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Abstract. We consider non-overlapping domain decomposition methods for ordinary and partial differential equations
and corresponding optimal control problems on metric graphs. As an exemplary context, we chose a semilinear approx-
imation of the Euler system and a doubly nonlinear parabolic model that has come to be known as friction dominated
flow in gas pipe networks. By this choice, we encounter hyperbolic, parabolic and elliptic linear and nonlinear problems
in a single highly motivating application. We depart from the classical domain decomposition methods described by
P.L. Lions [35] and J.L. Lions and O. Pironneau [32–34] and extend those to problems on metric graphs. The choice of
methods is determined by the desire to use a control concept that has come to be known as virtual controls which, in
turn, possibly lead to a fully parallel decomposition of the corresponding optimality systems. In a second step, we extend
the methods to p-Laplace problems on networks. The analysis, due to space limitations, will appear in a forthcoming
publication. See however [26]. Furthermore, we then describe methods for space and time domain decomposition or
optimal control problems in the spirit of J.E. Lagnese and G. Leugering [22]. We finally provide some comments on
PINN-based approximations of the methods described before. We provide numerical evidence for all algorithms discussed.

1. Introduction

1.1. Modeling of gas flow in a single pipe. Domain decomposition methods (DDMs) for the simulation of partial
differential equations have developed over the last decades and are now very well established. There are numerous
textbooks available -cf. Quarteroni and Valli [36] for an early contribution - and the biannual proceedings of
the http://www.DDM.org conferences can be seen as a regular update of the state of the art. The genuine
motivation for parallel domain decomposition methods in space and time is the challenge of very large scale
problems involving partial differential equations on complex domains being central in modern applications. Hence,
the major focus typically is on efficiency of numerical algorithms. The mathematical interest in PDE related
properties of such algorithms - also with respect to mesh independence - focuses on the continuous level and
the relations to discretizations. When it comes to the functional analytic treatment of DDMs, i.e. the proof of
convergence in function spaces, the literature is much less abundant. Such methods for optimal control problems,
and in particular the corresponding analysis in function spaces, are even less developed, but still, the scope would
go far beyond the format of this article, see [22] for a reference, where the particular focus has been on problems
on 2-d networked domains and 1-d metric graphs. The material available in the literature becomes even much more
confined when looking for methods covering nonlinear systems. Therefore, in these these notes, we focus on a
particular case of models on networks including nonlinear hyperbolic and parabolic problems. In order to fix ideas,
it is convenient to consider an example that is rich enough to demonstrate the range of the methods and simple
enough to be described in the given space limits. However, the methods described apply to much more general
examples.
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We begin with the description of the model problem which goes back to early articles by Bamberger [4, 5]. The
Euler equations are given by a system of nonlinear hyperbolic partial differential equations (PDEs) which represent
the motion of a compressible non-viscous fluid or a gas. They consist of the continuity equation, the balance of
moments and the energy equation. The full set of equations is given by (see [8,28,29,40]). We briefly introduce the
model. Let d denote the density, { the velocity of the gas and ? the pressure. We further denote 6 the gravitational
constant, _ the friction coefficient of the pipe, � the diameter, 0 the area of the cross section. The state variables of
the system are d, the flux @ = d{. We also denote 2 the the speed of sound, i.e. 22 =

m?

md
(for constant entropy). For

natural gas we have 340 m
s . In particular, in the subsonic case (|{ | < 2), the one which we consider in the sequel,

two boundary conditions have to be imposed on the left end and one at the right end of the pipe. We consider here
the isothermal case only. Thus, for horizontal pipes we have

md

mC
+ m

mG
(d{) = 0

m

mC
(d{) + m

mG
(? + d{2) = − _

2�
d{ |{ | .

(1.1)

In the particular case, where we have a constant speed of sound 2 =
√
?

d
, for small velocities |{ | � 2 and the flux

@ = d{0, we arrive at the semi-linear model
m?

mC
+ 2

2

0

m

mG
@ = 0

m

mC
@ + 0 m?

mG
= − _22

20�?
@ |@ | .

(1.2)

If we further neglect the inertia with respect to the flux, we arrive at
m?

mC
+ 2

2

0

m

mG
@ = 0

m?2

mG
= − _2

2

�02 @ |@ | =: −W2@ |@ | .
(1.3)

We now set H := ?2 and obtain from the second equation in (1.3)

@ = − 1
W

mH

mG√��� mHmG ��� .
With U := W0

2
we obtain

U
m

mC

H√
|H |
− m

mG

mH

mG√��� mHmG ��� = 0.(1.4)

We introduce the monotone function V(B) := B√
|B |
. With this, (1.4) reads as

U
m

mC
V(H) − m

mG
V( mH
mG
) = 0.(1.5)

It is also possible to write this down in the p-Laplace format: (1.4) reads as

U
m

mC

(
|H |?−2H

)
− m

mG

(
| mH
mG
|?−2 mH

mG

)
= 0,(1.6)
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where ? = 3
2 . Equation (1.6) has come to be known as doubly nonlinear parabolic equation of p-Laplace type. See

e.g. [37], [7]. Notice that ? < 2 and that the system is, therefore, singular for m
mG
H(G) = 0. For ? > 2 such equations

exhibit instead degeneration. Equations similar to (1.5) have been considered in the literature, see e.g. [4,5]. In this
contribution, we aim at a discussion of such equations together with optimal control problems on networks. A more
recent study of doubly nonlinear parabolic equations in the context of friction dominated flow has been provided
in [2]. Equations of the type (1.5) are known to exhibit positive solutions and satisfy a maximum principle. As
a matter of fact, to the best knowledge of the authors, there are no studies on optimal control of such systems on
general graphs available from the literature besides [26, 27]. We note that the doubly nonlinear parabolic problem
associated with the friction-dominated flow on a network has been considered in the thesis [39]. Optimal control
problems for the p-Laplace operator have been studied since the 1980ies, see e.g. [9]. Moreover, in [41], an optimal
control problem for the p-Laplace equation ? ≥ 2 has been recently considered. See also [11] for a problem of
optimal control in the coefficient for the p-Laplace equation, again for ? ≥ 2.

We first recall the network modelling from [27] (also presented in [39]), formulate an exemplary optimal control
problem together with its instantaneous (rolling horizon) approximation via a time discretization. The resulting
static optimal control for each time step is then based on a static p-Laplace problem on the network. This, in turn,
can be handled by a primal or a primal-dual approach. In both cases, a domain decomposition method at the level
of static p-Laplace problems it at order. We will work on both approaches. The primal-dual approach relies on a
first order optimality condition. We aim to iteratively decompose this coupled system of the sate and the adjoint
equation. Wewill focus on a particular feature, namely that, the decomposed optimality system is itself an optimality
system for an optimal control problem on the decomposed domain involving so-called virtual controls. Thus, in the
numerical realization, one may resort to any method to solve these local virtual constrained control problems that
are iteratively coupled but at each iteration fully parallel. Finally, one closes the cycle in advancing the time step.

The original problem for the time-dependent doubly nonlinear p-parabolic equation can also be handled directly.
In this context a time domain decomposition maybe desired to break down the possible long time horizon to smaller
time intervals. In fact, on the small but still continuous time intervals onmay consider a space domain decomposition
of the graph, leading to a nonoverlappping space-time domain decomposition into suitably small sub-graphs or even
edges on small time intervals. The corresponding methods share the feature described above.

Finally, there is the desire in complex application, as gas transport in large scale networks, to resort to surrogate
models in certain subnetworks. This can be approached using physics informed neural networks (PINN). We dwell
on this possibility in the outlook.

We note that such non-overlapping domain decompositions have not been considered in the literature so far with
the exception of [12], where, for ? ≥ 2, a similar problem without control has been considered, however, with a
different updating rule that is more related to a Gauß-Seidel-type iteration based on a Peacman-Rachford scheme
and, hence, is not completely parallel. We refer to [26] and a forthcoming publication [25]. As for time-domain
decomposition, we refer to [22], [13], [14], [15], [31].

1.2. Network modeling. We start with the notation for the description of problems on metric graphs. To this end,
let � = (+, �) denote the graph of the gas network with vertices (nodes) + = {=1, =2, . . . , = |+ |} = {= 9 | 9 ∈ J an
edges � = {41, 42, . . . , 4 |� |} = {48 |8 ∈ I}. We associate to each edge a direction.

38 9 =


− 1, if node = 9 if the the edge 48 starts at node = 948 ,
+ 1, if node = 9 if the edges 48 end at node = 948 ,

0, else.

We provide the network description of both the semilinear model (1.2) and the doubly nonlinear paprabolic model
(1.3). Physically, the pressure variables ?8 (= 9 ) (for (1.2)) and H8 (= 9 ) (for (1.3)) coincide for all 8 ∈ I9 := {8 ∈
1, . . . � |38 9 ≠ 0}, while the fluxes at a multiple joint = 9 which are represented by 38 9@8 (= 9 ) and 38 9 V8 (mGH8 (= 9 )),
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respectively, add up to zero. We introduce the edge degree 3 9 := |I9 |. We use the 3 9 in order to decompose the
index set for nodes J into J = J" ∪ J ( , where J" = { 9 ∈ J |3 9 > 1} represents the multiple nodes and
J ( = { 9 ∈ J |3 9 = 1} the simple nodes. According to Dirichlet or Neumann boundary conditions a the simple
nodes, we further decompose J ( = J (

�
∪ J (

#
. We summarize the equations as follows: the network of semilinear

equations (1.2) is governed by

m?8

mC
+ 2

2

0

m

mG
@8 = 0

m

mC
@8 + 0

m?8

mG
= − _22

20�?8
@8 |@8 | , 8 ∈ I, G ∈ (0, ℓ8), C ∈ (0, ))

?8 (= 9 , C) = ?: (= 9 , C), ∀8, : ∈ I9 , 9 ∈ J" , C ∈ (0, ))∑
8∈I9

38 9@8 (= 9 , C)) = 0, 9 ∈ J" , C ∈ (0, ))

?8 (= 9 , C) = 0, 8 ∈ I9 , 9 ∈ J (� , C ∈ (0, ))
38 9@8 (= 9 , C) = D 9 (C), 8 ∈ I9 , 9 ∈ J (# , C ∈ (0, ))
?8 (G, 0) = ?8,0 (G), @8 (G, 0) = @80 (G), G ∈ (0, ℓ8), 8 ∈ I,

(1.7)

while the doubly nonlinear p-parabolic network (for (1.3)) is described as follows

U8mC V(H8 (G, C)) − mG (V(mGH8 (G, C))) = D8 , 8 ∈ I, G ∈ (0, ℓ8), C ∈ (0, ))
H8 (= 9 , C) = H: (= 9 , C), ∀8, : ∈ I9 , 9 ∈ J" , C ∈ (0, ))∑
8∈I9

38 9 V(mGH8 (= 9 , C)) = 0, 9 ∈ J" , C ∈ (0, ))

H8 (= 9 , C) = 0, 8 ∈ I9 , 9 ∈ J (� , C ∈ (0, ))
38 9 V(mGH8 (= 9 , C) = D 9 (C), 8 ∈ I9 , 9 ∈ J (# , C ∈ (0, ))
H8 (G, 0) = H8,0 (G), G ∈ (0, ℓ8),

(1.8)

where the functions D8 , 8 ∈ I, D 9 , 9 ∈ I9 , 9 ∈ J (# serve as controls.

2. Optimal control problems

2.1. Problem formulation. We are now in the position to formulate optimal control problems on the level of the
gas networks. We first describe the general format for an optimal control problem. This involves a cost function that
assigns to each admissible pair (H, D) a ’cost’ � (H, D), which is represented on each individual edge by a contribution
on the state �8 (H) and the controls acting at simple nodes. The typical example, the one that we will use in the sequel
is given by

(2.1) �8 (@8) (G) :=
^

2
|@8 (G) − @38 (G) |2, G ∈ (0, ℓ8),

for the system (1.7) and

(2.2) �8 (H8) (G) :=
1
A
|H8 (G) − H38 (G) |A , G ∈ (0, ℓ8), A ∈ [

3
2
, 2] .
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for system (1.8). For system (1.7), we consider the optimal control problem

min
(?,@,D) ∈Ξ

� (?, @, D) :=
∑
8∈I

)∫
0

ℓ8∫
0

�8 (@8)3G3C +
a

2

∑
9∈J(

#

)∫
0

|D 9 (C) |23C

B.C.(2.3)
(?, @, D) satisfies (1.7),

Ξ := {(?, @, D) : ?
8
≤ ?8 ≤ ?8 , 8 ∈ I, D 9 ≤ D 9 ≤ D 9 , 9 ∈ J (# }(2.4)

and analogously for (1.8)

min
(H,D) ∈Ξ

� (H, D) :=
∑
8∈I

)∫
0

ℓ8∫
0

�8 (H8)3G3C +
a

2

∑
9∈J(

#

)∫
0

|D 9 (C) |23C

B.C.(2.5)
(H, D) satisfies (1.8),

Ξ := {(H, D) : ?
8
≤ H8 ≤ H8 , 8 ∈ I, D 9 ≤ D 9 ≤ D 9 , 9 ∈ J (# }.(2.6)

In (2.4),(2.6), the quantities ?
8
, ?8 H8

, H8 are given constants that determine the feasible pressures and flows in
the pipe 8, while D

8
, D8 describe control constraints. (2.3), (2.5) are typical examples of optimal control problems

for systems of semi-linear hyperbolic and fully nonlinear parabolic equations on metric graphs. For the first type
of problems ((2.3)), we refer to [21], [20] and [26], while the second set of problems ((2.5) has been considered
in [27] and [26]. To the best knowledge of the author, for problem (2.5) no published result on well-posedness and
characterization of optimal controls seems to be available in the literature.

We describe the corresponding optimality systems. As for (1.7) and (2.3), we introduce the adjoint variables q, k
and denote 58 (?8 , @8) := _22

20�?8 @8 |@8 |. For the sake of brevity, we take the case without control constraints.

m?8

mC
+ 2

2

0

m

mG
@8 = 0

m

mC
@8 + 0

m?8

mG
= − 58 (?8 , @8) −

1
a
q8 , 8 ∈ I, G ∈ (0, ℓ8),

mq8

mC
+ 2

2

0

m

mG
k8 = m@ 58 (?8 , @8)∗q8

m

mC
@8 + 0

m?8

mG
= m? 58 (?8 , @8)∗k8 , +^(@8 − @38 ) 8 ∈ I, G ∈ (0, ℓ8), C ∈ (0, ))

?8 (= 9 , C) = ?: (= 9 , C), q8 (= 9 , C) = q: (= 9 , C) ∀8, : ∈ I9 , 9 ∈ J" , C ∈ (0, ))∑
8∈I9

38 9@8 (= 9 , C)) = 0,
∑
8∈I9

38 9k8 (= 9 , C)) = 0 9 ∈ J" , C ∈ (0, ))

?8 (= 9 , C) = 0, q8 (= 9 , C) = 0, 8 ∈ I9 , 9 ∈ J (� , C ∈ (0, ))
38 9@8 (= 9 , C) = D 9 (C), 38 9k8 (= 9 , C) = 0, 8 ∈ I9 , 9 ∈ J (# , C ∈ (0, ))
?8 (G, 0) = ?8,0 (G), @8 (G, 0) = @80 (G), q8 (G, )) = 0, k8 (G, )) = 0), G ∈ (0, ℓ8).

(2.7)

The corresponding optimality system for (1.8) and (2.5) reads as
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U8mC V(H8 (G, C)) − mG (V(mGH8 (G, C))) = −
1
a
?8 ,

U8V
′(H8 (G, C))mC ?8 (G, C) + mG (V′(mGH8 (G, C))mG ?8 (G, C)) = ^(H8 − H38 ), 8 ∈ I, G ∈ (0, ℓ8), C ∈ (0, ))
H8 (= 9 , C) = H: (= 9 , C), ?8 (= 9 , C) = ?: (= 9 , C) ∀8, : ∈ I9 , 9 ∈ J" , C ∈ (0, ))∑
8∈I9

38 9 V(mGH8 (= 9 , C)) = 0,
∑
8∈I9

38 9 V
′(mGH8 (= 9 , C))mG ?8 (= 9 , C) = 0 9 ∈ J" , C ∈ (0, ))(2.8)

H8 (= 9 , C) = 0, ?8 (= 9 , C) = 08 ∈ I9 , 9 ∈ J (� , C ∈ (0, ))
38 9 V(mGH8 (= 9 , C) = D 9 (C), 38 9 V′(mGH8 (= 9 , C)mG ?8 (= 9 , C) = 0 8 ∈ I9 , 9 ∈ J (# , C ∈ (0, ))
H8 (G, 0) = H8,0 (G), ?8 (G, )) = 0, G ∈ (0, ℓ8),

where we used the common notation ? for the adjpoint state which, in this case does not cause any conflicting
notation. Moreover, we put A = 2.

As for the mathematical analysis of the particular optimal control problems above, we refer to [20–22, 26] and
the references therein. As in these notes, the emphasize is more on the algorithmic realization, we do not dwell on
the mathematical analysis of the fully continuous level in space and time with respect to DDMs and instead resort
to time- and finally space discretization, while keeping the first-optimize-then-discretize concept in mind.

2.2. Time discretization. In order not to double the presentation for the two optimal control problem above, we
now concentrate on problem (2.5), (2.6) and leave the corresponding framework for the first problem (2.3), (2.4) to
the reader. We will finally come back to that problem when it comes to time-domain decomposition. We, therefore,
consider a time discretization such that [0, )] is decomposed into break points C0 = 0 < C1 < · · · < C# = ) with
widths ΔC= := C=+1 − C=, = = 0, . . . , # − 1 (we use # + 1 as the number of break points which is not related to # as
indicating Neumann conditions). Accordingly, we denote H8 (G, C=) := H8,= (G), , = = 0, . . . , # − 1. We consider an
implicit Euler scheme.

min
(H,D)

� (H, D) :=
∑
8∈I

#∑
==1

ℓ8∫
0

�8 (H8,=)3G +
a

2

∑
9∈J(

#

#∑
==1
|D 9 (=) |2

B.C.(2.9)
1
ΔC
V(H8,=+1) (G) − mG

(
V(mGH8,=+1 (G)

)
) = 1

ΔC
V(H8,=) (G) + D8,=+1, , G ∈ (0, ℓ8)

H8,=+1 (= 9 ) = H:,=+1 (= 9 ), ∀8, : ∈ I9 , 9 ∈ J"∑
8∈I9

38 9 V(mGH8,=+1) (= 9 ) = 0, 9 ∈ J"

V(mGH8,=+1) (= 9 ) = D 9 ,=+1, 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
H8,=+1 (= 9 ) = 0, 8 ∈ I9 , 9 ∈ J (�

H8,0 (G) = H8,0 (G), 8 ∈ I, G ∈ (0, ℓ8), = = 1, . . . , # − 1, 8 ∈ I.
A similar procedure applies to the semi-linear system (2.3), we leave the details to the reader. Obviously, for

the purpose of numerical simulation, we need a spatial discretization, too. We resort to standard finite difference
procedures and thereby turn the problem into a fully discrete problem - according to the first-discretize-then-optimize
paradigm. Due to space limitations, we omit the details.
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Example 2.1. We consider the second problem (2.9) for a star graph with 3 edges. Edge 1 starts at a Dirichlet node
at G = 0 and connects to edges 2 and 3 at G = 1 where the other two edges emerge from G = 0 each. We impose
a homogeneous Dirichlet condition for edge 2 at G = 1 and a Neuman-control for edge 3 at G = 1. We include
pointwise box-control constraints on the flux in [0.5, 1.5], only. We take initial data H0 = .5B8=(cG)2 for edge 2 and
zero initial data for edges 1 and 3. As a target, we put H3 ≡ 1 for all edges. It is obvious that the set-up is purely
academic, but this is due to the space-limitations. Moreover, we use the standard discretization, already introduced
in [4]. We take 50 spatial discretization points for each edges defined on [0, 1] and a 100 time discretization points
for the time interval [0, 10]. Moreover, we use a 14. − 5 regularization of the p-Laplacian in order to avoid large
condition numbers of the Jacobians involved. The optimization is done using casADI with the mums-solver for
linear systems. We refer to the page https://web.casadi.org for details of the optimization procedure. See fig.
1.
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Figure 1. Right: control; Left: States

Objective : 1.89988252396679344 + 02 Dual infeasibility : 1.84741111297626054 − 12
Constraint violation : 9.79783656934804484 − 16 Overall NLP error : 7.22870620567916114 − 09

Example 2.2. We now consider the semi-linear problem (2.3). As the situation and its representation in figures
becomes very complex easily, we just take a single pipe. Indeed, the purpose at this point is just to give an impression
on the fully discrete approach, handled with professional software as IPOPT without resorting to DDMs. We take,
as an artificial nominal value, constant ?0 ≡ .1 initial data for the pressure and a linearly decreasing flux. We apply
a box-constrained control D(C) ∈ [.1, .4] at G = 0 to the flux @(C, 0). We want to achieve a terminal constant flux
@(), G) ≡ 1

2 , however, under the state constraints for the pressure ?(C, G) ∈ [0, .5]. We use IPOPT as in the last
example 2.1. We display the results in fig. 2. In the top, we show on the left the pressure and on the right the flux. On
the bottom, we show on the left the control with state constraints. The right figure on the bottom shows the control
with constraints in [0.1, .4] and no state constraints for which we do not show the corresponding pressure/flux due
to lacking space. The controls are reminiscent of bang-bang-type controls. Even though it is obvious form our
(further) experiments that the switching pattern depends on the discretization, we have no analysis on how! It may
well happen that a chattering control emerges that would not appear a result of a purely continuous treatment. This
is yet another reason for working (also) with the first-optimize-then-discretize approach.
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Figure 2. Top: left: pressure, right: flux; Bottom: control, left: with state constraints, right: without

2.3. Instantaneous control. It is clear that (2.9) involves all time steps in the cost functional. We would like to
reduce the complexity of the problem even further. To this aim, we consider the so-called instantaneous control
regime. This amounts to reducing the sums in the cost function of (2.9) to the time-level C=+1. This strategy has
also come to be known as rolling horizon approach, the simplest case of the moving horizon paradigm. It is now
convenient to discard the actual time level = + 1 and redefine the states at the former time as input data. To this end,
we replace U8 := 1

ΔC
, 5 1
8

:= U8V(H8,=), Thus, for each = = 1, . . . , # − 1 and given H8,=, we consider the problems
8



min
(H,D)

� (H, D) :=
∑
8∈I

ℓ8∫
0

�8 (H8)3G +
a

2

∑
9∈J(

#

|D 9 |2

B.C.(2.10)

U8V(H8) (G) − mG (V(mGH8 (G))) = 5 1
8 (G), 8 ∈ I, G ∈ (0, ℓ8)

H8 (= 9 ) = H: (= 9 ), ∀8, : ∈ I9 , 9 ∈ J"∑
8∈I9

38 9 V(mGH8) (= 9 ) = 0, 9 ∈ J"

V(mGH8) (= 9 ) = D 9 , 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
H8 (= 9 ) = 0, 8 ∈ I9 , 9 ∈ J (�

(2.11)

Wellposedness of (2.11) has been discussed in [27]. We recall the results as follows.

Theorem 2.3 ( [27]). For 5 ∈ Π8∈I!3 (0, ℓ8), D ∈ R |J
(
#
| , problem (2.11) admits a unique weak solution H ∈ + .

We refer to section 3 for the space setting. Even though, the mapping V(·) is differentiable in R \ {0}, the
control-to-state-mapping D → HD is not Gâteaux differentiable for ? < 2. This has already been observed in [10].
However, the control-to-state-map is continuous. By the continuity of V(·) and the strong convergence of H: to H0

in + , we obtain

Theorem 2.4 ( [27]). The mapping D → HD , where HD solves (2.11) is continuous between R |J(
#
| and + .

As for the existence of optimal pairs (H, D) for the optimal control problem (2.10), we cite

Theorem 2.5 ( [27]). The optimal control problem (2.10) admits a unique solution ( H̄, D̄) ∈ + × R |J(
#
| .

Example 2.6. We now use the same set-up as in Example 2.1, but nowwe perform the instantaneous control strategy.
See fig. 3.

Objective : 7.69230769231204624 − 02 Dual infeasibility : 5.79092329644481654 − 13
Constraint violation : 1.08529758929086314 − 15 Overall NLP error : 2.50590370311596304 − 09
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Figure 3. Left figure:? = 1.5 control, right figure: ? = 1.5, final states

Theorem 2.7 ( [27]). There exists ?̄ ∈ + satisfying together with the optimal pair ( H̄, D̄) the first order optimality
condition.

U8V( H̄8) − mG (V(mG H̄8)) = −
1
a
?8 , 8 ∈ I, G ∈ (0, ℓ8)

U8V
′( H̄8) ?̄8 − mG (V′(mG H̄8mG ?̄8)) = ^( | H̄8 − H38 |?−2 ( H̄8 − H38 ), 8 ∈ I, G ∈ (0, ℓ8)
H̄8 (= 9 ) = H̄: (= 9 ), ∀8, : ∈ I9 , ?̄8 (= 9 ) = ?̄: (= 9 ), ∀8, : ∈ I9 , 9 ∈ J"∑

8∈I9

38 9 V(mG H̄8) (= 9 ) = 0, 9 ∈ J"∑
8∈I9

38 9 V
′(mG H̄8) (= 9 )mG ?̄8 (= 9 ) = 0, 9 ∈ J"

V(mG H̄8) (= 9 ) = D̄ 9 , 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
V′(mG H̄8) (= 9 )mG ?̄8 (= 9 ) = 0, 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
H̄8 (= 9 ) = 0, ?̄8 (= 9 ) = 0 8 ∈ I9 , 9 ∈ J (�

?̄ n8 (= 9 ) + aD̄ 9 = 0, 8 ∈ I9 , 9 ∈ J (# .

(2.12)

One way to handle this problem is to use and iterative procedure. To this end, we introduce the common algorithm

Algorithm 2.8. (1) Choose D0

(2) For 8 = 1 until satisfied
(3) (a) Solve for H8 

V8 (H8) − mG (V8 (mGH8) = D8 , 8 = 1, 2, G ∈ �8
H1 (0) = 0, H2 (2) = 0,

H1 (1) = H2 (1), V1 (mGH1) (1) = V2 (mGH2) (1).
10



(b) Solve for ?8
V′8 (H8)?8 − mG (V′8 (mGH8)mG ?8) = ^( |H8 − H38 |A−2 (H8 − H38 ), 8 = 1, 2, G ∈ �8

?1 (0) = 0, ?2 (2) = 0,
?1 (1) = ?2 (1), V′1 (mGH1) (1)mG ?1 (1) = V′2 (mGH2 (1))mG ?2 (1).

(c) Set D = 1
a
?

(4) Terminate with the (approximate) fixed point D, H, ?.

Remark 2.9. algorithm is classic for linear problems. For the p-Laplace operator, this needs further
arguments. For the sake of brevity, we leave the convergence analysis to a forthcoming paper. See,
however [41].

(1) We remark that the analoguous procedure can be used for the original optimal control problems (2.3), (2.5)
on the continuous time level. We omit the details due to space limitations.

3. Non-overlapping domain decomposition

The point of interest here is that, giving up the concept of decomposing the optimality system at once, we can
concentrate on the two systems in step 3. iteratively. That is to say, we first apply the domain decomposition
procedure to the state system (a) and then to the adjoint system (b). Of course, the adjoint system is linear, given
the state H8 . Hence, the classical P. Lions type non-overlapping domain decompositions applies. See e.g. [22] for
the details. Thus, the problem is with the state system. To the best knowledge of the author, not even for this
p-Laplace type problem results are available in the literature. The only exception is a very recent article [12] where
the p-Laplace problem problem is treated, however, with a slightly but importantly different iteration which, in turn,
is reminiscent of a GaußSeidel type version of the P.L. Lions method, whereas the method of consideration here is
more a Jacobi-type iteration and is, therefore, completely parallel.

3.1. Decomposition of the state equation: the concept of virtual controls. As a result, we have seen that there are
different levels of potential domain decomposition: domain decomposition for the time dependent optimal control
problems, domain decomposition for the semi-discrete and finally fully-discrete optimal control problems (in these
notes the instantaneous control paradigm) and the method that uses domain decomposition of the system of states
and adjoint states independently, essentially just for the purpose of enhancing the simulation, while the previously
mentioned methods explore the intrinsic interaction of DDMs and optimal control. Historically, one started with the
last option, as the methods were designed for the numerical simulation to large scale applications. This is where we
start also this survey. We go back to the articles by J.L. Lions and O. Pironneau [32] and P.L. Lions [35]. The reason
for doing so is that these articles paved the way to what has come to be know as the concept of virtual controls . The
basic idea is to use concept of controllability and optimal tracking control in order to restore the mismatch between
the states and the fluxes at artificial interfaces, resulting in a non-overlapping domain decomposition paradigm.
For problems on metric graphs, the non-overlapping domain decomposition paradigm is very adequate as it can be
interpreted as a substructuring method. Overlapping domain decomposition at multiple nodes, therefore, doesn’t
seem to be intuitive. In these notes, we, therefore, stay with non-overlapping methods.

3.1.1. The Lions-Pironneau method for the p-Laplacian on graphs. In the sequel, we extend the method of J.L.
Lions and O. Pironneau [32] to p-Laplace-type problems on metric graphs. To the best knowledge of the author,
there is no literature available for this part. We prefer to work in a variational framework and, for the convenience
of reader, we use the standard notation D for the state, instead of H as in the context of PDE-control. To this end, we
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begin with some notation. We introduce the individual form

(3.1) 08 (D8 , H8) =
ℓ8∫

0

V8 (mGD8)mG{8 + V8 (D8){83G.

In order to consistently refer to nodal values, we denote D8 (G8 9 ) the nodal value of D8 at the node = 9 . G8 9 = 0 if
38 9 = −1 and G8 9 = ℓ8 if 38 9 = 1. We introduce the space

(3.2) +8 := {q8 ∈ !2 (0, ℓ8) := �8 |V8 (q8), V8 (mGq8) ∈ �8 , q(G8 9 ) = 0,∀ 9 ∈ J (� , 8 ∈ I9 }.
On the boundary of the edge 48 , we introduce the forms

(3.3) 18 9 (_8 9 , {8) := U8 9_8{8 (G8 9), 9 ∈ J , 8 ∈ I9 .
Here, U8 9 = 1 if 38 9 ≠ 0 and 0 otherwise. For each edge 48 the are exactly two nodes 98 , :8 such that 8 ∈ I98 ∩ I:8 .
To put it the other way round, we introduce J8 := { 9 ∈ J |8 ∈ I9 }, the set of all edges incident at node = 9 . Now, for
each edge and 58 ∈ �8 we can write down the variational equation

(3.4) 08 (D8 , {8) = ( 58 , {8)�8
+

∑
9∈J8

18 9 (_8 9 , {8), ∀{8 ∈ +8 .

As for the entire graph problem, we introduce

(3.5) 0(D, {) :=
∑
8∈I

08 (D8 , {8)

on

(3.6) + = {q ∈ Π8∈I+8 |q8 (G8 9 ) = q: (G: 9 ),∀8, : ∈ I9 , 9 ∈ J" }.
On the entire set of nodes, we have

(3.7) 1(_, {) :=
∑
9∈J

∑
8∈I9

_8 9{8 (G8 9 ).

With ( 5 , {) :=
∑
8∈I
( 58 , {8), we can formulate the general graph problem for the p-Laplace system.

(3.8) 0(D, {) = ( 5 , {) + 1(_, {), ∀{ ∈ +.
In order to decompose this system, one needs to relax the continuity conditions D8 (G8 9 ) = D: (G:8),∀8, : ∈ I8 and
also the Kirchhoff conditions

∑
8∈I9

38 9 V8 (mGD8) (G8 9 ) = 0,∀ 9 ∈ J" . The framework for this uses the _8 9 as virtual

controls in the following way.

min
_,D

� (_) :=
1
2

∑
9∈J"

∑
8∈I8

|_8 9 |2

s. t.(3.9)

08 (D8 , {8) = ( 58 , {8) +
∑
9∈J8

18 9 (_8 9 , {8 (G8 9 )), ∀{8 ∈ +8

D8 (G8 9 ) = D: (G: 9 ), ∀8, : ∈ I8∑
8∈I9

_8 9 = 0.

12



Problem (3.9) is an optimal control problem with _ as control which, in turn, is subject to control constraints
(3.9)5, =0<4;H,

∑
8∈I9

_8 9 = 0. We now relax the constraints by replacing _8 9 by _8 9 − 1
3 9

∑
;∈I8

_; 9 because the sum over

8 ∈ I8 of these new controls is zero. In order to replace the continuity condition, it is convenient to write them as
follows:

(3.10) D8 (G8 9 ) =
1
3 9

∑
8∈I9

D; (G; 9 ) = 0, ∀8 ∈ I9 .

We now introduce a Lagrange relaxation of (3.10), using a Lagrange multiplier @8 9 . We, therefore, consider the
saddle-point problem

inf
_,D

sup
@

� (_) +
∑
9∈J"

∑
8∈I9

@8 9
©«D8 (G8 9 ) −

∑
8∈I9

D; (G; 9 )
ª®¬


s.t.(3.11)

08 (D8 , {8) = ( 58 , {8) +
∑
9∈J8

(
_8 9 −

1
3 9

∑
;∈I8

_; 9

)
.

Using the Lagrange principle, we deduce the following optimality system with respect to control variable _:

08 (D8 , D̂8) = ( 58 , D̂8) +
∑
9∈J8

©«?8 (G8 9 ) − 1
3 9

∑
;∈I9

? 9 (G; 9 )
ª®¬ D̂8 (G8 9 ), ∀D̂8 ∈ +8(3.12)

0∗8 (?8 , ?̂8) = −
∑
9∈J8

(
@8 9 −

1
3 9

∑
;∈I8

@; 9

)
?̂8 (G8 9 ), ∀?̂8 ∈ +8 ,(3.13)

where

0∗8 (?8 , ?̂8) := 0′8 ( ?̂8 , ?8; D8) :=
ℓ8∫

0

V′8 (mGD8)mG ?̂8mG ?8 + V′8 (D8) ?̂8 ?83G.

As for the gradient with respect to @, we introduce

� (@) := − inf
_


1
2

∑
9∈J"

∑
8∈I8

|_8 9 |2 +
∑
9∈J"

∑
8∈I9

@8 9
©«D8 (G8 9 ) − 1

3 9

∑
8∈I9

D; (G; 9 )
ª®¬
 .(3.14)

Then, the gradient with respect to @ is

(3.15) m@ � (@) = D8 (G8 9 ) −
1
3 9

∑
;∈I9

D; (G; 9 ).

The details for this derivation are standard and, therefore, left to the reader. We now describe the extension of the
Lions-Pironneau algorithm to problems on graphs.

Algorithm 3.1. (1) Given D: , ?: , _:
(2) Update @: to @:+1:

(3.16) @:+18 9 = @:8 9 − d
D:8 (G8 9 ) −

1
3 9

∑
;∈I9

D:; (G; 9 )
 ,
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(3) Solve for D:+1, ?:+1

08 (D:+18 , D̂8) = ( 58 , D̂8) +
∑
9∈J8

©«?:+18 (G8 9 ) −
1
3 9

∑
;∈I9

?:+19 (G; 9 )
ª®¬ D̂8 (G8 9 ), ∀D̂8 ∈ +8(3.17)

0∗8 (?:+18 , ?̂8) = −
∑
9∈J8

(
@:+18 9 −

1
3 9

∑
;∈I8

@:+1; 9

)
?̂8 (G8 9 ), ∀?̂8 ∈ +8 ,(3.18)

(4) Return to 1.)

Remark 3.2. (1) Algorithm 3.1, for two domains and linear state equation (? = 2) is precisely the algorithm
presented in [32].

(2) In the linear case (? = 2), one first solves the adjoint problem for the given @:+1 to obtain ?:+1 which is
then used in the forward problem in order to solve for D:+1.

(3) The algorithm does not provide an iterative decomposition of the optimality system (3.12), (3.13).
(4) The author is not aware of any proof of convergence on the continuous level.

Example 3.3. We take a star-graph with 3 edges. Edge 1 stretches from G = −1 to G = 0, where the edges 2 and 3
emanate. We consider the linear problem (? = 2), only. Each edge satisfies homogeneous Dirichlet conditions at
the simple nodes. We impose a constant load 58 ≡ 1, 8 = 1, 2, 3. For the step-size parameter d, we choos d = 1. See
fig. 4. The solutions and derivatives for edges 2 and 3 are plotted on top of each other.
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Figure 4. Left figure:? = 2 state and derivative, right figure: errors at the multiple node
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We now introduce a second Lagrange multiplier for the relaxation of the Kirchhoff condition and obtain the
following saddle-point problem.

inf
_,D

sup
@

� (_) +
∑
9∈J"

∑
8∈I9

@8 9
©«D8 (G8 9 ) − 1

3 9

∑
8∈I9

D; (G; 9 )
ª®¬ +

∑
9∈J"

` 9

∑
8∈I9

_8 9


s.t.(3.19)

08 (D8 , {8) = ( 58 , {8) +
∑
9∈J8

(
_8 9

)
.

We derive the following algorithm, which is an extension of the corresponding one in [32] extended to nonlinear
graph problems.

Algorithm 3.4. (1) Given @: , `:
(2) Solve for ?: , D: :

08 (D:8 , D̂8) = ( 58 , D̂8) +
∑
9∈J8

(
?:8 (G8 9 ) − `:8 9

)
D̂8 (G8 9 ), ∀D̂8 ∈ +8(3.20)

0∗8 (?:8 , ?̂8) = −
∑
9∈J8

(
@:8 9 −

1
3 9

∑
;∈I8

@:; 9

)
?̂8 (G8 9 ), ∀?̂8 ∈ +8 ,(3.21)

(3) Update @:+1, `:+1:

@:+18 9 = @:8 9 + d
D:8 (G8 9 ) −

1
3 9

∑
;∈I9

D:; (G; 9 )
(3.22)

`:+18 9 = `:8 9 + d
©«
∑
;∈I9

?; (G; 9 ) − `:8 9
ª®¬ , 9 ∈ J" , 8 ∈ I9

Remark 3.5. (1) Notice again that the optimality system is forwardly coupled in the linear case, but two-way
coupled in the general case.

(2) Algorithm 3.4 provides a decoupling of the optimality system. However, this is not of interest here, as in
the limit, the adjoint problem decouples from the forward problem, due to the fact that ?:

8
(G8 9 ) − `:8 9 tends

to zero. Moreover, also the adjoint variable tends to zero. Due to space limitations, we defer the details to
a forthcoming publication.

(3) The algorithm can be used also for optimal control problems, as the actual control and the corresponding
load in the adjoint system can be read in the optimality system right away. For the sake of brevity, we,
therefore, provide an example of this algorithm in the context of optimal control, only.

3.1.2. The method by P.L. Lions for the p-Laplacian on a graph. We now extend the concept of the last sub-section
by introducing yet another virtual control. The idea is to relax the continuity conditions at multiple joints (= 9 ) by
the constraint D8 (G8 9 ) = [ 9 , ∀8 ∈ I9 , where [ 9 is taken as a virtual control. In contrast to the previous methods, we
now use an augmented Lagrangian ansatz for this constraint. In order to describe the method in a more compact
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format, we follow a Ritz-type approach. More precisely, we introduce the following augmented Lagrangian

L(D, [; @) :=
∑
8∈I

ℓ8∫
0

1
?
( |mGD8 |? − 58D8) 3G(3.23)

+
∑
9∈J"

∑
8∈I9

@8 9 (D8 (G8 9 ) − [ 9 ) +
d

2

∑
9∈J"

∑
8∈I9

(D8 (G8 9 ) − [ 9 )2.

We now use a variant of the Uzawa-algorithm for the saddle point problem

(3.24) sup
@

inf
D,[
L(D, [; @).

Indeed, we take the fractional step Algorithm 3 of R. Glowinski and P. LeTallec [16].

Algorithm 3.6. (1) Given [:−1, @:
(2) solve for D:

mD8L(, [; @) = 0.

(3) Update @: using a fractional step

@
:+ 1

2
8 9

= @:8 9 + d(D:8 (G8 9) − [:−1
9 ).

(4) Solve for [:
9

m[ 9
L(D: , [: ; @:+

1
2 ) = 0.

(5) Update @:+ 1
2 to the full step

@:+18 9 = @
:+ 1

2
8 9
+ d(D:8 (G8 9) − [: 9

It turns out, with a little extra calculation, that this algorithms leads to the following iterative domain decompo-
sition that, in turn, we display in terms of the strong formulation, for better understanding.

− mG
(
|mGD:+18 |?−2mGD

:+1
8

)
= 58 , in (0, ℓ8), 8 ∈ I(3.25)

38 9mG |D:+18 (G8 9 ) + dD:+18 (G8 9 ) = d
©« 2
3 9

∑
;∈I9

D:; (G; 9 ) − D
:
8 (G8 9 )

ª®¬
− ©« 2

3 9

∑
;∈I9

|mGD:; (G; 9 ) |
?−2mGD

:
; (G; 9 ) − |mGD

:
8 (G8 9 ) |?−2mGD

:
; (G8 9 )

ª®¬ , 9 ∈ J" , 8 ∈ I9 .
For ? = 2 and two sub-domains, this is the classical Robin-Robin-type non-overlapping domain decomposition
method introduced by P.L. Lions in [35] which is now extended to the p-Laplace problem and metric graphs. A
proof of convergence for the decomposition of serial nodes is provided in [26]. Due to space limitations, the general
case will be published in a forthcoming article.

Example 3.7. We consider now a serial problem, where the original domain stretches from 0 to 2 with constant load
5 ≡ 1, Dirichlet condition at G = 0 and Neuman condition at G = 2. We take G = 1 as interface with two edges and
constant load 58 ≡ 1. We apply a 1.4 − 5 regularization for the p-Laplace operator for ? = 3/2 and ? = 1.1. See
figure 5 16
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Figure 5. State and derivative and errors at multiple node: left figure:? = 3/2 , right figure: ? = 1.1

We comment on the domain decomposition of the time-dependent problem. We notice that there is no publication
available treating this case with non-overlapping domain decomposition. We take the idea from the Robin-Robin-
type approach (3.25). More precisely, we recall system (1.8) and apply the analogous iterative condition as in
(3.25).

mC |H:+18 (G, C) |?−2H:+18 (G, C) − mG
(
|mGH:+18 (G, C) |?−2mGH

:+1
8 G, C)

)
= D:+18 , 8 ∈ I, G ∈ (0, ℓ8), C ∈ (0, ))

H:+18(= 9 , C) = 0, 8 ∈ I9 , 9 ∈ J (� , C ∈ (0, ))
38 9 V(mGH:+18 (= 9 , C) = 0, 8 ∈ I9 , 9 ∈ J (# , C ∈ (0, ))(3.26)

38 9mG |H:+18 |?−2 (G8 9 , C)H:+18 (G8 9 , C) + dH:+18 (G8 9 , C) = d
©« 2
3 9

∑
;∈I9

H:; (G; 9 , C) − H
:
8 (G8 9 , C)

ª®¬
− ©« 2

3 9

∑
;∈I9

|mGH:; (G; 9 , C) |
?−2mGH

:
; (G; 9 , C) − |mGH

:
8 (G8 9 , C) |?−2mGH

:
; (G8 9 , C)

ª®¬ , 9 ∈ J" , 8 ∈ I9 .
H:+18 (G, 0) = H8 (G); G ∈ (0, ℓ8), 8 ∈ I.

As in [22], it is possible to apply a relaxation with a relaxation parameter n ∈ [0, 1). This amounts to
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38 9mG |H:+18 |?−2 (G8 9 , C)H:+18 (G8 9 , C) + dH:+18 (G8 9 , C) = _:8 9 (C),

_:8 9 = (1 − n)
d ©« 2

3 9

∑
;∈I9

H:; (G; 9 , C) − H
:
8 (G8 9 , C)

ª®¬
− ©« 2

3 9

∑
;∈I9

|mGH:; (G; 9 , C) |
?−2mGH

:
; (G; 9 , C) − |mGH

:
8 (G8 9 , C) |?−2mGH

:
; (G8 9 , C)

ª®¬


n
{
38 9mG |H:8 |?−2 (G8 9 , C)H:8 (G8 9 , C) + dH:8 (G8 9 , C)

}
.(3.27)

We do not have sufficient space to provide the prove of convergence for this algorithm 3.6. The proof will be
published in a forthcoming publication. We also refrain from showing convergence results for this method. The
method can be obtain from the corresponding DDM for static optimal control problems by discarding the control
functions. The performance is very similar as in example 4.8

Example 3.8. We consider a two-link problem. The first interval is (−1, 0) and the second (0, 1). We take sin(cG)2
as initial data on each link. We have implemented an FEM-code for the spatial part along with an implicit Euler time
stepping, but, for the interest of the reader, we also used the freely available Matlab code pdepe which can easily be
adopted to handle the p-Laplace parabolic problem with Robin-Robin-type boundary conditions. See fig. 6 for the
result. We refrain from showing the solutions, but rather show the interface along the time and the corresponding
errors in the state and the fluxes there. We used the pdepe code to also compute the problem on the entire domain
(−1, 1) and plotted the solution using ′ − .′. Of course, due to the precision, this is not visible in the figure. For
comparison, we display the results for the case ? = 2, the linear case, and ? = 3/2.
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Figure 6. Left: DDM results for p=2, interface/errors; Right: DMM Results for p=3/2, interface/errors

4. Domain decomposition for the static optimal control problem

We now embark on non-overlapping domain decomposition method for static optimal control problems. Ac-
cording to the previous section, we consider two approaches, namely, the one by J.L. Lions and O. Pironneau [32]
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extended to non-linear problems on metric graphs in subsection 3.1.1 and the one by P.L. Lion [35] developed in
subsection 3.1.2. We have seen that the domain decomposition methods all by themselves can be framed in the
context of optimal control, in fact virtual problems. They are, therefore, likely to be well suited for real or actual
control problems. In this section, we pursue this approach. Indeed, the actual cost-functions and the corresponding
actual controls together with their control constraints interfere via the penalty parameters, only.

We go back to the optimality condition (2.12). The goal is to decompose this system at given multiple nodes
= 9 . Accordingly, we change Algorithm 3.4 as follows. As it is more conveneint in the context of optimal control to
denote the control variables by D, we denote the states by H and keep the notation for the adjoint variable ?.

Algorithm 4.1. (1) Given @: , `:
(2) Solve for ?: , ?: :

08 (H:8 , Ĥ8) = −
1
a
(?:8 , Ĥ8) ( 58 , Ĥ8) +

∑
9∈J8

(
?:8 (G8 9 ) − `:8 9

)
D̂8 (G8 9 ), ∀D̂8 ∈ +8(4.1)

0∗8 (?:8 , ?̂8) = −^(H:8 − H38 , ?̂:8 ) −
∑
9∈J8

(
@:8 9 −

1
3 9

∑
;∈I8

@:; 9

)
?̂8 (G8 9 ), ∀?̂8 ∈ +8 ,(4.2)

(3) Update @:+1, `:+1:

@:+18 9 = @8 9 + d
D:8 (G8 9 ) −

1
3 9
,
∑
;∈I9

D:; (G; 9 )
(4.3)

`:+18 9 = `:8 9 + d
©«
∑
;∈I9

?; (G; 9 ) − `:8 9
ª®¬ , 9 ∈ J" , 8 ∈ I9 .

Remark 4.2. (1) Algorithm 4.1 does not seem to have been considered in the literature before. To the best
knowledge of the author, there is no convergence proof.

(2) Because of space limitations, we do not write down the optimality system in the strong form.
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Figure 7. State and derivative and errors at multiple node: left figure:? = 3/2 , right figure: ? = 1.1
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Example 4.3.

The extension of Algorithm 3.1 to optimal control problems does not seem to be as straightforward, at least at
the first sight. However, at least for linear distributed controls, J. D. Benamou [6] showed that the optimality system
can be recast into a complex Helmholtz problem for which, in turn, the P.L.Lions algorithm could be applied. This
observation has been the basis for the development of the non-overlapping domain decompositions in space and
time in the monograph by J. E. Lagnese and G. Leugering [22].

To fix ideas and for the sake of simplicity, and brevity, we take a serial network consisting of two links. The
generalization to arbitrary networks is then a matter of straightforward arguments in the spirit of the previous
sections.

Remark 4.4. Another reason for for the choice of a serial transmission problem is that it directly generalizes to
time-domain decomposition for optimality systems, as we will briefly discuss below. The point is that, as the state
evolves forwardly in time, the adjoint progresses backwardly. Therefore, the initial data for the state and the final
data for the adjoint variable serve as boundary conditions for the time variable. Indeed, in the case of distributed
controls, the optimality system can be reduced, either by eliminating the state or the adjoint state, resulting in a
space-time ’elliptic’ problem which, in turn, can be solved using the DDMs discussed in this article. See [24].

Moreover, also for the sake of simplicity, we discuss in these notes distributed controls only. Boundary controls
can easily be introduce and will be covered in a forthcoming publication.

We introduce the two consecutive intervals �1 := (0, 1), �2 := (1, 2) and look into the optimal control problem

min
(D,H)

^

A

2∑
8=1

ℓ8∫
0

|H8 − H38 |A 3G +
a

2

2∑
8=1

ℓ8∫
0

|D8 |23G

s.t.(4.4)
V8 (H8) − mG (V8 (mGH8) = D8 , 8 = 1, 2, G ∈ �8

H1 (0) = 0, H2 (2) = 0,
H1 (1) = H2 (1), V1 (mGH1) (1) = V2 (mGH2) (1).

We easily derive the corresponding optimality system.

V8 (H8) − mG (V8 (mGH8)) =
1
a
?8 , 8 = 1, 2, G ∈ �8

V′8 (H8)?8 − mG (V′8 (mGH8)mG ?8) = −^( |H8 − H38 |A−2 (H8 − H38 ), 8 = 1, 2, G ∈ �8
H1 (0) = 0, H2 (2) = 0,(4.5)
?1 (0) = 0, ?2 (2) = 0,

H1 (1) = H2 (1), V1 (mGH1) (1) = V2 (mGH2) (1),
?1 (1) = ?2 (1), V′1 (mGH1) (1)mG ?1 (1) = V′2 (mGH2 (1))mG ?2 (1).

We propose the following iterative domain decomposition method.

V8 (H=+18 ) − mG (V8 (mGH=+18 )) =
1
a
?=+18 , 8 = 1, 2, G ∈ �8

V′8 (H=+18 )?=+18 − mG (V′8 (mGH=+18 )mG ?=+18 ) = −^( |H=+18 − H38 |A−2 (H=+18 − H38 ), 8 = 1, 2, G ∈ �8
H=+11 (0) = 0, H=+12 (2) = 0,(4.6)

?=+11 (0) = 0, ?=+12 (2) = 0,
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38 9 V8 (mGH=+18 (1)) + fH=+18 (1) + `?=+18 (1) = −38 9 V 9 (mGH=2 (1)) + fH
=
9 (1) + `?=9 (1) := _=8(4.7)

38 9 V
′
8 (mGH=+18 (1))mG ?=+18 + f?=+18 (1) − `H=+18 (1) = −38 9 V′9 (mGH=9 (1))mG ?=+19 (1) + f?=9 (1) − `H=9 (1) =: d=8(4.8)

with parameters f, ` ≥ 0. The iteration (4.6), (4.7), (4.8) is started at = = 0.
We notice that the decomposed optimality system (4.6), (4.7), (4.8) can be seen as the optimality system for the

virtual control problem on each edge, with solution H, ? updated at the iteration index = + 1. We write down the
general virtual optimal control problem:

min
D,6,H

{
�8 (D8 , H8) +

1
2`

∑
9∈J8

[
|68 |2 + |`H8 − d=8 9 |2

]}
s. t.(4.9)

V8 (H8) − mG (V8 (mGH8)) = D8 , 8 = 1, 2, G ∈ �8
38 9 V8 (mGH8 (G8 9 )) + fH8 (G8 9 ) = _=8 9 + 68 9 , 9 ∈ J8 , 8 ∈ I9 , H8 (G8 9 ) = 0, 8 ∈ I9 , 9 ∈ J (� .

In the case above, 8 = 1, 2 and only one interface at G = 1 is relevant while at the ends a Dirichlet condition holds.
The proof of this very important feature is left to the reader. It is analogous to the linear result in [22].
Example 4.5. We consider the common distributed optimal control problem on the interval [−11] with Dirichlet
conditions at both ends. We take the p-Laplace problem with the target H ≡ 1 which, in turn, we enforce with
^ = 100, the unconstrained distributed control is penalized by a = .1. We then solve the virtual optimal control
problem (4.9) on the segment [−1, 0] and [0, 1] with f = 1, ` = 5. For the solver, we use IPOPT as in example
2.1. See the figure 8 where on the left side we plotted the state and on the right the errors at the interface at
G = 0. On the left we also plotted (with ’.-’) the solution obtain by IPOPT on the entire interval [−1, 1] on top of
the individual solutions on the sub-domains. We remark that in this special case of a distributed control, we may
use the optimality condition ? = aD to calculate the updates for _=, d=, respectively. In case of boundary controls
or localized distributed controls, one has to solve the adjoint equation in order to perform the necessary updates.
Nevertheless, the optimality system is fully decoupled and restored in course of the iterations.
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Figure 8. State and errors at multiple node for ? = 3/2;

Objective : 1.7989698852174 + 02 Dual infeasibility : 3.3659266485134 − 09
Constraint violation : 1.1298720288464 − 14 Overall NLP error : 1.0769471259684 − 09
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Theorem 4.6. Let the (H8 , ?8) ∈ �1 (�8) and initial errors X0 be sufficiently small. Then there are parameters
f, `, ^, a such that the iteration X=+1 = TX= converges. Moreover, we have

H̃=8 , ?̃
=
8 → 0, =→∞, in �1 (�8), 8 = 1, 2,(4.10)

H̃=8 (1), mG H̃=8 (1), ?̃=8 (1), mG ?̃=8 (1) → 0, =→ 0, 8 = 1, 2.

Remark 4.7. We remark that when we take ? = 2, then the iterative domain decomposition procedure above reduces
to the well-known iteration from [22].

Example 4.8. In this example, we consider the static optimal control problem for a two-link model and the
corresponding optimality system. The iterative decomposition is now based on the Robin-Robin DDM. We choose
in particular a constant target function H3 = 1, constant Dirichlet conditions H(G, C) = 1 at the outer ends G = 0, G = 2
and parameters f = 10, ` = .001, ^ = 100, a = .1. We perform two experiments, one for ? = 3/2, the case of
interest in gas flow, and ? = 1.1, which is important in e.g. imaging, where 1 < ? ≤ 2 and the limiting case ? = 1
are considered. We solve the boundary value problems arising on the full domain and the two subdomains using the
routine bvpc4 from Matlab with a resolution of 14 − 14. We have chosen a constant target because it is critical, as
vanishing H and mGH play a special role for the p-Laplacian. For ? > 2, we, therefore, needed a regularization. On
the left of figure 9, where ? = 3/2, we show on the top left the solution of the optimality system, on the top right
the result of the iteration on each subdomain stitched together at G = 1. On the bottom left we display the errors for
the primal variables and their derivatives at the interface G = 1 and on the right the corresponding dual variables.
The same configuration is used for ? = 1.1 in the right part of figure 9. For more experiments and a more detailed
description, we refer to a forthcoming publication.
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Figure 9. Left figure: two-domain matching, right figure: errors of states and fluxes

5. Time-domain decomposition

We now provide some remarks on time-domain decomposition of optimal control problems by decomposing the
corresponding optimality systems. Due to space limitations, we do so for the semi-linear problem (1.7) and leave
the case of friction dominated flow to a forthcoming publication. We can now directly continue the discussion of
the last section, as we pointed out in remark 3.5. The procedure pursued in this article is the same as in [21] and is,
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in turn, very much inspired by [23], where the linear wave equation and the Maxwell equations are considered. We
introduce a coarse time discretization with

0 = )0 < )1 < · · · < ): < ):+1 < · · · < ) < ) +1 = ).

Instead of using this grid for a direct numerical solve, we introduce the intervals �: := (): , ):+1). At the time-
interfaces): , ):+1, we employ continuity conditions (?:8 , @:8)∗ (): ) = (?:−1,8 , @:−1,8)∗ (): ) for 8 ∈ I : = 1, . . . ,  +
1, and similarly for the adjoint variables. Below, we omit the edge index 8. The iterative time domain decompostion
procedure is then described as follows.(

?

@

)=+1
:

() :+1) + f
(
q

k

)=+1
:

():+1) = Φ=:,:+1,
(
?

@

)=+1
:

() : ) − f
(
q

k

)=+1
:

(): ) = Φ::,:−1,(5.1)

with

Φ=:,:+1 =

(
?

@

)=
:+1
() :+1) + f

(
q

k

)=
:+1
():+1), Φ=:,:−1 =

(
?

@

)=
:−1
() : ) − f

(
q

k

)=+1
:−1
(): ).(5.2)

We note that again a relaxation of the iteration history as in (3.27) is possible and in fact advisable. We, therefore,
introduce
(5.3)

Φ=:,:+1 = (1 − Y)
((
?

@

)=
:+1
():+1) + f

(
q

k

)=
:+1
():+1)

)
+ Y

((
?

@

)=
:+1
():+1) + f

(
q

k

)=
:+1
():+1)

)
, : = 0, . . . ,  − 1,

Φ=:,:−1 = (1 − Y)
((
?

@

)=
:−1
(): ) − f

(
q

k

)=
:−1
(): (): )

)
+ Y

((
?

@

)=
:

(): ) − f
(
?

@

)=
:

(): )
)
, : = 1, . . . ,  ,

We leave this to the reader, as we do with the proof of convergence, for which refer to [21]. it is also obvious that
this TDDM leads to a virtual control problem, just as in (4.9). See [21] for details.

Example 5.1. We consider 2.7 for a single link, i.e., 3 = 2. We do not consider boundary controls but assume,
in fact, homogeneous Dirichlet boundary conditions. We apply a distributed control without constraints and take
two sub-intervals �1 = [0, 1) and �2 = (1, 2]. For the space discretization, we use the standard approximations
corresponding to the standard discrete Dirichlet-Laplacian �ℎ on the second-order level in space. The corresponding
global optimality system on the entire interval [0, 2] and the local optimality systems on each time interval �1 and
�2 are treated as a boundary value problems wrt the time variable. Then, we solve these problems using the
MATLAB solver bvp4c with tolerance 10−8. For any initial data and tracking term, the system governing the errors
is homogeneous and, hence, the local optimality systems are homogeneous up to the errors at the transmission
boundary ) = 1. In particular, for vanishing initial data and target, the global optimality system has zero as the
unique solution. We take = = 10 discretization points wrt the space variable and choose f = 105, ^ = 103, a = 103,
and Y ∈ {0.95, 0.5., 0.005}. See fig.10 for the results, for the three choices of Y, left, middle and right, respectively.

6. Remarks on PINN-based deep DDM: D3M

The methods described in this survey article are based on the paradigm of virtual controls. The corresponding
DDMs can, therefore, be seen in the context of PDE-constraint optimization. Physics informed neural networks
(PINN) use neural network technology in order to approximate PDEs and the corresponding initial and boundary
conditions in the sense of least squares. See e.g. [3]. More recently, coupled problems have been addressed by
what is now known as the XPINN-approach, X standing for crossings or interfaces, see e.g. [19]. Clearly, once the
model is penalized using least squares, also transmission conditions can be handled using penalization. Even more,
it is possible to include optimization variables and cost functions in the context of PDE-constraint optimal control
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Figure 10. Left figure: errors of the state, right figure: errors of fluxes

by this method. See e.g. [38]. It does not come as a surprise that domain decomposition methods have also been
investigated in this context. Indeed, a deep-Schwarz overlapping domain decomposition method has been introduced
in [30]. There is no space to elaborate at length on this promising emerging subject. In this article, we apply the P.L.
Lions Robin-Robin-type approach to a two-link problem. The only difference to the exact Robin-Robin-approach
(4.8), (4.7) is that we substitute the model-based numerical solver for the sub-domains (or one of the sub-domains)
by a PINN-based solver. This approach has, to the best knowledge of the author, not been published elsewhere.
The interest in this non-overlapping PINN-based approach is that in the applications, in particular in the network
problems we discuss here, the PINN-approach, as a surrogate, may be used in part of the complex network (say,
daughter networks), while classical numerical methods are used in a parent network. This novel paradigm that we
can call NETI (instead of FETI) as NEtwork Tearing and Integration is the subject of further research in the CRC
154 Mathematical modelling, simulation and optimization using the example of gas networks, project A05, (see
https://www.trr154.fau.de/trr-154-en/).

Example 6.1. We consider the same situation as in example 3.3. As for the PINN set-up, we use the following
specification of training parameters: Ne = 2000; # of Epochs (1 Epoch contains Tb training batches), Tb = 600; #
of training batches ( or corrections during 1 Epoch), lr = 0.005; Learning rate coefficient (relaxation for the update),
Nn = 10; Number of nodes in the 1st hidden layer, Tt = 1e-30; Training tolerance N.B. See fig.11 and build on a
code provided by Almqvist [1].

6.1. Summary, comments and further research. We have tried to provide a fairly complete account of iteration
methods that can be attributed to the notion of virtual controls in the sense of J.L. Lions and O. Pironneau [32]. We
have seen that also the algorithm by P.L. Lions [35] can be interpreted as the result of a virtual control problem.
This feature suggests itself to be used in the context of optimal control with PDE-constraints which are subject to
non-overlapping domain decomposition in space and time. Due to space limitations, we were not able to provide
mathematical analysis, but rather focused on the algorithms and their implementation. In particular with respect to
the fully doubly nonlinear p-parabolic problem, a detailed study of well-posedness of the underlying optimal control
problems together with proofs of convergence on the continuous level will appear elsewhere. Domain decomposition
an turnpike phenomena are subject to further studies as well as the algorithmic realization of reachability or exact
controllability (or even nodal profile) constraints. Moreover, the methods treated allow for control constraints, also.
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Figure 11. Left figure: two-domain matching, right figure: errors of states and fluxes

DDMs for state constraint optimal control problems appear to be open. Obviously, such problems are of importance
in particular in gas-pipe networks, where e.g. the pressure is limited in each pipe by box-constraints. With respect
to mechanical multi-structures, further research is necessary in order to extend the algorithms provided here to 2-d
and 3-d networked systems, see [22] for 2-d networks. The fact that the DDMs can eventually be represented by
virtual control problems on sub-domains make them interesting. This applies also to discrete-continuous control
problems, see e.g. [18], [17]. We refer to https://www.trr154.fau.de/trr-154-en/ for further information.
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