teT
St by =Vli_10 — (sgv — nvszv), teT, (5.1b
0< by <b, teT, (5.1c
0<si, <5, teT, (5.1d
0<si, <5, teT, (5.1e

where 7; denotes the price of the respective trading period. The adjusted
market-clearing conditions

Z <8td,v - Sg,v) = Z dt,v - Z Yt te T, (52)

veEVE veV veV+

complete the time-coupled market equilibrium problem

Producers: forallve VT,

Consumers: forallve V™,

1)
2)
. (MEP-TC)
1) for all v € V=,
2).

ot Ot W W

(
(
Storage operators: (
(

Market-clearing conditions:

The corresponding welfare optimization problem is given by

dt,v
;ngixd , Z ( Z / Pip(p) dp — Z Czar(yt,v)>
Y,&,87,57, teT \weV-— 0 veV+ (WFP—TC)
st. (3.1b), veV™', (3.2b), veV™,

(5.1b)~(5.1e), wveVE, (5.2).

As for (MEP-E) and (MEP-SC), existence of an equilibrium is easily obtained
for (MEP-TC) by applying Corollary 2.2.2. However, we illustrate below that
uniqueness and computation of the market equilibrium is not as easy to achieve.

5.2. Uniqueness and Multiplicity of the Short-Run
Equilibria

In this section, we discuss the boundaries between uniqueness and multiplicity
of the short-run market equilibria of (MEP-TC). We derive sufficient conditions
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that ensure uniqueness of demand and production. However, examples illustrate
that storage operations are not unique in general. We conclude with presenting
an a posteriori criterion for verifying uniqueness of a given short-run equilibrium.

To establish uniqueness of demand and production, we first impose the
following assumption.

Assumption 6 ([JG2, Assumptions 3 and 5]). The market price m; and the
total demand ), cy - di o are positive in each trading period t € T'.

As argued in [JG2], this assumption is not very restrictive if large-scale
storage systems are participating in real-world sport markets. In the presence
of negative prices, the storage operators would naturally charge the production
surplus, since this automatically leads to positive profit. Hence, non-positive
prices are not to be expected. In addition, there should always be consumers
who are willing to pay and, more precisely, whose willingness to pay is higher
than the willingness to pay of the storage operators.

Again, uniqueness of demand—and of production for strictly convex variable
cost functions—follows from Theorem la of Mangasarian (1988). Hence, we
restrict our analysis in the following to linear variable costs. Moreover, as a
prerequisite for deriving uniqueness of production in this case, we proceed with
variable costs that are dependent on the trading periods. Thus, we assume for
the rest of this chapter that the variable costs of producer v € V* are given in

var

trading period t € T' by ¢} yt,v, where ¢y € R>¢ holds.

t,v
Next, we extend the classic assumption of pairwise distinct variable costs for
all producers to the given setting with storage operators.

Assumption 7 ([JG2, Assumptions 4 and 6]). All variable production costs
and all efficiencies of the storage devices satisfy the following three properties.

(i) All variable costs are pairwise distinct, i.e.,
oy # iy, forall (t,v) # (', w) e Tx VT,
(ii) It holds
J J’
Cz% H Mv; 7 CZ’ZTZ;’ H T,
i=1 i=j+1
for all (t,w) # (', w') € TxV*t andvy,..., vy € VE with1 < j' <|T|-1.

(iii) The efficiencies of the storage devices are pairwise distinct, i.e.,

Mo # N for allv#w e VE.
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Assumption 7 (i) covers for ¢t = ¢’ the time-independent short-run assumption
of pairwise distinct variable costs for all producers.

To explain Assumption 7 in more detail, we now consider the variable pro-
duction costs of a storage operator v. If this operator charges the considered
energy commodity in trading period ¢ and later discharges the quantity € > 0 in
trading period ¢/, the respective variable costs of production amount to m:e/n,.
In case that there is another trading period before # with the same price as
in ¢, the storage operator might be indifferent whether to charge in this trading
period or in the trading period t as the resulting variable costs are the same.
We cannot assess all prices a priori but we can at least prevent such situations
when specific production technologies set the prices. Therefore, we impose
Assumption 7 (i). Moreover, we have to ensure that the storage operator’s
variable costs mie/n, do not meet the variable costs of any producer in the
discharging trading period #'. Again, we can only assess situations a priori
in which specific production technologies set the prices. These situations are
covered by Assumption 7 (ii) for j/ = 1. Since one storage device might also
charge from another storage device or two storage devices might discharge at
the same time, the cases j' > 1 in Assumption 7 (ii) are of importance. Finally,
it remains to avoid the case that two storage operators produce at the same
variable costs due to the same efficiency; see Assumption 7 (iii).

Under the stated conditions, we obtain uniqueness of demand and production
for a market with producers, consumers, and storage operators.

Theorem 5.2.1 ([JG2, Theorem 3.11]). Suppose Assumptions 6 and 7 hold.
Then, there exists a short-run market equilibrium of (MEP-TC) with unique
demand and production. Furthermore, the differences Zvevi(sgv — 8§ ,) of total
discharging and charging are unique for all trading periods t € T'.

For the MEPs (MEP-E) and (MEP-SC) studied in the previous chapters, we
also only have uniqueness of demand and production, while the trading flows of
the system operators remain ambiguous. Nevertheless, these multiplicities are
in line with the optimal decisions of the other players since the market is cleared
independently of the strategies played by the system operators. This is not
true here. If different storage operators play any of their multiple strategies, an
infeasible market outcome might result as all traded amounts might no longer
be balanced. Hence, none of the equilibria is stable.

We like to note that Theorem 5.2.1 directly implies uniqueness of the short-
run market equilibrium if a single storage device is operated in the market; see
Corollary 3.12 in [JG2]. However, as soon as multiple storage operators trade
in the market, multiplicities might occur; see Examples 3.13-3.16 in [JG2], in
which multiplicities are present despite the fact that all of the above stated
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assumptions are fulfilled. This is mainly because we can only capture situations
a priori in which specific production technologies set the prices. Nevertheless, we
can assess all prices a posteriori and therefore obtain the following a posteriori
uniqueness condition.

Theorem 5.2.2 ([JG2, Theorem 3.17]). Let a short-run market equilibrium x of
(MEP-TC) be given. Suppose Assumptions 6 and 7 hold. Furthermore, assume
that 7 # w1y and 7, # T, hold for all t,t' € T, t #t', and v € V. Then,
(MEP-TC) has a unique solution in demand, production, and storage operations.

In this dissertation, we refrain from studying uniqueness of the long-run
market equilibrium of (MEP-TC) due to the following two reasons. First, since
the outcomes of the future spot markets are ambiguous, a storage operator might
not foresee the future profit correctly. Deciding on the basis of our short-run
model with multiple equilibria could therefore lead to undesirable investment.
Second, and closely connected to the first point, the optimization problems of
the producers and storage operators can also be formulated as bilevel problems
in the long-run, where investment decisions are made on the upper level and
spot-market decisions on the lower level. Moreover, (MEP-TC) might even be
a lower-level problem in a more general multilevel computational equilibrium
framework; see Ambrosius et al. (2020), Grimm, Martin, et al. (2016), Grimm,
Schewe, et al. (2019), and Kleinert and Schmidt (2019) among others for similar
frameworks. As already mentioned before, such multilevel problems can only
be tackled meaningfully if lower-level problems have a unique solution. As we
have shown, this is not the case here. For more information on the importance
of lower-level uniqueness in multilevel problems see, e.g., Colson et al. (2007),
Dempe (2002), and Gabriel, Conejo, et al. (2013).

5.3. Computational Approach: A Distributed ADMM

To conclude, we address the computation of equilibria for (MEP-TC). As
Corollary 2.2.2 applies for (MEP-TC), each equilibrium of (MEP-TC) corre-
sponds to a welfare-maximal solution of (WFP-TC) and vice versa. Hence, to
compute an equilibrium of (MEP-TC), it is sufficient to compute a solution
of the single-level welfare problem (WFP-TC). However, due to the coupling
of trading periods over time, this is much more challenging compared to the
classic setting without storage. In the classic setting, each trading period
can be solved separately for short-run applications, which is not possible here.
Moreover, problem-tailored clustering methods can be applied in the classic
setting to reduce the input data size to a manageable number of representative
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Figure 5.1.: Advantageous almost time-separable block structure of the matrix that
describes the feasible set of (WFP-TC)

scenarios. However, for the setup considered in this chapter, it is not straight-
forward to use such methods due to the time-dependency of storage operations.
We therefore propose a tailored parallel and distributed alternating direction
method of multipliers (ADMM) in [JG2] and show that this ADMM allows for
efficiently solving large-scale instances. Since the author of this dissertation did
not contribute to the algorithmic part and the numerical study in [JG2], we
refrain from presenting the ADMM and the numerical results here. We refer the
interested reader to Sections 4 and 5 in [JG2]. General information on ADMMs
can be found in the survey of Boyd et al. (2011) and specific information on
the applied ADMM in Chapter 7 of this survey.

We like to close this section with a review on why an ADMM is particularly
suitable for the problem at hand; see also the discussion at the end of Section 4
in [JG2]. The basic idea of ADMMSs is to decompose the initial problem
into smaller problems that can be solved easier, while penalty terms in the
objective functions of the smaller problems guarantee that a solution of the
initial problem is finally obtained. Taking a closer look at the welfare problem
(WFP-TC) reveals that this optimization problem is almost separable. There
are several constraints for each trading period but only few ones that couple
each trading period with the preceding one, namely the constraints for tracking
the states of charge of the storage devices. This underlying structure of the
matrix that describes the feasible set of (WFP-TC) is depicted in Figure 5.1
and allows for easily decomposing the initial problem. It is well known that,
in practice, ADMMs perform well on problems with this special structure;
see, e.g., Geifiler et al. (2015, 2018) for some energy-specific applications. We
demonstrate in [JG2] that this is also the case for large-scale instances of the
energy application studied in this chapter.
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Transmission Networks

As the last extension of the market equilibrium problem (MEP-E) presented in
Chapter 3, we consider a system operator facing additional constraints besides
the allocation of trading capacities. The additional constraints studied in this
chapter mainly stem from a more detailed representation of physical laws and
technical requirements and therefore also involve nonlinearities or integralities.
Since such aspects are challenging already standalone, we restrict our analysis
to the short-run and to a single sector. For the ease of notation, we thus drop
the index for the trading period and for the sector. In addition, we focus on
spot markets in which the network infrastructure and the spatial distribution of
demand and production are one-to-one represented. For this reason, we refrain
from distinguishing between bidding zones and network nodes in the following
and base our notation on the graph G that models the network infrastructure.

In this chapter, we summarize the main contributions of the two articles [JG3]
and [JG4]. Since the MEP analyzed in [JG3] is a special application of the
MEP studied in [JG4], we mainly follow the setup of [JG4]. Whenever the
setup and the results of [JG3] are addressed, we particularly emphasize this.
Hence, unless otherwise stated, all presented results are based on [JG4].

We structure this chapter as follows. In Section 6.1, we state in a general
form the extension of (MEP-E) by physical laws and technical requirements.
Afterward, we discuss three specific applications of this extension. The first
application has already been studied thoroughly in the literature and is briefly
reviewed due to the similarity with the MEPs analyzed in this thesis. In contrast
to the first application, the second and third application include nonconvexities.
Existence of an equilibrium is therefore not guaranteed, which we illustrate by
an example. Motivated by this example, we propose in Section 6.2 an algorithm
that decides whether an equilibrium exists and that computes an equilibrium in
the case of existence. By applying this algorithm to well-known instances from
the literature on the gas and electricity sector, we identify in Section 6.3 how
often and under which conditions an equilibrium exists for the two introduced
nonconvex applications. To conclude, we address uniqueness of the short-run
market equilibrium for these two applications in Section 6.4.
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6.1. The Market Equilibrium Problem

As in (MEP-E), the system operator maximizes the profit from congestion rents
but faces additional transport costs ¢™®"(g,r) that depend on network flows ¢
and possibly on other decision variables 7. In total, the system operator faces
the following optimization problem

max Z ToGo — (g, 1) (6.1a)
veV-UV+
st. F(q,r)>0, q, = Z Ga — Z Ga, VEV, (6.1b)

aEéin(U) a€5°“t(v)
0>q,> Yy, VEVT, ¢,>0, veV™, ¢ =0, veV’ (6.1c)

Here, F(¢,r) > 0 summarizes the, potentially nonconvex, network-related
physical and technical constraints. The constraints (6.1c) ensure that the net
flow at consumers can only be positive, at producers negative and within the
production capacity, and at inner network nodes equal to zero. The system
operator is thus perfectly informed about which type of player is located at
which node and, additionally, about the capacities of all production facilities.
This is consistent with our assumption of perfect competition. Note that the
nodal price 7, is assumed to be zero at all inner network nodes v € V9, i.e., at
all nodes where no producer and no consumer is located.
The new market-clearing conditions are given by

Z qa — Z Ga = —Yv, VE V+7 (6.2a)

aeéi“(v) a€60ut(v)
Z Ga — Z o =dy, vEV, (6.2b)
ae(sin(v) a€6°u°(v)
S - Y q@=0, veVl (6.2¢)
aE(Sin(U) CLE(;O‘”(U)

The complete market equilibrium problem that includes a more detailed
representation of physical laws and technical requirements reads

Producers: (3.1) for all v € VT,
Consumers: (3.2) forallv e V™,
(MEP-PL)
System operator: (6.1),
Market-clearing conditions: (6.2).
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Furthermore, we have the corresponding welfare optimization problem

dy
max Z /0 Py(p)dp — Z T (y,) — T2 (g, 1)

vhar  oy- veVT
st. (3.1b), veV™ (32b), veV,

(WFP-PL)

Next, we discuss different applications of (MEP-PL). The first application is
taken from the literature and is briefly reviewed due to the similarity with the
energy MEPs analyzed in this dissertation. The second and third application
are presented since these are the main nonconvex applications studied in [JG4].

DC Load Flow As a first application of (MEP-PL), we consider a system
operator of a direct current (DC) electricity network facing linear load flow
restrictions. Hence, the optimization problems of all players remain convex.
This setup has been investigated without transport costs and without con-
straints (6.1c) by Krebs, Schewe, et al. (2018). The network-related constraints
are given by flow bounds for each DC line and by the standard lossless DC load
flow approximation as described, e.g., in Wood et al. (2013):

Ga <qu<gqs, acA, (6.3a)
Go = Ba(0y — 0y), a= (v,w) € A, (6.3b)

where B, > 0 denotes the DC line’s susceptance and 6, the nodal phase angle.
In addition, g, = —¢ is assumed. We refer the interested reader to Krebs,
Schewe, et al. (2018) for a detailed equilibrium analysis of this DC load flow
application of (MEP-PL).

DC Line Switching In this application of (MEP-PL), we again consider a
system operator of a DC electricity network. The difference from the previously
presented application is that the system operator has the additional possibility
to switch on and off certain DC lines in the network. Consequently, integralities
enter the system operator’s optimization problem.

Let X, be the DC line’s reactance, A5 C A the set of switchable DC lines,
and z, the binary decision variable indicating whether the respective DC line is
switched on (z, = 1) or off (z, = 0). We use the DC load flow approximation
from Zimmerman and Murillo-Sanchez (2020b) and therefore introduce a phase
shift angle 5P, If a DC line a € A® is switched on, the flow on this line
follows the DC load flow approximation and is additionally bounded by the
line’s capacities. Conversely, if a DC line a € A® is switched off, no physical laws
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are imposed and the line’s flow equals zero. In total, we obtain the following
network constraints of the system operator

G <qa<qf, acA\A, (6.4a)

Oy — O — N = Xoq,, a = (v,w) € A\45, (6.4b)

M7 (1—2,) <0y — 0y — 0N — Xoqo, a=(v,w) € 45, (6.4c)
Oy — Oy — M — Xog, < MF(1—24), a=(v,w) € A5, (6.4d)
(o %0 < Ga < qq 20 a € A%, (6.4e)

24 € {0,1}, a € A% (6.4f)

The transport costs are assumed to quadratically increase in the flow. Moreover,
a fixed fee has to be paid if a line is switched on. In total, we have the transport
costs

(g, 2) = Z gl + Z Bza
acA acAs
with a, 8 € R>o.
Later in this chapter, we will see that there exist well-known instances from
the literature, in which the considered application of (MEP-PL) does not possess
an equilibrium due to the integrality restrictions.

Nonlinear Gas Flow As a last application, we examine a system operator
facing nonlinear stationary gas flow equations, which are given by

Py — Py = Mataldal, a = (v,w) € A, (6.5a)
Py <pu<pf, vEV, (6.5b)
4o <a<qf, acA (6.5¢)

The constraints (6.5a) describe the gas flow through the pipes and are called the
Weymouth equations; see, e.g., the chapter by Fiigenschuh et al. (2015) in Koch
et al. (2015) for more information on their derivation. These equations link in
a nonlinear way the drop in quadratic pressures (p? — p2) over a pipe to the
flow g, on this pipe. In addition, nodal pressure and flow bounds are imposed
to ensure contractual or technical requirements. The transport costs are again
assumed to quadratically increase in the flow, i.e., c"#%(q) = > acA aqg holds
for some a € R>o.

We study this application without transport costs and constraints (6.1c) in
detail in [JG3]. As one major contribution, we analyze the relation of the gas
flow MEP and the mixed nonlinear complementarity problem (MNCP) that
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Demand:
A=1 p€[0,1]
q € [5,5] P(d) =13—d
Production:
pe(1,v2] A _11 1
o (y) = o2 q€[-1,1]

A=1 Demand:

_ p=1
q€[-1,1] @ P(d)=10\/§+%—d

Figure 6.1.: Three-node network with all physical and economic data considered in
Ezample 6.1.1 (adapted from [JG3])

results by joining the KKT conditions of all players with the market-clearing
conditions. Both problems are equivalent if and only if a constraint qualification
and a second-order sufficient condition hold for the system operator’s problem.
We show in [JG3] that the linear independence constraint qualification (LICQ)
applies under mild assumptions, i.e., we establish the relation “MEP = MNCP”".
However, as we further illustrate, there exist solutions to the MNCP that do
not correspond to market equilibria, i.e., the relation “MNCP = MEP” is not
true. Hence, in general, we cannot obtain equilibria of the MEP by solving the
related complementarity problem as done in similar energy market applications
in the literature; see, e.g., Abrell and Weigt (2012, 2016), Awad et al. (2014),
Chen, Conejo, Sioshansi, et al. (2020b) as well as Fomeni et al. (2019).

Besides the relation of the MEP and the MNCP, we study the relation of
the MEP and the corresponding welfare problem in [JG3|. In particular, we
prove that, under the quite restrictive assumption of no network congestion,
market equilibria correspond to welfare maxima and vice versa. Thus, the
fundamental welfare theorems hold under this assumption. However, we show
by the following example that the fundamental welfare theorems do not apply
in general; see also Theorem 4.4 in [JG3]. No transport costs are considered in
this exemplary instance of the gas flow application of (MEP-PL). Examples
with transport costs are examined later in Section 6.3.

Example 6.1.1 ([JG3, Theorem 4.4], [JG4, Example 5.1]). For the instance
depicted in Figure 6.1, exactly two welfare maximal solutions x and T exist,
namely

dy=ds=1,y1=2 qa=qs=1, q3=0 p1 =V2, po=p3=1,
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System operator
Welfare-maximizing market prices

Producers and consumers
Production and demand decisions
System operator
Network operation

Figure 6.2.: Structure of the multilevel energy market model in which market equilibria
correspond to welfare maxima and vice versa (adapted from [JG3])

and

CZ2:1+\/§7 d~3:07 g1:1+\/§7 61,2:\/57 61,3:17 62,3:_17
P1=V2, pp=0, p3 =1L

Furthermore, there are no market prices m such that (z,7) or (&,m) is an
equilibrium of the gas flow application of (MEP-PL). Hence, by Theorem 2.2.1,
no market equilibrium exists for the given instance.

Example 6.1.1 illustrates that the fundamental welfare theorems do not apply
in general for the setting considered in this chapter. To conclude this section,
we like to comment on one possibility to re-establish the welfare theorems.

Remark 6.1.2. So far, we focused on a system operator moving simultaneously
with all other players as a profit-maximizer. However, by appropriate regulations,
the system operator can be committed to maximize welfare instead. If, in
addition, a hierarchical market structure is adopted, we prove for the described
gas flow application in [JG3] that all market solutions correspond to welfare-
maximal solutions and vice versa, i.e., the fundamental welfare theorems are re-
established under perfect competition and a welfare-maximizing system operator.
This result can be easily transferred to other applications. An overview of the
resulting multilevel equilibrium problem is provided in Figure 6.2. The system
operator decides at the first level on welfare-maximizing market prices. These
market prices are then forwarded to the producers and consumers, who still
decide simultaneously on the quantities that they produce or consume. The
resulting MEP forms the second level. Finally, at the third level, the system
operator controls the network in accordance with all physical and technical
constraints F'(q,r) > 0.

Nevertheless, the focus of this dissertation is on simultaneous move games.
Therefore, we continue with studying (MEP-PL).
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6.2. An Algorithm to Indicate the Existence of Equilibria

Due to our results in [JG3|, we know that an equilibrium might not exist in
nonconvex applications of (MEP-PL). Now, the questions that arise are the
following;:

(i) How often does an equilibrium of (MEP-PL) exist in nonconvex settings?

(ii) Under which conditions does it become more likely that an equilibrium
exists?

To answer these questions for specific applications, we choose an algorithmic
approach motivated by Theorem 2.2.1. This theorem implies that a market
equilibrium of (MEP-PL) exists if and only if the duality gap of the welfare
problem (WFP-PL) is zero. The author of this dissertation has proven for a
special type of MEPs that, for indicating the existence of an equilibrium, it is
sufficient to check for a single primal-dual solution pair whether the welfare
problem has zero duality gap or not. We refrain from focusing on the general
case and present this result only in the context of energy markets. The interested
reader is referred to Section 3 in [JG4].

Theorem 6.2.1 ([JG4, Theorem 4.1]). Let x* be a solution of the welfare
problem (WFP-PL) and define 7 as

R Py(d2), ifvoeV,
Ty 1=
() (ys), ifveVT.

Then, either (x*,7) is a market equilibrium of (MEP-PL) or there is no market
equilibrium.

Based on this theorem, we state an algorithm that terminates correctly either
with a market equilibrium or with the indication that no market equilibrium
exists. This algorithm proceeds as follows. First of all, a global solution x* of
the welfare problem (WFP-PL) is computed. Afterward, the price vector 7 is
determined as in Theorem 6.2.1. Hence, it remains to check if (z*, 7) is a market
equilibrium or not. For this purpose, we examine whether the players’ strategies
as defined by the welfare solution x* are best responses to the prices & for all
players. By definition of 7, this is true for all producers and consumers, which
becomes obvious when considering the necessary and sufficient KKT conditions
of their optimization problems (3.1) and (3.2); see the proof of Theorem 4.1
in [JG4]. Consequently, it is sufficient to test if the system operator is aligned
with the welfare solution z* for the given prices . To this end, the optimization

45



6. Third Extension: Operators of Transmission Networks

problem (6.1) of the system operator is solved to global optimality for the fixed
prices 7. If the objective function values of the obtained optimal strategy and
of the strategy as defined by the welfare solution z* coincide, then the system
operator is aligned with the welfare solution. The algorithm returns the market
equilibrium (z*, 7). If not, no market equilibrium exists by Theorem 6.2.1.

Algorithm 1: Deciding the existence of an equilibrium of (MEP-PL)
and computing an equilibrium in case of existence (adapted from [JG4])

Input : Market equilibrium problem (MEP-PL)

Compute a global solution z* of the welfare problem (WFP-PL).

if the welfare problem (WFP-PL) does not have a solution then

‘ return No market equilibrium exists.

else

Define the price vector 7 as in Theorem 6.2.1.

if the individual players’ decisions according to x* are best responses
to the price vector ©t for all players then
‘ return (z*,7) is a market equilibrium.

else

=230, SR NIURE R

® 3

‘ return No market equilibrium exists.
10 end

11 end

Theorem 6.2.2 ([JG4, Theorem 3.8]). Algorithm 1 terminates correctly either
with a market equilibrium of (MEP-PL) or with the information that such an
equilibrium does not exist.

So far, we have developed an algorithm that indicates the existence of an
equilibrium of (MEP-PL) for nonconvex applications. Moreover, this algorithm
directly computes an equilibrium in the case of existence. Thus, we are ready
to answer the questions raised at the beginning of this section.

6.3. Computational Study

We now identify how often and under which conditions a market equilibrium
exists for the DC line switching and nonlinear gas flow application of (MEP-PL)
introduced in Section 6.1. To this end, we apply the proposed algorithm to well-
known instances from the literature on the electricity and gas sector. In total,
102 electricity instances and 96 gas instances are considered. The electricity
market instances are based on the technical instances provided by the Software
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MATPOWER 7.0; see Zimmerman and Murillo-Sédnchez (2020a) and Zimmerman,
Murillo-Sanchez, and Thomas (2011). The gas market instances are taken from
Heitsch et al. (2021) as well as Schewe et al. (2021). For more information on
the instances and the general setup of the computational study see Section 5.2
in [JG4].

Our main findings are as follows. For the gas flow application, an equilibrium
exists in all of the 84 instances (87.5 %) that are solved within the set time limit
of 1 hour. Thus, instances without an equilibrium as the handcrafted one in
Example 6.1.1 seem to hardly occur in practical instances. In turn, 42 instances
(41.2%) do not possess an equilibrium in the DC line switching application.
One of the main circumstances leading to non-existence of an equilibrium is
that the system operator’s profit gains do not outweigh the losses induced by a
switching decision while the welfare gains do. We give several examples of this
in Section 5.4 in [JG4]. Furthermore, we illustrate by examples in [JG4] that
the existence of an equilibrium might be ensured by

(i) very low switching costs,
(ii) very high switching costs, or
(iii) a high increase of the transport costs in the flows.

The interested reader is referred to Sections 5.3 and 5.4 in [JG4] for the detailed
results of the computational study.

In summary, our computational study suggests that an equilibrium frequently
exists in the nonconvex but continuous gas flow application. In contrast, an
equilibrium often does not exist in the DC line switching application due to the
integrality restrictions.

6.4. Uniqueness in the Short-Run

So far, we have covered the topics of existence, computation, and economic
efficiency of market equilibria of (MEP-PL). By this, we have summarized the
main contributions of the two articles [JG3] and [JG4] that we have focused on
in this chapter. For the sake of completeness, we like to close the equilibrium
analysis with a brief discussion of uniqueness. To this end, we review sufficient
conditions for uniqueness that can be established based on existing results from
the literature. These results only cover the case of strictly convex variable costs.

Assumption 8. The variable cost functions ¢, v € V', are strictly convex.
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Based on this assumption, we obtain uniqueness of demand and production
in the case of existence.

Theorem 6.4.1 ([JG4, Corollary 3.3]). Let (z,7) and (Z,7) be two market
equilibria of (MEP-PL). Suppose Assumption 8 holds. Then, d, = d, holds for
allv eV~ and y, = Gy, for allv e VT.

In the following, we focus on the two nonconvex applications of (MEP-PL)
introduced above: DC line switching and nonlinear gas flow. Similar to Assump-
tion 3 in Krebs, Schewe, et al. (2018), we fix a potential at an arbitrary node in
the respective network.

Assumption 9. The phase angle 0, at an arbitrary node v € V is fized and
the phase shift angle 05 is equal to zero for all a € A.

Assumption 10. The pressure p, at an arbitrary node v € V is fixed.

Now, by applying Theorems 1 and 2 of Rios-Mercado, Wu, et al. (2002), we
can establish that, in the case of existence, the DC line switching application
has finitely many equilibria, while the gas flow application has a unique market
equilibrium; similar to Theorems 2.1 and 3.1 in Krebs, Schewe, et al. (2018).

Theorem 6.4.2. Let the network constraints F(q,r) > 0 be given by the DC
line switching equations (6.4). Moreover, let (x,m) and (Z,7) be two market
equilibria of (MEP-PL) with z, = Z, for all a € A®. Suppose Assumptions 8
and 9 hold. Then, g, = o holds for all a € A and 0, = 0, for allv e V. Thus,
in the case of existence, (MEP-PL) possesses finitely many equilibria.

Analogously, we have the following result for the gas flow application.

Theorem 6.4.3. Let the network constraints F(q,r) > 0 be given by the
nonlinear gas flow equations (6.5). Moreover, let (z,7) and (Z,7) be two market
equilibria of (MEP-PL). Suppose Assumptions 8 and 10 hold. Then, q, = qq
holds for all a € A and p, = P, for all v € V. Thus, in the case of existence,
the market equilibrium of (MEP-PL) is unique.
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7. Conclusion

In the following, we summarize the most important findings of this dissertation
and provide an outlook on possible next challenges.

Key Conclusions In this thesis, we presented classic energy MEPs extended
by new players or new side-constraints for already existing players who have an
important role in modern energy systems. We analyzed these problems with a
focus on the following three challenging questions:

(i) Does a market equilibrium exist in the short- and long-run?

(ii) If so, is this market equilibrium unique or, at least, partly unique? If not,
which circumstances lead to multiplicities?

(iii) How can we compute market equilibria?

Concerning the existence of market equilibria, we found that existence is easy
to prove in the case of sector and temporal coupling since the optimization
problems of all players remain convex. This result remains true if system
operators are considered that face convex technical requirements or physical
laws such as the lossless DC load flow approximation in electricity networks.
However, not all applications allow for a convex representation of the network
restrictions. In this dissertation, we presented two examples for such nonconvex
applications: a system operator that operates a gas network under nonlinear
stationary gas flow equations and a system operator that switches DC lines in
an electricity network. As a main contribution, we developed an algorithm that
indicates existence of a short-run equilibrium for energy MEPs including system
operators that face any type of nonconvex network restrictions. We tested this
algorithm on the two presented applications. Our computational results suggest
that a market equilibrium often exists in the nonconvex but continuous gas flow
setting, while this is not true in the DC line switching application due to the
integrality constraints.

Concerning the uniqueness of market equilibria, we extended the single-sector
setting analyzed in Grimm, Schewe, et al. (2017) to a discretized trading
horizon and to coupled markets of multiple energy sectors. For this extension,

49



7. Conclusion

we provided sufficient conditions for ensuring uniqueness of the short-run
equilibrium a priori and for verifying uniqueness of the long-run equilibrium
a posteriori. For the extension regarding temporal coupling, we identified
sufficient conditions that guarantee uniqueness of demand and production as
well as uniqueness of storage operations in the case of a single storage operator.
To also cover the case of multiple storage operators, we derived an a posteriori
criterion for proving uniqueness of a given short-run equilibrium. Finally, we
considered the two presented nonconvex applications: DC line switching and gas
flow. We studied uniqueness under the assumption of strictly convex variable
production costs. Our results show that the short-run equilibrium is unique
in the gas flow application and, for fixed switching decisions, in the DC line
switching application. Hence, in the latter application, at most finitely many
short-run equilibria exist.

Concerning the computation of market equilibria, the equivalence of market
equilibria and welfare maxima in the case of existence directly suggests to
compute candidates for equilibria via the welfare problem. For the convex case,
it is well known that the solutions obtained are indeed equilibria. Hence, for
the convex extension of sector coupling, large-scale instances can be tackled
by problem-tailored clustering methods to reduce the input data size to a
manageable number of representative scenarios. State-of-the-art quadratic
programming solvers can then be applied to the resulting welfare problem to
compute equilibria. However, for the convex case of temporal coupling, it is
not straightforward to use such methods due to the time-dependency of storage
operations. Therefore, we reviewed a parallel and distributed ADMM that
allows for efficiently solving large-scale instances without the need to reduce
the input data size. Finally, we examined the extension by system operators
facing nonconvex network restrictions. Here, we computed market equilibria
with the developed algorithm to indicate existence of an equilibrium since, by
construction, this algorithm also returns an equilibrium in the case of existence.

An overview of these key conclusions is provided in Table 7.1. A check mark
implies that the respective results presented in this dissertation cover this topic.
In turn, a tilde stands for extension of existing results from the literature while
some questions remain open for future research. Finally, the hyphen denotes
that the respective topic is not addressed in this thesis. Thus, the given overview
points directly to the following next research challenges.

Next Challenges As far as the energy MEPs analyzed in this dissertation
are concerned, a deeper understanding of uniqueness would be desirable. In
particular, the question remains open whether a priori conditions exist that

50



Table 7.1.: Main contributions of this dissertation

Sector ~ Temporal Physical

coupling coupling laws
Existence v v v
Short-run uniqueness v ~ ~
Long-run uniqueness ~ - -
Algorithmic approach v v v

ensure uniqueness of the long-run market equilibrium both for a single energy
sector as well as for coupled markets of multiple energy sectors. Moreover,
we focused mainly on conditions to guarantee uniqueness. However, sufficient
conditions for non-existence of uniqueness would also be of interest.

For the presented energy MEPs with nonconvexities, a potential next challenge
might be to identify sufficient conditions that ensure existence of an equilibrium.
This leads to the following research question: Under which conditions do the
corresponding welfare problems have a zero duality gap?

Another interesting research direction is to analyze how results change theo-
retically and algorithmically when our main assumptions of perfect foresight
and perfect competition are weakened. First, if players do not perfectly foresee
future spot-market outcomes, their optimization problems are subject to uncer-
tainties. Hence, energy MEPs under uncertainty arise. Second, the assumption
of perfect competition might be relaxed by taking into account strategic interac-
tion between the producers. Here, classic Nash—Cournot models could be used
as a modeling approach. For the equilibrium models that result in both cases,
the questions of whether equilibria exist, are unique, and how to compute them
can again be addressed.

Last but not least, another research direction would be to consider alternative
equilibrium concepts such as approximate equilibria. It would be interesting
to test whether e-relaxed solutions to the players’ problems allow to establish
existence of an equilibrium in settings in which classic equilibria do not exist.
Moreover, to develop algorithms that are particularly suitable for computing
approximate equilibria in the energy context would be valuable.

o1






Bibliography

Abrell, J., S. Rausch, and C. Streitberger (2019). “Buffering volatility: Storage
investments and technology-specific renewable energy support”. In: Energy
Economics 84. DOI: 10.1016/j.eneco.2019.07.023.

Abrell, J. and H. Weigt (2012). “Combining Energy Networks”. In: Networks
and Spatial Economics 12, pp. 377-401. pDOI: 10.1007/s11067-011-9160-0.

— (2016). “Investments in a Combined Energy Network Model: Substitution
between Natural Gas and Electricity?” In: The Energy Journal 37.4, pp. 63—
86. DOI: 10.5547/01956574.37.4. jabr.

Aliprantis, C. D., B. Cornet, and R. Tourky (2002). “Economic Equilibrium:
Optimality and Price Decentralization”. In: Positivity 6, pp. 205-241. DOI:
10.1023/a:1020240410066.

Ambrosius, M., V. Grimm, T. Kleinert, F. Liers, M. Schmidt, and G. Zottl
(2020). “Endogenous price zones and investment incentives in electricity
markets: An application of multilevel optimization with graph partitioning”.
In: Energy Economics 92. DOI: 10.1016/j.eneco.2020.104879.

Arrow, K. J. (1951). “An Extension of the Basic Theorems of Classical Welfare
Economics”. In: Proceedings of the Second Berkeley Symposium on Mathe-
matical Statistics and Probability. Ed. by J. Neyman. Vol. 2, pp. 507-532.

Arrow, K. J. and G. Debreu (1954). “Existence of an Equilibrium for a Compet-
itive Economy”. In: EFconometrica 22.3, pp. 265-290. Do1: 10.2307/1907353.

Arrow, K. J. and F. H. Hahn (1971). General Competitive Analysis. Holden-Day,
San Francisco.

Asensio, M., G. Mufioz-Delgado, and J. Contreras (2017). “Bi-Level Approach to
Distribution Network and Renewable Energy Expansion Planning Considering
Demand Response”. In: IEEE Transactions on Power Systems 32.6, pp. 4298—
4309. pot: 10.1109/tpwrs.2017.2672798.

Aumann, R. J. (1964). “Markets with a Continuum of Traders”. In: Econometrica
32.1/2, pp. 39-50. poOI1: 10.2307/1913732.

Awad, A. S. A., J. D. Fuller, T. H. M. El-Fouly, and M. M. A. Salama (2014).
“Impact of Energy Storage Systems on Electricity Market Equilibrium”. In:
IEEFE Transactions on Sustainable Energy 5.3, pp. 875-885. DOI: 10.1109/
tste.2014.2309661.

53


https://doi.org/10.1016/j.eneco.2019.07.023
https://doi.org/10.1007/s11067-011-9160-0
https://doi.org/10.5547/01956574.37.4.jabr
https://doi.org/10.1023/a:1020240410066
https://doi.org/10.1016/j.eneco.2020.104879
https://doi.org/10.2307/1907353
https://doi.org/10.1109/tpwrs.2017.2672798
https://doi.org/10.2307/1913732
https://doi.org/10.1109/tste.2014.2309661
https://doi.org/10.1109/tste.2014.2309661

Bibliography

Baldwin, E. and P. Klemperer (2019). “Understanding Preferences: “Demand
Types”, and the Existence of Equilibrium With Indivisibilities”. In: Econo-
metrica 87.3, pp. 867-932. DOI: 10.3982/ectal3693.

Banshwar, A., N. K. Sharma, Y. R. Sood, and R. Shrivastava (2019). “Market-
based participation of energy storage scheme to support renewable energy
sources for the procurement of energy and spinning reserve”. In: Renewable
Energy 135, pp. 326-344. DOI: 10.1016/j.renene.2018.12.009.

Baringo, L. and A. J. Conejo (2012). “Transmission and Wind Power Invest-
ment”. In: IEEE Transactions on Power Systems 27.2, pp. 885-893. DOI:
10.1109/tpwrs.2011.2170441.

Beato, P. (1982). “The Existence of Marginal Cost Pricing Equilibria with
Increasing Returns”. In: The Quarterly Journal of Economics 97.4, pp. 669—
688. DOI: 10.2307/1885105.

Biefel, C., F. Liers, J. Rolfes, and M. Schmidt (2021). “Affinely Adjustable
Robust Linear Complementarity Problems”. Available online at http://www.
optimization-online.org/DB_HTML/2020/08/7966.html.

Bienstock, D. and G. Mutioz (2015). “Approximate method for AC transmission
switching based on a simple relaxation for ACOPF problems”. In: 2015
IEEE Power & Energy Society General Meeting. DOI: 10.1109/pesgm.2015.
7286321.

Bikhchandani, S. and J. W. Mamer (1997). “Competitive Equilibrium in an
Exchange Economy with Indivisibilities”. In: Journal of Economic Theory
74.2, pp. 385-413. DOI: 10.1006/jeth.1996.2269.

Bikhchandani, S. and J. M. Ostroy (2002). “The Package Assignment Model”.
In: Journal of Economic Theory 107.2, pp. 377-406. DOI: 10.1006/ jeth.
2001.2957.

— (2006). “Ascending price Vickrey auctions”. In: Games and Economic Behav-
jor 55.2, pp. 215-241. DOI: 10.1016/s0899-8256 (03)00141-6.

Bloess, A., W.-P. Schill, and A. Zerrahn (2018). “Power-to-heat for renewable
energy integration: A review of technologies, modeling approaches, and flexi-
bility potentials”. In: Applied Energy 212, pp. 1611-1626. DO1: 10.1016/j .
apenergy.2017.12.073.

Bonnisseau, J.-M. and B. Cornet (1988). “Existence of equilibria when firms
follow bounded losses pricing rules”. In: Journal of Mathematical Economics
17.2-3, pp. 119-147. DOI: 10.1016/0304-4068(88)90003-1.

— (1990). “Existence of Marginal Cost Pricing Equilibria in Economies with
Several Nonconvex Firms”. In: Fconometrica 58.3, pp. 661-682. DOI: 10.
2307/2938195.

Boots, M. G., F. A. M. Rijkers, and B. F. Hobbs (2004). “Trading in the
Downstream European Gas Market: A Successive Oligopoly Approach”. In:

o4


https://doi.org/10.3982/ecta13693
https://doi.org/10.1016/j.renene.2018.12.009
https://doi.org/10.1109/tpwrs.2011.2170441
https://doi.org/10.2307/1885105
http://www.optimization-online.org/DB_HTML/2020/08/7966.html
http://www.optimization-online.org/DB_HTML/2020/08/7966.html
https://doi.org/10.1109/pesgm.2015.7286321
https://doi.org/10.1109/pesgm.2015.7286321
https://doi.org/10.1006/jeth.1996.2269
https://doi.org/10.1006/jeth.2001.2957
https://doi.org/10.1006/jeth.2001.2957
https://doi.org/10.1016/s0899-8256(03)00141-6
https://doi.org/10.1016/j.apenergy.2017.12.073
https://doi.org/10.1016/j.apenergy.2017.12.073
https://doi.org/10.1016/0304-4068(88)90003-1
https://doi.org/10.2307/2938195
https://doi.org/10.2307/2938195

Bibliography

The Energy Journal 25.3, pp. 73-102. DOI: 10.5547/issn0195-6574-¢j-
vol25-no3-5.

Bottger, T., V. Grimm, T. Kleinert, and M. Schmidt (2021). “The Cost of
Decoupling Trade and Transport in the European Entry-Exit Gas Market
with Linear Physics Modeling”. In: Furopean Journal of Operational Research.
Forthcoming.

Boucher, J. and Y. Smeers (2001). “Alternative Models of Restructured Elec-
tricity Systems, Part 1: No Market Power”. In: Operations Research 49.6,
pp. 821-838. DOI: 10.1287/opre.49.6.821.10017.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). “Distributed
Optimization and Statistical Learning via the Alternating Direction Method
of Multipliers”. In: Foundations and Trends® in Machine Learning 3.1, pp. 1-
122. por: 10.1561/2200000016.

Brown, D. J., G. M. Heal, M. Ali Khan, and R. Vohra (1986). “On a general ex-
istence theorem for marginal cost pricing equilibria”. In: Journal of Economic
Theory 38.2, pp. 371-379. DOI: 10.1016/0022-0531(86)90124-9.

Brown, W. E. and E. Moreno-Centeno (2020). “Transmission-Line Switching for
Load Shed Prevention via an Accelerated Linear Programming Approximation
of AC Power Flows”. In: IEEFE Transactions on Power Systems 35.4, pp. 2575—
2585. DOI: 10.1109/tpwrs.2020.2969625.

Cebulla, F., T. Naegler, and M. Pohl (2017). “Electrical energy storage in
highly renewable European energy systems: Capacity requirements, spatial
distribution, and storage dispatch”. In: Journal of Energy Storage 14, pp. 211—
223. DOI: 10.1016/j.est.2017.10.004.

Celebi, E.; V. Krebs, and M. Schmidt (2021). “I’-Robust electricity market
equilibrium models with transmission and generation investments”. In: Energy
Systems. DOIL: 10.1007/s12667-020-00411-x.

Chen, S. and A. J. Conejo (2020). “Strategic-Agent Equilibria in the Operation
of Natural Gas and Power Markets”. In: Energies 13.4. DOI: 10 .3390/
enl13040868.

Chen, S., A. J. Conejo, R. Sioshansi, and Z. Wei (2020a). “Equilibria in Elec-
tricity and Natural Gas Markets With Strategic Offers and Bids”. In: IFEE
Transactions on Power Systems 35.3, pp. 1956-1966. DOI: 10.1109/tpwrs.
2019.2947646.

— (2020b). “Operational Equilibria of Electric and Natural Gas Systems With
Limited Information Interchange”. In: IEEE Transactions on Power Systems
35.1, pp. 662-671. DOI: 10.1109/tpwrs.2019.2928475.

Chen, X. and M. Fukushima (2005). “Expected Residual Minimization Method
for Stochastic Linear Complementarity Problems”. In: Mathematics of Oper-
ations Research 30.4, pp. 1022-1038. DOIL: 10.1287/moor.1050.0160.

95


https://doi.org/10.5547/issn0195-6574-ej-vol25-no3-5
https://doi.org/10.5547/issn0195-6574-ej-vol25-no3-5
https://doi.org/10.1287/opre.49.6.821.10017
https://doi.org/10.1561/2200000016
https://doi.org/10.1016/0022-0531(86)90124-9
https://doi.org/10.1109/tpwrs.2020.2969625
https://doi.org/10.1016/j.est.2017.10.004
https://doi.org/10.1007/s12667-020-00411-x
https://doi.org/10.3390/en13040868
https://doi.org/10.3390/en13040868
https://doi.org/10.1109/tpwrs.2019.2947646
https://doi.org/10.1109/tpwrs.2019.2947646
https://doi.org/10.1109/tpwrs.2019.2928475
https://doi.org/10.1287/moor.1050.0160

Bibliography

Chen, X., R. J.-B. Wets, and Y. Zhang (2012). “Stochastic Variational Inequali-
ties: Residual Minimization Smoothing Sample Average Approximations”. In:
SIAM Journal on Optimization 22.2, pp. 649-673. DOI: 10.1137/110825248.

Chen, X., C. Zhang, and M. Fukushima (2009). “Robust solution of monotone
stochastic linear complementarity problems”. In: Mathematical Programming
117, pp. 51-80. DOT: 10.1007/s10107-007-0163-z.

Colson, B., P. Marcotte, and G. Savard (2007). “An overview of bilevel op-
timization”. In: Annals of Operations Research 153, pp. 235-256. DOI: 10.
1007/s10479-007-0176-2.

Conejo, A. J., S. Chen, and G. E. Constante (2020). “Operations and Long-
Term Expansion Planning of Natural-Gas and Power Systems: A Market
Perspective”. In: Proceedings of the IEEE 108.9, pp. 1541-1557. DOI: 10.
1109/ jproc.2020.3005284.

Cong, H., X. Wang, and C. Jiang (2019). “Two-stage nested bilevel model for
generation expansion planning in combined electricity and gas markets”. In:
IET Generation, Transmission € Distribution 13.15, pp. 3443-3454. DoOTI:
10.1049/iet-gtd.2019.0293.

Correa-Posada, C. M. and P. Sanchez-Martin (2014). “Security-Constrained
Optimal Power and Natural-Gas Flow”. In: IEEFE Transactions on Power
Systems 29.4, pp. 1780-1787. DOI: 10.1109/tpwrs.2014.2299714.

Cremer, H. and J.-J. Laffont (2002). “Competition in gas markets”. In: European
Economic Review 46.4-5, pp. 928-935. DOI: 10.1016/s0014-2921(01) 00226-
4.

Daxhelet, O. and Y. Smeers (2007). “The EU regulation on cross-border trade
of electricity: A two-stage equilibrium model”. In: Furopean Journal of
Operational Research 181.3, pp. 1396-1412. DOI: 10.1016/j.ejor.2005.12.
040.

Deane, J. P., M. O Ciaréin, and B. P. O Gallachéir (2017). “An integrated gas and
electricity model of the EU energy system to examine supply interruptions”. In:
Applied Energy 193, pp. 479-490. DOI: 10.1016/j.apenergy.2017.02.039.

Debreu, G. (1951). “The Coefficient of Resource Utilization”. In: Econometrica
19.3, pp. 273-292. DOT: 10.2307/1906814.

— (1954). “Valuation equilibrium and Pareto optimum?”. In: Proceedings of the
National Academy of Sciences of the United States of America 40.7, pp. 588~
592. por: 10.1073/pnas.40.7.588.

— (1962). “New Concepts and Techniques for Equilibrium Analysis”. In: Inter-
national Economic Review 3.3, pp. 257-273. DOI: 10.2307/2525394.

— (1970). “Economies with a Finite Set of Equilibria”. In: Econometrica 38.3,
pp. 387-392. DOI: 10.2307/1909545.

56


https://doi.org/10.1137/110825248
https://doi.org/10.1007/s10107-007-0163-z
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1109/jproc.2020.3005284
https://doi.org/10.1109/jproc.2020.3005284
https://doi.org/10.1049/iet-gtd.2019.0293
https://doi.org/10.1109/tpwrs.2014.2299714
https://doi.org/10.1016/s0014-2921(01)00226-4
https://doi.org/10.1016/s0014-2921(01)00226-4
https://doi.org/10.1016/j.ejor.2005.12.040
https://doi.org/10.1016/j.ejor.2005.12.040
https://doi.org/10.1016/j.apenergy.2017.02.039
https://doi.org/10.2307/1906814
https://doi.org/10.1073/pnas.40.7.588
https://doi.org/10.2307/2525394
https://doi.org/10.2307/1909545

Bibliography

Dempe, S. (2002). Foundations of Bilevel Programming. Vol. 61. Nonconvex
Optimization and Its Applications. Boston, MA: Springer US. DOI: 10.1007/
b101970.

Egerer, J., V. Grimm, T. Kleinert, M. Schmidt, and G. Zottl (2021). “The
impact of neighboring markets on renewable locations, transmission expansion,
and generation investment”. In: Furopean Journal of Operational Research
292.2, pp. 696-713. DOI: 10.1016/j.ejor.2020.10.055.

Egging, R., S. A. Gabriel, F. Holz, and J. Zhuang (2008). “A complementarity
model for the European natural gas market”. In: Energy Policy 36.7, pp. 2385—
2414. por: 10.1016/j.enpol.2008.01.044.

Fisher, E. B., R. P. O'Neill, and M. C. Ferris (2008). “Optimal Transmission
Switching”. In: IEEFE Transactions on Power Systems 23.3, pp. 1346-1355.
DOI: 10.1109/tpwrs.2008.922256.

Fleiner, T., R. Jagadeesan, Z. Jank6, and A. Teytelboym (2019). “Trading
Networks with Frictions”. In: Econometrica 87.5, pp. 1633-1661. DOI: 10.
3982/ectal4159.

Fomeni, F. D.; S. A. Gabriel, and M. F. Anjos (2019). “Applications of logic
constrained equilibria to traffic networks and to power systems with storage”.
In: Journal of the Operational Research Society 70.2, pp. 310-325. DOI:
10.1080/01605682.2018.1438761.

Figenschuh, A., B. GeiBller, R. Gollmer, A. Morsi, M. E. Pfetsch, J. Révekamp,
M. Schmidt, K. Spreckelsen, and M. C. Steinbach (2015). “Physical and techni-
cal fundamentals of gas networks”. In: Fuvaluating Gas Network Capacities. Ed.
by T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe. MOS-SIAM Series on Op-
timization. SIAM. Chap. 2, pp. 17-44. DOT: 10.1137/1.9781611973693. ch2.

Gabriel, S. A., S. Kiet, and J. Zhuang (2005). “A Mixed Complementarity-Based
Equilibrium Model of Natural Gas Markets”. In: Operations Research 53.5,
pp. 799-818. DOI: 10.1287/opre.1040.0199.

Gabriel, S. A., A. J. Conejo, J. D. Fuller, B. F. Hobbs, and C. Ruiz (2013).
Complementarity Modeling in Energy Markets. Vol. 180. International Series
in Operations Research & Management Science. Springer, New York. DOTI:
10.1007/978-1-4419-6123-5.

Gabriel, S. A. and Y. Smeers (2006). “Complementarity Problems in Restruc-
tured Natural Gas Markets”. In: Recent Advances in Optimization. Ed. by
A. Seeger. Vol. 563. Lecture Notes in Economics and Mathematical Systems.
Springer, Berlin, Heidelberg, pp. 343-373. DOI: 10.1007/3-540-28258-0_21.

Gale, D. and A. Mas-Colell (1975). “An equilibrium existence theorem for a
general model without ordered preferences”. In: Journal of Mathematical
Economics 2.1, pp. 9-15. boI: 10.1016/0304-4068(75)90009-9.

o7


https://doi.org/10.1007/b101970
https://doi.org/10.1007/b101970
https://doi.org/10.1016/j.ejor.2020.10.055
https://doi.org/10.1016/j.enpol.2008.01.044
https://doi.org/10.1109/tpwrs.2008.922256
https://doi.org/10.3982/ecta14159
https://doi.org/10.3982/ecta14159
https://doi.org/10.1080/01605682.2018.1438761
https://doi.org/10.1137/1.9781611973693.ch2
https://doi.org/10.1287/opre.1040.0199
https://doi.org/10.1007/978-1-4419-6123-5
https://doi.org/10.1007/3-540-28258-0_21
https://doi.org/10.1016/0304-4068(75)90009-9

Bibliography

Gale, D. (1955). “The law of supply and demand”. In: MATHEMATICA SCAN-
DINAVICA 3, pp. 155-169. DOI: 10.7146/math.scand.a-10436.

Gayme, D. and U. Topcu (2013). “Optimal power flow with large-scale storage
integration”. In: IEFEE Transactions on Power Systems 28.2, pp. 709-717.
DOI: 10.1109/tpuwrs.2012.2212286.

Geidl, M. and G. Andersson (2007). “Optimal Power Flow of Multiple Energy
Carriers”. In: IEEE Transactions on Power Systems 22.1, pp. 145-155. DOI:
10.1109/tpwrs.2006.888988.

GeiBler, B., A. Morsi, L. Schewe, and M. Schmidt (2015). “Solving power-
constrained gas transportation problems using an MIP-based alternating
direction method”. In: Computers & Chemical Engineering 82, pp. 303-317.
DOI: 10.1016/j.compchemeng.2015.07.005.

— (2018). “Solving Highly Detailed Gas Transport MINLPs: Block Separability
and Penalty Alternating Direction Methods”. In: INFORMS Journal on
Computing 30.2, pp. 309-323. DOI: 10.1287/ijoc.2017.0780.

Grimm, V., J. Griibel, B. Riickel, C. S6lch, and G. Zottl (2020). “Storage
investment and network expansion in distribution networks: The impact of
regulatory frameworks”. In: Applied Energy 262. DO1: 10.1016/j .apenergy.
2019.114017.

Grimm, V., T. Kleinert, F. Liers, M. Schmidt, and G. Z&ttl (2019). “Optimal
price zones of electricity markets: a mixed-integer multilevel model and global
solution approaches”. In: Optimization Methods and Software 34.2, pp. 406—
436. DOI: 10.1080/10556788.2017.1401069.

Grimm, V., A. Martin, M. Schmidt, M. Weibelzahl, and G. Z&ttl (2016). “Trans-
mission and generation investment in electricity markets: The effects of market
splitting and network fee regimes”. In: European Journal of Operational Re-
search 254.2, pp. 493-509. DOI: 10.1016/j.ejor.2016.03.044.

Grimm, V., B. Riickel, C. Solch, and G. Zottl (2021). “The impact of market
design on transmission and generation investment in electricity markets”. In:
Energy Economics 93. DOI: 10.1016/j.eneco.2020.104934.

Grimm, V., L. Schewe, M. Schmidt, and G. Zéttl (2017). “Uniqueness of market
equilibrium on a network: A peak-load pricing approach”. In: Furopean
Journal of Operational Research 261.3, pp. 971-983. DOI: 10.1016/j.ejor.
2017.03.036.

— (2019). “A multilevel model of the European entry-exit gas market”. In:
Mathematical Methods of Operations Research 89, pp. 223-255. DOI: 10.
1007/s00186-018-0647-z.

Guo, C., M. Bodur, and J. A. Taylor (2021). “Copositive Duality for Discrete
Markets and Games”. Available online at http://arxiv.org/abs/2101.
05379v2.

o8


https://doi.org/10.7146/math.scand.a-10436
https://doi.org/10.1109/tpwrs.2012.2212286
https://doi.org/10.1109/tpwrs.2006.888988
https://doi.org/10.1016/j.compchemeng.2015.07.005
https://doi.org/10.1287/ijoc.2017.0780
https://doi.org/10.1016/j.apenergy.2019.114017
https://doi.org/10.1016/j.apenergy.2019.114017
https://doi.org/10.1080/10556788.2017.1401069
https://doi.org/10.1016/j.ejor.2016.03.044
https://doi.org/10.1016/j.eneco.2020.104934
https://doi.org/10.1016/j.ejor.2017.03.036
https://doi.org/10.1016/j.ejor.2017.03.036
https://doi.org/10.1007/s00186-018-0647-z
https://doi.org/10.1007/s00186-018-0647-z
http://arxiv.org/abs/2101.05379v2
http://arxiv.org/abs/2101.05379v2

Bibliography

Harks, T. (2020). “Pricing in Resource Allocation Games Based on Lagrangean
Duality and Convexification”. Available online at http://arxiv.org/abs/
1907.01976.

Hatfield, J. W., S. D. Kominers, A. Nichifor, M. Ostrovsky, and A. Westkamp
(2013). “Stability and Competitive Equilibrium in Trading Networks”. In:
Journal of Political Economy 121.5, pp. 966—-1005. DOI: 10.1086/673402.

— (2019). “Full substitutability”. In: Theoretical Economics 14.4, pp. 1535-1590.
DOI: 10.3982/te3240.

Hedman, K. W., R. P. O’Neill, E. B. Fisher, and S. S. Oren (2008). “Optimal
Transmission Switching—Sensitivity Analysis and Extensions”. In: IEEE
Transactions on Power Systems 23.3, pp. 1469-1479. DOI: 10.1109/tpwrs.
2008.926411.

— (2009). “Optimal Transmission Switching With Contingency Analysis”. In:
IEFEE Transactions on Power Systems 24.3, pp. 1577-1586. DOI: 10.1109/
tpwrs.2009.2020530.

Heitsch, H., R. Henrion, T. Kleinert, and M. Schmidt (2021). “On Convex Lower-
Level Black-Box Constraints in Bilevel Optimization with an Application
to Gas Market Models with Chance Constraints”. Available online at http:
//www.optimization-online.org/DB_HTML/2021/04/8330.html.

Hildenbrand, W. (1974). Core and Equilibria of a Large Economy. (PSME-5).
Princeton University Press. DOI: 10.2307/j.ctt13x0tjf.

Hobbs, B. F. and U. Helman (2004). “Complementarity-Based Equilibrium
Modeling for Electric Power Markets”. In: Modelling Prices in Competitive
Electricity Markets. Ed. by D. W. Bunn. London: Wiley. Chap. 3.

Hu, X. and D. Ralph (2007). “Using EPECs to Model Bilevel Games in Restruc-
tured Electricity Markets with Locational Prices”. In: Operations Research
55.5, pp. 809-827. DOI: 10.1287/0opre.1070.0431.

Huppmann, D. and J. Egerer (2015). “National-strategic investment in European
power transmission capacity”. In: European Journal of Operational Research
247.1, pp. 191-203. DOI: 10.1016/j.ejor.2015.05.056.

Huppmann, D. and R. Egging (2014). “Market power, fuel substitution and
infrastructure — A large-scale equilibrium model of global energy markets”.
In: Energy 75, pp. 483-500. DOI: 10.1016/j.energy.2014.08.004.

Jenabi, M., S. M. T. F. Ghomi, and Y. Smeers (2013). “Bi-Level Game Ap-
proaches for Coordination of Generation and Transmission Expansion Plan-
ning Within a Market Environment”. In: IEEE Transactions on Power
Systems 28.3, pp. 2639-2650. DOI: 10.1109/tpwrs.2012.2236110.

Kleinert, T. and M. Schmidt (2019). “Global optimization of multilevel electricity
market models including network design and graph partitioning”. In: Discrete
Optimization 33, pp. 43-69. DOIL: 10.1016/j.disopt.2019.02.002.

99


http://arxiv.org/abs/1907.01976
http://arxiv.org/abs/1907.01976
https://doi.org/10.1086/673402
https://doi.org/10.3982/te3240
https://doi.org/10.1109/tpwrs.2008.926411
https://doi.org/10.1109/tpwrs.2008.926411
https://doi.org/10.1109/tpwrs.2009.2020530
https://doi.org/10.1109/tpwrs.2009.2020530
http://www.optimization-online.org/DB_HTML/2021/04/8330.html
http://www.optimization-online.org/DB_HTML/2021/04/8330.html
https://doi.org/10.2307/j.ctt13x0tjf
https://doi.org/10.1287/opre.1070.0431
https://doi.org/10.1016/j.ejor.2015.05.056
https://doi.org/10.1016/j.energy.2014.08.004
https://doi.org/10.1109/tpwrs.2012.2236110
https://doi.org/10.1016/j.disopt.2019.02.002

Bibliography

Koch, T., B. Hiller, M. E. Pfetsch, and L. Schewe, eds. (2015). Evaluating
Gas Network Capacities. MOS-SIAM Series on Optimization. STAM. DoOI:
10.1137/1.9781611973693.

Kramer, A., V. Krebs, and M. Schmidt (2020). “Strictly and I-Robust Counter-
parts of Electricity Market Models: Perfect Competition and Nash-Cournot
Equilibria”. Available online at http://www.optimization-online.org/
DB_HTML/2018/07/6709 .html.

Krebs, V., M. Miiller, and M. Schmidt (2021). “I'-robust linear complementarity
problems with ellipsoidal uncertainty sets”. In: International Transactions in
Operational Research. DOI: 10.1111/itor.12988.

Krebs, V., L. Schewe, and M. Schmidt (2018). “Uniqueness and multiplicity
of market equilibria on DC power flow networks”. In: Furopean Journal of
Operational Research 271.1, pp. 165—-178. DOI: 10.1016/j.ejor.2018.05.
016.

Krebs, V. and M. Schmidt (2018). “Uniqueness of market equilibria on networks
with transport costs”. In: Operations Research Perspectives 5, pp. 169-173.
DOI: 10.1016/j.0rp.2018.05.002.

— (2020). “I'-robust linear complementarity problems”. In: Optimization Meth-
ods and Software. DOI: 10.1080/10556788.2020.1825708.

Leonard, H. B. (1983). “Elicitation of Honest Preferences for the Assignment of
Individuals to Positions”. In: Journal of Political Economy 91.3, pp. 461-479.
DOI: 10.1086/261158.

Li, T., M. Eremia, and M. Shahidehpour (2008). “Interdependency of Natural
Gas Network and Power System Security”. In: IEEFE Transactions on Power
Systems 23.4, pp. 1817-1824. pOI: 10.1109/tpwrs.2008.2004739.

Lin, G.-H. and M. Fukushima (2006). “New reformulations for stochastic non-
linear complementarity problems”. In: Optimization Methods and Software
21.4, pp. 551-564. DOI: 10.1080/10556780600627610.

Mangasarian, O. L. (1988). “A simple characterization of solution sets of convex
programs”. In: Operations Research Letters 7.1, pp. 21-26. DOI: 10.1016/
0167-6377(88)90047-8.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995). Microeconomic Theory.
Vol. 1. Oxford University Press New York.

Mas-Colell, A. (1974). “An equilibrium existence theorem without complete or
transitive preferences”. In: Journal of Mathematical Economics 1.3, pp. 237—
246. DOT: 10.1016/0304-4068(74)90015-9.

McKenzie, L. W. (1959). “On the Existence of General Equilibrium for a
Competitive Market”. In: FEconometrica 27.1, pp. 54-71. pOI: 10 .2307/
1907777.

60


https://doi.org/10.1137/1.9781611973693
http://www.optimization-online.org/DB_HTML/2018/07/6709.html
http://www.optimization-online.org/DB_HTML/2018/07/6709.html
https://doi.org/10.1111/itor.12988
https://doi.org/10.1016/j.ejor.2018.05.016
https://doi.org/10.1016/j.ejor.2018.05.016
https://doi.org/10.1016/j.orp.2018.05.002
https://doi.org/10.1080/10556788.2020.1825708
https://doi.org/10.1086/261158
https://doi.org/10.1109/tpwrs.2008.2004739
https://doi.org/10.1080/10556780600627610
https://doi.org/10.1016/0167-6377(88)90047-8
https://doi.org/10.1016/0167-6377(88)90047-8
https://doi.org/10.1016/0304-4068(74)90015-9
https://doi.org/10.2307/1907777
https://doi.org/10.2307/1907777

Bibliography

Muzhikyan, A., A. M. Farid, and K. Youcef-Toumi (2016). “Relative merits of
load following reserves & energy storage market integration towards power
system imbalances”. In: International Journal of Electrical Power & Energy
Systems 74, pp. 222-229. DOI: 10.1016/j.1ijepes.2015.07.013.

O’Neill, R. P., P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf, and W. R. Stewart
Jr. (2005). “Efficient market-clearing prices in markets with nonconvexities”.
In: Furopean Journal of Operational Research 164.1, pp. 269-285. DOI: 10.
1016/j.ejor.2003.12.011.

Radner, R. (1967). “Efficiency Prices for Infinite Horizon Production Pro-
grammes”. In: The Review of Economic Studies 34.1, pp. 51-66. DOI: 10.
2307/2296570.

Ramsebner, J., R. Haas, A. Ajanovic, and M. Wietschel (2021). “The sector
coupling concept: A critical review”. In: Wiley Interdisciplinary Reviews:
Energy and Environment 10.4. DOI: 10.1002/wene . 396.

Rider, M. J., J. M. Lépez-Lezama, J. Contreras, and A. Padilha-Feltrin (2013).
“Bilevel approach for optimal location and contract pricing of distributed
generation in radial distribution systems using mixed-integer linear program-
ming”. In: IET Generation, Transmission & Distribution 7.7, pp. 724-734.
DOI: 10.1049/iet-gtd.2012.0369.

Rios-Mercado, R. Z. and C. Borraz-Sanchez (2015). “Optimization problems in
natural gas transportation systems: A state-of-the-art review”. In: Applied
Energy 147, pp. 536-555. DOI: 10.1016/j.apenergy.2015.03.017.

Rios-Mercado, R. Z., S. Wu, L. R. Scott, and E. A. Boyd (2002). “A Reduction
Technique for Natural Gas Transmission Network Optimization Problems”.
In: Annals of Operations Research 117, pp. 217-234. DOI: 10.1023/a:
1021529709006.

Roach, M. and L. Meeus (2020). “The welfare and price effects of sector coupling
with power-to-gas”. In: Energy Economics 86. DOI: 10.1016/j.eneco.2020.
104708.

Ruiz, C. and A. J. Conejo (2015). “Robust transmission expansion planning”.
In: Furopean Journal of Operational Research 242.2, pp. 390-401. poI: 10.
1016/j.ejor.2014.10.030.

Samsatli, S. and N. J. Samsatli (2015). “A general spatio-temporal model
of energy systems with a detailed account of transport and storage”. In:
Computers & Chemical Engineering 80, pp. 155-176. DOI: 10.1016/j. compc
hemeng.2015.05.019.

Sauma, E. E. and S. S. Oren (2006). “Proactive planning and valuation of
transmission investments in restructured electricity markets”. In: Journal of
Regulatory Economics 30, pp. 261-290. DOI: 10.1007/s11149-006-9003-y.

61


https://doi.org/10.1016/j.ijepes.2015.07.013
https://doi.org/10.1016/j.ejor.2003.12.011
https://doi.org/10.1016/j.ejor.2003.12.011
https://doi.org/10.2307/2296570
https://doi.org/10.2307/2296570
https://doi.org/10.1002/wene.396
https://doi.org/10.1049/iet-gtd.2012.0369
https://doi.org/10.1016/j.apenergy.2015.03.017
https://doi.org/10.1023/a:1021529709006
https://doi.org/10.1023/a:1021529709006
https://doi.org/10.1016/j.eneco.2020.104708
https://doi.org/10.1016/j.eneco.2020.104708
https://doi.org/10.1016/j.ejor.2014.10.030
https://doi.org/10.1016/j.ejor.2014.10.030
https://doi.org/10.1016/j.compchemeng.2015.05.019
https://doi.org/10.1016/j.compchemeng.2015.05.019
https://doi.org/10.1007/s11149-006-9003-y

Bibliography

Schewe, L., M. Schmidt, and J. Thiirauf (2021). “Global Optimization for the
Multilevel European Gas Market System with Nonlinear Flow Models on
Trees”. Available online at http://www.optimization-online.org/DB_
HTML/2020/08/7973.html.

Seeger, A., ed. (2006). Recent Advances in Optimization. Lecture Notes in
Economics and Mathematical Systems. Springer, Berlin, Heidelberg. DOI:
10.1007/3-540-28258-0.

Shafer, W. and H. Sonnenschein (1975a). “Equilibrium in abstract economies
without ordered preferences”. In: Journal of Mathematical Economics 2.3,
pp. 345-348. DOI: 10.1016/0304-4068(75)90002-6.

— (1975b). “Some theorems on the existence of competitive equilibrium”. In:
Journal of Economic Theory 11.1, pp. 83-93. DOI: 10.1016/0022-0531(75)
90040-x.

Shapley, L. S. and M. Shubik (1971). “The assignment game I: The core”.
In: International Journal of Game Theory 1, pp. 111-130. pDoI1: 10.1007/
bf01753437.

Sierra-Aguilar, J. E., C. C. Marin-Cano, J. M. Lépez-Lezama, A. Jaramillo-
Duque, and J. G. Villegas (2021). “A New Affinely Adjustable Robust Model
for Security Constrained Unit Commitment under Uncertainty”. In: Applied
Sciences 11.9. DOI: 10.3390/app11093987.

Sioshansi, R. (2014). “When energy storage reduces social welfare”. In: Energy
Economics 41, pp. 106-116. DOI: 10.1016/j.eneco.2013.09.027.

Unsihuay, C., J. W. M. Lima, and A. C. Z. de Souza (2007). “Modeling the
Integrated Natural Gas and Electricity Optimal Power Flow”. In: 2007
IEEE Power Engineering Society General Meeting. DOI: 10.1109/pes.2007.
386124.

Wald, A. (1933-1934). “Uber die eindeutige positive Losbarkeit der neuen
Produktionsgleichungen”. In: Ergebnisse eines mathematischen Kolloquiums
6, pp. 12-20.

— (1934-1935). “Uber die Produktionsgleichungen der ékonomischen Wertlehre”.
In: Ergebnisse eines mathematischen Kolloquiums 7, pp. 1-6.

— (1936). “Uber einige Gleichungssysteme der mathematischen Okonomie”. In:
Zeitschrift fiir Nationalékonomie 7, pp. 637-670. DOI: 10.1007/b£f01316644.

— (1951). “On Some Systems of Equations of Mathematical Economics”. In:
Econometrica 19.4, pp. 368—403. DOI: 10.2307/1907464.

Walras, L. (1900). Eléments d’économie politique pure. Lausanne, Paris.

— (1954). Elements of Pure Economics. Translated into English by W. Jaffé.
George Allen and Unwin LTD, London.

62


http://www.optimization-online.org/DB_HTML/2020/08/7973.html
http://www.optimization-online.org/DB_HTML/2020/08/7973.html
https://doi.org/10.1007/3-540-28258-0
https://doi.org/10.1016/0304-4068(75)90002-6
https://doi.org/10.1016/0022-0531(75)90040-x
https://doi.org/10.1016/0022-0531(75)90040-x
https://doi.org/10.1007/bf01753437
https://doi.org/10.1007/bf01753437
https://doi.org/10.3390/app11093987
https://doi.org/10.1016/j.eneco.2013.09.027
https://doi.org/10.1109/pes.2007.386124
https://doi.org/10.1109/pes.2007.386124
https://doi.org/10.1007/bf01316644
https://doi.org/10.2307/1907464

Bibliography

Wang, C., W. Wei, J. Wang, F. Liu, and S. Mei (2018). “Strategic Offering and
Equilibrium in Coupled Gas and Electricity Markets”. In: IEEE Transactions
on Power Systems 33.1, pp. 290-306. DOI: 10.1109/tpwrs.2017.2698454.

Wood, A. J., B. F. Wollenberg, and G. B. Sheblé (2013). Power Generation,
Operation, and Control. John Wiley & Sons.

Xu, J., M. Hallack, and M. Vazquez (2017). “Applying a third party access
model for China’s gas pipeline network: an independent pipeline operator and
congestion rent transfer”. In: Journal of Regulatory Economics 51, pp. 72-97.
DOI: 10.1007/s11149-017-9316-z.

Yang, Z., R. Zhang, and Z. Zhang (2016). “An exploration of a strategic
competition model for the European Union natural gas market”. In: Energy
Economics 57, pp. 236-242. po1: 10.1016/j.eneco.2016.05.008.

Yao, J., I. Adler, and S. S. Oren (2008). “Modeling and Computing Two-
Settlement Oligopolistic Equilibrium in a Congested Electricity Network”. In:
Operations Research 56.1, pp. 34—47. DOI: 10.1287/opre.1070.0416.

Zeng, B., J. Wen, J. Shi, J. Zhang, and Y. Zhang (2016). “A multi-level
approach to active distribution system planning for efficient renewable energy
harvesting in a deregulated environment”. In: Energy 96, pp. 614-624. DOTI:
10.1016/j.energy.2015.12.070.

Zerrahn, A. and W.-P. Schill (2017). “Long-run power storage requirements
for high shares of renewables: review and a new model”. In: Renewable and
Sustainable Energy Reviews 79, pp. 1518-1534. DOI: 10.1016/j.rser.2016.
11.098.

Zerrahn, A.; W.-P. Schill, and C. Kemfert (2018). “On the economics of electrical
storage for variable renewable energy sources”. In: Furopean Economic Review
108, pp. 259-279. DOI: 10.1016/j.euroecorev.2018.07.004.

Zhang, X., M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah (2015).
“Optimal Expansion Planning of Energy Hub With Multiple Energy Infras-
tructures”. In: IEEE Transactions on Smart Grid 6.5, pp. 2302-2311. DOTI:
10.1109/tsg.2015.2390640.

Zimmerman, R. D. and C. E. Murillo-Sanchez (2020a). MATPOWER. DOI:
10.5281/zenodo.4074135.

— (2020b). MATPOWER User’s Manual Version 7.1. URL: https://matpower.
org (visited on 03/05/2021).

Zimmerman, R. D., C. E. Murillo-Sanchez, and R. J. Thomas (2011). “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for Power
Systems Research and Education”. In: IEEE Transactions on Power Systems
26.1, pp. 12-19. DOI: 10.1109/tpwrs.2010.2051168.

Zlotnik, A., L. Roald, S. Backhaus, M. Chertkov, and G. Andersson (2017).
“Coordinated Scheduling for Interdependent Electric Power and Natural Gas

63


https://doi.org/10.1109/tpwrs.2017.2698454
https://doi.org/10.1007/s11149-017-9316-z
https://doi.org/10.1016/j.eneco.2016.05.008
https://doi.org/10.1287/opre.1070.0416
https://doi.org/10.1016/j.energy.2015.12.070
https://doi.org/10.1016/j.rser.2016.11.098
https://doi.org/10.1016/j.rser.2016.11.098
https://doi.org/10.1016/j.euroecorev.2018.07.004
https://doi.org/10.1109/tsg.2015.2390640
https://doi.org/10.5281/zenodo.4074135
https://matpower.org
https://matpower.org
https://doi.org/10.1109/tpwrs.2010.2051168

Bibliography

Infrastructures”. In: IEEE Transactions on Power Systems 32.1, pp. 600-610.
DOI: 10.1109/tpwrs.2016.2545522.

64


https://doi.org/10.1109/tpwrs.2016.2545522

Part II.

Preprints

65






Preprint 1

Long-Run Market Equilibria in Coupled
Energy Sectors: A Study of Uniqueness

Jonas Egerer, Veronika Grimm, Julia Griibel, and Gregor Zottl

Preprint under review
http://wuw.optimization-online.org/DB_HTML/2021/03/8312.html

67


http://www.optimization-online.org/DB_HTML/2021/03/8312.html

LONG-RUN MARKET EQUILIBRIA IN COUPLED ENERGY SECTORS:
A STUDY OF UNIQUENESS

JONAS EGERER, VERONIKA GRIMM, JULIA GRUBEL, AND GREGOR ZOTTL

ABsTrRACT. We propose an equilibrium model for coupled markets of multiple energy
sectors. The agents in our model are operators of sector-specific production and
sector-coupling technologies, as well as price-sensitive consumers with varying demand.
We analyze long-run investment in production capacity in each sector and investment
in coupling capacity between sectors, as well as production decisions determined at
repeated spot markets. We show that in our multi-sector model, multiplicity of equilibria
may occur, even if all assumptions hold that would be sufficient for uniqueness in a
single-sector model. We then contribute to the literature by deriving sufficient conditions
for the uniqueness of short- and long-run market equilibrium in coupled markets of
multiple energy sectors. We illustrate via simple examples that these conditions are
indeed required to guarantee uniqueness in general. The uniqueness result is an important
step to be able to incorporate the proposed market equilibrium problem in more complex
computational multilevel equilibrium models, in which uniqueness of lower levels is a
prerequisite for obtaining meaningful solutions. Our analysis also paves the way to
understand and analyze more complex sector coupling models in the future.

Key words. Energy Markets, Sector Coupling, Regional Pricing, Uniqueness, Short- and
Long-Run Market Equilibrium.

1. INTRODUCTION

The goal of climate neutrality in 2050 in Europe and other regions worldwide means that
the entire economy must decarbonize or defossilize. On the one hand, renewable electricity
will be used for the direct electrification of the heat and transport sectors as well as industry.
Where this is not possible, the path is via climate-neutrally generated hydrogen and synthetic
energy sources based on it. Hydrogen and renewable synthetic fuels are also needed to
compensate for fluctuations of renewable energies in the electricity sector. Sector coupling
will thus play an increasingly important role in both directions. In the medium run, during
the time of transition, also fossil gas will play a role in the energy system. Overall, the
transition towards a climate neutral world will lead to a higher degree of integration between
the markets for electricity, fossil gas, and hydrogen. This integration must be taken into
account in market designs for energy sectors.

For the assessment of market designs it is a common approach to develop (multilevel)
equilibrium models that examine the decisions of stakeholders in energy markets and the
corresponding market outcomes. In this paper, we extend approaches from the literature
to coupled energy sectors and pave the way for a convincing equilibrium analysis of those
more complex environments. For the case of a single energy commodity, Grimm, Schewe,
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et al. (2017) analyze a framework of peak-load pricing in electricity markets, i.e., they
consider investment and operation decisions of firms when interacting in a network context
with flow constraints. Krebs, Schewe, et al. (2018) extend this analysis to the case of
DC power flow in electricity markets and Griibel et al. (2020) analyze uniqueness and
multiplicity in a similar setting taking into account storage facilities (without a network).
The extension of modeling approaches to the representation of several coupled markets for
energy commodities is important to assess the impact of sector-specific market designs on
investment and operation decisions in integrated energy systems. In particular, further
research is needed to develop a better understanding of the impact that the interactions
between different energy markets have on the uniqueness of market outcomes in order to
derive necessary model assumptions. This is the main focus of our contribution. First, we
provide sufficient conditions for uniqueness of equilibrium in a sector-coupled energy market
model. Second, our analysis paves the way to build on the framework to analyze particular
issues that arise in coupled energy markets in practice.

There are different strands of literature on the transition of energy markets with several
energy commodities and a spatial market representation. Many articles focus on co-optimizing
system cost for different energy commodities, which are usually referred to as energy system
models. These focus exclusively on determining the cost optimal configuration and operation
of an energy system that consists of several energy commodities, potentially subject to
specific policy goals (e.g., climate targets or emission pricing). It is not in the nature of
energy system models to take into account market design and energy pricing, however.
Consequently, the optimization of system cost is not in line with the outcome of market
interaction given incentives at markets for individual participants, and market equilibria in
coupled energy markets are not assessed. Earlier contributions include Geidl and Andersson
(2007), Martinez-Mares and Fuerte-Esquivel (2012), Clegg and Mancarella (2015b), Zhang
et al. (2015) and Clegg and Mancarella (2015a), recent work is provided by, e.g., Zlotnik
et al. (2017) or Felten (2020).

Another strand of literature, which is more closely related to the present work, explicitly
considers the behavior of all market participants and the resulting market equilibria in
coupled energy markets. In this context, compare for example Abrell and Weigt (2012) on
short-run market equilibria in electricity and gas markets and Abrell and Weigt (2016) for
the case of a long-run analysis including firms’ investment decisions in production facilities.
Similarly, Huppmann and Egging (2014) and Gil et al. (2015) provide frameworks to model
the behavior of market participants in fuel markets and the electricity market subject to
network constraints resulting both from electricity and fuel transport. Chen et al. (2019)
build on this work and explicitly analyze strategic bidding of firms under the anticipation
of nodal pricing both in the electricity and the gas market in a bilevel approach. Several
other very recent contributions highlight further interesting aspects arising in the context
of market interaction in coupled energy markets. Ordoudis et al. (2019) analyze different
degrees of coupling day-ahead and real-time electricity and gas markets under uncertainty.
And most recently, Roach and Meeus (2020) provide an iterative simulation procedure to
analyze the impact of long-term gas contracts on market outcomes in coupled electricity
and gas markets. All those studies provide highly valuable insights on the different aspects
regarding market interaction in coupled energy markets. Whereas they determine one of the
resulting market equilibria for their test instances considered, they do not analyze whether
there are many different equilibria yielding potentially different policy conclusions. Moreover,
they do not provide conditions when their setup indeed delivers unique market outcomes.

This paper discusses the extension of market equilibrium models that capture the behavior
of individual market participants to multiple coupled markets for energy commodities. As
compared to single-commodity models, the implementation of market dynamics between
integrated energy markets in a joint market equilibrium model requires additional considera-
tions. We propose a model for coupled energy markets that captures long-term investment
decisions in transport and production capacity and short-term market decisions. For this
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kind of model, we determine sufficient conditions that ensure unique market outcomes. Our
contribution is, to the best of our knowledge, the first to fill this gap for the case of coupled
energy markets.

Our work lays the foundation for addressing timely research questions on energy market
coupling with regard to, e.g., climate policy, regulation of networks, energy pricing and its
effects on infrastructure planning, investment incentives, and market outcomes. A substantive
analysis of the long-run interaction of the different agents requires techno-economic multilevel
modeling of coupled energy markets similar to the sector-specific models of Grimm, Martin,
et al. (2016) and Ambrosius et al. (2020) for electricity markets and Grimm, Schewe, et al.
(2019) for gas markets. In those multilevel energy market models, uniqueness of the market
outcome at the second level typically is key in order to enable a coherent analysis of decision
makers’ investments in transport capacities at the first level. In the existing literature,
uniqueness for multilevel market models has only been addressed for one energy sector
and additional aspects like storage and load-flow representation. Our results show that
multi-sector market models, with a representation of the agents active in different markets,
require additional conditions to guarantee the uniqueness of short- and long-term market
equilibrium. Beyond our general analysis, we illustrate in small examples. We also discuss the
current limits for ensuring uniqueness in model applications and open questions for further
research.

The remainder of the paper is organized as follows. Section 2 introduces the general
problem setting with timeline, model assumptions, and basic notation. Section 3 states the
model formulation, Sect. 4 provides the analysis of uniqueness, and Sect. 5 concludes.

2. SETUP, BASIC MODEL ASSUMPTIONS, AND NOTATION

In liberalized energy markets, various agents with different objectives interact. If several
coupled energy sectors are taken into account, some of these agents participate in multiple
commodity markets. In this paper we explicitly consider network-based energy sectors
such as electricity, fossil gas, and hydrogen, which have a regulated and centrally operated
transmission system, or could have one in the future. The types of agents considered are
sector-specific consumers and producers, sector-coupling producers, as well as sector-specific
transmission companies and system operators. Our model covers their individual decisions
on investment, spot market trading, and adjustments of spot market allocations necessary for
technical operation of transmission systems. At the spot market stage, network constraints in
energy pricing are partly considered, which requires a spatial definition of market zones and
a pricing regime for transmission capacity. The private agents seek to maximize their own
objectives on the spot market. While consumers decide on the level of their consumption by
maximizing their consumer surpluses, producers—with the aim of maximizing profits—decide
on investment in their production technologies and on the operation of established facilities.
The difference between sector-specific and sector-coupling production technologies is that for
sector-coupling technologies, the energy sector from which the input factors are obtained is
also modeled endogenously. This is not the case for sector-specific production technologies.

In the literature that analyses semi-liberalized energy markets in multilevel equilibrium
models (see, e.g., Sauma and Oren (2006), Baringo and Conejo (2012), Jenabi et al. (2013),
Grimm, Martin, et al. (2016), Grimm, Schewe, et al. (2019), or Ambrosius et al. (2020)), all
the above-mentioned market-driven decisions of private agents are typically captured by one
level of a multilevel equilibrium model. In this paper we focus on a particular, very important
aspect of this level, namely the uniqueness of the equilibrium at the "market level”, for the
case of multiple coupled energy markets. Only precise knowledge about the set of equilibria
and the conditions under which a unique market equilibrium at the lower level obtains allows
a meaningful analysis of the entire model. It is evident that uniqueness requires simplifying
technical assumptions, which might seem too restrictive for many applications of interest.
However, it is important to understand under which assumptions it is possible to derive
coherent results and under which assumptions, due to multiplicity of equilibria, one has to
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be very careful in interpreting the results of more complex models. In order to understand
precisely under which assumptions one can actually expect uniqueness of equilibrium, a very
detailed understanding of the underlying multilevel problem is essential. For this reason we
start with a description of the timeline of the overall model. We then present the basic model
assumptions with regard to the economic environment. Finally, the notation is introduced.

2.1. Setup. Our market model for coupled energy sectors has the following multilevel
structure, which is illustrated in Figure 1 for two sectors. First, network companies in
the different sectors decide on network expansion, anticipating private investment and the
resulting spot market outcomes, as well as subsequent adjustments of the market outcomes
to ensure technical feasibility in the transmission systems. Next, the private agents observe
network investment and the implied trade restrictions and decide on their investment
in production capacities, both in sector-specific and sector-coupling technologies. These
investment decisions depend on their expectations on spot market outcomes in all sectors.
Finally, trading on the spot market takes place over several time periods, and possibly
subsequent adjustments are made in the individual sectors in case of violated transport
constraints. This is relevant if transmission capacity constraints are not reflected in spot
market prices and therefore accounted for in the market outcome, i.e., under zonal pricing.
If these adjustments are made cost-based, there is no interference with trading on the spot
market since the private agents cannot realize additional profits. In this case, anticipation of
decisions at the adjustment stage does not affect investment and operating decisions.

Under the assumption of perfect competition, the investment and spot market trading
levels can be subsumed in one level that contains all market-driven decisions. The multilevel
structure described above can thus be reduced to a techno-economic trilevel problem with
the following underlying structure: network investment on the first level, private investment
in production capacity as well as spot market trading on the second level, and adjustments
of market outcomes on the third level.

This paper focuses on the uniqueness analysis of the second level, i.e., of investment in
sector-specific and sector-coupling production capacity as well as spot market trading in
all sectors considered. Uniqueness of the second level is a prerequisite for uniqueness of
the overall equilibrium solution. The question of uniqueness of the first and third level is
not addressed in detail in this paper. At the first level, multiplicities occur if and only if
different investment decisions yield the same maximal welfare, given cost minimal adjustment
decisions at the third level. While this kind of multiplicities might occur, they are much
easier to handle upon applications of multilevel models to specific scenarios.

2.2. Basic model assumptions. Modeling private investment and spot market behavior
in multiple sectors jointly results in a large market equilibrium problem. In order to keep
the analysis tractable, we assume—as it is standard in many related contributions—perfect
competition at all markets, i.e., upon investment and spot market decisions.

Second, we assume that each involved agent has perfect foresight, i.e., producers correctly
anticipate the spot market outcomes of the sectors in which they operate when they make
their investment decisions. In particular, perfect foresight implies that spot market results
are not subject to uncertainty on final production and demand levels due to forecasting errors.
This assumption may be relaxed by stochastic or robust optimization techniques. In this
case, complementarity problems under uncertainty arise. However, this kind of equilibrium
problems have only recently received increased attention in literature and are theoretically
not yet well understood. In particular, the existence of a single-level counterpart as in the
case of perfect foresight is not generally guaranteed. For more information on uncertain
linear complementarity problems see, e.g., Krebs and Schmidt (2020) and Krebs, Miiller,
et al. (2019).

As third assumption, operators of storage devices are excluded as possible agents in our
context since Griibel et al. (2020) already showed that uniqueness fails to hold in general as
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Investment in production: Spot market trading
sector-coupling

@ 00000000
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@ 00000000
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FiGURE 1. Multilevel structure of investment into network and production
capacity and subsequent trade in and across multiple sectors—the uniqueness
analysis in this paper focuses on the levels highlighted in black

soon as several storage operators are considered in a market equilibrium problem similar to
the one analyzed here.

Fourth, we consider trade capacity between adjacent bidding zones at the spot market
while we abstract from additional constraints on trade capacity related to potential-based
network flows. For some applications, in particular in network-based energy sectors, it might
be of interest to incorporate those constraints at the spot market; e.g., if nodal pricing or zonal
flow-based pricing systems are modeled. In this paper, we refrain from taking potential-based
trade constraints into account since, even in case of linear models, multiplicities may easily
arise; see the results for the electricity market equilibrium problems in Krebs, Schewe, et al.
(2018) and Krebs and Schmidt (2018) that both include as trade constraints the linear direct
current (DC) lossless setup to approximate Kirchhoff’s voltage law once without and once
with transportation costs. Moreover, if nonconvex transportation constraints are considered
in a market equilibrium problem, the equivalence between market equilibria and welfare
maxima may no longer hold; see Grimm, Griibel, et al. (2019) who address the case of
nonconvex gas physics.

Finally, we assume that the time horizon and the time intervals for trading the products
(i.e., electricity or gas) are the same on spot markets across all sectors. If this is not the
case, technologies from sectors where products are traded more frequently will face equal
conditions in the coupled sector for a number of subsequent trading periods, which might
obviously lead to multiplicities. This issue is left for future research.

2.3. Notation. In the following, we introduce the basic notation. We start with the time
horizon and market structure, continue with the sector-specific demand and supply, and
conclude with the sector-coupling preliminaries. For the sake of completeness, an overview of
all sets, parameters, and variables used throughout the paper is presented in Tables 1, 2,
and 3 in App. A.

Time horizon. The time horizon T for all considered energy markets is assumed to be
equidistantly discretized, i.e., in time periods T' = {t1,...,tp|} with the duration 7 = #; —#; 4
for i = 2,...,|T|. This time horizon typically resembles all trading periods of, e.g., one year.
The related data is based either on historical or representative data, using the net present
value approach for investment.
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Bidding zones. In each sector, the spot market represents the network infrastructure and
the spatial distribution of demand and supply within one or multiple bidding zones and
with trade products between the bidding zones. We denote the set of bidding zones per
sector s € S by Zs = {z1,...,2z,|}. In case of a market with a single bidding zone, |Z,| = 1
holds. In case of |Zs| > 1, the trade capacity between adjacent bidding zones is specified and
accounted for at the spot market. In our setting, the set Ky C Z, x Z, represents all bidding
zones of the same sector s € S between which a positive trade capacity is available. Each
element k € K is characterized by its maximum and minimum trade capacity f,j I A
positive trade value f; on k = (z,2') € K, in time period ¢t € T implies that the respective
amount of the sector commodity is traded from bidding zone z to 2/, while a negative trade
value represents trading in the opposite direction. Finally, we follow common notation and
define the set of all ingoing and outgoing trade capacities of a bidding zone z € Z; by

S(2)={k=(¢,2) € K, |2 € Z},
M (2)i={k=(2,2) € Ks| 7 € Z}.

Sector-specific demand. The demand in each sector varies over time and is assumed to
be price-elastic. For the ease of notation, it is furthermore assumed that there is one
(possibly aggregated) demand function per bidding zone. The inverse demand function
P, : [0,00) = R* of bidding zone z € Z in sector s € S and in time period ¢ € T is
continuously differentiable and strictly decreasing.

Sector-specific supply. The demand is met on the one hand by production technologies
that operate only within one sector and on the other hand by technologies that couple
the different sectors. The difference between the two types of technologies is that the
sector-specific production technologies do not rely on input from the other sectors in our
model scope. All existing production facilities in bidding zone z € Z, that are operated
sector-specific form the set GS*. In order to account for the possibility of further investment
in sector-specific production technologies, we introduce the set G5V of candidate production
facilities. We refer to the set of all existing and candidate sector-specific production facilities
by G, ie., GM = G U GV, Each facility g € G2! is characterized by its variable
costs of production ¢;*". Moreover, existing facilities have a given capacity yg*, while the
capacity y,*" of candidate facilities is variable with associated investment costs of c;“"
Finally, we introduce the facility-specific availability o 4. In the case of renewable energy
sources, like wind and solar, a; 4, describes variability in physical availability whereas in the
other cases it may be interpreted as planned availability, which includes shut-down times
due to maintenance.

Sector coupling. Each sector-coupling technology transforms the commodity from one sector
s € S into the commodity of another sector s’ € S with s # s’. We introduce the set X
for all existing production facilities with sector-coupling technologies. An element (0,%) of
this set represents the respective withdrawal point o and the respective injection point ¢ of
the facility. Moreover, we introduce the set X"V for all candidate sector-coupling facilities
and refer to the set of all sector-coupling facilities by X2, i.e., X2 := X°* U X"V, Each
sector-coupling facility = € X! is characterized by its efficiency 7, € (0;1). Note that an
efficiency is not specified for the sector-specific production facilities because the respective
efficiency is captured by the variable production costs.

The set OF* represents all existing sector-coupling facilities that withdraw the commodity
from sector s € S in bidding zone z € Z;, while the set O}°V represents the candidate
facilities. The set of all facilities is denoted by Ol i.e., O := O™ U OV,

Analogously, the set IJ* represents all existing sector-coupling facilities that inject the
commodity from sector s € S in bidding zone z € Z;. As before, we also consider the
respective sets of candidate facilities 12V and all facilities I2!1. All existing sector-coupling
facilities have a given capacity y;*, while the capacity y;°" of candidate facilities is variable
with associated investment costs of ¢i™. Note that the capacity restriction needs only to

)
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Sector-coupling demand

Endogenous input
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Sector-specific demand T ~
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formation efficiency 7,
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- J

FIGURE 2. Dependencies of the smallest component of our model in one time
period: One bidding zone in one sector (endogenous trade of the sector’s
commodity in blue and endogenous trade of sector-coupled commodities in
red)

be defined for the injection point because by this, the capacity at the withdrawal point is
also restricted given the efficiency of the underlying facility. The equivalent availability of
sector-coupling facilities is denoted by ay ;.

Figure 2 illustrates the trading dependencies of one bidding zone in one sector, i.e., of the
smallest component of our model. First of all, the sector’s commodity is traded between the
agents within this bidding zone. For this purpose, the sector-specific production facilities
purchase their input factors at an exogenously determined price. In turn, the purchase of
input factors of sector-coupling facilities is endogenously modeled. For the transformation
of one commodity into another, a transfer efficiency is presumed. Hence, depending on the
relation of market prices between the considered bidding zone and bidding zones of other
sectors, both trade for transforming the considered commodity into others or vice versa is
possible. Finally, the sector’s commodity can be sold to or bought from agents of other
bidding zones of the same sector. However, the trade between the considered bidding zone
and an adjacent one is limited by the respective trade capacity.

3. AN EQUILIBRIUM MODEL FOR COUPLED ENERGY MARKETS AND ITS SINGLE-LEVEL
COUNTERPART

In this section, we proceed as follows. First, we propose a market equilibrium problem that
covers the private investment in sector-specific and sector-coupling production technologies
together with the subsequent spot market trading in the different coupled energy sectors.
Afterward, we present a welfare maximization problem suitably chosen to form a single-level
counterpart to the proposed market equilibrium problem, i.e., each welfare maximal solution
corresponds to a market equilibrium and vice versa. We close with the proof of the latter
relation.

To simplify notation, we denote, e.g., by y; the vector of sector-specific and sector-coupling
production given a fixed time period ¢ € T. Furthermore, when we speak, e.g., of the
producer g € G2 in the following, we are actually referring to the operator of the production
facility g.

3.1. The market equilibrium problem. On the spot markets of different sectors, multiple
agents interact who all pursue their own objectives. The main agents are the consumers, the
operators of sector-specific production as well as sector-coupling technologies. We continue
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with the description of the individual optimization problems of each agent type and start
with the consumers.

Consumers. Consumers maximize their gross consumer surpluses less their purchasing costs.
Hence, the consumers located in bidding zone z € Z; of sector s € S face the following
optimization problem

dt, >
max § </ Pt,z(u) d/J/ - pt,zdt7z> (13')
0

teT
st. 0<d;,, foralltel, [V¢.2] (1b)

where p; . denotes the price of the respective bidding zone in the considered time period.
Due to the assumption of perfect competition, this price is—from the point of view of the
individual consumers—exogenously given, i.e., effects of own or others’ decisions on the price
are not taken into account.

The Greek letters behind constraints denote the associated dual variables. Since the
inverse demand function P, is assumed to be continuously differentiable and strictly
decreasing, Problem (1) is a concave maximization problem with linear constraints. Thus,
the corresponding Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for
global optimality. Consequently, all solutions of the stated problem are characterized by

Pt,z(dt,z) —ptz + ’Yt,z = 0, fOI' all te T‘7 (2&)

0<m.Lld.>0, forallteT. (2b)

Sector-specific producers. Each operator of an existing sector-specific production technology
maximizes profits from trading, i.e., the revenues from trading minus the variable production

costs. Thus, the producer g € G located in bidding zone z € Z; of sector s € S has the
following maximization problem

max Z (Dt = €5™) Yt.g (3a)
teT
st 0<yrg <aggyy, forallteT. [ﬁfg] (3b)

The latter inequality implies that the production must remain within the real-time available
capacities. The associated KKT conditions are necessary and sufficient for global optimality
since Problem (3) is a linear maximization problem.

Pre—c + B, — B, =0, forallteT, (4a)
0<PBryLyg >0, foralteT, (4b)
0< B, Loyl —yrg >0, foralltel. (4c)

The operators of candidate sector-specific production technologies additionally consider
their investment costs. Therefore, such an operator g € G5 located in bidding zone z € Z,
of sector s € S optimizes the following maximization problem

max Z (ptz — c;’ar) Yt.g — cignvy;ew (5a)
teT
st 0<y, < at,gy;ew, forallteT. [(5}79] (5b)
The respective (necessary and sufficient) KKT conditions read
—d™ + Z g0, , =0, (6a)
teT
pt,z*C;ar+5ng(5:g:0, for all t € T, (6b)
0<6,, Lyg >0, forallteT, (6¢)

0< 5:9 Lot gyy™ —yrg >0, foralteT. (6d)
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Note that the specified setup does not exclude the case where an operator owns more
than one production facility. Since we assume perfect competition and consequently that the
operators cannot influence market prices by their decisions, optimizing jointly over all owned
facilities is equivalent to optimizing individually each facility (see also Theorem 3.3 below for
the proof of this assertion).

Sector-coupling producers. The objective of an operator of a sector-coupling technology is to
maximize profits from trading. As a consequence, the operator of the existing sector-coupling
facility « = (0,1) € X°* faces the following optimization problem

max Z (pt,2Yt,i — Pt,2rd0) (7a)
teT

s.t. Mudio =y, forallteT, [Ct.z] (7b)

0<wy; <oy,ys™, forallteT, [l/tix] (7¢)

0<di, forallteT, 0:,5] (7d)

where the injection point ¢ € IS* of the sector-coupling facility is located in bidding zone
z € Zs of sector s € S and the withdrawal point o € OSF is located in bidding zone 2’ € Z,
of sector s’ € S with s # 5.

Here, the KKT conditions are—due to the linearity of Problem (7)—again necessary and
sufficient for global optimality

PtetVig —Vip—CGo=0, forallteT, (8a)
Dtz + 0ty +MeCp =0, foralltel, (8b)
Nedio — Y =0, forallteT, (8¢)

0<wv,, Ly,;>0, forallteT, (8d)

0< I/t—t_z Loyt —y; >0, forallteT, (8e)
0<6;,Ldio>0, forallteT. (8f)

The operator of the candidate sector-coupling facility = (0,7) € X"*% additionally con-
siders required investment costs and thus plans in accordance with the following maximization

problem
max Z (Pt,2Yti — Prardr o) — Y™ (92)
teT
st. Medio =y, forallteT, (&t,2] (9b)
0<yri Sonay;™, forallteT, (i) (9¢)
0<d;,, forallteT. [ot,2] (9d)
The respective (necessary and sufficient) KKT conditions read
=™+ o, =0, (10a)
teT
Ptz t Tix— thz —&,=0, forallteT, (10Db)
Dtz + Pre +N:€e =0, forallteT, (10c)
Nedio—yi =0, forallteT, (10d)
0<7,Lly,;>0, forallteT, (10e)
0<7, Lagyi™ —yi >0, forallteT, (10f)
0<ptsLldio>0, foralteT. (10g)
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System operators. For the market allocation of the predetermined trade capacity between
bidding zones an independent system operator or, alternatively, an exchange might be
responsible. The objective is to exploit price differences between adjacent bidding zones to
maximize profits from congestion rents. This is done by allocating as much flow as the trade
capacities allow from low price bidding zones to high price bidding zones, i.e., the following
optimization problem is faced

max Z Z (Pt — pe2) fek (11a)

k=(z,z')EK t€T
st. fo <fin<fif, forallke K, teT, (K] (11b)
by the responsible system operator of sector s € S. The modeling mainly follows Hobbs and
Helman (2004).

The KKT conditions are again necessary and sufficient for global optimality due to the
linearity of the considered optimization problem

Ptz —Prer + by — K =0, forallk=(z2)eK,, teT, (12a)

together with
0<k;pLfix—fy 20, forallke K, teT, (12b)
0<r  LfF—fix>0, forallkeK,, teT. (12¢)

Market clearing. Finally, we add the flow balance equation for each bidding zone z € Z; in
each sector s € S and time period t € T

Z Yt,g + Z dio — Z Yei = Z fre — Z ftka (13)
gGGg” OGO";U iGI'j“ kegm(z) keéout

i.e., the inflows minus the outflows of a bidding zone must equal the sector—speciﬁc and
sector-coupling demand minus the sector-specific and sector-coupling production of this
bidding zone.

The game. Joining all KKT conditions (2), (4), (6), (8), (10), and (12) together with the
market clearing (13) yields the following mixed complementarity problem (MCP) that models
the spot market trading in different coupled energy markets:

Consumers : (2), forallse S, z € Z,
Sector-specific producers
without investment : (4), forall s € S, z € Z,, g € GJ¥,
Sector-specific producers
with investment : (6), forallse S, z € Z;, g € G5V,
Sector-coupling producers (MCP)
without investment : (8), for all z = (0,7) € X,
Sector-coupling producers
with investment : (10), for all z = (o0,7) € X"V,
System operators : (12), for all s € S,
Market clearing : (13), foralls€ S, z€ Z,, t € T.
3.2. Equivalence to a single-level counterpart. Next, we prove that all market equilib-
ria, i.e., all solutions of the above stated (MCP), correspond to solutions of a suitably chosen

welfare maximization problem, and vice versa. This directly implies the economic efficiency
of the market equilibria. The welfare maximization problem reads

s YT Y /p wdu— 3 ey,

SES z€Z4 teT geqal
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_Z Z Z cignvygew+ Z cinvy?ew

s€Sz€Z, \geGuew i€ Inew
st. 0<dy,, forallseS, z€Z, teT, [,z
0<yg <argy,”, forallseS, z€Z;, geG, teT, [ﬂfg
0<yg <agy,”™, forallseS, z€Z;, geG, teT, [(5?,[9
Nedio = Yri, forall z = (0,i) € X, t €T, Ctom
0<wy; <oy, forallz=(0,i) € X, teT, thfw

[
[
0<di,, forallz=(0,i) e X teT, [0
Nedio = Y, forall z = (0,i) € X"V, teT, [
0<wy; <oy, forallz=(0,i) € X"V, teT, [
0<di,, forallz=(0,7) € X"¥, teT, [
fo <fin<fif, forallseS, ke K, teT, (K,
[

(13), forallse S, z€ Zs, t €T,

together with its KKT conditions: first stationarity

Pt,z(dt,z) - )\t,z + Vt,z = 0,
Mo = " 4 By — By =0,

inv +
—cV + E atg0;, =0,
teT

Atz = € 48y = Oty = 0,
Mz + Vg = Vip = Cta = 0,
Atz + 0t g + 102G =0,
—cinv + Z at7i7':$ =0,

teT
Atz + Tp g — th — &2 =0,
Atz + Pz + 26 =0,
Az = Azr + Ry — ff;fk =0,

subsequent primal feasibility
nxdt,o — Yt = 0,
nzdt,o —ysi =0,
and finally complementarity

0< 7. Lds. >0,
0<ByLyg =0,
0< By L argly” —yg 20,
0<dyLuyg >0,
0<6f, Loangyn®™ —yrg >0,
0<v,,Lluy:=>0,
0 <v, Loy —yui >0,
0<0;, Ldio>0,
0<7.Lly,:=>0,
0<7" Lanal™ —yui >0,

K2

forallse S, z€ Z;, te€T,
forallse€ S, z€ Z;, g GI¥, t €T,

forallse S, z € Zs, g € G3°¥,

forallse S, z€ Z;, ge GV, t €T,
for all x = (0,i) € X, t € T,
for all x = (0,i) € X, t €T,

for all z = (0,1) € X"V,

for all x = (0,i) € X"V, t € T,
for all x = (0,i) € X"V, t € T,
forallse S, k= (z,72) € K, teT,

for all x = (0,i) € X, t € T,
for all z = (0,i) € X"V, t € T,

forallse€ S, z€ Z;, t €T,
forallse S, z€ Z;, ge G, t €T,
forallse€ S, z€ Z;, g GI¥, t €T,
forallse€ S, z€ Z;, g€ GV, t €T,
forallse S, z€ Z;, ge G5V, t €T,
for all x = (0,i) € X, t €T,

for all x = (0,i) € X, t € T,

for all x = (0,i) € X, t € T,

for all x = (0,i) € X"V, t € T,

for all x = (0,i) € X"V, t € T,

11

(15a)
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0<pty Ldio>0, forallz=(0,4) € X", teT, (18k)
0<k;pLfix—fy 20, forallses, keK, teT, (181)
Oﬁﬁsz_f,j—ft,kZO, forallse S, ke K,, teT. (18m)

Since all inverse demand functions are assumed to be continuously differentiable and
strictly decreasing, the welfare maximization problem is a concave maximization problem
with linear constraints. Consequently, its KKT conditions (16)—(18) are necessary and
sufficient for global optimality. Therefore, it is sufficient to show the 1-1 correspondence of
the solutions of (MCP) and the stated KKT conditions in order to prove the equivalence
of market equilibria and welfare maxima. Thus, we start with the implication that each
solution of the KKT conditions yields a market equilibrium.

Lemma 3.1. Let w = (d,y, f,y"",, %, 6%, ¢, vE,0,6, 75, p, k%, \) be a solution of the
KKT conditions (16)—(18). Then, w corresponds to a solution of (MCP).

Proof. Comparison of (16)—(18) to (MCP) shows that all equations coincide if p; , :=
At,» holds for all sectors s € S, bidding zones z € Z,, and time periods ¢ € T. Hence,
(d,y, f,y"%, v, BE, 0%, ¢, vF, 0,6, 7%, p, kT, p) is a solution of (MCP). |

Next, we continue with the implication that each market equilibrium yields a solution of
the KKT conditions.

Lemma 3.2. Letw = (d,y, f,y"V,v, BF,06%,(,v™, 0,6, 7%, p, kT, p) be a solution of (MCP).
Then, w corresponds to a solution of the KKT conditions (16)—(18).

Proof. Again, comparison of (MCP) to (16)—-(18) shows that all equations coincide if A; , :=
pt,. holds for all sectors s € S, bidding zones z € Z;, and time periods ¢t € T. Thus,
(d,y, f,y"%, 7, B, 6%, ¢, v, 0,6, 7%, p, kT, \) is a solution of the KKT conditions (16)—(18).

0

Finally, we are able to prove the equivalence of market equilibria and welfare maxima.

Theorem 3.3. There is a 1-1 correspondence of the market equilibrium problem (MCP) and
the welfare maximization problem (15).

Proof. The assertion follows from Lemmata 3.1 and 3.2. O

So, we have shown that the presented welfare maximization problem is indeed a single-level
counterpart to the proposed market equilibrium problem, i.e., each welfare maximal solution
corresponds to a market equilibrium and vice versa. This 1-1 correspondence is exploited
in the next section during the study of existence and uniqueness of the underlying market
equilibrium.

4. EXISTENCE AND UNIQUENESS

In the following, we study existence and uniqueness of short- and long-run market equilib-
rium of the proposed market equilibrium problem (MCP) that models the private investment
and subsequent spot market trading in different coupled energy sectors. Since we established
the equivalence of (MCP) to a single-level counterpart in the previous section, it is now
easy to see existence of equilibrium by applying the classical theorem of Weierstrafl to the
single-level counterpart. However, uniqueness is not so easily achieved. For this purpose,
additional conditions have to be fulfilled. Before we address these conditions, we show
in Sect. 4.1 that if multiple equilibria exist, at least two of them share some structural
properties. The obtained insights are later exploited to deduce contradictions when showing
uniqueness under further assumptions. In Sect. 4.2, we derive conditions that we then prove
to be sufficient for guaranteeing uniqueness of equilibrium in the short-run, i.e., for the case
of fixed investment decisions. Afterward, in Sect. 4.3, additional sufficient conditions for
long-run uniqueness are presented. We conclude with a detailed discussion of all conditions
for uniqueness in Sect. 4.4.
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4.1. Structural properties of multiple equilibria. Grimm, Schewe, et al. (2017) have
shown in the context of a single sector that if multiple equilibria exist, there also exist two
equilibria that share some structural properties. By applying Lemma 1 of Grimm, Schewe,
et al. (2017), we obtain the same result for the case of multiple sectors.

Lemma 4.1. Ezactly one of the following two cases occurs:

(i) There exist a demand vector d*, a production vector y*, and an investment vector
(y™™)* such that the primal variables of every market equilibrium of (MCP) are of
the form (d*,y*, f, (y"™)*) for some flow f.

(ii) There exist two market equilibria w and @ of (MCP) with (d,y,y"") # (d, 7, ")
and

(keKs: fun=fiy={ke Ks: fux=fi )
(ke Ks: fir=filY={ke K fur=fi},
{ge G iyy =0} ={ge GGy =0},
{9€eGT iy = at,gygx} ={9€G Gty = O‘t’gygx}a
{ier:y,;=0}={ier: g, =0},
{ie I vy = wayi™} = {i € IT 2 G = iy}
for all sectors s € S, bidding zones z € Z,, and time periods t € T.
Proof. This follows from Proposition 1 in Grimm, Schewe, et al. (2017). g

We establish uniqueness of short- and long-run equilibrium in Sect. 4.2 and 4.3 by showing
that, under appropriate conditions, only Case (i) of Lemma 4.1 occurs. To this end, it is
advantageous to introduce the concept of price clusters as in Grimm, Schewe, et al. (2017).
Later, we will state conditions on the appearance of these price clusters in order to ensure
long-run uniqueness. For now, we use the concept to reformulate Lemma 4.1 suitably.

Definition 4.2. Let w = (d,y, f,y"v, v, 8%, 0%, ¢, v*,0,€, 7%, p, kT, p) be a solution of the
market equilibrium problem (MCP). Furthermore, let C; s = {C1,...,Cjc, .|} be a partition
of the bidding zones Z, of sector s € S in time period ¢t € T. We call C; s a partition into
price clusters if prices are equal for all bidding zones in a cluster C € C; . To emphasize
that price clusters may depend on the considered solution, we also use the notation C; s(w).

The adjacent bidding zones k = (z,2') € K are called intercluster adjacent bidding zones if
z € C; and 7’ € C; with i # j holds.

To simplify notation in the following, we denote, e.g., by G¥" the set of all candidate
sector-specific production facilities in price cluster C' € Cy 5 or by 6*(C) the set of all ingoing
trade capacities of the price cluster.

In case of a uniform pricing system in sector s, C; s = {Z,} is a partition into price clusters
for all time periods. The same is true if there is never congestion between bidding zones,
i.e., if inequalities (11b) are never binding over the considered time horizon. This relation is
shown in the next lemma and the subsequent corollary.

Lemma 4.3. Let adjacent bidding zones k = (z,2') € K, of sector s € S be given. For
time periods t € T with p; , # Dt», t.e., with different prices in the adjacent bidding zones,

fee = f,j or fix = [, holds.

Proof. For k = (z,72') € K, and t € T with py ., < p; v, H:k > 0 follows from (12a) and
therefore f; = f,j holds by (12c). For k = (z,2") € Ky and t € T with p, , > py ./, Kip >0
follows from (12a) and therefore f; = f, holds by (12b). O

1If this case applies, it follows directly that infinitely many market equilibria exist. As shown in the
previous section, the two distinct market equilibria correspond to two distinct welfare maximal solutions. All
convex combinations of this two welfare maxima also form welfare maxima since the welfare maximization
problem (15) is a concave maximization problem with linear constraints. However, all these welfare maxima
in turn correspond to market equilibria.
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Lemma 4.3 directly implies that the prices of adjacent bidding zones are the same if the
trade capacities between these bidding zones are not binding.

Corollary 4.4. Let adjacent bidding zones k = (z,2') € K, of sector s € S be given. For
time periods t € T with f; # f,j and fir # fr . t.e., with non-binding trade capacities,
Dt,z = Pt,» holds.

In particular, this guarantees the following: if all adjacent bidding zones with one binding
trade capacity are disregarded, then, remaining adjacent bidding zones have the same price.
Based on this insight, a partition into price clusters of the bidding zones can be constructively
derived (see Theorem 2 in Grimm, Schewe, et al. (2017) for the same result in the context of
one sector).

Lemma 4.5. Let w = (d,y, f,y"%,v, B, 6%, ¢, vF,0,&, 75, p, k7, p) be a solution of the
market equilibrium problem (MCP). Consider the set Ky, of adjacent bidding zones with non-
binding trade capacities in time period t € T' and sector s € S, i.e., K{,:={k € K, : f_ <
fre < [i'}. Furthermore, consider the graph G := (Zs, Kp,). Let Cys = {C1,...,Clc, .|} be
the set of connected components of the graph G. Then, C; s is a partition into price clusters
of the bidding zones Zs of sector s € S in time period t € T.

Proof. The assertion follows directly from Corollary 4.4. |

We call the latter partition capacity-induced because it is induced by the binding trade
capacities in the given market equilibrium.

Definition 4.6. The partition C; s described in Lemma 4.5 is called the capacity-induced
partition into price clusters of the bidding zones Z; of sector s € S in time period ¢t € T.

Now, we are able to reformulate Lemma 4.1 suitably.

Lemma 4.7. Ezactly one of the following two cases occurs:
(i) There exist a demand vector d*, a production vector y*, and an investment vector
(y™V)* such that the primal variables of every market equilibrium of (MCP) are of
the form (d*,y*, f, (y™")*) for some flow f.
(ii) There exist two market equilibria w and @ of (MCP) with (d,y,y"*") # (d, §, 5"°%)
such that
— the capacity-induced partitions Cy s(w) and Cy 4(W) into price clusters of the
bidding zones Zs are the same for all sectors and all time periods, i.e., Cy s(w) =
Cis(W) holds for alls € S, t €T,
— the total in- or outflow of each price cluster C' € Cy s(w) = Ci (W) is unique for

allse S, teT:
= > fi— Y ftk— S k= Y. fir=fc
kedin(C) kegout(C kedin(C) kesout(C)

— any operator of a sector—speczﬁc or sector-coupling facility who does not produce
in one market equilibrium does also not produce in the other one, i.e.,

{9eGiyy =0t ={g€ G : iy =0},
(e iy =0}={iel?: g, =0}
for all sectors s € S, bidding zones z € Zg, and time periods t € T,
— any operator of an existing sector-specific or sector-coupling facility who does

produce at mazimum available capacity in one market equilibrium does also
produce at mazximum available capacity in the other one, i.e.,

{g € Gix Ytg = at,gygx} = {g € sz : gt,g = at,gygx}a
(eI yrs =y} = {0 € I2° Gy = iy},
for all sectors s € S, bidding zones z € Zs, and time periods t € T.
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Proof. The lemma follows directly from Lemmata 4.1 and 4.5 with the following observation.
By definition of the capacity-induced partition, f; , = f,j or fyr = f, holds for all intercluster
adjacent bidding zones k € K, and fi 1, # f;7 and fi # f, for all other adjacent bidding
zones k € K. Since binding patterns are assumed to coincide in w and @ (cf. Lemma 4.1 (ii)),
Cis(w) = C s(w) and fo = fc for C' € C; s(w) = Cy (W) follows for all s € S, t € T. O

So far, we have shown that if multiple equilibria exist, there necessarily exist two different
equilibria that share the structural properties listed in Lemma 4.7 (ii). Next, we show
gradually that, under additional assumptions, two such market equilibria are identical in
the short-run (Sect. 4.2) as well as in the long-run (Sect. 4.3), i.e., finally only Case (i) of
Lemma 4.7 occurs under all additional assumptions. This implies uniqueness of equilibrium
of the proposed market equilibrium problem (MCP).

4.2. Uniqueness of equilibrium in the short-run. For the moment, we only consider
the short-run, i.e., all investment decisions have already been made and are therefore fixed.
We begin our short-run uniqueness analysis with the important observation that at least all
consumer demand is unique.

Theorem 4.8. Let w and w be two market equilibria of (MCP). Then, the sector-specific
demand is unique, i.e., d¢ . = dy . holds for each sector s € S, bidding zone z € Zs, and time
period t € T.

Proof. The assertion follows from applying Theorem la in Mangasarian (1988) to the
single-level counterpart (15) under the assumption of continuously differentiable and strictly
decreasing inverse demand functions. O

However, to obtain uniqueness of the other primal decision variables and therefore of the
short-run market equilibrium, additional assumptions are necessary. The first one relates to
the sector-specific demand and is similar to Assumption 5 in Griibel et al. (2020).

Assumption 1. The sector-specific demand d; . in bidding zone z € Zg in sector s € S is
positive in all time periods t € T.

This assumption can be justified by the fact that, in real applications, there should always
be consumers in a bidding zone who are willing to pay enough and especially more than
the resident operators of sector-coupling facilities. The benefit of this assumption is that it
enables us to prove uniqueness of market prices (cf. Lemma 3.8 in Griibel et al. (2020) for
the same result in the context of a single sector).

Lemma 4.9. Suppose Assumption 1 holds. Then, the zonal price p; . is unique for all
sectors s € S, bidding zones z € Zs, and time periods t € T.

Proof. Since d; . > 0 holds for all s € S, z € Z,, and t € T by Assumption 1, vy, = 0
follows from (2b). Moreover, P; .(d;,.) = p,, follows from (2a). Since all sector-specific
demand is unique (Theorem 4.8), uniqueness of zonal prices is given due to the assumption
of continuously differentiable and strictly decreasing inverse demand functions. O

Since we assume perfect competition, all players act as price takers, i.e., view market
prices as exogenously given. This means that each player does not take the effects of his
own or others’ decisions on the prices into account when reacting to the market prices.
Hence, due to the uniqueness of market prices, multiplicity of equilibria directly implies
multiplicity of primal decisions of at least one individual player, i.e., players with multiple
best responses to the unique market prices exist. For this reason, we next consider each
player type independently and analyze under which circumstances these types are indeed
indifferent about their actions and under which circumstances this is not the case.

First, we consider the operators of sector-specific production facilities. In accordance to
Lemma 3.9 in Griibel et al. (2020), we prove that the production of a sector-specific facility
is unique if the zonal market price does not meet its variable costs of production.
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Lemma 4.10. Let w be a market equilibrium of (MCP). Then, in time period t € T, the
production vy, 4 of producer g € G* in bidding zone z € Z, in sector s € S is unique if
Ptz # ¢ holds.

Proof. For g € G with ¢ < py ., 7, > 0 follows from (4a) and therefore y; ; = ay gy
holds by (4c). For g € G¢* with ¢j* > p; ., B; , > 0 follows from (4a) and therefore y; , = 0
holds by (4b). O

Analogously, the following applies for candidate sector-specific production facilities.

Lemma 4.11. Given fixed investment decisions y**V. Let w be a market equilibrium of

(MCP). Then, in time period t € T, the production y; 4 of producer g € G2V in bidding
zone z € Zs in sector s € S is unique if p; . # c;*" holds.

Proof. For g € G with ¢ < py -, 52‘9 > 0 follows from (6b) and therefore y; , = at, gy ™
holds by (6d). For g € GL*" with ¢j* > p; ., 6, , > 0 follows from (6b) and therefore y; , = 0

holds by (6¢). O

Next, we examine the operators of sector-coupling facilities and show that those are only
indifferent about their actions if the price of the withdrawing zone z’ matches the price of
the injection zone z multiplied by the facility’s efficiency.

Lemma 4.12. Let w be a market equilibrium of (MCP). Then, in time period t € T, the
production y ; and the demand d; . of the sector-coupling facility x = (o0,1) € X°* are unique
ifpt,z/ 7& NxPt, =~ holds.

Proof. From equations (8a) and (8b), —ps ./ + 0z + 02 (pr.z + vy — V:r,ﬂ) = 0 follows for all
time periods t € T. For z = (0,1) € X** with p, »» < 1Dt 2, 771-’/:;@ > 0 follows from the latter
equation and therefore y; ; = oy ;4™ holds by (8¢). For z = (0,7) € X with p; .+ > n2pi,2,
0t x + 1:v;, > 0 follows and therefore d; , = y;; = 0 holds by (8c), (8d), and (8f). O

Analogously, the following applies for candidate sector-coupling facilities.

Lemma 4.13. Given fized investment decisions y"°V. Let w be a market equilibrium of
(MCP). Then, in time period t € T, the production vy, ; and the demand d;, of the sector-
coupling facility x = (0,1) € X"V are unique if py v # Nupe,. holds.

Proof. From equations (10b) and (10c), —ps.r + pr.e + 1a(pr,z + 74, — 741) = 0 follows for
all time periods t € T. For « = (0,i) € XV with p; »» < NPt 2, nzT,:rx > 0 follows from
the latter equation and therefore y; ; = oy ;4" holds by (10f). For = (0,7) € X"V with
Ptz > NePtzs Ptz + NaTi, > 0 follows and therefore d;, = y;; = 0 holds by (10d), (10e),
and (10g). O

Before we finally prove uniqueness of equilibrium in the short-run, we formulate additional
sufficient conditions required in order to carry out the proof.

Assumption 2. Here and in what follows, we assume that the below stated properties are

satisfied by the variable production costs and the efficiencies of the sector-coupling facilities.

(a) The variable production costs are pairwise distinct in each sector, i.e., eyt # ey for
g# g with g€ G and g’ € G for all 2,2' € Z, and s € S.

(b) The efficiencies of all sector-coupling facilities are pairwise distinct, i.e., Ny 7 Ny
for x # &' with x,2 € X2,

(c) Given the sector-coupling facility x = (0,i) € X*! that produces the commodity of
sector s € S from the commodity of sector s’ € S with s’ # s. Then, the variable
production costs across the sectors are—taking into account the sector-coupling
facility’s efficiency—pairwise distinct, i.e., nyc™ # i with g € G for all z € Z,
and with g € G for all 2/ € Zy .
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(d) Moreover, the following is true

J i’
e [T # e 11 ne.
i=1 i=j+1
for all {zy,... 25} C XM with 2 < j' <3 o |Zs| and for g # g with g € G2 for
all 2 € Zs, s € S, and with g’ € G for all 2’ € Zy, s' € S.
(e) Furthermore, it holds that

J J'
ani # H Na;
i=1

i=j+1
Jor all {z1, ... x;} C XM with2 <j <Y _o|Zs|

In principle, each condition prevents facilities from producing at identical variable pro-
duction costs in the same sector. For example, Assumption 2 (b) guarantees that two
sector-coupling facilities with the same input and target sector have distinct variable produc-
tion costs. Assumption 2 (e) ensures, e.g., that one sector-coupling facility does not produce
at the same costs as sequentially producing sector-coupling facilities with the same primary
input and final target sector. In Sect. 4.4, we elaborate in more detail on this topic and also
show with illustrative examples that as soon as one of the above conditions is removed, then,
these conditions are no longer sufficient for guaranteeing uniqueness in the short-run.

In addition, we like to observe that Assumption 2 (a) is the direct extension of the classical
uniqueness assumption for one sector (see, e.g., Grimm, Schewe, et al. (2017)) to the case
of multiple sectors. Moreover, it directly follows from Assumption 2 (a) and Lemmata 4.10
and 4.11 that the sector-specific production in a price cluster is not unique for at most one
player. Analogously, it directly follows from Assumption 2 (b) and Lemmata 4.12 and 4.13
that the sector-coupling production and demand between two price clusters of different
sectors is not unique for at most one player. With Assumption 2 (c), the subsequent case is
avoided: indifference about the sector-specific production in one sector leads to indifference
about the sector-coupling demand and production between two sectors that in turn triggers
indifference about the sector-specific production in the other sector. However, indifference
about a sector-coupling demand and production between the other and another sector may
also be triggered. To avoid such paths and cycles of indifference, Assumptions 2 (d) and (e)
are required. Given these assumptions, we are finally able to prove short-run uniqueness.
The proof is split into two parts. First, we show that all sector-specific production is unique.
In a second step, we establish uniqueness of sector-coupling demand and production.

Lemma 4.14. Given fized investment decisions y™V. Suppose that Assumptions 1 and 2
hold. Let w and W be two market equilibria of (MCP) as described in Lemma 4.7 (ii). Then,
the sector-specific production is unique, i.e., Yi.g = Us,q holds for each sector s € S, bidding
zone z € Zy, producer g € G2, and time period t € T.

z

Proof. In the following, we denote for sector s € S and time period ¢ € T by C; s the identical
capacity-induced partitions C; s(w) and C; ¢() into price clusters of the bidding zones Z.
Let a price cluster C' € C; s be given. Moreover, let p; ¢ be the price of this price cluster. If
pi,c # ¢, holds for all producers g € G‘}}l, all sector-specific production in this cluster is
unique (follows from Lemmata 4.10 and 4.11). In turn, if p; ¢ = ¢;* holds for a producer
g € GaC”, the respective sector-specific production may not be unique. It remains to show
that this is not the case. Hence, for the sake of contradiction, we assume that the production
of producer g is not unique, i.e., ¥ 4 # ¥t 4 holds for some ¢t € T'. First, we like to observe
that the production is then unique for all other sector-specific facilities in this cluster (follows
from Lemmata 4.10 and 4.11 under Assumption 2 (a)). Since, in addition, all sector-specific
demand (Theorem 4.8) and the total in- and outflow of this cluster (Lemma 4.7 (ii)) are
unique, it directly follows from the market clearing conditions (13) for this cluster that d; ,

or y;; is not unique for at least one o € 02}1 or i € Ig“. This, in turn, implies by (7b) or
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(9b) that the sector-coupling demand or production in at least one price cluster C’ € C; o in
another sector s’ € S is not unique. Again, we like to observe that the sector-coupling demand
and production is then unique for all other sector-coupling facilities that operate between
price clusters C' and C’ (follows from Lemmata 4.12 and 4.13 under Assumption 2 (b)).
Moreover, Lemmata 4.12 and 4.13 establish as a prerequisite for multiplicities that

var

pro=c =meprer or pro=cy = (1/n2)prcr

holds for the respective sector-coupling facility z € X*!. By Assumption 2 (c), it directly
follows that p; ¢ # ¢y for all S G’?}}. Hence, all sector-specific production is unique in
this price cluster. The same argumentation as above implies that d; , or y;; is not unique
for at least another o € O3} or i € I3, This, in turn, implies by (7b) or (9b) that the
sector-coupling demand or production in at least one price cluster of another sector is not
unique. The same argumentation can be applied again and again until either the non-unique
sector-coupling demand or production is met by a non-unique sector-specific production of
producer g’ # g, i.e., the term

v

J J
var ___var
Cg H Ne; = Cg’ H Nx;
i=1 i=j+1
is—in accordance with the prerequisite for multiplicities—true for some {z1,...,2;} C X all

with 2 < j' < Y7 4| Zs], or, since there are at most )
C” is again reached, i.e., the term

J j’ J j'
DPt,c Hnm = pt,c” H Na; < ani = H Nz,
i=1 i=1

scs |Zs| price clusters, a price cluster

i=j+1 i=j+1
holds—in accordance with the prerequisite for multiplicities—for some {1, ...,z } C X2
with 2 < j" <37 g |Zs|. Both cases are forbidden by Assumptions 2 (d) and (e). Therefore,
Yt,g = Ut,g holds. ]

Next, we show the short-run uniqueness of sector-coupling demand and production under
Assumptions 1 and 2.

Lemma 4.15. Given fized investment decisions y™*V. Suppose that Assumptions 1 and 2
hold. Let w and @ be two market equilibria of (MCP) as described in Lemma 4.7 (ii). Then,
the sector-coupling demand and production are unique, i.e., d, = ‘Zt,o and Yi; = Yii hold for
each sector s € S, bidding zone z € Z, withdrawing facility o € O, injecting facility i € 12",
and time period t € T.

Proof. Since all sector-specific demand and production (Theorem 4.8 and Lemma 4.14) and
the total in- and outflow of each cluster (Lemma 4.7 (ii)) are unique, non-unique demand or
production of one sector-coupling facility € X2 in a cluster directly implies by the market
clearing conditions (13) for this cluster non-unique demand or production of another sector-
coupling facility 2’ € X?! in this cluster. Furthermore, since at most one sector-coupling
demand and production is not unique between two price clusters of different sectors (follows
from Lemmata 4.12 and 4.13 under Assumption 2 (b)), this non-uniqueness continues until,
due to at most ) 4 [Z,| price clusters, the same price cluster C' is again reached, i.e., the
term

J J' J J’
Pt,Cc Hnm, = Pbt,C H Nz, = ]:[77:v7 = H Ne;
=1 =1

i=j+1 1=j+1
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holds for some {z1,...,z;} € X* with 2 < j' < 3 _o|Z,|. This contradicts Assump-
tion 2 (e) and, consequently, there is uniqueness with regard to sector-coupling demand and
production.? O

So, we finally obtain uniqueness of short-run market equilibrium in coupled markets of
multiple energy sectors.

Theorem 4.16. Suppose that Assumptions 1 and 2 hold. Then, the market equilibrium of
(MCP) is unique in the short-run, i.e., in the case of fized investment decisions.

Proof. The assertion follows directly from Theorem 4.8 and Lemmata 4.14 and 4.15. O

4.3. Uniqueness of equilibrium in the long-run. We now continue our study of unique-
ness with the long-run, i.e., investment decisions are no longer fixed. It is common knowledge
that investment decisions are mainly driven by the generated contribution margins over time.
What is special in our context is that the time periods with positive contribution margins
are uniquely determined for each facility due to the uniqueness of zonal prices (Lemma 4.9).

Lemma 4.17. Suppose that Assumption 1 holds. Let w be a market equilibrium of (MCP).
Moreover, let Ty for producer g € GL°Y in bidding zone z € Zg in sector s € S be the time
periods in which this producer obtains positive contribution margins, i.e., Ty := {t € T :
675 > 0} holds. Then, Ty is unique.

Proof. Since the zonal price p; . is unique for all time periods ¢ € T' by Lemma 4.9, the time
periods with p; . > ¢;* are also unique but p; , > ¢;* holds in a time period ¢ if and only if

5;} > 0 holds due to (6b)—(6d); see also the argumentation in the proof of Lemma 4.11. O

Analogously, the same applies for candidate sector-coupling facilities.

Lemma 4.18. Suppose that Assumption 1 holds. Let w be a market equilibrium of (MCP).
Moreover, let T, for producer x € X"V be the time periods in which this producer generates
positive contribution margins, i.e., T, :={t € T : 'rt'f'z > 0} holds. Then, T, is unique.

Proof. Since the zonal price p; . of the bidding zone z € Z; of sector s € S, in which the
injection point of facility x is located, and the zonal price p; .+ of the bidding zone 2’ € Z,
of sector s’ € S with s # s, in which the withdrawal point of facility x is located, are unique
for all time periods ¢t € T' by Lemma 4.9, the time periods with p; ,» < 1,p¢ . are also unique
but p; .+ < Nept,. holds in a time period ¢ if and only if T;’FI > 0 holds due to (10b), (10c),
(10e), and (10f); see also the argumentation in the proof of Lemma 4.13. O

Nevertheless, in order to achieve uniqueness of the long-run equilibrium, further assump-
tions are required. These are obtained by naturally extending Assumptions 3 and 4 of Grimm,
Schewe, et al. (2017) to the case of multiple sectors.

Assumption 3. Let w be a market equilibrium of (MCP). Here and in what follows, we
assume that, for each sector s € S, there erists a subset of time periods T C T for which
the capacity-induced partitions C; s(w), t € T, are the same. Moreover, for each price
cluster C' € Cy s(w), there exists a bijective function he : T — GEY U IRV U OV with

To = {t1,1a,... N T such that the following holds for a given j € {1,...,|Tc|}:

(i) all producers he (t;) with j' < j, j' € {1,...,|Tc|}, produce in time period t; either
zero or at maximum available capacity, where in the latter case strict complementarity
is satisfied in Equation (6d) or (10f), i.e., either

0 new

Yijho (1) o Yihe(ty) = afjvhc(zj’)yhc(zj’)

2In order to increase the understanding of the latter expression and therefore of the contradiction, we like
to point out again that Lemmata 4.12 and 4.13 establish as a prerequisite for multiplicities that

Pt,c = NzPr,cr Or  pr.c = (1/na)pe, o

holds for a sector-coupling facility = € X?!! that operates between the price clusters C' and C’.
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with
+ - i new
5Ej,hc(2j/) >0, ifhe (tj/) € GV, and
T;__w >0, ifz=(o0hc(ty)) € XV
(i1) all sector-coupling consumers he (t;) with j' < j, j' € {1,...,|Tcl|}, demand in

time period t; either zero or at mazimum available capacity, where in the latter case
strict complementarity is satisfied in Equation (10f), i.e., either

_ o new - +
dfj,hc (fj/) =0 or nﬂfdfj,hc(ij,) - at]-,iyi with sz,x > 07
where z = (he (&) ,i) € XV,

(iwi) if he (fj) is a producer, then, this producer produces in time period t; at mazimum
available capacity while strict complementarity is satisfied in Equation (6d) or (10f),

i.e.,
Y, (3) = O‘Ej,hc(zj)ygzv&j)
with
+ - T new
6Zj,hc(fj) >0, ifheo (tj) e GFY, and
= >0, ifz=(0hc(f;)) € X"

() if he (fj) is a sector-coupling consumer, then, this consumer demands in time

period t; at mazimum available capacity while strict complementarity is satisfied in
Equation (10f), i.e.,
nxdgjahc (zj) qu’iy,?e with T > 0’

tj,x

where z = (he (85) ,i) € X V.

(v) qll producers hg (fj/) with ' > j, i € {1,...,|Tc|}, produce in time period t; zero,
1.€., yzj7hc(fj/) = 0,
(vi) all sector-coupling consumers h¢ (fj/) with j' > 4, j' € {1,...,|Tcl|}, demand in

time period t; zero, i.e., dfj,hc(fj,) =0, .
(vii) all existing sector-specific producers produce in time period t; either zero or at
mazimum available capacity, i.e., Yi, 9 =0 0T g, o = g, gyg" fczr all g € G,

(viii) all existing sector-coupling producers produce in time period t; either zero or at

mazimum available capacity, i.e., yp ;=0 oryy ; = g Y7 f07: all v € I, and

(iz) all existing sector-coupling consumers demand in time period t; either zero or at

mazimum available capacity, i.e., dj, , =0 or nudy, , = ag ;y;™ for all v = (o0,i) €
X with o € OF.

In the following, we explain why Assumption 3 prevents multiplicities in the long-run
and how likely it is that Assumption 3 is fulfilled in general. Therefore, let us assume that
the long-run investment of a given facility is not unique, e.g., y,*" + ¢, = §,°" holds for
two market equilibria w and @ of (MCP) as described in Lemma 4.7 (ii) with ¢, > 0.® By
Lemmata 4.17 and 4.18, it directly follows that also the production is not unique, i.e.,

Yt,g = O‘t,g?jgcw = O‘tg(y;mw +&g) = Yt,g + it 4g (19)

holds for all time periods ¢ € T, due to 6;fg > 0, Szfg > 0, and (6d). However, since the sector-
specific demand is unique (Theorem 4.8) and must be served in each time period, all these
changes in production have to be compensated by changes in production of other facilities
of the cluster. Now, this is the point where Assumption 3 comes in. Assumption 3 (i)—(vi)
involves that at least one time period exists for each candidate facility in which this facility
and all other producing candidate facilities generate positive contribution margins. Moreover,

3The same argumentation can be applied for the sector-coupling facility © € X"V,
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in this time period, the production of all existing facilities coincides in w and @w due to
Assumption 3 (vii)—(ix) and Lemma 4.7 (ii). Hence, one of the compensating facilities in
this time period is a candidate facility that produces with a positive contribution margin.
Thus, also the investment of this facility is not unique and resulting changes in production
of this facility have to be compensated by changes in production of other facilities of the
cluster. At this point, Assumption 3 again intervenes and prevents that these two facilities
entirely compensate each other, i.e., the sets of time periods with positive contribution
margins of facility ¢ and the mentioned compensating candidate facility are different.*
Furthermore, Assumption 3 imposes that there exists a time period in the union of the set
differences in which all conditions of Assumption 3 are again fulfilled. Therefore, applying
the same argument as above leads to multiplicities in investment of a third candidate facility.
Assumption 3 allows us to apply this argument until a time period is reached in which only
one candidate facility from this cluster produces while the production of all existing facilities
coincides in this time period in w and @ due to Assumption 3 (vii)—(ix) and Lemma 4.7 (ii).®
Since no compensation is possible in this time period, the initial assumption that the long-run
investment of facility ¢ is not unique must have been wrong.

In what follows, we want to elaborate on how likely it is that Assumption 3 is violated
in general. In the case of one sector, Assumption 3 (iii) and (iv) involve that at least one
time period exists for each candidate facility in which this facility generates the lowest but
still positive contribution margin. This implies that—given the merit order of all candidate
facilities in a cluster C, i.e., ¢}* < ¢y < ... < " with n := |GEY|—there exists at least
one time period #; such that the relation ¢f < p; ~ < 3™ is true, at least one time period Z,
such that ¢y < pz, o < ¢§*" holds, and so on. This situation is illustrated for the case of
three candidate and no existing production facility in Figure 3. In particular, the above
mentioned condition implies the following: over time, there runs at least one aggregated
cluster demand function through each dashed area depicted in Figure 3 (exemplary inverse
demand functions are indicated). Thus, the wider the gap between two subsequent facilities
in the merit order, the more likely it is that the stated assumption is satisfied. We like to
observe that this result is in line with the classical peak-load pricing setting for a single sector
with one bidding zone, where significant gaps between variable costs are also a prerequisite.
For more information on the case of a single sector see Grimm, Schewe, et al. (2017).

> dy

F1Gure 3. Mlustration of Assumption 3 for the case of a single sector

4In time period 1, the only producing candidate facility with positive contribution margin is ho (fl) due
to Assumption 3 (i)—(vi). In time period t; with j € {2,...,|T¢|}, the candidate facility h¢e (£;) produces
with positive contribution margin due to Assumption 3 (iii) and (iv). In addition, at most the candidate
facilities ho (£;) with j' < 7, 5’ € {1,...,|T¢|}, produce due to Assumption 3 (i), (ii), (v), and (vi). And in
case of production, these facilities also produce with positive contribution margins. Consequently, different
candidate facilities of a cluster never produce always at the same time with positive contribution margins.
5This is, e.g., the case in time period #;.
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For the case of multiple sectors, the long-run uniqueness condition cannot be represented
as easily as in the case of one sector via the merit order. Of course, it must still be true for
the merit order of candidate sector-specific production facilities in each cluster that there
exists at least one time period ¢; such that the relation ¢}** < p7,.c < 3 is true, at least
one time period #» such that c§ < py, o < ¢35 holds, and so on. Hence, significant gaps
between variable costs within clusters still increase the chance of Assumption 3 being valid.
Nevertheless, this condition alone is not enough since also the candidate sector-coupling
facilities injecting or withdrawing in this cluster have to be considered. However, it is not
a priori clear where the sector-coupling facilities enter the respective merit orders. This
depends heavily on the underlying demand and supply data of the coupled sectors and the
resulting relation of prices between these sectors. Again, the more diverse the data, the more
likely it is that Assumption 3 is satisfied.

As a first step in order to formally obtain long-run uniqueness under Assumption 3, we
prove that investment decisions are unique under this assumption.

Lemma 4.19. Suppose that Assumptions 1, 2, and 3 hold. Let w and W be two market
equilibria of (MCP) as described in Lemma 4.7 (i). Then, the sector-specific (md sector-
coupling investment is unique in each bidding zone z € Zs and sector s € S, i.e., y,°v = yy°©
holds for all candidate sector-specific production facilities g € G5V and y*V = yncw holds
for all candidate sector-coupling facilities © € IV

Proof. In what follows, we assume that, for each sector s € S, capacity-induced partitions
Cis(w), t € T'C T, as well as bijective functions he : To — Gg™ U g™ U O™ with
To = {ti,t2,...,tj7o|} € T for all price clusters C' € C; s(w) are given that fulfill the
properties stated in Assumption 3. Now, we prove the assertion by induction over the time
periods in T'¢. We start the induction with period #;. First of all, we know by Theorem 4.8
that

=d

1,27

d-

o for all z € C, (20)
holds. In accordance with Assumption 3 (vii)—(ix), all existing producers produce either zero
or at maximum available capacity and all existing sector-coupling consumers demand either

zero or at maximum available capacity. Thus, it directly follows by Lemma 4.7 (ii) that

Ui,y =T, forall g€ GE, (21)
Vi, i =T forallie I, (22)
dg, , = d}ho, for all 0 € O, (23)

is true. Moreover, Assumption 3 (v) and (vi) imply that y;, , = y; ; = dz, , = 0 is valid for

all g € GE™\ {hc (fl)}, ie 2\ {hc (tl)} and o € Onew\ {hc (fl)}. Hence,

Yi, g =T, =0, forallge GE\ {hc(t1)}, (24)
Yi,: =050 =0, forallie I\ {hc(f)}, (25)
d;, , = dtl ,=0, foralloe 0™\ {hc(f)}, (26)

follows from Lemma 4.7 (ii). Furthermore, by Lemma 4.7 (ii), the capacity-induced partitions
Cz, s(w) and Cg, () are the same for each sector s € S and, in addition, the total in- and
outflow of each price cluster C' € C;, (w) = C, (1) is unique. Consequently, by summing
up the market clearing conditions (13) for all bidding zones of the price cluster C, we obtain
the following relation

fe = Zdﬁ:z* Z Y9+ Z di, 0 — Z Yz, .

zeC geGe! ocO2! il

:Zd%l,z_ Z gfl,g_‘_ Z Jfl,o_ Z %1,i:f07

zed geGy! ocOY! ielg!
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which is due to (20)—(26) equivalent to
Yohe () = Yne(m): i he (1) € (GEVUIEFY), and
1 if he (£1) € OF™.

dﬂ,hc(ﬁ) t,ho(h1)

Therefore, all production and demand decisions coincide in w and w in time period #;.
From now on, we assume that h¢ (fl) € GFV holds and derive the assertion of the

induction start. The same argumentation can be applied to the case h¢ (fl) eI uUoEY.

By Assumption 3 (iii), 6;1&0(21) > 0 holds. Thus, by Lemma 4.17, 6+ ) > 0 is also true.

t1,he (tl
Due to (6d), we get
— new ~ _ ~Nnew
yfhhc(zl) - azhhc(ﬂ)yhc(fl) and yﬁ,ho(ﬁ) - aﬂ,hc(ﬁ)yhc(fl)'
Since we have already shown that all production decisions coincide in w and w in time
period %1, the investment in the facility ho (fl) also coincides by the latter two equations.
Hence, we are finally finished with the start of our induction:
new __ ~new
Yne (21) = Yne (1)

Now, for a given time period ;41 with j € {1,...,|T¢c|—1}, we assume that the investment
in the facilities h¢o (fl) ..., ho (fj) coincide in the two market equilibria w and w. It remains
to show that this is also the case for the facility ho (fjﬂ). The same argumentation as in
the start of the induction yields

dy =d; for all z € C,

Lj+1,2 J+1,2?

Yiir,g = Ui, 1,90 forallg e GE,
Ye,00i = Ugy0,00 foralli€ I,
dy

4150
Yi,ing = Vi1, =0, forallgeGe™\ {he (t1) .- he (E41) )
Yi, o1 = V1,0, =0, forallie I\ {ho(t1), ... hc (j41)},

di, 10 =145, 0=0, foralloeOg™\ {he (t1) .- he (E41) )

It remains to consider the production and demand decisions of the facilities
he (81), ..., he (t41). By Assumption 3 (i) and (ii), the facilities he (£1) ..., he (&)
produce or demand in the market equilibrium w in time period %;4; either zero or at
maximum available capacity, where in the latter case strict complementarity is satisfied. In
accordance with Lemma 4.7 (ii), it follows for the case of zero production or demand that
there is also zero production or demand in the market equilibrium w. Moreover, for the
case of production or demand at maximum available capacity, strict complementarity in w
implies strict complementarity in @ by Lemmata 4.17 and 4.18. Due to (6d) or (10f), we
therefore obtain for j' € {1,...,5}

= dy for all 0 € O,

j+1,07

~new

. new ~ _
Visiahe(iy) = e )he(i) M9 Fne(i) = e e (i)

if ho (L) € (GB™ U I5™), and

~New

= o~ W _ - = - RE
nzdzjﬂ,hc(fj/)_atHlﬂyl and nmdtﬁhhc(tjl) O

ifx= (hc (fj/) ,i) € X"V with h¢o (fj/) € OF™. Since, in both cases, the right-hand sides
are equal by the induction hypothesis, it directly follows for all 7/ € {1,...,5} that

y¥j+1,hc (¥j’) = gfj+1)hc(fj,)7 lf hC (Z]’) S (Gr(ljew U Igvew) ; and

Tii1.ho(t,0)°

dzj+17hc(zj/) == if hC (E]/) S Ogew7
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is true. Now, by applying the same argument as in the start of our induction, we obtain
that the production or demand associated to h¢ (fjﬂ) also coincide in w and @ in time
period t;41. Therefore, all production and demand decisions coincide in w and @ in time
period Ej—i—l .

The same argumentation as in the start of our induction finally yields

new ~Nnew

Yhe(t41) = Ve (tn)”
O

So, we finally obtain uniqueness of long-run market equilibrium in coupled markets of
multiple energy sectors.

Theorem 4.20. Suppose that Assumptions 1, 2, and 8 hold. Then, the market equilibrium
of (MCP) is unique in the long-run.

Proof. The assertion directly follows from Theorem 4.16 and Lemma 4.19. O

4.4. A discussion of the sufficient conditions for uniqueness. So far, we presented
sufficient conditions that ensure uniqueness of equilibrium for coupled markets of multiple
energy sectors in the short-run and in the long-run. We discuss those conditions in more
detail below in order to provide further insights on when these conditions are violated and
how resulting multiplicities might be resolved. In addition, we show that each condition is
indeed needed for guaranteeing uniqueness in general.

We start with the short-run and therefore assume for the moment that all investment is
fixed. Multiplicities arise in the short-run mainly due to similar cost structures of different
production facilities. Following Assumption 2, again five cases can be distinguished

(1) two sector-specific facilities have the same variable production costs (violates
Ass. 2 (a); see Example B.1)

(2) two sector-coupling facilities with the same input and target sector have the same
variable production costs since their efficiencies are not distinct (violates Ass. 2 (b);
see Example B.2)

(3) a sector-coupling facility and a sector-specific facility from its target sector have the
same variable production costs (violates Ass. 2 (c); see Example B.3)

(4) sequentially producing sector-coupling facilities and either a sector-specific facility
from their final target sector or other sequentially producing sector-coupling facilities
with the same final target sector have the same variable production costs (violates
Ass. 2 (d); see Example B.4)

(5) sequentially producing sector-coupling facilities and other sequentially producing
sector-coupling facilities with the same initial and final target sector have the same
variable production costs (violates Ass. 2 (e); see Example B.5)

Each mentioned example illustrates how multiplicities arise if the corresponding case occurs.
All examples are structured such that exactly one condition of Assumption 2 is violated, e.g.,
for Case (5) only Assumption 2 (e) is violated in Example B.5 while Conditions (a)—(d) of
Assumption 2 hold. This demonstrates in particular that each sufficient condition identified
by us is indeed needed for guaranteeing uniqueness in general. For more information on the
examples see App. B.

Of course, we are aware that not all of the conditions in Assumption 2 might be fulfilled if
real data is analyzed. Several sector-specific production facilities might have the same cost
structure, e.g., if several power plants of the same technology are considered. One way to
resolve such multiplicities is to artificially perturb same cost structures a priori by small
values. Nevertheless, this can lead to undesirable boundary solutions in which, e.g., one
player never produces while others with basically the same cost structure always produce.
Thus, as an alternative, suitable and transparent tie-breaking rules can be implemented
that select a certain equilibrium. To be able to formulate such rules, it is crucial to have a
fundamental understanding of the conditions that lead to multiplicities. As explained above,
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identical cost structures are mainly responsible for occurring multiplicities in the short-run.
Due to same variable production costs, there is no way to distinguish between two facilities.
A suitable tie-breaking rule is for example to consider these facilities as a single facility for
the purpose of calculating the equilibrium and then to allocate the aggregated production to
the individual facilities based on their installed capacities. Consequently, facilities with the
same production costs have equal capacity utilization in the resulting equilibrium.

Also in the long-run, multiplicities mainly occur due to similar cost structures of different
facilities. In contrast to the short-run, the total costs of production are now the decisive
factor. In particular, if all facilities are fully available and two facilities always produce at the
same time with positive contribution margins and, additionally, at the same average costs,
multiplicities might arise due to the possibility of shifting investment and corresponding
production cost-neutrally from one facility to the other. This result is in line with the
findings of Grimm, Schewe, et al. (2017) for a single sector. For the sake of completeness, we
illustrate in Example C.1 of App. C how multiplicities might arise in a single sector in the
long-run. The case of multiple sectors is treated in Example C.2. In both cases, it is not
possible due to similar cost structures to distinguish in which facility should best be invested
to satisfy the overall demand. A possible remedy to this situation is again to implement a
suitable tie-breaking rule. For example, both operators could each invest the same amount.
Alternatively, external costs that have not yet been taken into account might determine
whether more investment is made at one location or at the other. However, if data with
sufficient fluctuations in, e.g., the demand is available, such cases should actually not occur.

5. CONCLUSION

In this paper, we have extended the existing literature by providing a framework to
analyze coupled markets of multiple energy sectors, as well as conditions for uniqueness of
short- and long-run market equilibrium in such a setup. Our framework lays the foundation
for addressing timely research questions on energy market coupling in the context of the
transition towards a sustainable energy system. It paves the way to analyze timely questions
with regard to, e.g., climate policy, regulation of network and energy pricing, and their effects
on infrastructure planning, investment incentives, and market outcomes.

Our results show that multi-sector market models that account for multiple agents with
different objectives require additional conditions to guarantee uniqueness of short- and
long-run equilibrium compared to the single sector case. For the short-run, we derived
sufficient conditions on the cost structures of production facilities that ex ante ensure
uniqueness of equilibrium. Moreover, using illustrative examples, we proved that each
of these conditions is indeed required to guarantee uniqueness in general. In addition, a
straightforward interpretation of the circumstances that lead to multiplicities has been
provided: multiplicities on the production level might arise if and only if variable production
costs are the same for two distinct facilities. This understanding allows us to formulate
suitable and transparent tie-breaking rules that select a certain equilibrium in case the
presented conditions for short-run uniqueness are violated, as for instance when several
facilities of the same technology are considered in the same bidding zone. One such possibility
would be to select the equilibrium in which the facilities with similar variable production
costs have equal capacity utilization.

For the long-run, we also derived sufficient conditions that guarantee uniqueness of
equilibrium. However, these conditions can only be verified ex post and are fulfilled if and
only if enough variability in the data is assured ex ante. It is therefore not recommendable to
smooth out variability in data used to analyze specific applications. This result is consistent
with the results obtained in similar contexts when sector coupling is not considered; see,
e.g., Grimm, Schewe, et al. (2017). The decisive factor for multiplicities in the long-run are
the total costs of production. In the case where multiplicities are caused by facilities with
similar cost structures, tie-breaking rules might again be a natural choice to select a certain
equilibrium, e.g., the one in which the size of these facilities is equal or the one where the
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facilities are ideally located given the underlying network. However, if sufficient fluctuations
in, e.g., the demand are present, such multiplicities are not to be expected.

Some of the limitations in our analysis could be addressed in future research to allow for
implementation of more realistic applications. First of all, one limitation of our analysis is
that the frequency of spot market trade is assumed to be the same for all sectors. Of course,
the case of different trade frequencies would be of interest since it allows to consider the
coupling of markets that trade products on spot markets at different frequencies; in Europe,
e.g., spot markets for gas define daily reference prices compared to hourly or even more
frequent trade in spot markets for electricity. Second, we mentioned the issue of multiplicities
in case potential-based trade constraints are considered or storage operators are modelled
explicitly as agents on the spot markets of a single sector. We referred to relevant literature
that analyzes uniqueness in these contexts. However, in some timely multi-sector applications,
it might be absolutely necessary to model these aspects; e.g., for the production, storage,
and utilization of electric fuels or for nodal pricing as benchmark in coupled energy markets.
Hence, for sector-coupling applications, a more in-depth understanding of how multiplicities
arise in such cases and could be resolved would be desirable.
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APPENDIX A. NOTATION

Here, a complete overview of all sets, parameters, and variables used throughout the paper
is provided; see Tables 1, 2, and 3.

TABLE 1. Technical and economic sets

Symbol Explanation Unit
T Set of time periods -
S Set of sectors -
Zs Set of bidding zones in sector s € S -
K, Set of all adjacent bidding zones with positive trade capacity in sector s € S -
G* Set of existing sector-specific production facilities in bidding zone z € Z, -
G2 Set of candidate sector-specific production facilities in bidding zone z € Z; -
Gatt Set of all sector-specific production facilities in bidding zone z € Z, -
I Set of existing sector-coupling facilities injecting in bidding zone z € Z, -
7% Set of candidate sector-coupling facilities injecting in bidding zone z € Z, -
72 Set of all sector-coupling facilities injecting in bidding zone z € Z, -
(0 Set of existing sector-coupling facilities withdrawing from bidding zone z € Z, -
O3V Set of candidate sector-coupling facilities withdrawing from bidding zone z € Z; -
O Set of all sector-coupling facilities withdrawing from bidding zone 2 € Z, -
X Set of existing sector-coupling facilities -
Xnew  Set of candidate sector-coupling facilities -
Xl Set of all sector-coupling facilities -
TABLE 2. Technical and economic parameters (*sector-dependent unit)
Symbol Explanation Unit
,j' Maximum trade capacity of k € K
fr Minimum trade capacity of k € K
P, .(-) Inverse demand function of bidding zone z € Z, in time period ¢t € T €/*
Dtz Price of bidding zone z € Z; in time period t € T €/*
ey Variable costs of sector-specific production facility g € G2! €/*
ij Capacity of existing sector-specific production facility g € G$*
ey Investment costs of candidate sector-specific production facility g € G5 €/*

Ot.g Availability of sector-specific production facility g € G2! in time period t € T
Capacity of existing sector-coupling facility i € IS*

Qi Availability of sector-coupling facility i € 2! in time period ¢t € T
Na Efficiency of sector-coupling facility z € X!

Investment costs of candidate sector-coupling facility i € 17% €/*
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TABLE 3. Technical and economic variables (*sector-dependent unit)

Symbol Explanation Unit
Ttk Trade on k € K, in time period t € T *
dy,. Demand in bidding zone z € Z; in time period t € T *
Yt.g Production of sector-specific production facility g € G2 in time period t € T *
yy""  Installed capacity of candidate sector-specific production facility g € G3°% *
di,o Demand of sector-coupling facility o € O! in time period t € T *
Yt,i Production of sector-coupling facility i € I2! in time period t € T *

new *

. Installed capacity of candidate sector-coupling facility ¢ € I}V

TABLE 4. Two equilibria of (MCP) for the scenarios of Example B.1 (left)
and Example B.2 (right)

dz1 yg1 ygz dz1 dzz yg1 y92 dﬂm d:L’z y:m y:rz
1 10 10 O 1 14 12 38 O 4 20 2 10
2 10 5 5 2 14 12 38 0 12 12 6 6

APPENDIX B. ILLUSTRATIVE EXAMPLES FOR THE SHORT-RUN

In the following, we present illustrative examples on how multiplicities arise in the short-
run due to similar cost structures of different production facilities. All investment decisions
are assumed to be already determined in the short-run. Hence, it is sufficient to consider
only existing production facilities. Moreover, since the market equilibrium problem decouples
over time for this case, it is sufficient to consider a single time period for demonstrating the
underlying effects that cause multiplicities. For the ease of notation, we therefore drop the
time index in the following examples. In addition, we denote by d, and y, the demand and
production of the sector-coupling facility z € X°*. Furthermore, we assume without loss of
generality that all facilities are fully available.

Example B.1 illustrates the case in which two production facilities of the same sector have
the same variable production costs, i.e., Assumption 2 (a) is not satisfied. Due to the same
cost structures, there is no way to distinguish between the two facilities and thus, multiple
equilibria exist.

Example B.1. Let one sector S = {s1} with one bidding zone Zs, = {21} be given. The
demand of this bidding zone is characterized by the inverse demand function P, (d.,) =
15 —d.,. Moreover, we assume that two producers G$¥ = {g1, g2} with the same variable

production costs ¢yt = ¢ =5 and installed capacities yg; = 10 and ygy = 8 ewist. Due

g1 g2
to the same variable production costs, no distinction can be made between the two facilities.
Therefore, it is not clear which of the producers best meets the demand. As a consequence,

multiplicity of market equilibria results. Two of them are exemplarily listed in Table 4 (left).

In addition to the case where, due to identical cost structures, no distinction can be made
between sector-specific production facilities, there might also be the case where there is
no way to distinguish between sector-coupling facilities. This occurs in particular if the
efficiencies of sector-coupling facilities are not pairwise distinct; see Example B.2 for an
illustration. The situation presented there violates Assumption 2 (b) and multiplicities arise
from this violation.

Example B.2. Let two sectors S = {s1,s2} each with one bidding zone, i.e., Zs, = {z1}
and Zs, = {22}, be given. The demand of bidding zone zy is characterized by the inverse
demand function P, (d,,) = 15—d,, while the demand of bidding zone z is determined by the
inverse demand function P.,(d.,) = 26 — 2d,,. Moreover, we assume that one sector-specific
producer produces in bidding zone z1 and one in bidding zone 2o, i.e., GI¥ = {g1} and
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TABLE 5. Two equilibria of (MCP) for the scenario of Example B.3

dz1 dzz ygl y92 d:m y:L’l

1 14 11 18 10 4 1
2 14 11 26 8 12 3

var var

G = {g92}. The variable production costs are cjt* =1 and ;2" = 4 with installed capacities
Ygr =40 and yg5 = 10. In addition, two sector-coupling facilities X = {x1,22} with the
same efficiency Mg, = Nz, = 0.5 exist that both withdraw from sector s1 and inject in sector sa.
The capacities of these facilities are yg* = 30 and y;; = 20. Due to the same efficiency of
the two sector-coupling facilities, there is no possibility to distinguish which of the operators
of the two facilities best meets the demand in sector so. Consequently, there exist multiple

market equilibria; for two of them see Table 4 (right).

Moreover, there may exist instances in which it is not possible to distinguish between
a sector-specific and a sector-coupling facility. Example B.3 depicts such a case. There,
multiplicity of equilibria is caused by the fact that the variable production costs across the
sectors are not—taking into account the sector-coupling facility’s efficiency—pairwise distinct,
i.e., Assumption 2 (c) is not fulfilled.

Example B.3. Let two sectors S = {s1,s2} with the same bidding zone structure as well as
demand and sector-specific production data as in Example B.2 be given. In addition, there
is one sector-coupling facility 1 with efficiency n,, = 0.25 that withdraws from sector si
and ingects in sector sy. The capacity of this facility is yg5 = 10. Due to the relation
Ny Cyy' = Cpit, there is mo possibility to distinguish whether the operator of the sector-specific
facility g2 or of the sector-coupling facility 1 best meets the demand in sector so. Hence,
there exist multiple market equilibria. Two of them are depicted in Table 5.

The latter situation of indistinguishable sector-specific and sector-coupling facilities can
also arise across several sectors. Example B.4 presents an instance in which multiplicity
of equilibria is triggered by the same variable production costs across two sectors taking
into account the combined efficiency of two sequentially producing sector-coupling facilities,
which contradicts Assumption 2 (d).

Example B.4. Let three sectors S = {s1, 82,53} each with one bidding zone, i.e., Zs, = {21},
Zs, = {22}, and Zs, = {23}, be given. The demand of bidding zone z1 is characterized by
the inverse demand function P, (d,,) =15 —d,,, the one of z3 by P.,(d,,) = 11.25 —d,,,
and the one of z3 by P.,(d.,) = 30.5 — 2d,,. Moreover, we assume that one sector-specific
producer produces in each bidding zone, i.e., GIX = {g1}, Gox = {g2}, and G = {g3}. The
variable production costs are ¢ji* =1, ¢i* = 0.75, and cgi* = 2.5 with installed capacities
yor =50, yox =10, and ygx = 5. In addition, two sector-coupling facilities X = {x1, 72}
with the efficiencies n,, = 0.8 and n,, = 0.5 exist. The facility x1 withdraws from sector s;
and injects in sector sy while the facility xo transfers the commodity of sector so into the
commodity of sector s3. The capacities of these facilities are yg7 = 40 and yg, = 30. Due
to the relation 1y, Mz, ¢yt = ¢, there is no possibility to decide whether the supply of the
sector-coupling or of the sector-specific production facility is the best to meet the demand in
sector s3. As a consequence, there exist multiple market equilibria; see Table 6 for two of

them.

Finally, the case of indistinguishable sector-coupling facilities can also appear due to
sequentially producing sector-coupling facilities. In Example B.5, multiplicities occur since
the efficiency of the facility that transforms commodity two into commodity three is the same
as the combined efficiency of the facilities that transform commodity two into commodity
one and commodity one into commodity three. This situation violates Assumption 2 (e),
which states that a chain of efficiencies is not allowed to meet another chain of efficiencies.
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TABLE 6. Two equilibria of (MCP) for the scenario of Example B.4

dz1 dZQ dzg yg1 y92 yyz dm1 dzz yzl yxz

1 14 10 14 49 10 0 35 28 28 14
2 14 10 14 39 10 4 25 20 20 10

TABLE 7. Two equilibria of (MCP) for the scenario of Example B.5

le dZ2 dzz ygl ygz yg3 dw 1 de d13 Yz 1 @/12 y:rg

1 7 6 235 0 735 0 675 47 0 54 235 O
27 6 235 0 735 0 87 0 5875 7 0 235

Example B.5. Let three sectors S = {s1, 2,83} each with one bidding zone, i.e., Zs, = {z1},
Zsy, = {22}, and Z,, = {23}, be given. The demand of bidding zone z is characterized by
the inverse demand function P, (d,,) = 8.25 — d,,, the one of zo by P,,(d,,) =7 —d,,, and
the one of z3 by P,,(d,,) = 26 — d,,. Moreover, we assume that one sector-specific producer
produces in each bidding zone, i.e., G = {g1}, G5X = {92}, and GS¥ = {g3}. The variable
production costs are ¢t = 8, ¢i" =1, and it = 25 with installed capacities yg¥ = 5,
Yo = 80, and ygx = 20. In addition, three sector-coupling facilities X = {x1, 29,23} with
the efficiencies Ny, = 0.8, Ny, = 0.5, and 1y, = 0.4 exist. The facility x1 withdraws from
sector sy and injects in sector s1 while the facility xo transfers the commodity of sector sq
into the commodity of sector s3. Finally, the facility x3 couples sector so with sector sz,
injecting in the latter sector. The capacities of the sector-coupling facilities are yg7 = 100,
Yoo = 120, and ygx = 140. Due to the relation 1y, Ne, = Ny, there is no possibility to decide
which sector-coupling producer is best to meet the demand in sector s3. Thus, there exist
multiple market equilibria. Two of them are stated in Table 7.

APPENDIX C. ILLUSTRATIVE EXAMPLES FOR THE LONG-RUN

In the following, we introduce examples that illustrate how multiplicities arise in the
long-run. Also in the long-run, multiplicities are mainly caused by similar cost structures
of different production facilities. Now, the total production costs and not only the variable
production costs are decisive. For all examples, we assume without loss of generality that
there exist only candidate facilities and that all facilities are fully available. We do not
present examples to all possible violations of the nine conditions specified in Assumption 3
but choose two exemplary cases. The first example focuses on a single sector, the second one
on multiple sectors.

The single sector case is treated in Example C.1. Since, in this example, both operators
of the candidate sector-specific facilities produce in all time periods and additionally at the
same average costs, there is no possibility to decide which of the operators should invest best
and thus, multiple equilibria exist.

Example C.1. Given two time periods T = {t1,t2}. Moreover, let one sector S = {s1} with
one bidding zone Zs, = {z1} be given. The inverse demand function of bidding zone z1 in time
period t1 is determined by Py, ,, = 10—dy, ,, the one of time period to by Py, ., = 7.5—dy, -, .
In addition, we assume that there are two candidate sector-specific facilities in bidding zone z1,
i.e., GV = {g1,92}. The variable production costs are cyi* = 1 and cj?* = 3 and the
investment costs cignl" =6 and cig‘;" = 2. No sector-coupling facilities exist. Due to the fact
that both operators of the sector-specific facilities produce always at the same time and at the
same average costs, there is no possibility to distinguish which of the producers should invest
best in order to meet the demand in sector s1. Hence, multiple market equilibria result; see
Table 8 for two of them.
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TABLE 8. Two equilibria of (MCP) for the scenario of Example C.1

new new
dtlyzl dtz,zl Yt1,91 Yt1,92 Yta,g1  Yta,g0 ygl yg2

1 ) 4.5 2.5 2.5 2.5 2 25 25
2 5 4.5 1 4 1 3.5 1 4

TABLE 9. Two equilibria of (MCP) for the scenario of Example C.2

new

new
dtl,zl dtl,zz dt2721 dt2,22 Yt1,91 Yti,92 Yta,g1 Ytage  Ygy Ygo

1 8 5 7 4.5 8.625 4.5 7.625 4 8.625 4.5
2 8 5 7 4.5 105 3 9.5 25 105 3

new

dt17w1 dtz,wl Y120 Yta,wr Yoy

1 0625 0.625 0.5 0.5 0.5
2 25 2.5 2 2 2

For multiple sectors, Example C.2 provides an instance in which multiplicities occur in the
long-run. Again, multiplicities result from the fact that both operators of the sector-coupling
and the sector-specific facility of sector two produce always at the same time and in addition
at the same average costs.

Example C.2. Given two time periods T = {t1,ta}. Furthermore, let two sectors S =
{s1,82} each with one bidding zone, i.e., Zs, = {z1} and Zs;, = {22}, be given. All
sector-specific demand is characterized by the inverse demand functions Py, ., =10 —dy, ..,
Py, =8—diy 2, Py 2o =10 —4dy, 2., and Py, ,, = 7.5 — dy, .,. Moreover, we assume that
there is one candidate sector-specific facility in each bidding zone, i.e., GI™ = {g1} and
G = {g2}. The variable production costs are ¢ =1 and cj5* = 3 and the investment

91 92
costs are cigr;" =1 and ci]‘;" = 2. In addition, one candidate sector-coupling facility exists
that withdraws from sector s1 and injects in sector sq, i.e., XV = {x1}. The efficiency
of this facility is ny, = 0.8 and the investment costs are cg‘l" = 4.25. Since the operators of
the sector-coupling and the sector-specific facility of sector two produce always at the same
time and at the same average costs, it is not clear which of these producers best meets the
demand in sector so. Thus, there exist multiple market equilibria. Two of them are depicted

in Table 9.
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EXISTENCE OF ENERGY MARKET EQUILIBRIA
WITH CONVEX AND NONCONVEX PLAYERS

JuriA GRUBEL, OLIVIER HUBER, LUkAS HUMBS, MAX KLIMM,
MARTIN SCHMIDT, AND ALEXANDRA SCHWARTZ

ABSTRACT. Motivated by examples from the energy sector, we consider a
special type of market equilibrium problems (MEPs) involving players both with
convex and nonconvex strategy spaces or objective functions. Such problems
naturally occur in settings in which energy trading is combined with aspects of
the actual energy transport through networks. We propose an algorithm that
determines if an equilibrium of a given MEP exists and that computes a market
equilibrium in case of existence. Moreover, we provide both a uniqueness
and a non-existence result for MEPs that include players with a unique best
response. Finally, we test the proposed algorithm on well-known energy market
instances from the power and gas literature. There, nonconvexities—either
due to integrality conditions or nonlinearities—mainly arise from considering
the transmission system operator as an additional player who, e.g., switches
lines or faces nonlinear physical laws. Our numerical results indicate that an
equilibrium often exists, especially for the case of continuous nonconvexities in
the context of gas market problems.

1. INTRODUCTION

Market equilibrium problems are an important mathematical tool to model many
practically relevant applications such as energy markets for power or gas, auctions,
or transport network planning. Usually, these problems consist of a number of
rational players that compete for a set of goods, which they want to purchase to
maximize their utility. In such situations one asks whether there exists a price for
these goods so that the market clears and so that no player can improve her utility by
unilaterally changing her decisions. Mathematically, rationality is typically modeled
via optimization problems and a market equilibrium price then clears the market
while all players choose an optimal solution. The main economic or mathematical
questions are (i) whether such an equilibrium exists, (ii) whether it is unique, and
(iii) how to compute it. In this paper, we address these three topics but focus on
the algorithmic aspects.

The classic results ensure existence of market equilibria under suitable convexity
assumptions; see, e.g., Wald (1951), Arrow and Debreu (1954), Gale (1955), McKen-
zie (1959), or Debreu (1962). Unfortunately, many real-world market equilibrium
problems do not satisfy these assumptions. Our study is mainly motivated by
practically relevant aspects of market equilibrium problems in energy—mnamely gas
and power market equilibrium models on networks. In these settings, the set of
players includes producers and consumers that are located at the nodes of the
energy network as well as the transmission system operator (TSO), who acts as an
arbitrageur and who also controls the network itself; see, e.g., Hobbs and Helman
(2004), Gabriel and Smeers (2006) in Seeger (2006), Gabriel, Conejo, et al. (2012),
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Grimm, Schewe, et al. (2017), or Krebs et al. (2018). The main challenge regarding
these equilibrium problems is when either the energy flow model is nonlinear or
when controlling the network includes deciding on discrete switching variables. Both
aspects lead to nonconvex player problems and, thus, the classic existence theory is
not applicable anymore. See Scarf (1994) for the special case of integralities in a
power market or Grimm, Griibel, et al. (2019) for the special case of gas market
interaction on a network with nonconvex flow models.

There are different parts of the applied literature that tackle such nonconvex
situations; see, e.g., Shapley and Shubik (1971), Leonard (1983), Bikhchandani,
Ostroy, et al. (2002), and Bikhchandani and Ostroy (2006) for assignment problems,
Bikhchandani and Mamer (1997) and Baldwin and Klemperer (2019) for general
exchange economies with indivisibilities, O’Neill et al. (2005) and Guo et al. (2021)
for discrete markets, Hatfield et al. (2013), Fleiner et al. (2019), and Hatfield et al.
(2019) for trading networks, and Beato (1982), Brown et al. (1986), Bonnisseau and
Cornet (1988), and Bonnisseau and Cornet (1990) for economies with increasing
returns to scale. Very recently, Harks (2020) presented a unifying framework
for many (possibly nonconvex) equilibrium problems including network tolls for
transportation networks, indivisible item auctions, bilateral trade, or congestion
control. This framework is based on Lagrangian duality and enables to characterize
the existence of solutions to (possibly) nonconvex equilibrium problems by checking
if a suitably chosen optimization problem (e.g., the overall welfare maximization
problem in economic settings) has a zero duality gap.

The first main contribution of this paper is that we, based on the results of
Harks (2020), derive an algorithm to decide the existence of a solution of the
market equilibrium problem with convex and nonconvex player problems. If such an
equilibrium exists, our algorithm computes it—otherwise, it indicates that no such
equilibrium exists. To implement this algorithm, however, we need some specific
knowledge about potential candidates for equilibrium prices. These equilibrium price
candidates may be challenging to analyze in general but can be derived for specific
instances. Hence, the second main contribution is that we detail this knowledge for
two practically relevant equilibrium problems in energy: (i) a power market problem
in which the TSO controls the underlying DC network by switching on or off DC
power lines and (ii) a gas market problem in which the TSO’s model is nonconvex
due to the inherent nonlinearity of gas flow models. By doing so, we consider two
very different settings of nonconvex market equilibrium problems: one in which
the nonconvexity is continuous but nonlinear and one in which the nonconvexity is
due to the presence of integer variables. Thus, these studies nicely illustrate the
broad applicability of our methods. We present a detailed computational study for
both problems and discuss the reasons why equilibria exist or why not. One main
conclusion of this computational study is that in the case in which the nonconvexity
is due to integrality constraints, we show that no equilibrium exists for a large
number of instances. On the other hand, we confirm the existence of an equilibrium
for all solvable instances in the nonconvex but continuous case.

The remainder of the paper is organized as follows. In Section 2 we present
the abstract model of the market equilibrium problem with convex and nonconvex
players. Then, the existence and uniqueness of equilibria is studied in Section 3.
The beginning of this section is based on the results by Harks (2020) and extends
this work to obtain the algorithm that computes equilibria or proves that no such
equilibria exist. Moreover, we provide a uniqueness result for the special case of
players with unique best responses. In Section 4 we present the networked power
and gas market equilibrium problems and derive theoretical results that are used in
Section 5, where the developed algorithm is applied to these two cases. The paper
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closes with some concluding remarks and some further topics of future research in
Section 6.

2. THE MARKET EQUILIBRIUM PROBLEM

We consider a special type of market equilibrium problems with a finite set of
players i € I. We assume perfect competition, i.e., the players act as price takers
and do not anticipate the impact of their own actions on prices. Formally, for an
exogenously given price vectors m € R™~, every player ¢ € I solves an optimization
problem of the form

H;in filyi,m) = cilys) + 7 hi(ys) sty €Y, (1)

where y; € R™ are the decision variables of player 7, f; : R™ x R"* — R is the
objective function consisting of ¢; : R™ — R and h; : R™ — R"~. Moreover,
Y; C R™ is the non-empty feasible set of player i.

Solving the market equilibrium problem in this context means to find market-
clearing prices 7, i.e., prices to which the best responses of all players exist and
satisfy predefined market-clearing conditions that depend on the variables of all
players. We model these market-clearing conditions as

Z hi(y;) = 0. (2)
icl
Thus, we consider the following market equilibrium problem:

optimization problems of the players: (1) for all i € I,
market-clearing conditions: (2). (MEP)

A broad range of market equilibrium problems can be modeled this way. For
instance, many economic applications, in which a large number of price-taking
players purchase and sell goods at certain prices, fall into this category. In this
context, 7' h;(y;) describes the part of the players’ money either spent or gained by
trading a specific amount of the goods. Moreover, the market-clearing conditions (2)
ensure that the traded amounts are balanced, i.e., there is no excess demand or
supply. Problems of this kind naturally arise in energy market modeling; see, e.g.,
Hobbs and Helman (2004) or Gabriel, Conejo, et al. (2012) and the references
therein. For two examples from the field of energy markets see also Section 4, where
we discuss them thoroughly. A detailed overview of applications from other fields
can be found in, e.g., Harks (2020).

Although the existence of an equilibrium is not guaranteed in general if nonconvex
players are part of the (MEP), it is well-known that in the case of existence, market
equilibria correspond to welfare optima; cf. Part 1 of Theorem 2.3 in Harks (2020).
Formally, the welfare problem is the optimization problem in which the sum of all
players’ objectives is minimized subject to the constraints of all players and the
market-clearing conditions. This welfare optimization problem thus reads

Irgin Zci(yi) st. yey, Zhl(yl) =0. (WFP)
icl il
Here, we use y := (yi)iesr € R™ with n, := Y., n; as an abbreviation for the
decision variables of all players i € I. Analogously, let Y := X el Y, denote the
Cartesian product of the individual feasible sets.

Even if a solution to the welfare optimization problem (WFP) exists, this solution
does not necessarily constitute a market equilibrium if nonconvexities are present
in the optimization problems (1). However, if the optimization problems (1) are
convex for all 7, the existence of market equilibria is well-understood. In particular,
there exists a market equilibrium of (MEP) if there exists a solution to the welfare
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optimization problem (WFP). To see this note that, for each player i, the convexity
of the objective function over the convex set Y; yields

i + (L= NG, ) < ANfi(Gi, m) + (1= ) fi(9i, )

for all §;,9; € Y;, A € [0,1], and all ¥ € R™~. Inserting the definition of the objective
function and rearranging then yields

ci(Agi 4+ (1 = X)) — Acs(9s) — (1 — N)ei(s)
< (AR (5:) + (1= Nh() — ha(AGi + (1= X))

Note that the left-hand side is independent of 7, and the latter can take any value
in R™~. Hence, we conclude that

ARi(G:) + (1 = Nhi(9;) = hi(AGi + (1 = A)gi). (4)
Since the right-hand side of (3) is zero, we see that ¢; has to be convex on Y;. Let
7,9 be feasible for (WFP) and A € [0,1]. The point Ag + (1 — A\)§ is also feasible
since the set Y is convex and the relation (4) implies that >, _; hi(Ag+(1—=A)g) =0
holds. Hence, the optimization problem (WFP) is convex. Furthermore, suppose
that Slater’s condition holds for (WFP). If there exists a solution to (WFP), then
this solution together with the multipliers of the market-clearing conditions as prices
is a market equilibrium. In the presence of nonconvex players, the existence of a
market equilibrium to (MEP) is not guaranteed in general; see, e.g., Example 5.1
and Example 5.2. However, in many applications there is at least one player—or
possibly more—whose optimization problem is not convex.

3)

3. EXISTENCE OF EQUILIBRIA

In this section we analyze how solutions of the welfare optimization prob-
lem (WFP) can be used to either find a market equilibrium or to determine that
no market equilibria exist. To this end, we build on results from Harks (2020) to
observe that market equilibria of (MEP) are equivalent to primal-dual solution
pairs of the corresponding welfare problem with zero duality gap and provide some
practical consequences of this result. Among those are the fact that players with
unique best responses to given market prices also have a unique optimal strategy
over all market equilibria (if any exists). The close relation between solutions of
the welfare problem and market equilibria motivates to first compute a solution y*
of the welfare problem and then try to find suitable market prices 7* such that
(y*,7*) is a market equilibrium. We show that under certain technical assumptions,
which are satisfied in the applications presented in Section 4, it suffices to check
one critical price to either obtain a market equilibrium or to know that none can
exist. This result is then formalized in an algorithm, which we use in Section 5 to
compute market equilibria of nonconvex energy market models.

If we denote the Lagrangian of the welfare optimization problem (WFP) by

L(y,m) == Z (ci(yi) +7 " hi(ys)) ,
il
the corresponding Lagrangian dual problem is given by
sup d(m), (5)

TeER"™

where d(7) := inf,cy L(y, 7). Due to weak duality we always have the relation

yig)f/{Zci(yi): yeY, > hi(y) —0} > sup d(m).

iel i€l TERmT
The problem has zero duality gap if there exist globally optimal solutions y* of the
primal problem and 7* of the dual problem with the same objective function value.
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However, the duality gap of the welfare problem can be positive in the presence of
nonconvexities. On the other hand, Part 1 of Theorem 2.3 in Harks (2020) states
that a zero duality gap is equivalent to the existence of a market equilibrium. In
our setting, this result reads as follows.

Theorem 3.1 (See Part 1 of Theorem 2.3 in Harks (2020)). The pair (y*,7*) is a
market equilibrium of (MEP) if and only if y* and m* are solutions of the welfare
optimization problem (WFP) and the corresponding dual problem (5), respectively,
with zero duality gap.

This result has several immediate consequences:

Corollary 3.2. (a) If (y*,7*) is a market equilibrium of (MEP), then y* is a

global solution of the welfare problem (WFP).

(b) If (y*,7*) is a market equilibrium of (MEP), then (y,n*) is a market
equilibrium of (MEP) for all global solutions y of the welfare problem.

(¢) If (y*,7*) and (g, 7) are two market equilibria of (MEP), then so are (y*,7)
and (g, 7*).

(d) If y* is a global solution of the welfare problem (WFP), for which there
exists no w such that (y*,7) is a market equilibrium of (MEP), then the
market equilibrium problem (MEP) has no solution.

Part (a) of the corollary ensures that only solutions y* of the welfare problem
are candidates for a market equilibrium. Part (d) states that there does not exist
any market equilibrium at all, if we find a global solution y* of the welfare problem,
which is not a market equilibrium for all 7. In general, neither y* nor 7* have to be
unique in a market equilibrium and Parts (b) and (c) state that we can mix and
match different solutions.

In some applications, we know for a subset S C I of the players that, for all
possible 7, their optimization problem (1) has at most one solution. This means
that these players have a unique best response if it exists at all. This is, e.g.,
the case for players with convex feasible sets Y; and strictly convex objective
functions y; — fi(y;, 7). Those players then also have a unique optimal strategy in
all market equilibria and multiplicity in solutions of the welfare problem immediately
implies that no market equilibrium exists. For a graphic illustration of this effect
see Figure 1.

Corollary 3.3. Let S C I be the set of players with unique best responses for all
price vectors m € R"~.
(a) If (y*,7*) and (§,7) are two market equilibria of (MEP), then y§ = gs.
(b) Ify* and § are two solutions of the welfare problem (WFP) with y§ # ys,
then the market equilibrium problem (MEP) does not have a solution.

Proof. (a) By Corollary 3.2 (c) we know that (g, 7*) is also a market equilibrium
and thus both y; and §; are solutions of the optimization problem (1) of player ¢
with price 7*. For all players ¢ € S this solution is unique, i.e., y§ = §s holds.

(b) If the market equilibrium problem would have a solution for some price
vector 7, then both (y*,7) and (g, ) would be market equilibria, which contra-
dicts (a). O

Note, however, that the market equilibrium problem can have more than one
solution as long as the solutions differ only in the prices or in the strategies of the
players in I\ S, who do not have unique best responses to given prices.

Going back to Corollary 3.2, Part (a) motivates the following approach to compute
market equilibria of (MEP): First, we compute a global solution y* of the welfare
problem (WFP). Then, we find a price vector 7* such that for all players i € I, the
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Ysy isoline of welfare

ys

Ys,

FIGURE 1. Tlustration of Corollary 3.3 (based on Figures 2 and 3
of Grimm, Griibel, et al. (2019); see also Example 5.1). The
nonconvexity of the feasible set of the welfare problem (WFP)
(gray) leads to multiple welfare optima y§ and §g that differ in the
decisions of the strictly convex players. Thus, no market equilibrium
to (MEP) exists.

vector y; is a solution of the player’s optimization problem (1) for the given price
vector *. To determine such an equilibrium price 7*, let TI(y*) C R"" be a set
that includes all market equilibrium prices, i.e., it has the property

(y*,7") is a market equilibrium of (MEP) = =" € II(y"). (6)

Given a welfare solution y* and such a candidate set II(y*), only prices m € II(y*)
can be equilibrium prices. Thus, we can assume that II(y*) # 0, since otherwise no
market equilibrium exists.

For the forthcoming analysis, we assume that we can compute an enclosing box
of II(y*) which takes the form

{meR" :m, < my §7r,': for all k € {1,...,n,}},

where the upper and lower bounds belong to the extended real line. We now show
that it is possible in some instances to reduce the study of the existence of a market
equilibrium to checking whether a welfare optimal solution and a particular price
constitute a market equilibrium.

Theorem 3.4. Let y* be a solution of the welfare problem (WFP) and let TI(y*) # 0
be a set satisfying Condition (6). Assume that for all k € {1,...,n:} at least one

of the following properties is satisfied:

(a) m =,

(b) mF < oo and (hi(y))k < (hi(y:))k for ally; € Y; and all players i € I,
(c) m, > —o0 and (hi(y;))k = (hi(yi))k for all y; € Y; and all players i € I,

) = —oo, m = oo, and (hi(y;))k = (hi(y:i))k for all y; € Y; and all
players i € 1.
Then, there exists a market equilibrium of (MEP) if and only if (y*,7) is a market
equilibrium, where the critical price Tt is defined as

T, =7, if (a) applies,

A ﬂ',j, if (b) applies,
b T if (¢c) applies,
0, if (d) applies.

Proof. If (y*,7) is a market equilibrium, then obviously one exists. So let us
assume that (y*,7) is not a market equilibrium, but that there exists a market
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equilibrium (y*,7*). Then, 7* € II(y*) and there exists a player i € I and ; € Y;
such that

fily; s ) < fi(ga, 7)) but fi(9i,7) < fily;, T)-
Plugging in the definition of the objective functions yields

cilyy) = i) + (@) " (hi(y}) = halin)) <0
and
ci(@i) = ci(yd) + 7 (hi(Gi) — hi(y;)) < 0.
Putting both inequalities together and using the assumptions then yields
Nx
0> (r* =) (hi(y}) = ha(in)) = Y (" = @) (ha(wy) — ha(Gi) -
k=1
Let us show that each term of the sum is non-negative. For all indices k such that
either (a) or (d) holds, the respective term is zero. It is easy to see that the sign
conditions in (b) and (c) ensure that the product (7* — 7),(h;(y}) — hi(9:))k is non-
negative. Hence, the sum is non-negative and we reach a contradiction. Therefore,
either (y*,7) is a market equilibrium or there is no market equilibrium. O

Our approach relies on exploiting the interplay between the structural properties
of the players’ problems and the set of admissible prices II(y*) for a given solution y*
of the welfare problem. This is best understood when looking at the definition of
the critical price #. Looking at Case (b), one sees that if all players contribute
in their minimum way to the market-clearing conditions, then it is sufficient to
test for the upper bound as an equilibrium price candidate for this component. If,
analogously, all players reach their maximum possible contribution for the market-
clearing conditions, which is Case (c), then it is sufficient to check whether the lower
bound for the component is an equilibrium price. Such upper and lower bounds
might implicitly result from (necessary) optimality conditions of the players.

Applications fulfilling the properties stated in Theorem 3.4 arise, e.g., in trans-
portation networks. For an application in the context of energy markets, in which
all the stated properties are satisfied, see Section 4. Since these applications are
often formulated in terms of maximization problems, we provide the analogue of
Theorem 3.4 for maximization problems in Appendix A.

In general, one wants to choose the candidate set TI(y*) as small as possible in
order to satisfy the conditions for Theorem 3.4. However, one cannot choose II(y*)
arbitrarily small since Condition (6) needs to be satisfied, i.e., II(y*) needs to include
all market equilibrium prices. A straightforward approach to construct the set II(y*)
is to exploit necessary optimality conditions of each player’s optimization problem.
If (y*,7) is a market equilibrium, then for all player i € I, yf is a solution of
optimization problem (1) with a price vector 7 and thus has to satisfy the necessary
optimality conditions for (1). These optimality conditions evaluated at y; provide
constraints for possible market equilibrium prices 7. Since we impose only very
few assumptions on the optimization problems (1), different types of necessary
optimality conditions might be needed for different classes of players. Fortunately,
mixing varying types of necessary optimality conditions is not a problem here.

Remark 3.5. Consider a player i € I. If the feasible set Y; is given by standard
constraints, e.g., Y; = {yi: g:(y;) < 0}, if all functions ¢;, h;, and g; are continuously
differentiable, and if a constraint qualification for Y; is satisfied at y;, then the
KKT conditions for (1) are necessary. Thus, only prices 7, for which there exist
multipliers p; with

0=Vei(yy) + Vhi(y)m+ Vg (y s 0<p; Lgi(y;) <0 (7)
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can be market equilibrium prices. If, additionally, y; — fi(y;,m) and g; are convex
functions, the KKT conditions are not only necessary but also sufficient optimality
conditions for (1).

For other players, using the KKT conditions as necessary optimality conditions
might not be possible, e.g., because they have discrete decision variables, their
optimization problem is not differentiable, or their feasible set does not satisfy a
constraint qualification. These players can either be ignored in the definition of TI(y*)
or one can use alternative optimality conditions to generate conditions on market
equilibrium prices w. For example, the textbooks by Clarke (1990), Luo et al. (1996),
Mordukhovich (2018), Rockafellar (1970), and Rockafellar and Wets (1998) provide
optimality conditions based on subdifferentials and variational analysis, which can
be used in the presence of nondifferentiable or degenerate constraints.

In situations, in which the KKT conditions (7) of certain players are necessary
and sufficient and used to obtain the candidate set II(y*), it is possible to weaken
the assumptions of Theorem 3.4. Note that this modification only works in case
# € TI(y*), which is a nontrivial assumption, because 7 is per definition a vertex of
an enclosing box of TI(y*). However, in the application considered in Section 4, this
assumption will indeed be fulfilled.

Corollary 3.6. Let y* be a solution of the welfare problem (WFP). Moreover, let
C C I denote the subset of players, for which the KKT conditions (7) are necessary
and sufficient optimality conditions and choose the candidate set TI(y*) such that
Condition (6) as well as the KKT conditions of all players i € C' are satisfied, i.e.,

II(y*) C{mw e R"": for alli € C exists u; such that (7) holds} .
Assume that for allk € {1,...,n.} at least one of the following properties is satisfied:

(a) m, =m,

(b) ™ < oo and (hi(y;)k < (hi(yi))x for ally; € Y; and all players i € I\C,
(c) mp > —o0 and (hi(y)))k > (hi(y:))x for all y; € Y; and all players i € I\C,
(d) 7, = —o0, mi = o0 and (h;(y}))k = (hi(y:))k for all y; € Y; and all players
ieI\C.
Now, let the critical price @ be defined as
T, = ﬂ,:r, if (a) applies,
. o, if (b) applies,
T =
T, if (¢) applies,
0, if (d) applies.

If the critical price satisfies & € Il(y*), then there exists a market equilibrium of
(MEP) if and only if (y*,7) is a market equilibrium.

Proof. If (y*,#) is a market equilibrium, then obviously one exists. So let us assume
that (y*,7) is not a market equilibrium. Due to 7 € TI(y*), the KKT conditions of
all players ¢ € C are satisfied, i.e., y; is a best response to 7 for all players ¢ € C.
Thus, if (y*,7) is not a market equilibrium, this has to be due to one of the players
1 ¢ C. For those players, one obtains a contradiction by applying the same argument
as in the proof of Theorem 3.4. U

Finally, we utilize the previously derived results to formally state Algorithm 1,
which terminates either with a market equilibrium or with the information that no
market equilibrium exists. The presented algorithm is based on Theorem 3.4. Note
that for the situation described in Corollary 3.6, the algorithm remains the same
except for Line 6, where it suffices to check whether y; is a best response to the
price vector # for all players i € I\C.



MARKET EQUILIBRIUM PROBLEMS WITH CONVEX AND NONCONVEX PLAYERS 9

Algorithm 1: Deciding the existence of an equilibrium of (MEP) and
computing an equilibrium in case of existence

Input : Market equilibrium problem (MEP)
1 Compute a global solution y* of the welfare optimization problem (WFP).
2 if the welfare optimization problem (WFP) does not have a solution then

3 ‘ return “No market equilibrium exists.”

4 else

5 Define the critical price vector 7 as in Theorem 3.4.

6 if vy is a best response to the price vector @ for all players i € I then

7 | return (y*,7) is a market equilibrium.

8 else

9 ‘ return “No market equilibrium exists.”

10 end
11 end

Remark 3.7. (a) In Lines 1 and 6, we assume that it is possible to solve the

potentially nonconvex problems (WFP) and (1) to global optimality.

(b) If the solver computing the global solution of (WFP) in Line 1 addition-
ally provides dual variables such that strong duality holds, then a market
equilibrium exists and the dual variables associated to the market-clearing
conditions are market equilibrium prices. However, there is no guarantee
that the solver is able to do so; see, e.g., Section 5.8 in the BARON manual
by Sahinidis (2021).

(¢) To execute Line 5, Algorithm 1 relies on the existence of a procedure to
compute the set T(y*) for any given welfare optimal solution y*. Please see
Section 4, where we present such procedure for an application.

Theorem 3.8. If the assumptions of Theorem 3.4 are satisfied, then Algorithm 1 ter-
minates correctly with either a market equilibrium of (MEP) or with the information
that such an equilibrium does not exist.

Proof. Follows from Theorem 3.4 and Corollary 3.2. O

4. APPLICATIONS IN ENERGY MARKET MODELING

In this section, we consider energy networks modeled as graphs G = (V, A) and
assume that the graph G is directed and weakly connected. The node set V' can
further be split in the set V_ C V of consumer locations, the set V. C V of producer
locations, and the set Vjj C V of so-called inner nodes. For the ease of presentation,
we assume that these three sets are disjoint and that V_ UV, UV, =V holds. A
possible approach to handle nodes, where both a producer and a consumer are
located, is discussed in Section 5. In the market model, there are three types of
players: producers, consumers, and the transmission system operator (TSO). For
the sake of simplicity, we assume that each consumer node can be identified with a
single consumer and each producer node with a single producer.

Consider the consumer located at node u € V_, let m, be the market price at
this node, and let P,(-) be the consumer’s inverse demand function. The consumer
maximizes his surplus by choosing his demand d,, as a solution of

dy,
max / P,(t)dt — mud,, s.t. dy > 0. (8)
u 0

For the producer located at u € V,, let m, again be the market price at this node
and let ¢, (-) denote the variable cost of production. The producer maximizes her
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profits by choosing her production level g, within her production capacity g, > 0
as a solution of

max Y, — Cu(Yu) st Gu > yu > 0. 9)

The TSO is responsible for operating the network and his goal is to maximize
congestion rents by routing as much of the commodity from low-price to high-price
areas. For all arcs a € A, let g, denote the flow along that arc and let g := (ga)aca
be the vector of all flows. Besides the flow ¢, the TSO can have an additional
decision variable x to describe choices such as switching on or off a power line in the
power network or activating a compressor station in the gas network. In general,
the components of x can be continuous or integer. The optimization problem of the
TSO is then given by

max Z Ty Z qa — Z da - Ct(qa CE) (103)

q,T

uEV_UV+ (166‘" u) ae(sout(u)
s.t. Z Ga — Z ¢o >0 forallueV_, (10b)
a€din(u) a€sout (u)
Yo = Y <0 forallueVy, (10¢)
a€sin(u) a€sont(u)
Z Ga — Z Qo > —Yu forallueV,, (10d)
a€di (u) a€sout (u)
Z Qo — Z go =0 for all u € Vj, (10e)
a€din(u) a€dout (u)
Flg,2) > 0. (101)

Here, c!(q, ) describes the transportation costs and 6™ (u) (6°**(u)) denote the sets
of incoming (outgoing) arcs at node w. Finally, the mapping F'(g,x) summarizes
the, potentially nonconvex, network-related physical and technical constraints. The
first three constraints make sure that the net flow can only be positive at consumer
nodes, negative at producer nodes, and that it has to be zero at inner nodes.
Constraints (10d) ensure that at each supply node, the TSO does not obtain more
of the respective energy carrier than the nodal capacity allows for, i.e., the TSO is
informed about the capacities of all production facilities. Note that this is consistent
with the assumption of perfect competition.
The model is completed by the nodal market-clearing conditions

Z Qa — Z Qo =dy forallueV_, (11a)

a€din(u) a€edout (u)
Yo tam Y Ga=-wu forallueVi, (11b)
a€sin (u) acdout(u)

which ensure that production, consumption, and the in- and outgoing flows are
balanced at every node of the network.
The complete energy market equilibrium problem is thus given by

consumers: (8) for all u € V_,
producers: (9) for all u € V.,
TSO: (10),

(11).

(MEP-E)

market-clearing conditions:
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Since it has the form discussed in Sections 2 and 3, we know that market equilibria
(d*,y*,¢*, z*, ") are related to solutions of the welfare maximization problem

max Z / dt - Z Cu(yu) - Ct(%x)

dy.aw wev.,
s.t. Z Ja — Z go =0 forall ueVy,
a€din (u) a€dout(u)
Z Qa — Z o =dy forallueV_, (WFP-E)
a€din(u) a€dout(u)
Z Ga — Z o = —Yu forallueV,,
a€di (u) a€dout (u)

F(q,z) >0, d>0, y=>y=>0.

In the remainder of this section, we show that the conditions from Corol-
lary A.2 are satisfied under standard assumptions on the market equilibrium prob-
lem (MEP-E). Thus, we can use Algorithm 1 to decide on the existence of equilibria
and to compute an equilibrium if one exists. The imposed standard assumptions
read as follows.

Assumption 1. (1) The inverse demand functions P,(-) are continuous and
strictly decreasing for all u € V_.
(2) The variable cost functions c,(-) are monotonically increasing with ¢, (0) = 0,
convex, and continuously differentiable for all u € V.

These assumptions ensure that the producers and consumers have concave maxi-
mization problems subject to linear constraints. Consequently, any solution of (8)
and (9) is characterized by the respective KKT conditions. Exploiting this observa-
tion, we can prove that Corollary A.2 is applicable.

Theorem 4.1. Suppose Assumption 1 holds. Let (d*,y*,q¢*,2*) be a solution of
the welfare problem (WFP-E) and define 7 as

. P,(d), ifueV_,
Ty 1= :
C;(y:)v qu € V+'
Then, either (d*,y*,q¢*,x*,7) is a market equilibrium of (MEP-E), or there is no
market equilibrium.
Proof. We use the KKT conditions of the producers and consumers to define the
set II(d*, y*, ¢*,x*). For a consumer located at u € V_, these KKT conditions can
be reduced to
0<d; Lm>P,(d).
For a producer located at u € V, the KKT conditions read
Tu =, (yu) + By =B =0, 0<B7 Ly, >0, 0<B5 Lju—ys >0,

where 3; and 8;" denote the corresponding dual variables.
All candidates for market equilibrium prices are thus elements of the set
II(d*, y*, ¢*, z*) defined by

{P,(d2)}, if ueV_,d; >0,
[Pu(dqj)aoo)’ ifue V,, dz = O,
me RV m e S )}, Hue Vi gu> >0,

(_OO?C;,(y’Z)]? if (TS V+7 y;; = O7
[C;(y:)a +OO), ifue V+, y:; = Yu,
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Due to the simple structure of II(d*, y*, ¢*, 2*), the critical price & can be stated
explicitly and satisfies # € II(d*,y*, ¢*,2*). By definition of II(d*, y*, ¢*,z*), d*
thus is the consumers’ best response to 7 and y* is the producers’ best response
to . Consequently, it remains to show that Cases (a)—(d) of Corollary A.2 are
fulfilled for the TSO.

For all production nodes v € V; with positive but not binding production level
and for all consumption nodes u € V_ with positive demand, there is exactly one
candidate for an equilibrium price in II(d*, y*, ¢*, z*), namely 7. Hence, we are in
Case (a) of Corollary A.2.

For all demand nodes u € V_ with zero demand, we have

(hTSO u Z qa Z Qa

a€éin(u) a€dout (u)
- d:; =0 S Z da — Z da = (hTSO(Q))u
a€din(u) a€dout (u)

for all g feasible for (10). Since, additionally, 7, is chosen as the finite minimum
nodal price in II(d*, y*, ¢*,2*), all conditions in Case (c) of Corollary A.2 are
satisfied.

For all supply nodes u € V. with zero production, we have

(hrso(@)u= > a— Y. 4

a€di™(u) a€dout(u)
=—y;=0> > qu— Y, o= (hrso(q))u
a€sin (u) a€dout (u)

for all ¢ feasible for (10). Since, additionally, 7, is chosen as the finite maximum
nodal price in II(d*,y*, ¢*,z*), all conditions in Case (b) of Corollary A.2 are
satisfied.

For supply nodes u € V. at full capacity, we have

(hrso(@u= > @G- Y. 4

aeb‘m(u) aeéout(u)
= _yz = —Yu < Z Ga — Z Ga = (hTSO(Q))u
4 (u) a€sout ()

for all ¢ feasible for (10). Since, additionally, 7, is chosen as the finite minimum

nodal price in II(d*,y*, ¢*,x*), all conditions in Case (c) of Corollary A.2 are
satisfied.

Consequently, all conditions of Corollary A.2 are satisfied and the claim follows.

O

In general, choosing a sufficiently tight superset of all possible equilibrium prices
and computing the critical price can be difficult. However, in this application,
we get the critical price & “for free” once a solution (d*,y*,¢*,z*) of the welfare
problem (WFP-E) is known.

Additionally, since II(d*,y*, ¢*,2*) is defined via the KKT conditions of the
consumers and producers, which are necessary and sufficient under Assumption 1,
and since & € II(d*,y*, ¢*,2*), we immediately know that d and y are best
responses of all consumers v € V_ and all producers u € V, to the prices 7. To
check if (d*,y*, ¢*,z*, ) is a market equilibrium, one thus only has to verify that
(¢*,2*) is a best response of the TSO to the prices 7.
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5. COMPUTATIONAL STUDY

We now consider in more detail two applications in energy market modeling that
fit into the framework described above. We start with a detailed description of
the two applications in Section 5.1 and continue with giving information about the
computational setup and our test instances in Section 5.2. Afterward, we present
the numerical results for Algorithm 1; first for the gas application (Section 5.3) and
then for the power application (Section 5.4). The results are discussed and insights
are given on the conditions leading to non-existence of equilibria.

5.1. The Optimization Problems of the TSOs. We examine as applications
the case of a TSO operating a gas network under nonlinear stationary gas flow
equations and the case of a TSO switching DC lines in a DC power network. For
each application we provide an instance for which the duality gap of the welfare
problem is nonzero, i.e., for which no market equilibrium exists. In order to establish
non-existence of an equilibrium for the gas flow instance, we apply Corollary 3.3.
For the DC line switching instance, Algorithm 1 is applied to determine that no
market equilibrium exists.

We start with describing the optimization problems (10) of the respective TSOs, fo-
cusing mostly on the transportation costs c*(q, ) and the network constraints F'(q, z).
The optimization problems of the consumers (8) and producers (9) stay the same as
in Section 4. An overview of all technical and economic parameters and variables
together with the respective units used in this section can be found in Table 3
located in the Appendix B.

5.1.1. Gas Flow. This application is taken from Grimm, Griibel, et al. (2019). We
choose this application to study in particular the impact of continuous nonconvexities
on the existence of an equilibrium. The network-related physical constraints are
given by the following model of stationary gas physics:

pi _p12) = NaGalqal, a= (u,v) € A,

Pu <pu<pl, uev,

4o <qa<qf, acA
Here, the gas flow through the pipes is determined by the so-called Weymouth
equation; see, e.g., the chapter by Fiigenschuh et al. (2015) in Koch et al. (2015) for
more information on this topic. This equation links the flow ¢, on an arc to the
pressure drop (p? — p?) over this arc in a nonlinear way. Finally, nodal pressure and
flow bounds are imposed to, e.g., guarantee technical and contractual requirements.

For more information on the general setup see Grimm, Griibel, et al. (2019).
The transportation costs are assumed to increase quadratically with the flow, i.e.,

we have
ct(q) = Z g
acA
Next, we present an instance in which no market equilibrium exists for the
described gas application of (MEP-E). To simplify the presentation, we set the
transportation costs to zero for now.

Example 5.1 (Non-existence of Equilibria). For the instance depicted in Figure 2,
Grimm, Griibel, et al. (2019) show that exactly two welfare mazimal solutions exist,
namely

d2 =1+ \/ia d3 = Oa U1 = 1+ \/ia qi1,2 = \/57 q1,3 = ]-7 42,3 = 717
plz\/ia p2207 p3:15
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and

dy=ds=1, 51=2 GQa=q@s3=1 @3=0 p=V2, po=p3=1,
which differ in demand and generation. Hence, by Corollary 3.3, we know that
there is no market equilibrium for this instance. For an illustration of the given

example see Figure 1, in which the demand at node 2 is plotted on the abscissa and
the demand at node 3 on the ordinate.

Demand:
A=1 pe€0,1]
P(d)=13—d

Generation:
JAS [17 ﬂ]
c(y) =y*

A=1
qe[—l’l}

Demand:

A=1
g €[-1,1] p=1
P(d) =10v2+ 1 —d

FIGURE 2. 3-node network with all physical and economic data
considered in Examples 5.1 and 5.2; based on Figure 1 of Grimm,
Griibel, et al. (2019).

5.1.2. DC Line Switching. This application addresses the problem introduced in,
e.g., Fisher et al. (2008), Hedman et al. (2008), or Hedman et al. (2009) from
an economic point of view. We split the set A of arcs into the set of switchable
arcs A and non-switchable arcs A_. As soon as a power line a € A, is switched
off (indicated by the binary variable z, being equal to 0), no power flow over this
line is possible and no physical laws are imposed for this line. Conversely, as soon
as a power line a € A, is switched on (z, = 1), the power flow over this line is
bounded by its capacities and follows physical laws.

As in Fisher et al. (2008), Hedman et al. (2008), and Hedman et al. (2009), we
use the lossless direct current (DC) load flow approximation to model power flow.
In particular, we follow the formulation given in Section 3.7 in Zimmerman and
Murillo-Sanchez (2021). In the previously presented application, we focus on the
effect of continuous nonconvexities on the existence of an equilibrium. Here, we
focus on integrality restrictions and therefore choose this linear power flow model.
In total, the network-related physical constraints read

4o <qu<gqf, acA, (12a)

O — 0, — O = Xoqa, a=(u,v) € A, (12b)

My (1= 24) <0y — 0y — 0" — Xoga < M (1—2,), a=(u,v) €Ay, (12¢)
0070 < qa < qf 24, a€ Ay, (12d)

)

2, €{0,1}, a€ Ay. (12e

First, all flows g, are bounded from below and above by the capacities of the
respective DC lines. In accordance with the DC load flow approximation, the
flow on a line multiplied by its reactance X, has to equal the nodal phase angle
change (0, — 6,) for all non-switchable lines. In addition, for transformer nodes,
a phase shift angle 63" is considered. The DC load flow approximation is only
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fulfilled for switchable lines if they are switched on. Finally, if a switchable line is
switched off, the flow on this line must be zero.

Let us briefly comment on how we choose the big-M values M, and M in
Equation (12¢). On the one hand, it is crucial to find sufficiently large big-M values
to obtain a correct linearization. On the other hand, the big-M values should be as
tight as possible to avoid numerical problems. While such big-M values are easily
obtained for (12d) by the flow bounds, computing big-M values for (12¢) is harder.
Due to physics, there are bounds on the differences of nodal phase angles. One can
derive nodal phase angle bounds by fixing the phase angle at a reference node to zero.
Since the path from the reference node to any other node leads over at most |V| —1
arcs, the bounds on the nodal phase angles differences can be transferred to bounds
on the nodal phase angles. These bounds could be tightened by solving an all-pairs
longest-path problem. However, since this problem is known to be NP-hard, we
refrain from using this approach. The big-M values finally result from the DC load
flow approximation utilizing the derived phase angle bounds and the flow bounds.

As before, the transportation costs increase quadratically with the flow. In addi-
tion, a fee has to be paid for each line that is switched on. Hence, the transportation

costs are given by
Ma,2) =Y agz+ Y Bz
acA acAy

In the following example, we provide an instance for which no market equilibrium
exists for the described application of (MEP-E). For the sake of simplicity, we fix
the transportation costs to zero. Transformers are also not taken into account in
this example. Later in the computational study, we also provide instances without
an equilibrium when transportation costs are nonzero and transformers are included.

Example 5.2 (Non-existence of Equilibria). The instance considered here is based
on the instance considered in Example 5.1. The economic data is the same. In
addition, all reactances are 1 and the line (2,3) is switchable. The welfare maximum
computed in Step 1 of Algorithm 1 is the following:

d_ll de— 1 _14 _11 _q _ 0
2—37 3 =1, y1—3, Q1,2—3, fi3=1, qG23=0V,
11 8
9123, 0 =0, 93257 z93=1.

The next step is to test whether the TSO’s best response to the resulting critical price
vector

fr1=23—8, @:23—8, 7%3:1()[—%,
which is defined as in Corollary A.2, coincides with the TSO’s strategy in the welfare
mazximum. However, these prices are not incentive-compatible for the TSO since—
given these prices—the TSO’s objective is to route as much as possible to node 3,
neglecting node 2. This goal is achieved by the strategy

G12=05 q@13=1, G3=05 6 =1, 06,=05 03=0, Zz3=0

and not by (q,0, z). Thus, Algorithm 1 terminates with the indication that no market
equilibrium exists.

5.2. Computational Setup and Test Instances. We implemented Algorithm 1
in Python 3.8.5 using Pyomo 5.7.3; see Hart et al. (2017). In order to solve the NLPs
arising in the gas application, we use ANTIGONE 1.1; see Misener and Floudas (2014).
In turn, we solve the MILPs arising in the power application with Gurobi 9.1.1; see
Gurobi Optimization (2021). The computations have been carried out on the Woody
compute nodes with four Xeon E3-1240 v5 CPUs running at 3.50 GHz with 32 GB of
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TABLE 1. Overview of the instances of the gas flow application

Name V| |V-| |Vi| |A| 4 instances
Gas-134-S 134 45 3 133 60
Gas-11-H 11 3 3 10 36

RAM; for more information on the compute cluster see Regionales Rechenzentrum
Erlangen (2021). For each considered instance, we limit the runtime to 1 hour.

5.2.1. Gas Flow Instances. For the gas application, we adapted instances from
Heitsch et al. (2021) and Schewe et al. (2020), which are both based on networks
from Schmidt et al. (2017). An overview of the resulting 96 instances is presented
in Table 1.

The 60 instances Gas-134-S are identical with those presented in Schewe et al.
(2020) but we set fixed transportation costs to 0, choose the transportation cost
factor a in {0.01,0.05,0.1}, and “shifts” of the intercepts of the demand functions
in {—10,-5,0,5,10}. We do not include fixed transportation costs here as the
existence of a short-run market equilibrium is independent of considering any fixed
costs. In addition, we divide all slopes of the demand functions by 10 and multiply
all pressure drop coefficients by 8 to obtain network congestion for more instances.!
This approach is chosen since Grimm, Griibel, et al. (2019) show in Theorem 4.3
that—as long as nodal pressures are not binding and further mild assumptions
are fulfilled—an equilibrium exists for the considered market equilibrium problem.
Therefore, to avoid too many instances with guaranteed equilibrium in our numerical
study, a high percentage of instances with network congestion is desirable. We
address this issue further when presenting the numerical results in Section 5.3.

The instances Gas-11-H are taken from Heitsch et al. (2021).? Varying the
transportation cost factor o within {0.01,0.05,0.1} yields 36 instances. To increase
the percentage of instances with network congestion, all pressure drop coefficients
in Gas-11-H are again multiplied by the factor 8. For further information on the
data, see Heitsch et al. (2021).

5.2.2. DC Line Switching Instances. For the power application, we adapted the
instances included in the Software MATPOWER 7.0; see Zimmerman and Murillo-
Sanchez (2019) or Zimmerman, Murillo-Séanchez, and Thomas (2011) for details.
We restrict our analysis to those instances for which the generation cost data is
provided as polynomial cost functions.? In addition, we neglect all instances for
which the reported minimum and maximum phase angle difference coincide in all
nodes. The reason is that the same minimum and maximum phase angle difference
imply the same lower and upper flow bound, i.e., there is a unique solution w.r.t.
the flow in the welfare problem (WFP-E) and a matching unique solution of the
TSO problem (10). Hence, for these instances, an equilibrium always exists as the
TSO has no possibility to deviate from the welfare-maximal solution. After deleting
the described instances, 29 instances remain. Since all instances with more than
1000 nodes and more than 1500 arcs cannot be solved to optimality within the
time limit, we only report on the remaining 17 instances here. Finally, we vary the

LAn increase of all pressure drop coefficients around the factor 8 corresponds, e.g., to a diameter
reduction by 33 % for all pipes or the consideration of a hydrogen network instead of a natural gas
network (this approximately equals the change in the specific gas constant).

2Since the flow values in Heitsch et al. (2021) are given as volumetric flows under normal
conditions, we convert them to mass flow assuming a gas density of 0.87 kg/m3.

3For the two instances case30pwl and case RTS GMLC, the generation cost data is given by
piecewise linear functions.
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TABLE 2. Overview of the instances of the DC line switching application

Instance |V| |V_| |V4] |4] |A4|

Smallest 5 3 4 6 1
Average 56 33 15 97 10
Biggest 300 191 69 411 42

transportation cost factor @ and switching costs 3 as follows: « € {0.01,0.05,0.1}
and 8 € {20,50}. Thus, the final test set contains 102 instances in total. An
overview of this test set is given in Table 2.

The economic data is obtained in the following way. For the calibration of the
demand functions, we assume an elasticity of —0.1. The respective reference price is
chosen to be the mean of the suppliers’ critical prices given the real power outputs y,
reported by MATPOWER, i.e., the reference price equals

1
W Z € (Yu)-
ueVy
The respective reference quantity is the real power demand reported by MATPOWER.
For generators, we utilize the reported generator cost data and generation capacities.
Again, fixed costs are not considered as the existence of a short-run market equi-
librium is independent of any given fixed costs. If multiple generators are located
at one node, we use the average of the coefficients of the reported polynomial cost
functions. We further note that there is also the possibility of a consumer and a
producer being located at the same node. For these nodes, Case (a) of Corollary A.2
has to be valid in order to apply Algorithm 1. This is always the case.

Since there is not enough information available on switchable arcs, we randomly
select 10 % of all arcs as switchable.* The reactance X, and the transformer phase
angle shift 5" are chosen as described in Section 3 in Zimmerman and Murillo-
Sanchez (2021). The flow bounds are obtained from the minimum and maximum
phase angle difference reported by MATPOWER in combination with the DC load
flow approximation for all arcs a € A, i.e.,

3 (eu _ ev)— _ elslhift N (eu _ ev)+ _ elslhift

4, = X, and ¢ X,

holds if X, > 0, and
(gu _ QU)Jr _ e{slhift
Xa

dq =

holds if X, < 0.
Finally, the main questions that arise are the following;:

(Gu _ ov)f _ o(slhift

+
a
X

and ¢

(1) How often does a market equilibrium exist for the two considered applications
of (MEP-E)?

(2) Under which circumstances does it become more likely that an equilibrium
exists for the two considered applications of (MEP-E)?

We answer these questions now by applying Algorithm 1 to the presented instances.

5.3. Numerical Results: Gas Flow. The numerical results of Algorithm 1 ap-
plied to the described gas instances are as follows. In total, 84 instances out of
the 96 instances (87.5%) are solved within the time limit of 1hour. The average
runtime over all solved instances is 53.1s and the median runtime is 18.7s. To

4The number is rounded up to the next integer. The respective random seed to initialize the
random number generator of the Python package random equals the number of arcs in the network.
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interpret the results, we call an instance congested if at least one of the following
cases applies in the welfare solution:

(1) the flow on an arc is strictly positive and at the arc’s upper flow bound, or

(2) the flow on an arc is strictly negative and at the arc’s lower flow bound, or

(3) the nodal pressure is at an upper bound and another nodal pressure is at a
lower bound, while a directed flow path from this node to the other node
exists.

We observe network congestion in 56 (66.7 %) solved instances. Similar arguments
as used by Grimm, Griibel, et al. (2019) reveal that an equilibrium exists for the
uncongested 28 solved instances. Our computational results confirm this and show
that there also exists a market equilibrium in all solved and congested 56 instances.

Even though no instances without equilibrium exist in our numerical study, we
have seen in Example 5.1 that the non-existence of an equilibrium is possible for
the considered application. We note that this example was handcrafted with very
specific data to ensure that it does not have a market equilibrium. In contrast,
our results suggest that non-existence of an equilibrium hardly occurs for practical
instances.

5.4. Numerical Results: DC Line Switching. For the 102 instances of the DC
line switching application, the average runtime of Algorithm 1 is 0.4 s and the median
is 0.3s. A market equilibrium exists for 60 out of the 102 instances. No market
equilibrium exists for the MATPOWER instances case30, case30Q, case ieee30,
case39, case57, caseldb, and case300 for all variations of the transportation cost
factor and the switching costs. To simplify notation, we use, e.g., case30-0.1-20 as
an abbreviation for case30 with transportation cost factor a = 0.1 and switching
costs 8 = 20.

In the following, we discuss the circumstances leading to non-existence of an
equilibrium based on examples from our computational study. In particular, there
does not exist an equilibrium when the welfare gains outweigh the losses induced
by a network decision, while the TSO’s profit gains do not. This may even result
in the TSO incurring losses in the welfare solution as the corresponding gains of
the producers and the consumers are greater than the losses of the TSO. Since the
TSO’s objective function value is bounded from below by zero (zero flows and all
lines switched off), no equilibrium exists in these instances. Actually, this situation
occurs in 29 out of the 42 instances without equilibrium.

All instances case30, case30Q, and case _ieee30 are based on the same network and
admit negative TSO profits in the welfare solution. Non-existence of an equilibrium
is caused in all instances by a single line being switched on in the welfare solution,
which is switched off in the optimal solution of the TSO. In Figure 3, the underlying
situation is exemplarily depicted for the instance case30-0.1-20. The welfare solution
and the TSO solution differ only in the flows on the three depicted lines, of which
(10,20) is the mentioned switchable line. By switching this line off, the TSO
separates the consumers located at nodes 18, 19, and 20 from the rest of the network.
The reason for this is obvious. While the welfare gains from serving these three
consumers clearly outweigh the losses induced by switching on the line (10, 20) in
the welfare solution, the profit gains for the T'SO in case of switching this line on
are by far too low to outweigh the switching costs since price differences are too low
in the described subgraph. Consequently, the TSO has no incentive to switch on
line (10, 20).

A similar situation occurs for the instance case57. Here, non-existence of an
equilibrium is caused by two lines being switched on in the welfare solution, which
are switched off in the optimal solution of the TSO. In Figure 4, all differences of
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FIGURE 4. Parts of the graph on which the welfare solution (left)
and the best response of the TSO (right) differ for the instance
case57-0.1-20

the welfare and the TSO solution w.r.t. the flows are presented. The switching
decisions differ for the lines (54,55) and (35,36). Again, individual consumers are
separated from the rest of the network in the TSSO solution, namely the consumers
located at node 54 and at node 35. The reason for this is the same as before. The
profit gains induced by connecting these consumers to the network do not outweigh
the related switching costs for the TSO.

In all instances described so far, one or multiple adjacent nodes at which consumers
are located have been separated from the rest of the network in the TSO solution
but not in the welfare solution. We like to note that, e.g., in the instance case39,
the same is true for a node where a generator is located.

There are three main circumstances that might ensure the existence of an equi-
librium in the above described situations: (i) lower switching costs, (ii) higher
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switching costs, or (iii) a higher transportation cost factor. If the switching costs
are low enough (Case (1)), the TSO’s decisions align with the welfare solution, since
then the gained profits indeed outweigh the losses due to switching. If, on the other
hand, switching costs are high enough (Case (ii)), the welfare solution matches the
TSO’s solution since then the welfare gains as well as the profit gains no longer
outweigh the switching costs. Actually, in all instances of our computational study
for which a market equilibrium exists, this case applies. Due to relatively high
switching costs, all lines are switched off in the welfare and the TSO solution. A
higher transportation cost factor (Case (iii)) leads to increased price differences
within the network. Resulting profit gains for the TSO might indeed exceed possible
switching costs and therefore it becomes more likely that the TSO switches on lines.

To conclude, we study the Cases (i)—(iii) by varying in more detail the switching
costs and the transportation cost factor for the MATPOWER case case39. The results
for varying the switching costs are depicted in Figure 5. Indeed, if the switching
costs are low enough, the TSO’s decisions align with the welfare solution. Since the
profit gains and the welfare gains outweigh all losses due to switching, all 5 lines
are switched on. Now, if the switching costs rise above 0.7, the profit gains of the
TSO no longer outweigh all switching costs and the number of switched-on lines in
the TSO solution decreases. This continues until the value 3.2 is reached, at which
also the welfare gains no longer outweigh all losses due to switching and the number
of switched-on lines in the welfare solution reduces to 4. However, this reduction
does not lead to the TSO aligning again with the welfare solution. Even the reverse
behavior can be observed as, e.g., when the number of switched-on lines in the
welfare solution further reduces to 2. There, the TSO exploits the price differences
resulting from switching off the two additional lines in the welfare solution by even
switching on 4 lines in total. Nevertheless, the incentive to do so decreases with
further increasing switching costs. Finally, an equilibrium is obtained again when
the switching costs are high enough such that neither the welfare gains nor the
profit gains outweigh the losses from switching on any line. This point is reached
for significantly larger switching costs of 17524, which are omitted in the figure for
the ease of readability.

Figure 6 shows the results for varying the transportation cost factor for the
MATPOWER case case39. For a transportation cost factor of 0, no market equilibrium
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exists. The price differences are not yet high enough for the TSO to outweigh the
losses due to switching. In turn, one line is switched on in the welfare solution.
With increasing transportation cost factor, the number of switched-on lines in the
welfare solution increases monotonically. This is because the additional transport
possibilities allow for a cheaper transport despite the additional switching costs.
Since an increasing transportation cost factor furthermore leads to increasing price
differences, the number of switched-on lines also increases monotonically in the
TSO solution for a constant number of switched-on lines in the welfare solution. At
the points where additional lines are switched on in the welfare solution, the TSO
responds to the corresponding critical prices by reducing the number of switched-on
lines. The main reason behind this behavior is as follows. The additional switched-
on lines in the welfare solution decrease the price differences. As a result, profit
gains due to switching no longer outweigh the arising costs. Consequently, less lines
are switched on. Finally, if the transportation cost factor is larger than 2.7, an
equilibrium always exists since then all lines are switched on in the TSO and in the
welfare solution.

6. CONCLUSION

In this paper we considered market equilibrium problems in which both convex as
well as nonconvex player problems appear. This setting is motivated by applications
from energy markets, where, e.g., nonconvexities arise in power markets due to
integer decisions of certain players or in gas markets due to nonlinear flow models.
In the cases studied in this paper, these nonconvexities always appear in the
optimization problem of the TSO. Based on the recent results presented in Harks
(2020), we derived an algorithm that computes a solution of such nonconvex market
equilibrium problems or correctly indicates the non-existence of such an equilibrium.
Our computational study reveals interesting aspects. In the continuous but nonlinear
and nonconvex market equilibrium problems from the gas sector, all tested instances
have an equilibrium. This is different in the power application. Here, integrality
restrictions lead to many instances for which no equilibrium exists.

Our results pave the way for some interesting topics of future research. First,
one could try to find sufficient conditions under which an equilibrium exists, i.e.,
under which the resulting welfare problem has a zero duality gap. The discussed
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instances from the gas sector indicate that this might be possible. Second, one
could consider approximate market equilibria in the nonconvex setting. A potential
research question might be whether e-relaxed optimal solutions to the players’
problems give enough freedom to prove the existence of equilibria in settings in
which classic equilibria fail to exist. Third, alternative pricing schemes that support
an equilibrium could be tested for the DC line switching application as, e.g., the
scheme of O’Neill et al. (2005) or the one of Huppmann and Siddiqui (2018). Fourth,
one could investigate how the results change in a computational study in which
nonlinearities and integralities are combined, as it would be the case for AC line
switching models.
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APPENDIX A. EXISTENCE OF EQUILIBRIA FOR MAXIMIZATION GAMES

Instead of the minimization problem (1), each player i € I now faces the maxi-
mization problem

max  fi(y, 7)== ci(y;) + WThi(yi) st. y; €Y. (13)
Yi

Thus, the corresponding maximization game reads

optimization problems of the players: (13) for all ¢ € I,

MEP-
market-clearing conditions: (2), ( max)
while the corresponding welfare optimization problem now reads
ma; ci(y;) s.t. €y, h;(y;) = 0. WFP-ma;
ax > ci(yi) y > hiyi) ( x)

iel il
In this setting, Theorem 3.4 reads as follows.

Corollary A.1. Let y* be a solution of the welfare problem (WFP-max) and let
II(y*) # 0 be a set satisfying the condition
(y*,7*) is a market equilibrium of (MEP-max) = =" € II(y").

Assume that for allk € {1,...,n.} at least one of the following properties is satisfied:

(a) m, =m/,

(b) w7 < o0 and (hi(y?)e = (b
(c) m, > —o0 and (hi(y;))k < (

) T =—oo,7r,‘:—ooa d (hi(y

1€ 1.

(yi))k for ally; € Y; and all playersi € 1,
hi(yi))k for all y; € Y; and all players i € 1,
Ni = (hi(yi))k for all y; € Y; and all players



MARKET EQUILIBRIUM PROBLEMS WITH CONVEX AND NONCONVEX PLAYERS 23

Then, there exists a market equilibrium of (MEP-max) if and only if (y*, %) is a
market equilibrium, in which the critical price & is defined as

T, =7, if (a) applies,
R 71';7 if (b) applies,
Tk = . .

T if (¢) applies,

0, if (d) applies.

Consider again a player ¢ € I for which the feasible set Y; is given by standard
constraints, e.g., Y; = {y;: g:(y;) < 0}. If all functions ¢;, h;, and g; are continuously
differentiable, if y; — f;(y;, m) are concave functions and g; are convex functions,
and if a constraint qualification for Y; is satisfied at v, then the KKT conditions
for (13) are necessary and sufficient for optimality. As a consequence, only prices 7
for which there exists multipliers u; with

0=—-Vei(y;) — Vhi(y;)m+ Vai(y )i, 0 < pi Lgi(y;) <0 (14)
can be market equilibrium prices. The analogue of Corollary 3.6 for maximization

problems thus reads as follows.

Corollary A.2. Let y* be a solution of the welfare problem (WFP-max). Moreover,
let C C I denote the subset of players for which the KKT conditions (14) are
necessary and sufficient optimality conditions and choose the candidate set II(y*)
such that the condition
(y*,7*) is a market equilibrium of (MEP-max) = =™ € II(y*)
as well as the KKT conditions of all players i € C' are satisfied, i.e.,
II(y*) C {m € R" : for all i € C ewists y; such that (14) holds} .
Assume that for all k € {1,...,n.} at least one of the following properties is satisfied:
(a) 7Tk_ - 7T]—:,
(b) > (hi(yi))k for all y; € Y; and all players i € I\C,
(c) m, > —o0 and (hi(y;))r < (hi(y:))x for all y; € Y; and all players i € I\C,
(@) nd (7)) = (hi(yi))x for all yi € Y and all plagers

T, =75, if (a) applies,

) ™, if (b) applies,

o=
¥ T if (¢) applies,
0, if (d) applies.

If the critical price satisfies & € II(y*), then there exists a market equilibrium of
(MEP) if and only if (y*,#) is a market equilibrium.

APPENDIX B. NOTATION

All technical and economic parameters and variables used throughout the com-
putational study in Section 5 are presented together with their respective units in
Table 3. We do not use SI units here but the units that are commonly used in
the literature of the respective applications, e.g., Nm?> /h denotes volumetric flow
under normal conditions. This is in line with the literature from which we adapted
our instances; see, e.g., Schewe et al. (2020) and Zimmerman and Murillo-Sanchez
(2021).



24 J. GRUBEL, O. HUBER, L. HUMBS, M. KLIMM, M. SCHMIDT, AND A. SCHWARTZ

TABLE 3. Technical and economic parameters (top) and variables (bottom)

Sym. Explanation Unit Unit
gas power
m,  Market price at node u € V_ UV, €/(1000 Nm3/h) $/MWh

a,  Intercept of inverse demand P,(-) of €/(1000 Nm* /h) $/MWh
consumer u € V_

b,  Slope of inverse demand P,(-) of €/(1000Nm® /h)? $/MW?h
consumer u € V_

cu,1 Coefficient of linear term of variable €/(1000 Nm* /h) $/MWh
cost ¢, (+) of producer u € V

cuz Coefficient of quadratic term of vari-  €/(1000Nm?/h)2 $/MW?2h
able cost ¢, (+) of producer u € V.

7.  Capacity of producer u € V. 1000 Nm?® /h MW
a  Transportation cost factor €/(1000Nm? /h)? $/MW?h
B Switching costs — $/h
A, Pressure drop coefficient of arc a € A (bar)?/(1000Nm® /h)? —
p,  Lower pressure bound at node u € V bar —
pt  Upper pressure bound at node u € V bar —
g, Lower flow bound of arc a € A 1000 Nm?® /h MW
qr  Upper flow bound of arc a € A 1000 ng/h MW
X, Reactanceof arcac A — p.u.
gshift  Transformer phase shift angle (a € A) — rad
d,  Demand of consumer u € V_ 1000 Nm® /h MW
yu  Production of producer u € V, 1000 Nm?® /h MW
¢o Flowonarcace A 1000 Nm?® /h MW
p.  Pressure at node u € V bar —
0,  Phase angle at node u € V — rad

Za Switching decision of arc a € A4 — —
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