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Abstract

This paper studies the integral turnpike and turnpike in average for a class of random or-
dinary differential equations. We prove that, under suitable assumptions on the matrices that
define the system, the optimal solutions for an optimal distributed control tracking problem
remain, in an averaged sense, sufficiently close to the associated random stationary optimal
solution for the majority of the time horizon.

1 Introduction

In this paper we consider an optimal control distributed tracking-type problem of linear ordinary

differential equations with random coefficients. This kind of differential equation is the stochastic

counterpart of deterministic differential equations in the most complete sense. The term random

differential equations in general refers to differential equations with random coefficients, having

either deterministic or random inhomogeneous parts and initial conditions.

Differential equations with random coefficients have been studied and used on a wide variety of

problems in engineering and science. This is because the solution of a dynamic system is a function

of the values of the parameters which constitute the system. These parameters are experimentally

determined and are usually taken to be the mean value of a set of experimental observations.

However, in reality, the observations might be measured with errors due the variability of the

conditions or because of uncertainties or lack of knowledge. Therefore, a more adequate approach

to analysis would be to consider systems with random variables as coefficients. We can mention

the earlier work on this area [2] where the author studied the propagation of sound waves of

high-frequency in the atmosphere of randomly varying refraction index. We refer to the books

[18, 19] for a complete study of this kind of equations and interesting applications in science,

engineering, physics and biomedical systems, among others.

On the other hand, in the context of optimal control, in [16] the authors studied the concept of

turnpike for the solutions of an optimal control problem subject to ordinary differential equa-

tions without randomness. The turnpike property, roughly speaking, describes that the optimal

evolutionary solution is made of three arcs, the first and the last being transient short time arcs,

and the middle piece being a long-time arc remaining exponentially close to the optimal steady

state of the corresponding stationary optimal control problem. This concept was formulated in

the earlier work [6], in the context of the econometric field.

Motivated by the previous considerations, we will investigate if any connection exists between the

average of an optimal solution of a certain optimal control problem for an ordinary differential

equation with random coefficients with the corresponding stationary random problem. Specifi-

cally, we will analyze the turnpike phenomenon for a class of random differential equations, which
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is important to understand the behavior of solutions to optimal control problems on large time

horizons. To the best of our knowledge, it is the first time that the turnpike property is studied

for random differential equations.

Stating things more mathematically, in this paper we consider a probability space (Ω,F , µ) and
three random matrices A,C ∈ C0(Ω,L(Rn)) and B ∈ C0(Ω, L(Rm,Rn)), constant in time, which

will represent the random coefficients of the equation, the random observation and the random

control, respectively. We assume that the joint probability distribution of matrices A,B and C

is specified. We consider the following optimal control problem

min
u∈L2(0,T ;Rm)

{
JT (u) =

1

2

(∫ T

0
∥u(t)∥2Rm dt+

∫ T

0
∥C(·)x(t, ·)− z∥2L2(Ω,Rn) dt

)}
, (1.1)

subject to x solving the following evolutionary problem{
xt +A(ω)x = B(ω)u t ∈ (0, T ),

x(0, ω) = x0(ω),
(1.2)

where z ∈ Rn is a fixed target. Here x = x(t, ω) ∈ Rn represents the state and u(t) ∈ Rm the

control of the system, respectively.

The first aim of this paper it is prove that when the time-horizon goes to infinity, the optimal

pair (uT , xT ) of (1.1)-(1.2) converges in an averaged sense to (u, x) in Rm × L2(Ω,Rn), where

(u, x) solves the associated stationary random optimal control problem

min
u∈Rm

{
Js(u) =

1

2

(
∥u∥2Rm + ∥C(·)x(·)− z∥2L2(Ω,Rn)

)}
, (1.3)

subject to x solving the problem

A(ω)x(ω) = B(ω)u, (1.4)

where z ∈ Rn is the same target of the problem (1.1). That is, we will analyze the following

limits, which are usually called integral turnpike property

1

T

∫ T

0
xT (t, ·)dt→ x(·) in L2(Ω,Rn),

1

T

∫ T

0
uT (t)dt→ u in Rm.

The second main result is to show an exponential turnpike property. Namely, we will prove the

existence of two positive constants K and δ, independent on the time-horizon T , such that the

solutions of the extremal equations (uT , xT , φT ) remains exponentially close to the steady state

solution, the so-called turnpike, for the majority of the time. That is,∥∥xT (t, ·)− x(·)
∥∥2
L2(Ω,Rn)

+
∥∥φT (t, ·)− φ(·)

∥∥2
L2(Ω,Rn)

≤ K(e−δ(T−t) + e−δt),

for every t ∈ (0, T ). Here, (φT , φ) represents the characterization of minimizers via the first order

necessary optimality conditions (the dual variables). In addition, as a consequence of the previous

estimate, we prove an average exponential turnpike, that is∥∥E(xT (t, ·)− x)
∥∥
Rn +

∥∥E(φT (t, ·)− φ)
∥∥
Rn +

∥∥uT (t)− u
∥∥
Rm

≤ K(e−δ(T−t) + e−δt),



for every t ∈ (0, T ) and where E(xT ) denotes the expected value of xT and is given by

E(xT ) =
∫
Ω
xTdµ.

Let us mention that both results are based on stability assumptions for A,B and C, which are

the matrices that define the system. These assumptions are related to the existence of feedback

operators in a such way that we can ensure an ellipticity type condition. Besides, these hypotheses

allow us to establish relevant observability inequalities which play an important role in the proof

of our main results. We refer to Section 2 for a complete discussion on the subject.

There is abundant literature on the turnpike phenomenon in various contexts, see for instance

[4, 7, 8, 9, 10, 11, 12, 15, 16, 17, 20, 21, 22, 23, 24, 25, 27]. Let us briefly mention some of

them. The present work is an extension of the results presented in [16], where the authors

studied the turnpike property in the context of ordinary differential equations. They established

the exponential turnpike property using the theory for Algebraic Riccati Equation associated to

the optimal control. Here, we show the exponential turnpike based on the boundedness of the

operator corresponding to the optimality system. This approach was taken from [10], where the

authors proved the exponential turnpike result for linear quadratic optimal control problems with

dynamics satisfying a particular kind of stabilizability and detectability assumption. Finally,

we mention the work [15], where the authors, motivated by reinforcement learning, studied a

similar problem to our first main result in the context of optimal control problems with uncertain

dynamics.

The rest of the paper is organized as follows. The main assumptions of this work are included in

Section 2, in which we also prove the existence and uniqueness for the optimal control problems.

Section 3 is devoted to the statement and proof of the main results, namely Theorems 3.1 and

3.2. Finally, in Section 4 we show some computational examples to illustrate the average turnpike

phenomenon.

2 Optimal control problems

In this part of the work, we analyze the optimal control problem presented in the Introduction,

both the evolutionary and stationary problem. We prove that, under some assumptions on the

matrices A,B and C which define the system, these optimal controls are well-defined and satisfy

the first order optimality condition.

Throughout the following, without any mention, we consider the spaces Rn and Rm, with n,m ∈
N, n ≥ m. We consider a probability space (Ω,F , µ), where the sample space Ω ⊂ Rd is an

arbitrary bounded set, F represents the σ-algebra, and µ is the probability measure on F which

satisfies µ(Ω) = 1. We will use the letter K to denote an absolute positive constant which might

change even in the same line of text.

We consider the following random ODE{
xt +A(ω)x = B(ω)u t ∈ (0, T ),

x(0, ω) = x0(ω),

where ω ∈ Ω corresponds the random parameter, x = x(t, ω) ∈ Rn is the state of the system,

the n× n matrix A ∈ C0(Ω,L(Rn)) governs its free dynamics, u(t) ∈ Rm is the control function



which is assumed to be independent of the randomness and acts on the system through the control

matrix B ∈ C0(Ω,L(Rm,Rn)) which is a m× n parameter dependent matrix. The initial datum

x0(ω) belongs to the space L2(Ω,Rn;µ), which is defined below.

Let us define the space

L2(Ω,Rn;µ) :=

{ω ∈ Ω 7→ y(ω) ∈ Rn measurable : ∥y(·)∥2L2(Ω,Rn;µ) =

∫
Ω
∥y(ω)∥2Rndµ(ω) <∞},

which is a Hilbert space endowed with the inner product

⟨x, y⟩L2(Ω,Rn;µ) =

∫
Ω
⟨x(ω), y(ω)⟩Rndµ(ω), ∀x, y ∈ L2(Ω,Rn;µ).

In what follows, we denote by L2(Ω,Rn) := L2(Ω,Rn;µ).

Additionally, we also assume that the matrices A and B are uniformly bounded with respect to

ω, that is, there exists a positive constant M > 0 such that

sup
ω∈Ω

|ai,j(ω)| ≤M, i, j ∈ {1, . . . , n},

sup
ω∈Ω

|bi,j(ω)| ≤M, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},

sup
ω∈Ω

|ci,j(ω)| ≤M, i, j ∈ {1, . . . , n},

where ai,j , bi,j , ci,j are the coefficient of matrices A, B and C, respectively. This assumption

allows us to ensure the integrability of the solutions of (1.2) with respect to ω.

Concerning the integrability of the solutions for (1.2), we have the next result, which can be

consulted in [14].

Theorem 2.1 ([14, Corollary 2.2]). Assume the map ω 7→ (A(ω), B(ω)) is continuous on Ω.

Then, for every x0 ∈ L2(Ω,Rn), every u ∈ L2
loc(R+,Rm), and every t ≥ 0, the solution x of (1.2)

satisfies x(t, ·) ∈ L2(Ω,Rn). In addition, the solution x can be represented by

x(t, ω) = etA(ω)x0(ω) +

∫ T

0
e(t−s)A(ω)B(ω)u(s)ds, ∀ω ∈ Ω, t ∈ [0, T ].

2.1 Evolutionary problem

Let us consider first the optimal control for the evolutionary problem (1.2) with initial datum

independent of ω. That is,

min
u∈L2(0,T ;Rm)

JT (u), (2.1)

where

JT (u) =
1

2

(∫ T

0
∥u(t)∥2Rm dt+

∫ T

0
∥C(·)x(t, ·)− z∥2L2(Ω,Rn) dt

)
,

subject to x solving the following evolutionary problem{
xt +A(ω)x = B(ω)u t ∈ (0, T ),

x(0, ω) = x0,
(2.2)



where z ∈ Rn is a fixed target. The case of initial condition x0 ∈ L2(Ω,Rn) does not lead to any

essential new difficulty throughout the following. Thus, for sake of simplicity of the presentation,

we only deal with the case where x0 is independent of ω.

By using the direct method of the calculus of variations, and noting that the solution x of (2.2)

depends linearly and continuously in u, we obtain the existence and uniqueness result of the

optimal control. Besides, the characterization of the control can be done using the Gateaux

derivative of JT . These results are included in the following theorem.

Theorem 2.2. There exists a unique solution (uT , xT ) ∈ L2(0, T ;Rm)× C0([0, T ];

L2(Ω,Rn)) to the minimization problem (2.1)-(2.2), where xT is the optimal state associated to

the control uT . In addition,

uT (t) = −
∫
Ω
B∗(ω)φT (t, ω)dµ, (2.3)

where φT ∈ C0([0, T ];L2(Ω,Rn)) is the solution of the backward problem{
−φT

t +A∗(ω)φT = C∗(ω)(C(ω)xT − z) t ∈ (0, T ),

φT (T, ω) = 0.
(2.4)

In what follows, we assume the next two conditions with respect to the dynamics and the cost

functional.

Hypothesis 1: For the pair (A,C) we assume the following condition. There exists a

feedback operator KC ∈ C0(Ω,L(Rn)) uniformly bounded with respect to ω such that

∃α > 0 : ⟨(A+KCC)v, v⟩L2(Ω,Rn) ≥ α ∥v(·)∥2L2(Ω,Rn) , ∀v ∈ L2(Ω,Rn). (2.5)

Hypothesis 2: For the pair (A∗, B∗) we consider the next assumption. There exists κ1 ∈ R
and κ2 > 0 such that

⟨A∗v, v⟩L2(Ω,Rn) + κ1

∥∥∥∥∫
Ω
B∗(ω)v(ω)dµ

∥∥∥∥2
Rm

≥ κ2 ∥v(·)∥2L2(Ω,Rn) , ∀v ∈ L2(Ω,Rn). (2.6)

These kinds of assumptions are closely related to exponential stabilizability and exponential

detectability, as mentioned in [10] for abstract differential equations. Under the previous assump-

tions we have the following “observability” estimates for xT (T ) and φT (0).

Lemma 2.3. Let us assume that Hypothesis 1 holds. Then, there exists a constant K > 0

independent of T > 0 such that, for every t ∈ [0, T ]

∥xT (t, ·)∥2L2(Ω,Rn) ≤ K

(∫ T

0

[
∥B(·)uT (t)∥2L2(Ω,Rn) + ∥C(·)xT (t, ·)∥2L2(Ω,Rn)

]
dt

+ ∥x0∥2Rn

)
, (2.7)

where (uT , xT ) is the optimal pair given by Theorem 2.2.



Proof. Let 0 < t ≤ T . Testing the equation (2.2) by xT and integrating over (0, t)× Ω, we have

1

2
∥xT (t, ·)∥2L2(Ω,Rn) +

∫ t

0

(
⟨AxT , xT ⟩L2(Ω,Rn) + ⟨KCCx

T , xT ⟩L2(Ω,Rn)

)
ds

=

∫ t

0

(
⟨BuT , xT ⟩L2(Ω,Rn) + ⟨KCCx

T , xT ⟩L2(Ω,Rn)

)
ds+

1

2
∥x0∥2Rn ,

where KC is the feedback operator given by Hypothesis 1. Using again Hypothesis 1, there

exists a constant α such that

1

2
∥xT (t, ·)∥2L2(Ω,Rn) + α

∫ t

0
∥xT (s, ·)∥2L2(Ω,Rn)ds

≤
∫ t

0

(
⟨BuT , xT ⟩L2(Ω,Rn) + ⟨KCCx

T , xT ⟩L2(Ω,Rn)

)
ds+

1

2
∥x0∥2Rn .

Now, for every ε1, ε2 > 0 we obtain

1

2
∥xT (t, ·)∥2L2(Ω,Rn) + α

∫ t

0
∥xT (s, ·)∥2L2(Ω,Rn)ds ≤

1

2ε1

∫ t

0
∥B(·)uT (s)∥2L2(Ω,Rn)ds

+
ε1
2

∫ t

0
∥xT (s, ·)∥2L2(Ω,Rn)ds+

1

2ε2

∫ t

0
∥KC(·)C(·)xT (s, ·)∥2L2(Ω,Rn)ds

+
ε2
2

∫ t

0
∥xT (s, ·)∥2L2(Ω,Rn)ds+

1

2
∥x0∥2Rn .

Choosing ε1, ε2 > 0 in a such way 2α − ε1 − ε2 > 0, there exists a constant K > 0, independent

of t, such that

∥xT (t, ·)∥2L2(Ω,Rn) +

∫ t

0
∥xT (s, ·)∥2L2(Ω,Rn)ds

≤ K

(∫ t

0

[
∥B(·)uT (s)∥2L2(Ω,Rn) + ∥C(·)xT (s, ·)∥2L2(Ω,Rn)

]
ds+ ∥x0∥2Rn

)
.

Therefore, we obtain

∥xT (t, ·)∥2L2(Ω,Rn) ≤ K

(∫ T

0

[
∥B(·)uT (s)∥2L2(Ω,Rn) + ∥C(·)xT (s, ·)∥2L2(Ω,Rn)

]
ds

+ ∥x0∥2Rn

)
,

for every 0 ≤ t ≤ T . We have shown (2.7).

Lemma 2.4. Let us assume that Hypothesis 2 holds. Then, there exists a constant K > 0

independent of T > 0 such that for every t ∈ [0, T ]

∥φT (t, ·)∥2L2(Ω,Rn) ≤ K

∫ T

0

[
∥C(·)xT (t, ·)− z∥2L2(Ω,Rn)

+

∥∥∥∥∫
Ω
B∗(ω)φT (t, ω)dµ

∥∥∥∥2
Rm

]
dt, (2.8)

where φT is the solution of (2.4).



Proof. Let 0 ≤ t < T . Multiplying (2.4) by φT , integrating over (t, T ) × Ω, and using the

Hypothesis 2, we get

1

2
∥φT (t, ·)∥2L2(Ω,Rn) + κ2

∫ T

t
∥φT (t, ·)∥2L2(Ω,Rn)dt

≤
∫ T

t

(
⟨CxT − z, CφT ⟩L2(Ω,Rn) + κ1

∥∥∥∥∫
Ω
B∗(ω)φT (t, ω)dµ

∥∥∥∥2
Rm

)
dt.

Then, for every ε > 0 we obtain

1

2
∥φT (t, ·)∥2L2(Ω,Rn) +

(
κ2 −

ε

2

)∫ T

t
∥φT (s, ·)∥2L2(Ω,Rn)ds

≤
∫ T

t

(
1

2ε
∥C(·)xT (s, ·)− z∥2L2(Ω,Rn) + κ1

∥∥∥∥∫
Ω
B∗(ω)φT (s, ω)dµ

∥∥∥∥2
Rm

)
ds.

Taking ε > 0 such that ε < 2κ2, there exists a constant K > 0, independent of T , such that

∥φT (t, ·)∥2L2(Ω,Rn) +

∫ T

t
∥φT (s, ·)∥2L2(Ω,Rn)ds

≤ K

∫ T

t

[
∥C(·)xT (s, ·)− z∥2L2(Ω,Rn) +

∥∥∥∥∫
Ω
B∗(ω)φT (s, ω)dµ

∥∥∥∥2
Rm

]
ds.

Further,

∥φT (t, ·)∥2L2(Ω,Rn) ≤ K

∫ T

0

[
∥C(·)xT (s, ·)− z∥2L2(Ω,Rn)

+

∥∥∥∥∫
Ω
B∗(ω)φT (s, ω)dµ

∥∥∥∥2
Rm

]
ds,

for every 0 ≤ t ≤ T and the proof is finished.

Remark 1. Let us mention some consequences of the previous considerations. FromHypothesis

1, it immediately follows that there exists a constant K > 0 such that the following stationary

inequality holds:

∥v∥2L2(Ω,Rn) ≤ K
(
∥Av∥2L2(Ω,Rn) + ∥Cv∥2L2(Ω,Rn)

)
, (2.9)

for every v ∈ L2(Ω,Rn). Indeed, following the proof of Lemma 2.3, we have

∥x(t, ·)∥2L2(Ω,Rn)

≤ K

(∫ T

0

[
∥xt(t, ·) +Ax(t, ·)∥2L2(Ω,Rn) + ∥C(·)x(t, ·)∥2L2(Ω,Rn)

]
dt+ ∥x0∥2Rn

)
. (2.10)

Then, for v ∈ L2(Ω,Rn) we take x(t, ω) = tv(ω). Applying the inequality (2.10), we have

T 2∥v∥2L2(Ω,Rn) ≤ K

∫ T

0

[
∥v(·) + tA(·)v(·)∥2L2(Ω,Rn) + t2∥C(·)v(·)∥2L2(Ω,Rn)

]
dt.



Therefore, we get

T 2∥v∥2L2(Ω,Rn) ≤ K
(
T∥v∥2L2(Ω,Rn) +

T 3

3
∥Av∥2L2(Ω,Rn) +

T 3

3
∥Cv∥2L2(Ω,Rn)

)
.

Taking T > K, there exists K̃ > 0 such that

∥v∥2L2(Ω,Rn) ≤ K̃
(
∥Av∥2L2(Ω,Rn) + ∥Cv∥2L2(Ω,Rn)

)
,

and the claim is proven.

2.2 Stationary problem

Now, we continue with the analysis of the stationary optimal control problem (1.3)–(1.4).

Under the Hypothesis 2 we have the following existence and uniqueness for the optimal pair

for problem (1.3)–(1.4).

Theorem 2.5. Assume that Hypothesis 2 holds true. Then the problem (1.3)–(1.4) admits a

unique optimal pair (u, x) ∈ Rm × L2(Ω,Rn), with x the optimal state associated to u.

Proof. We observe that Js is a strictly convex and continuous functional, therefore, there exists a

unique solution u ∈ Rm of (1.3). In addition, there exists a unique observation C(ω)x associated

to u.

Let us assume that there exist two optimal states x1 and x2 associated to the optimal control u,

that is

Ax1 = Bu = Ax2.

Since Js is strictly convex, we obtain that C(ω)x1 = C(ω)x2 in L2(Ω,Rn).

From (2.9) we obtain

∥x1(·)− x2(·)∥2L2(Ω,Rn)

≤ K

[
∥A(·)(x1(·)− x2(·))∥2L2(Ω,Rn) + ∥C(·)(x1(·)− x2(·))∥2L2(Ω,Rn)

]
= 0.

Namely, x1 = x2.

Now, we define the following set

D := {u ∈ Rm : B(ω)u ∈ Ran(A(ω)), for each ω ∈ Ω}. (2.11)

Theorem 2.6. Assume that Hypothesis 2 holds true and let (u, x) be the unique solution of

the optimal control (1.3)–(1.4). Then, there exists φ ∈ L2(Ω,Rn) such that for a.e. ω ∈ Ω we

have

A∗(ω)φ = C∗(ω)(C(ω)x− z), (2.12)

and

⟨u, v⟩Rm + ⟨φ,Bv⟩L2(Ω,Rn) = 0, ∀v ∈ D. (2.13)



Proof. Since (u, x) is the unique optimal pair, we have

⟨u, v⟩Rm + ⟨Cx− z, Cφ⟩L2(Ω,Rn) = 0, (2.14)

for every v ∈ D and every φ ∈ L2(Ω,Rn) such that A(ω)φ = B(ω)v.

Taking v = 0 in the previous expression, then A(ω)φ(ω) = 0. Namely, φ(ω) ∈ Ker(A(ω)). From

(2.14) we obtain

⟨C∗(Cx− z), φ⟩L2(Ω,Rn) = ⟨Cx− z, Cφ⟩L2(Ω,Rn) = 0.

Therefore, C∗(Cx − z) ∈ Ker(A)⊥, which implies that C∗(Cx − z) ∈ Ran(A∗). That is, there

exists φ(ω) ∈ Dom(A∗(ω)) such that

A∗(ω)φ(ω) = C∗(ω)(C(ω)x(ω)− z).

Finally, replacing in (2.14), we get

⟨u, v⟩Rm + ⟨φ,Bv⟩L2(Ω,Rn) = 0,

for every v ∈ D.

3 Main results

In this section we state and prove the main results of this work. For this, let us recall the

evolutionary and stationary optimality systems. Let (uT , xT ) be the optimal pair of (2.1)–(2.2),

and (x, u) the optimal pair of (1.3)–(1.4) (see Theorems 2.2 and 2.6). In addition, we have that

there exist φT solution of (2.4), such that the optimal control uT of (2.1) is given by

uT (t) = −
∫
Ω
B∗(ω)φT (t, ω)dµ, (3.1)

and u the optimal control associate to (1.3) satisfies

⟨u, v⟩Rm + ⟨φ,B(ω)v⟩L2(Ω,X) = 0, ∀v ∈ D, (3.2)

where φ is the solution of (2.12). Besides, the following optimality systems hold:
xTt +A(ω)xT = B(ω)uT t ∈ (0, T ),

−φT
t +A∗(ω)φT = C∗(ω)(C(ω)xT − z) t ∈ (0, T ),

xT (0, ω) = x0, φT (T, ω) = 0,

(3.3)

and {
A(ω)x = B(ω)u,

A∗(ω)φ = C∗(ω)(C(ω)x− z).
(3.4)

The first main result is concerning to the average convergence of the optimal pair (uT , xT ) to the

corresponding stationary ones (u, x), stated in the following theorem. The proof is based on the

result contained in [16].



Theorem 3.1. Let us assume that Hypothesis 1 and 2 hold. Then,

1

T

∫ T

0
xT (t, ·)dt −→ x(·) in L2(Ω,Rn),

1

T

∫ T

0
uT (t)dt −→ u in Rm,

as T → ∞, where (uT , xT ) is the optimal pair of (2.1)–(2.2), and (x, u) is the optimal pair of

(1.3)–(1.4).

Proof. We divide the proof into four steps. Since we are interested in the asymptotic behavior

when T goes to infinity, we can assume that there exists τ > 0 such that T > τ > 0.

Step 1. We claim that there exist two constants K̂, K, independent of T > 0, such that xT and

φT satisfy ∥∥xT (T, ·)∥∥2
L2(Ω,Rn)

≤ KT, (3.5)∥∥φT (0, ·)
∥∥2
L2(Ω,Rn)

≤ K̂T. (3.6)

Indeed, multiplying the first equation of (3.3) by φT and integrating by parts over (0, T ) we

obtain 〈
φT (0, ω), x0

〉
Rn =

∫ T

0

〈
C∗(ω)(C(ω)xT (t, ω)− z), xT (t, ω)

〉
Rn dt

−
∫ T

0

〈
B(ω)uT (t), φT (t, ω)

〉
Rn dt

=

∫ T

0

〈
C(ω)xT (t, ω)− z, C(ω)xT (t, ω)

〉
Rn dt

−
∫ T

0

〈
uT (t), B∗(ω)φT (t, ω)

〉
Rm dt

=

∫ T

0

(∥∥C(ω)xT (t, ω)− z
∥∥2
Rn +

〈
C(ω)xT (t, ω)− z, z

〉
Rn

)
dt

−
∫ T

0

〈
uT (t), B∗(ω)φT (t, ω)

〉
Rm dt. (3.7)

Now, integrating over Ω and using the fact that uT only depends on t ∈ (0, T ) and is given by

(3.1), we have

〈
φT (0, ·), x0

〉
L2(Ω,Rn)

=

∫ T

0

(∥∥C(·)xT (t, ·)− z
∥∥2
L2(Ω,Rn)

+
〈
CxT − z, z

〉
L2(Ω,Rn)

)
dt

−
∫ T

0

〈
uT ,

∫
Ω
B∗φTdµ

〉
Rm

dt

=

∫ T

0

(∥∥C(·)xT (t, ·)− z
∥∥2
L2(Ω,Rn)

+
〈
CxT − z, z

〉
L2(Ω,Rn)

+
∥∥uT (t)∥∥2Rm

)
dt.

That is,



∫ T

0

(∥∥C(·)xT (t, ·)− z
∥∥2
L2(Ω,Rn)

+
∥∥uT (t)∥∥2Rm

)
dt

=
〈
φT (0, ω), x0

〉
L2(Ω,Rn)

−
∫ T

0

〈
CxT − z, z

〉
L2(Ω,Rn)

dt. (3.8)

Next, by Cauchy–Schwarz and Young inequalities, for every ε > 0, the first term at the right-hand

side of (3.8) can be bound as

〈
φT (0, ω), x0

〉
L2(Ω,Rn)

≤
ε
∥∥φT (0, ·)

∥∥2
L2(Ω,Rn)

2
+

∥x0∥2Rn

2ε

≤ Kε

2

(∫ T

0

∥∥C(·)xT (t, ·)− z
∥∥2
L2(Ω,Rn)

+
∥∥uT (t)∥∥2Rm dt

)
+

∥x0∥2Rn

2ε
, (3.9)

where in the last inequality we used (2.8). For the second term at the right-hand side of (3.8),

for every ε1 we get

−
∫ T

0

〈
CxT − z, z

〉
L2(Ω,Rn)

dt

≤
∫ T

0
ε1

∥∥C(·)xT (t, ·)− z
∥∥2
L2(Ω,Rn)

2
dt+ T

∥z∥2Rn

2ε1
. (3.10)

Thus, replacing (3.10) and (3.9) into (3.8), we deduce∫ T

0

(
1− Kε

2
−ε1)

∥∥C(·)xT (t, ·)− z
∥∥2
L2(Ω,Rn)

+ (1− Kε

2
)
∥∥uT (t)∥∥2Rm

)
dt

≤ T
∥z∥2Rn

2ε1
+

∥x0∥2Rn

2ε
=
T ∥z∥2Rn ε+ ε1 ∥x0∥2Rn

2εε1

≤ max
{
∥z∥2Rn , ∥x0∥2Rn

} Tε+ ε1
2εε1

. (3.11)

Then taking ε, ε1 in a such way that 1− Kε
2 > ε1, there exists a constant K̂ > 0 (independent of

T ) such that ∫ T

0

∥∥C(·)xT (t, ·)− z
∥∥2
L2(Ω,Rn)

+
∥∥uT (t)∥∥2Rm dt ≤ K̂T. (3.12)

From (2.8) and (3.12), we get the desired inequality for φT (0), that is∥∥φT (0, ·)
∥∥2
L2(Ω,Rn)

≤ K̂T. (3.13)

The inequality for xT (T, ω) is a direct consequence of (2.7) and (3.12).

Step 2. We claim that the terms

1

T

∫ T

0
xT (t, ·)dt, 1

T

∫ T

0
uT (t)dt,



are bounded in L2(Ω,Rn) and Rm, respectively.

Indeed, integrating over (0, T ) the first equation of (3.3) we obtain

1

T

∫ T

0
A(ω)xT (t, ω)dt =

1

T

∫ T

0
B(ω)uT (t)dt−

(
xT (T, ω)− x0

T

)
. (3.14)

From (3.5) we obtain that xT (T,ω)−x0

T converges to zero as T → ∞. Namely, it is bounded by a

positive constant K, independent of T in L2(Ω,Rn). Therefore, taking L2(Ω,Rn) norm we get∥∥∥∥ 1T
∫ T

0
A(·)xT (t, ·)dt

∥∥∥∥
L2(Ω,Rn)

≤
∥∥∥∥ 1T

∫ T

0
B(·)uT (t)dt

∥∥∥∥
L2(Ω,Rn)

+

∥∥∥∥xT (T, ω)− x0
T

∥∥∥∥
L2(Ω,Rn)

≤ 1

T

∫ T

0

∥∥B(·)uT (t)
∥∥
L2(Ω,Rn)

dt+K

≤ 1

T

(∫ T

0

∥∥B(·)uT (t)
∥∥2
L2(Ω,Rn)

dt

)1/2(∫ T

0
1dt

)1/2

+K

≤ 1

T

(∫ T

0

∥∥B(·)uT (t)
∥∥2
L2(Ω,Rn)

dt

)1/2√
T +K.

Using (3.12), we obtain that 1
T

∫ T
0 A(ω)xT (t, ω)dt is bounded in L2(Ω,Rn). Finally, from (2.9)

we get∥∥∥∥ 1T
∫ T

0
xT (t, ·) dt

∥∥∥∥2
L2(Ω,Rn)

≤ K

(∥∥∥∥ 1T
∫ T

0
A(·)xT (t, ·) dt

∥∥∥∥2
L2(Ω,Rn)

+

∥∥∥∥ 1T
∫ T

0
C(·)xT (t, ·) dt

∥∥∥∥2
L2(Ω,Rn)

)
. (3.15)

We observe that∥∥∥∥ 1T
∫ T

0
C(·)xT (t, ·) dt

∥∥∥∥2
L2(Ω,Rn)

≤ 1

T 2

∫ T

0

∥∥C(·)xT (t, ·)∥∥2
L2(Ω,Rn)

dt

and by (3.12) we obtain that the second term in the right-hand side of (3.15) vanishing as T goes

to infinity. Therefore, from (3.15) the term 1
T

∫ T
0 xT (t, ω) dt is bounded in L2(Ω,Rn).

The bound for uT follow again by (3.12) and Cauchy–Schwarz inequality. Indeed,∥∥∥∥∫ T

0
uT (t) dt

∥∥∥∥
Rm

≤
∫ T

0

∥∥uT (t)∥∥Rm dt ≤
(∫ T

0

∥∥uT (t)∥∥2Rm dt

)1/2(∫ T

0
dt

)1/2

≤
√
KT

√
T =

√
KT.

Step 3. In this step, we will prove that

1

T

(∫ T

0

∥∥C(·)(xT (t, ·)− x)
∥∥2
L2(Ω,Rn)

dt+

∫ T

0

∥∥uT (t)− u
∥∥2
Rm dt

)
→ 0, (3.16)



as T → ∞.

Indeed, let us consider the variables ψ = xT − x and p = φT − φ. Then, ψ and p solve the

following problem 
ψt +A(ω)ψ = B(ω)(uT − u), t ∈ (0, T ),

−pt +A∗(ω)p = C∗(ω)C(ω)ψ, t ∈ (0, T ),

ψ(0, ·) = x0 − x, p(T, ·) = −φ.
(3.17)

Multiplying by p the first equation of (3.17) and integrating by parts over (0, T ), we get for each

ω ∈ Ω

⟨p(0, ω), ψ(0, ω)⟩Rn − ⟨p(T, ω), ψ(T, ω)⟩Rn =

∫ T

0
∥C(·)ψ(t, ·)∥2Rn dt

−
∫ T

0

〈
uT − u,B∗φT −B∗φ

〉
Rm dt. (3.18)

Integrating over Ω, we can obtain the following

⟨p(0, ·), ψ(0, ·)⟩L2(Ω,Rn) − ⟨p(T, ·), ψ(T, ·)⟩L2(Ω,Rn)

=

∫ T

0
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) dt−

∫ T

0

〈
uT − u,

∫
Ω
B∗φTdµ−

∫
Ω
B∗φdµ

〉
Rm

dt

=

∫ T

0
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) dt+

∫ T

0

∥∥uT (t)− u
∥∥2
Rm dt

+

∫ T

0

〈
uT , u+

∫
Ω
B∗φdµ

〉
Rm

dt−
∫ T

0

(
⟨u, u⟩Rm + ⟨Bu,φ⟩L2(Ω,Rn)

)
dt.

We observe that u belongs to D, where we recall that D is given by (2.11). Therefore, from (3.2)

we have that ⟨u, u⟩Rm + ⟨Bu,φ⟩L2(Ω,Rn) = 0. Thus,∫ T

0
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) dt+

∫ T

0

∥∥uT (t)− u
∥∥2
Rm dt

≤ ∥p(0, ·)∥L2(Ω,Rn) ∥ψ(0, ·)∥L2(Ω,Rn) + ∥p(T, ·)∥L2(Ω,Rn) ∥ψ(T, ·)∥L2(Ω,Rn)

−
∫ T

0

〈
uT , u+

∫
Ω
B∗φdµ

〉
Rm

dt. (3.19)

Now, by the previous step we have that, up to subsequences, there exists y, v such that

1

T

∫ T

0
xT (t, ·)dt→ y(·), 1

T

∫ T

0
uT (t)dt→ v.

From (3.14) and since the term xT (T,ω)−x0

T converges to zero as T → ∞ (see (3.5)), we deduce

A(ω)

(
1

T

∫ T

0
xT (t, ·) dt

)
= B(ω)

(
1

T

∫ T

0
uT (t) dt

)
−
(
xT (T, ·)− x0

T

)
→ B(ω)v,

in L2(Ω,Rn). Namely, we have that v ∈ D and by Theorem 2.6

⟨u, v⟩Rm + ⟨φ,Bv⟩L2(Ω,Rn) = 0,



which implies

1

T

∫ T

0

〈
uT , u+

∫
Ω
B∗φdµ

〉
Rm

dt→
〈
v, u+

∫
Ω
B∗φdµ

〉
Rm

= ⟨u, v⟩Rm + ⟨φ,Bv⟩L2(Ω,Rn) = 0.

On the other hand, we observe that by (3.13)

∥p(0, ·)∥2L2(Ω,Rn) = ∥φT (0, ·)− φ(·)∥2L2(Ω,Rn)

≤ 2∥φT (0, ·)∥2L2(Ω,Rn) + 2∥φ(·)∥2L2(Ω,Rn)

≤ K̂T + 2∥φ(·)∥2L2(Ω,Rn).

Analogously,

∥ψ(T, ·)∥2L2(Ω,Rn) ≤ KT + 2∥x(·)∥2L2(Ω,Rn).

Therefore, the first and second term at the right-hand side of (3.19) can be estimated as follows

∥p(0, ·)∥L2(Ω,Rn) ∥ψ(0, ·)∥L2(Ω,Rn) + ∥p(T, ·)∥L2(Ω,Rn) ∥ψ(T, ·)∥L2(Ω,Rn)

≤
(
K̂T + 2∥φ(·)∥2L2(Ω,Rn)

)1/2
∥x0 − x(·)∥L2(Ω,Rn)

+
(
KT + 2∥x(·)∥2L2(Ω,Rn)

)1/2
∥φ(·)∥L2(Ω,Rn).

That is, we obtain

1

T

∫ T

0
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) dt+

1

T

∫ T

0

∥∥uT (t)− u
∥∥2
Rm dt

≤ 1

T

(
K̂T + 2∥φ(·)∥2L2(Ω,Rn)

)1/2
∥x0 − x(·)∥L2(Ω,Rn)

+
1

T

(
KT + 2∥x(·)∥2L2(Ω,Rn)

)1/2
∥φ(·)∥L2(Ω,Rn)

− 1

T

∫ T

0

〈
uT , u+

∫
Ω
B∗φdµ

〉
Rm

dt→ 0,

as T → ∞.

Step 4. Finally, we show that

1

T

∫ T

0
xT (t, ·)dt and

1

T

∫ T

0
uT (t)dt

converge to x(·) and u in L2(Ω,Rn) and Rm, respectively.

Indeed, from step 3, we have that∥∥∥∥ 1T
∫ T

0
(uT (t)− u) dt

∥∥∥∥2
Rm

≤ 1

T

∫ T

0

∥∥uT (t)− u
∥∥2
Rm dt→ 0.



In a similar way,∥∥∥∥ 1T
∫ T

0
C(·)ψ(t, ·) dt

∥∥∥∥2
L2(Ω,Rn)

≤ 1

T

∫ T

0
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) dt→ 0.

Therefore,

1

T

∫ T

0
uT (t)dt→ u,

1

T

∫ T

0
C(·)ψ(t, ·)dt→ 0, (3.20)

in Rm and L2(Ω,Rn), respectively. From (3.15) and (2.9), and the previous convergence, we have

1

T

∫ T

0
(xT (t, ·)− x(·)) dt = 1

T

∫ T

0
ψ(t, ·) dt→ 0, as T → ∞,

and the proof is finished.

Corollary 1. Let us assume that Hypothesis 1 and 2 hold. Then, there exists a unique φ

solution of (2.12). In addition, the stationary optimal control u is given by

u = −
∫
Ω
B∗φdµ.

Proof. Repeating the argument made for xT in the previous theorem, it is possible to prove that

the term

1

T

∫ T

0
φT (t, ·)dt

is bounded in L2(Ω,Rn). Then, up to subsequences, there exists some φ ∈ L2(Ω,Rn) such that

1

T

∫ T

0
φT (t, ·)dt → φ(·) in L2(Ω,Rn).

Next, integrating over (0, T ) and multiplying by 1
T the second equation of (3.3), we obtain

1

T

∫ T

0
A∗(·)φT (t, ·)dt = 1

T

∫ T

0
C∗(CxT − z)dt− φT (0)

T
. (3.21)

From the average convergence of φT and xT , the estimate (3.6) and the uniqueness of the limit,

we deduce that φ is a solution of (3.4).

Now, since the optimal control uT is given by uT = −
∫
ΩB

∗φTdt, using the average converge

of uT , we get that u = −
∫
ΩB

∗φ. The uniqueness of φ follow by contradiction and the next

stationary inequality which follows directly by Hypothesis 2

∥v∥2L2(Ω,Rn) ≤ K

(∥∥∥∥∫
Ω
B∗vdµ

∥∥∥∥2
Rm

+ ∥A∗v∥2L2(Ω,Rn)

)
, (3.22)

for every v ∈ L2(Ω,Rn).

Our second main result, which is the following theorem, shows the average exponential turnpike

property. The proof is inspired by the results obtained in [10].



Theorem 3.2. Let us assume that Hypothesis 1 and 2 hold. Let δ ≥ 0 be a small enough

nonnegative constant. Let (uT , xT , φT ) be the solution of (3.3) and (u, x, φ) the corresponding

stationary solution of (3.4). Then, there exists a positive constant K = K(δ) > 0 (independent

of T ) such that∥∥xT (t, ·)− x(·)
∥∥2
L2(Ω,Rn)

+
∥∥φT (t, ·)− φ(·)

∥∥2
L2(Ω,Rn)

≤ K(e−δ(T−t) + e−δt), (3.23)

for every t ∈ (0, T ). In particular, we obtain an averaged exponential turnpike as follows∥∥E(xT − x)
∥∥
Rn +

∥∥E(φT − φ)
∥∥
Rn +

∥∥uT − u
∥∥
Rm ≤ K(e−δ(T−t) + e−δt),

for every t ∈ (0, T ).

Proof. We divide the proof into several steps.

Step 1. Let ψ = xT − x and p = φT − φ be the solutions of the system
ψt +A(ω)ψ +B(ω)

(∫
Ω
B∗(ω)p(t, ω) dµ

)
= 0,

−pt +A∗(ω)p− C∗(ω)C(ω)ψ = 0,

ψ(0, ·) = x0 − x, p(T, ·) = −φ.

(3.24)

We claim that there exist K > 0, independent of T , such that

∥ψ∥2C([0,T ];L2(Ω,Rn)) + ∥p∥2C([0,T ];L2(Ω,Rn))

≤ K
(
∥ψ(0, ·)∥2L2(Ω,Rn) + ∥p(T, ·)∥2L2(Ω,Rn)

)
.

Indeed, applying (2.7) to ψ, noting that uT (t) = −
∫
ΩB

∗(Ω)φT (t, ω)dω and u = −
∫
ΩB

∗(Ω)φ(ω)dω

and that B∗ is a uniformly bounded matrix, we get

∥ψ∥2C([0,T ];L2(Ω,Rn)) ≤ K
(∫ T

0

(∥∥uT (t)− u
∥∥2
Rm + ∥C(·)ψ(t, ·)∥2L2(Ω,Rn)

)
dt

+ ∥ψ(0, ·)∥2L2(Ω,Rn)

)
. (3.25)

For an estimate for p, we proceed as follow. Applying the inequality (2.8) to p, noting that p

solves a differential equation with right-hand side C∗(ω)C(ω)ψ and recalling that∥∥∥∥∫
Ω
B∗(ω)p(t, ω)dµ

∥∥∥∥2
Rm

=

∥∥∥∥∫
Ω
B∗(ω)(φT (t, ω)− φ(ω))dµ

∥∥∥∥2
Rm

= ∥uT (t)− u∥2Rm ,

we deduce

∥p∥2C([0,T ];L2(Ω,Rn)) ≤ K
(∫ T

0

(∥∥uT (t)− u
∥∥2
Rm + ∥C(·)ψ(t, ·)∥2L2(Ω,Rn)

)
dt

+ ∥p(T, ·)∥2L2(Ω,Rn)

)
. (3.26)

Now, let us give an estimate for the two first terms at the right hand side of (3.25). From

Corollary 1 we have that u = −
∫
ΩB

∗φ. Therefore, using the identity (3.18) we get for every



ε1, ε2 > 0

∫ T

0

(
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) +

∥∥uT (t)− u
∥∥2
Rm

)
dt ≤

ε1 ∥p(0, ·)∥2L2(Ω,Rn)

2

+
∥ψ(0, ·)∥2L2(Ω,Rn)

2ε1
+

∥ψ(T, ·)∥2L2(Ω,Rn)

2ε2
+
ε2 ∥p(T, ·)∥2L2(Ω,Rn)

2
.

Using the estimates given in (3.25), (3.26) at t = T and t = 0, respectively, we obtain∫ T

0

(
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) +

∥∥uT (t)− u
∥∥2
Rm

)
dt

≤ K

[
∥ψ(0, ·)∥2L2(Ω,Rn)

(
1

2ε1
+

1

2ε2

)
+ ∥p(T, ·)∥2L2(Ω,Rn)

(ε1 + ε2)

2

+K

(
ε1
2

+
1

2ε2

)∫ T

0

(
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) +

∥∥uT (t)− u
∥∥2
Rm

)
dt

]
(3.27)

We can take ε1, ε2 > 0 such that the last term in the right-hand side of (3.27) can be absorbed

by the left-hand side. Therefore, we deduce that there exists a constant K > 0, independent of

T , such that∫ T

0

(
∥C(·)ψ(t, ·)∥2L2(Ω,Rn) +

∥∥uT (t)− u
∥∥2
Rm

)
dt

≤ K
(
∥ψ(0, ·)∥2L2(Ω,Rn) + ∥p(T, ·)∥2L2(Ω,Rn)

)
. (3.28)

Therefore, from (3.25) and (3.28), there exists a positive constant K > 0, independent of T , such

that

∥ψ∥2C([0,T ];L2(Ω,Rn)) + ∥p∥2C([0,T ];L2(Ω,Rn))

≤ K
(
∥ψ(0, ·)∥2L2(Ω,Rn) + ∥p(T, ·)∥2L2(Ω,Rn)

)
. (3.29)

Step 2. On the other hand, we observe that the system (3.24) with arbitrary right-hand side

f1, f2 ∈ L2(0, T ;L2(Ω,Rn)), can be rewrite as follows
−C∗C − d

dt +A∗

0 ET

d
dt +A B

(∫
ΩB

∗ · dµ
)

E0 0


(
ψ

p

)
=


f2

p(T )

f1

ψ(0)

 , (3.30)

where E0ψ := ψ(0) and ET p := p(T ).

Denoting by Λ the matrix

Λ :=


−C∗C − d

dt +A∗

0 ET

d
dt +A B

(∫
ΩB

∗ · dµ
)

E0 0

 ,



we have that the operator Λ corresponds to the two homogeneous evolution equations, that is, the

adjoint equation in the first two rows and the state equation in the last two rows. Consecuently

the operador Λ maps the solution to their respective initial data and source terms. Now observe

that the operator denoted by Λ−1, maps initial data and source terms to the corresponding state

and adjoint solutions. Therefore the operator Λ−1 is the solution operator. Since the system

(3.24) has a unique solution (by Theorem 2.2 and Corollary 1), it implies that operator Λ−1 is

well defined as a mapping from (L2(0, T ;L2(Ω,Rn))× L2(Ω,Rn))2 to (C([0, T ];L2(Ω,Rn))2.

According to what was done to prove (3.29), there exists a constant K > 0, independent of T ,

such that

∥ψ∥2C([0,T ];L2(Ω,Rn)) + ∥p∥2C([0,T ];L2(Ω,Rn)) ≤ K
(
∥ψ(0, ·)∥2L2(Ω,Rn)

+ ∥p(T, ·)∥2L2(Ω,Rn) + ∥f1∥2L2(0,T ;L2(Ω),Rn) + ∥f1∥2L2(0,T ;L2(Ω),Rn)

)
. (3.31)

From (3.31) we obtain that there exists a constant K > 0, independent of T , such that

∥Λ−1∥L((L2(0,T ;L2(Ω,Rn))×L2(Ω,Rn))2,(C([0,T ];L2(Ω,Rn))2) ≤ K. (3.32)

In the following denote W = (L2(0, T ;L2(Ω,Rn))× L2(Ω,Rn))2 and

X = C([0, T ];L2(Ω,Rn)).

Step 3. In this step we will prove the turnpike property (3.23). Indeed, let us consider the

following variables 
ψ̂ =

ψ

e−δ(T−t) + e−δt
,

p̂ =
p

e−δ(T−t) + e−δt
,

where δ > 0. It is immediate that ψ̂ and p̂ solves the system
ψ̂t +A(ω)ψ̂ =

B(ω)(uT − u)

e−δ(T−t) + e−δt
+ ψ̂δh(t), t ∈ (0, T )

−p̂t +A∗(ω)p̂ = C∗(ω)C(ω)ψ̂ − p̂δh(t), t ∈ (0, T )

ψ̂(0, ·) = ψ(0, ·)
1 + e−δT

, p̂(T, ·) = p(T, ·)
1 + e−δT

,

(3.33)

where h(t) denotes

h(t) =
e−δt − e−δ(T−t)

e−δt + e−δ(T−t)
.

Using the definition of Λ, we can rewrite the respective equations asΛ− δ


h(t) 0

0 0

0 −h(t)
0 0



(
ψ̂

p̂

)
=

1

1 + e−δT


0

p(T )

0

ψ(0)

 . (3.34)

We observe that ∥P∥L(X 2) ≤ 1, where

P =


h(t) 0

0 0

0 −h(t)
0 0

 .



Now, letting

Z :=

(
ψ̂

p̂

)
, Y :=

1

1 + e−δT


0

p(T )

0

ψ(0)

 ,

system (3.34) can be written as

(I − δΛ−1P)Z = Λ−1Y. (3.35)

Choosing γ := δ∥Λ−1∥L(W,X 2), which is independent of T since the norm of Λ−1 is independent

of T (see (3.32)), we obtain that δΛ−1P is a contraction. Therefore, the existence and uniqueness

of solutions for operator equations as in (3.35) can be established in terms of Neumann series (see

Theorem 2.14 of [13]). That is,∥∥(I − δΛ−1P)−1
∥∥
L(W,X 2)

≤ 1

1− γ
.

Namely, we obtain

∥ψ̂∥2X + ∥p̂∥2X

≤
∥Λ−1∥L(W,X 2)

1− γ

1

1 + e−δT

(
∥ψ(0, ·)∥2L2(Ω,Rn) + ∥p(T, ·)∥2L2(Ω,Rn)

)
,

and since X = C([0, T ];L2(Ω,Rn)), we get that for every t ∈ [0, T ]

∥xT (t, ·)− x(·)∥2L2(Ω,Rn) + ∥φT (t, ·)− φ(·)∥2L2(Ω,Rn) ≤ K
(
e−δ(T−t) + e−δt

)
, (3.36)

where K > 0 is a constant independent of T . That is, we obtain the desired estimate (3.23).

Step 4. Finally, from (3.36) we can obtain the averaged exponential turnpike property. Indeed,

∥E(xT )− E(x)∥Rn =

∥∥∥∥∫
Ω
xTdµ−

∫
Ω
xdµ

∥∥∥∥
Rn

≤
∫
Ω
∥xT − x∥Rndµ ≤

(∫
Ω
dµ

)1/2(∫
Ω
∥xT − x∥2Rndµ

)1/2

≤ K
(
e−δ(T−t) + e−δt

)
.

Analogous, for φT we have

∥E(φT )− E(φ)∥Rn ≤ K
(
e−δ(T−t) + e−δt

)
.

Finally, for the control estimate, we observe that

∥uT (t)− u∥2Rm =

∥∥∥∥∫
Ω
B∗p dµ

∥∥∥∥2
Rm

≤ K

∥∥∥∥∫
Ω
p dµ

∥∥∥∥ ≤ K∥p(t, ·)∥2L2(Ω,Rn).

Therefore, from all the previous computations we get the desired result and the proof is finished.



We conclude this section with the following observations.

Remark 2. 1. It is immediately noted that in Theorems 3.1 and 3.2 one can also consider

the case where x0, z ∈ L2(Ω,Rn). The proof of both Theorems applies replacing the terms

∥x0∥Rn , ∥z∥Rn by ∥x0(·)∥L2(Ω,Rn), ∥z∥L2(Ω,Rn), respectively.

2. Our main results, namely Theorems 3.1 and 3.2, are similar to those obtained in [16] in

the context of ordinary differential equations without randomness. The authors in [16]

proved their results under the assumptions that the dynamics are controllable, and the

cost functional is observable. In our setting, the right notion of control will be average

control and average observability conditions, concepts introduced in [26]. However, we do

not know if the average exponential turnpike property can be proved only assuming the

average control and average observability conditions.

3. Finally, it is interesting to note that our second main result, namely estimate (3.23) in

Theorem 3.2, means that the turnpike holds for each parameter separately. This is a strong

consequence of our main assumptions Hypothesis 1 and 2. Also, it is interesting that this

holds with an optimal control independent of the random parameter. However, it captures

at the same time, all the information of the adjoint system (in an average sense).

4 Numerical experiments

In this section, we will perform some numerical experiments to validate the turnpike property in

average. We focus our attention on the particular case A(ω) = α(ω)A and B(ω) = β(ω)B, with

A and B constant matrices and α, β scalar random variables. Besides, the observability matrix

will be independent of ω. In addition, we consider a discrete sample space Ω.

4.1 Example 1

Let Ω = R+ and β be a random variable with exponential distribution with parameter λ = 7 i.e.

β ∼ exp(7). We consider the following optimal control problem

min

{
JT (u) =

1

2

∫ T

0

{
∥u(t)∥2Rm + ∥Cx(t, ·)− z∥2L2(Ω,Rn)

}
dt

}
,

subject to x solves the system{
xt +Ax = β(ω)Bu t ∈ (0, T ),

x(0) = x0,

where

A =

(
0.2 0.5

−0.5 0.5

)
, B =

(
0

1

)
, C =

(
0 1

1 0

)
, z =

(
2

3

)
, x0 =

(
1

1

)
.

The corresponding stationary optimal control problem is

min

{
Js(u) =

1

2

(
∥u∥2Rm + ∥Cx(·)− z∥2L2(Ω,Rn)

)}
,

subject to x solves the problem Ax = β(ω)Bu.



(a) Evolutionary trajectories. (b) Stationary trajectories.

(a) average trajectories. (b) Norm difference between evolutionary and stationary

solutions and controls.

Figure 1: Evolutionary v/s stationary systems.

It is a straightforward computation that matrices A,B and C satisfy the Hypothesis 1 and 2.

We compute the optimal solutions (xT , uT ) in time T = 50, and (x, u), by using the Gekko library

on Python and considering seven realizations of the random variable β, which was generated using

the numpy.random library on Python. Gekko is a library specializing in dynamic optima problems

for mixed-integer, nonlinear, and differential algebraic equations (DAE) problems [1]. In the case

of the evolution problem, we use the Gekko module to solve optimal control problems (imode 6)

with 100 time steps. Its module is based on simultaneous strategies for dynamic optimization

[3]. More precisely, in this mode, Gekko uses orthogonal collocation of finite elements [5] this is

a form of implicit Runga–Kutta methods.

The trajectory solutions of both problems are collected in Figure 1 (see (A) and (B)). In the

figure above, the color lines in (A) and (B) are different realizations of the random variable. We

observe that the turnpike property on average can be observed on Figure 1 (see (C)). As expected,

except transient initial and final arcs, the expected value of xT = (xT1 , x
T
2 ) remains close to the

corresponding expectation of the steady-state x = (x1, x2), as in Theorem 3.2. Besides, according

to Theorem 3.2, in (D) we can observe that the optimal control uT remains close to the optimal

stationary control u.



Remark 3. In this example, if we take average to the equation, we obtain the following system{
yt +Ay = B̂u t ∈ (0, T ),

y(0) = x0.

where y = E(x) and B̂ = E(B). Then if the pair (A, B̂) is controllable, and the pair (A,C) is

observable, the turnpike property follow directly from [16].

4.2 Example 2

In this example, we consider the same functional JT as in the previous example. However, x

solves the following system {
xt + α(ω)Ax = Bu t ∈ (0, T ),

x(0) = x0.

The corresponding stationary system is α(ω)Ax = Bu, where in this case

A =

(
2 −5

5 0.5

)
, B =

(
5

7

)
, C =

(
0 1

1 0

)
, z =

(
1

0

)
, x0 =

(
0.1

0.1

)
.

Contrary to the previous case, we consider α ∼ Unif([1/2, 2]). Once again, the matrices A,B

and C satisfy the Hypothesis 1 and 2.

As in the example 4.1, we compute the optimal evolutionary solution xT = (xT1 , x
T
2 ) and stationary

solution x = (x1, x2) by using Gekko library and we generate seven realizations of the random

variable using numpy.random library on Python. However, in this example, we compute the

optimal evolutionary solution in time T = 10. The result is drawn in Figure 2 (see (A) and (B)).

(a) Evolutionary trajectories. (b) Stationary trajectories.



(c) average trajectories. (d) Norm difference between evolutionary and stationary

solutions and controls.

Figure 2: Evolutionary v/s stationary systems.

As in the previous example, the colored lines in (A) and (B) are different realizations of the

random variables. Note that (see Figure 2 (A) and (C)) the average dynamics is more perturbed

than in the previous example. However, as expected, except transient initial and final arcs, the

optimal evolutionary pair (xT , uT ) remains close to the steady state (x, u).

4.3 Example 3

In this final example, we consider the same functional JT as in example 1, however x solves the

problem {
xt + α(ω)Ax = β(ω)Bu t ∈ (0, T ),

x(0) = x0.

And the corresponding stationary problem α(ω)Ax = β(ω)Bu, where

A =

(
2 −5

1 0

)
, B =

(
5

7

)
, C =

(
0 1

1 0

)
, z =

(
4

4

)
, x0 =

(
0.5

0.5

)
.

We consider α, β ∼ Poisson(5). Again computing the optimal solution by using Gekko and

generating seven realizations of the random variables using the numpy.random library, we obtain

the following trajectories, see Figure 3, where the colored lines, in (A) and (B) are the different

realizations of the random variables.



(a) Evolutionary trajectories. (b) Stationary trajectories.

(c) average trajectories. (d) Norm difference between evolutionary and stationary

solutions and controls.

Figure 3: Evolutionary v/s stationary systems.

We note that the dynamics are more perturbed than in the previous two examples, because in

this case, the matrices A and B are both random. Nevertheless, we can see the turnpike property

for the average dynamics.

The code used in these numerical examples is free available in the repository https://github.

com/Martinshs/Turnpike-property GitHub–Average Turnpike Property.
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