
NONOVERLAPPING DOMAIN DECOMPOSITION FOR INSTANTANEOUS OPTIMAL CONTROL
OF FRICTION DOMINATED FLOW IN A GAS-NETWORK

GÜNTER LEUGERING

Abstract. We consider a non-overlapping domain decomposition method for an optimal control problem related to the
flow of gas in a pipe network. The equations of motions are taken to be represented by a friction dominated model derived
from a semi-linear approximation of the fully nonlinear isothermal Euler gas equations. This involves a p-Laplace-type
problem on the graph with ? = 3

2 . We continue the work [11] where such a problem has been discussed in the context
of an instantaneous control strategy. We provide a non-overlapping domain decomposition in the spirit of P.L. Lions for
elliptic problems and extend the method to the first order optimality system.

1. Introduction

1.1. Modeling of gas flow in a single pipe. The Euler equations are given by a system of nonlinear hyperbolic
partial differential equations (PDEs) which represent the motion of a compressible non-viscous fluid or a gas. They
consist of the continuity equation, the balance of moments and the energy equation. The full set of equations is
given by (see [5,12,13,16]). Let d denote the density, { the velocity of the gas and ? the pressure. We further denote
6 the gravitational constant, _ the friction coefficient of the pipe, � the diameter, 0 the area of the cross section.
The state variables of the system are d, the flux @ = d{. We also denote 2 the the speed of sound, i.e. 22 =

m?

md
(for

constant entropy). For natural gas we have 340 m
s . In particular, in the subsonic case (|{ | < 2), the one which we

consider in the sequel, two boundary conditions have to be imposed on the left end and one at the right end of the
pipe. We consider here the isothermal case only. Thus, for horizontal pipes

md

mC
+ m

mG
(d{) = 0

m

mC
(d{) + m

mG
(? + d{2) = − _

2�
d{ |{ | .

(1.1)

In the particular case, where the we have a constant speed of sound 2 =
√
?

d
, for small velocities |{ | � 2, we arrive

at the semi-linear model
md

mC
+ m

mG
(d{) = 0

m

mC
(d{) + m?

mG
= − _

2�
d{ |{ | .

(1.2)
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If we further neglect the inertia with respect to the flux and introduce @ = d{0, we arrive at

m?

mC
+ 2

2

0

m

mG
@ = 0

m?2

mG
= − _2

2

�02 @ |@ | =: −W2@ |@ | .
(1.3)

We now set H := ?2 and obtain from the second equation in (1.3)

@ = − 1
W

mH

mG√��� mHmG ��� .
With U := W0

2
we obtain

U
m

mC

H√
|H |
− m

mG

mH

mG√��� mHmG ��� = 0.(1.4)

We introduce the monotone function V(B) := B√
|B |
. With this (1.4) reads as

U
m

mC
V(H) − m

mG
V( mH
mG
) = 0.(1.5)

It is also possible to write this down in the p-Laplace format: (1.4) reads as

U
m

mC

(
|H |?−2H

)
− m

mG

(
| mH
mG
|?−2 mH

mG

)
= 0,(1.6)

where ? = 3
2 . Equation (1.6) has come to be known as doubly nonlinear parabolic equation of p-Laplace type. See

e.g. [14], [4]. Notice that ? < 2 and that the system is, therefore, singular for m
mG
H(G) = 0. For ? > 2 such equations

exhibit instead degeneration. Equations similar to (1.5) have been considered in the literature, see e.g. [2, 3]. In
this contribution, we aim at a discussion of such equations together with optimal control problems on networks.
A more recent study of doubly nonlinear parabolic equations in the context of friction dominated flow has been
provided in [1]. Equations of the type (1.5) are known to exhibit positive solutions and satisfy a maximum principle.
As a matter of fact, to the best knowledge of the authors, there are no studies on optimal control of such systems
on general graphs available from the literature besides [11]. We note that the doubly nonlinear parabolic problem
associated with the friction-dominated flow on a network has been considered in the thesis [15]. Optimal control
problems for the p-Laplace operator have been studied since the 1980ies, see e.g. [6]. Moreover, in [17] an optimal
control problem for the p-Laplace equation ? ≥ 2 has been recently considered. See also [8] for a problem of
optimal control in the coefficient for the p-Laplace equation, again for ? ≥ 2.

The plan of this article is to first recall the network modelling from [11] (also presented in [15]), formulate the
optimal control problem together with its instantaneous (rolling horizon) approximation via a time discretization.
The resulting static optimal control for each time step is then turned into the corresponding first order optimality
system, which, in turn, is then handled via the proposed non-overlapping domain decomposition. We note that such
non-overlapping domain decompositions have not been considered in the literature so far with the exception of [9],
where, for ? ≥ 2, a similar problem without control has been considered, however, with a different updating rule that
is more related to a Gauß-Seidel-type iteration based on a Peacman-Rachford scheme and, hence, is not completely
parallel.
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1.2. Network modeling. Let � = (+, �) denote the graph of the gas network with vertices (nodes) + =

{=1, =2, . . . , = |+ |} = {= 9 | 9 ∈ J an edges � = {41, 42, . . . , 4 |� |} = {48 |8 ∈ I}. We associate to each edge a
direction.

38 9 =


− 1, if node = 9 if the the edge 48 starts at node = 948 ,
+ 1, if node = 9 if the edges 48 end at node = 948 ,

0, else.

The pressure variables H8 (= 9 ) coincide for all 8 ∈ I9 := {8 ∈ 1, . . . � |38 9 ≠ 0}. We express the transmission
conditions at the nodes in the following way. We introduce the edge degree 3 9 := |I9 |. Then the continuity
conditions read as follows

(1.7) H8 (= 9 , C) = H: (= 9 , C), ∀8, : ∈ I9 , 3 9 > 1.

The nodal balance equation for the fluxes can be written as the classical Kirchhoff-type condition

(1.8)
∑
8∈I9

38 9 V(mGH8 (= 9 , C)) = 0, 3 9 > 1.

We use the 3 9 in order to decompose the index set for nodes J into J = J" ∪ J ( , where J" = { 9 ∈ J |3 9 > 1}
represents the multiple nodes and J ( = { 9 ∈ J |3 9 = 1} the simple nodes. According to Dirichlet or Neumann
boundary conditions a the simple nodes, we further decompose J ( = J (

�
∪ J (

#
}. We summarize the equations as

follows:
U8mC V(H8 (G, C)) − mG (V(mGH8 (G, C))) = D8 , 8 ∈ I, G ∈ (0, ℓ8), C ∈ (0, ))

H8 (= 9 , C) = H: (= 9 , C), ∀8, : ∈ I9 , 9 ∈ J" , C ∈ (0, ))∑
8∈I9

38 9 V(mGH8 (= 9 , C)) = 0, 9 ∈ J" , C ∈ (0, ))

H8 (= 9 , C) = 0, 8 ∈ I9 , 9 ∈ J (� , C ∈ (0, ))
38 9 V(mGH8 (= 9 , C) = D 9 (C), 8 ∈ I9 , 9 ∈ J (# , C ∈ (0, ))
?8 (G, 0) = ?8,0 (G), @8 (G, 0) = @80 (G), G ∈ (0, ℓ8),

(1.9)

where the functions D8 , 8 ∈ I, D 9 , 9 ∈∈ I9 , 9 ∈ J (# serve as controls.

Optimal control problems and outline. We are now in the position to formulate optimal control problems on the
level of the gas networks. We first describe the general format for an optimal control problem. This involves a cost
function that assigns to each admissible pair (H, D) a ’cost’ � (H, D), which is represented on each individual edge by
a contribution on the state �8 (H) and the controls acting at simple nodes. The typical example, the one that we will
use in the sequel is given by

�8 (H8) (G) :=
1
A
|H8 (G) − H38 (G) |A , G ∈ (0, ℓ8), A ∈ {

3
2
, 2}.

min
(H,D) ∈Ξ

� (H, D) :=
∑
8∈I

)∫
0

ℓ8∫
0

�8 (H8)3G3C +
a

2

∑
9∈J(

#

)∫
0

|D 9 (C) |23C

B.C.(1.10)
(H, D) satisfies (1.9),
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Ξ := {(H, D) : H
8
≤ H8 ≤ H8 , 8 ∈ I, D 9 ≤ D 9 ≤ D 9 , 9 ∈ J (# }.(1.11)

In (1.11), the quantities H
8
, H8 are given constants that determine the feasible pressures and flows in the pipe 8, while

D
8
, D8 describe control constraints. In the continuous-time case the inequalities are considered as being satisfied for

all times and everywhere along the pipes. To the best knowledge of the authors, for problem (1.10) - in particular
with the additional constraints (1.11)- no published result on well-posedness and characterization of optimal controls
seems to be available in the literature. As in [11], we penalize the control costs using a > 0 and restrict ourselves
to time discretizations of (1.10) and, in fact, to the instantaneous control regime that has come to be known also as
rolling horizon problem.

1.3. Time discretization. We, therefore, consider the time discretization (1.9) such that [0, )] is decomposed into
break points C0 = 0 < C1 < · · · < C# = ) with widths ΔC= := C=+1 − C=, = = 0, . . . , # − 1 (we use # + 1 as the
number of break points which is not related to # as indicating Neumann conditions). Accordingly, we denote
H8 (G, C=) := H8,= (G), , = = 0, . . . , # − 1. We consider a semi-implicit Euler scheme.

1
ΔC
V(H8,=+1) (G) − mG

(
V(mGH8,=+1 (G)

)
) = 1

ΔC
V(H8,=) (G), 8 ∈ I, G ∈ (0, ℓ8)

H8,=+1 (= 9 ) = H:,=+1 (= 9 ), ∀8, : ∈ I9 , 9 ∈ J"∑
8∈I9

38 9 V(mGH8,=+1) (= 9 ) = 0, 9 ∈ J"

V(mGH8,=+1) (= 9 ) = D 9 ,=+1, 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
H8,=+1 (= 9 ) = 0, 8 ∈ I9 , 9 ∈ J (�

H8,0 (G) = H8,0 (G), 8 ∈ I, G ∈ (0, ℓ8), = = 1, . . . , # − 1.

(1.12)

We then obtain the optimal control problem on the time-discrete level:

min
(H,D)

� (H, D) :=
∑
8∈I

#∑
==1

ℓ8∫
0

�8 (H8,=)3G +
a

2

∑
9∈J(

#

#∑
==1
|D 9 (=) |2

B.C.(1.13)
(H, D) satisfies (1.12)

It is clear that (1.13) involves all time steps in the cost functional. We would like to reduce the complexity of
the problem even further. To this aim, we consider the so-called instantaneous control regime. This amounts to
reducing the sums in the cost function of (1.13) to the time-level C=+1. This strategy has also come to be known as
rolling horizon approach, the simplest case of the moving horizon paradigm. Thus, for each = = 1, . . . , # − 1 and
given H8,=, we consider the problems

min
(H,D)

� (H, D) :=
∑
8∈I

ℓ8∫
0

�8 (H8)3G +
a

2

∑
9∈J(

#

|D 9 |2

B.C.(1.14)
(H, D) satisfies (1.12) at time level = + 1.
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It is now convenient to discard the actual time level = + 1 and redefine the states at the former time as input data. To
this end, we replace U8 := 1

ΔC
, 5 1
8

:= U8V(H8,=), rewrite (1.12) as

U8V(H8) (G) − mG (V(mGH8 (G))) = 5 1
8 (G), 8 ∈ I, G ∈ (0, ℓ8)

H8 (= 9 ) = H: (= 9 ), ∀8, : ∈ I9 , 9 ∈ J"∑
8∈I9

38 9 V(mGH8) (= 9 ) = 0, 9 ∈ J"

V(mGH8) (= 9 ) = D 9 , 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
H8 (= 9 ) = 0, 8 ∈ I9 , 9 ∈ J (�

(1.15)

We now consider in the rest of the paper the following optimal control problem:

min
(H,D)

� (H, D) :=
∑
8∈I

ℓ8∫
0

�8 (H8)3G +
a

2

∑
9∈J(

#

|D 9 |2

B.C.(1.16)
(H, D) satisfies (1.15).

Wellposedness of (1.15) has been discussed in [11]. We recall the results as follows.

Theorem 1.1 ( [11]). For 5 ∈ Π8∈I!3 (0, ℓ8), D ∈ R |J
(
#
| , problem (1.15) admits a unique weak solution H ∈ + .

Even though, the mapping V(·) is differentiable in R \ {0}, the control-to-state-mapping D → HD is not Gâteaux
differentiable for ? < 2. This has already been observed in [7]. However, the control-to-state-map is continuous.
By the continuity of V(·) and the strong convergence of H: to H0 in + , we obtain

Theorem 1.2 ( [11]). The mapping D → HD , where HD solves (1.15) is continuous between R |J(
#
| and + .

2. Optimal control

As for the existence of optimal pairs (H, D) for the optimal control problem (1.16), we cite

Theorem 2.1 ( [11]). The optimal control problem (1.16) admits a unique solution ( H̄, D̄) ∈ + × R |J(
#
| .
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Theorem 2.2 ( [11]). There exists ?̄ ∈ + satisfying together with the optimal pair ( H̄, D̄) the first order optimality
condition.

U8V( H̄8) − mG (V(mG H̄8)) = −
1
a
?8 , 8 ∈ I, G ∈ (0, ℓ8)

U8V
′( H̄8) ?̄8 − mG (V′(mG H̄8mG ?̄8)) = ^( | H̄8 − H38 |?−2 ( H̄8 − H38 ), 8 ∈ I, G ∈ (0, ℓ8)
H̄8 (= 9 ) = H̄: (= 9 ), ∀8, : ∈ I9 , ?̄8 (= 9 ) = ?̄: (= 9 ), ∀8, : ∈ I9 , 9 ∈ J"∑

8∈I9

38 9 V(mG H̄8) (= 9 ) = 0, 9 ∈ J"∑
8∈I9

38 9 V
′(mG H̄8) (= 9 )mG ?̄8 (= 9 ) = 0, 9 ∈ J"

V(mG H̄8) (= 9 ) = D̄ 9 , 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
V′(mG H̄8) (= 9 )mG ?̄8 (= 9 ) = 0, 3 9 = 1, 8 ∈ I9 , 9 ∈ J (#
H̄8 (= 9 ) = 0, ?̄8 (= 9 ) = 0 8 ∈ I9 , 9 ∈ J (�

?̄ n8 (= 9 ) + aD̄ 9 = 0, 8 ∈ I9 , 9 ∈ J (# .

(2.1)

3. Domain decomposition

We now embark on our domain decomposition method. To fix ideas and for the sake of simplicity, we take a
serial network consisting of two links first and discuss cutting out stars from a network afterwards. Moreover, also
for the sake of simplicity, we discuss in these notes distributed controls only. Boundary controls will be covered in
a forthcoming publication.

We introduce the two consecutive intervals �1 := (0, 1), �2 := (1, 2) and look into the optimal control problem

min
(D,H)

^

A

2∑
8=1

ℓ8∫
0

|H8 − H38 |A 3G +
a

2

2∑
8=1

ℓ8∫
0

|D8 |23G

s.t.(3.1)
V8 (H8) − mG (V8 (mGH8) = D8 , 8 = 1, 2, G ∈ �8

H1 (0) = 0, H2 (2) = 0,
H1 (1) = H2 (1), V1 (mGH1) (1) = V2 (mGH2) (1).

We easily derive the corresponding optimality system.

V8 (H8) − mG (V8 (mGH8)) = −
1
a
?8 , 8 = 1, 2, G ∈ �8

V′8 (H8)?8 − mG (V′8 (mGH8)mG ?8) = ^( |H8 − H38 |A−2 (H8 − H38 ), 8 = 1, 2, G ∈ �8
H1 (0) = 0, H2 (2) = 0,(3.2)
?1 (0) = 0, ?2 (2) = 0,

H1 (1) = H2 (1), V1 (mGH1) (1) = V2 (mGH2) (1),
?1 (1) = ?2 (1), V′1 (mGH1) (1)mG ?1 (1) = V′2 (mGH2 (1))mG ?2 (1).
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We propose the following iterative domain decomposition method.

V8 (H=+18 ) − mG (V8 (mGH=+18 )) = −
1
a
?=+18 , 8 = 1, 2, G ∈ �8

V′8 (H=+18 )?=+18 − mG (V′8 (mGH=+18 )mG ?=+18 ) = ^( |H=+18 − H38 |A−2 (H=+18 − H38 ), 8 = 1, 2, G ∈ �8
H=+11 (0) = 0, H=+12 (2) = 0,(3.3)

?=+11 (0) = 0, ?=+12 (2) = 0,

38 9 V8 (mGH=+18 (1)) + fH=+18 (1) + `?=+18 (1) = −38 9 V 9 (mGH=2 (1)) + fH
=
9 (1) + `?=9 (1) := _=8(3.4)

38 9 V
′
8 (mGH=+18 (1))mG ?=+18 + f?=+18 (1) − `H=+18 (1) = −38 9 V′9 (mGH=9 (1))mG ?=+19 (1) + f?=9 (1) − `H=9 (1) =: d=8(3.5)

with parameters f, ` ≥ 0. The iteration (3.3), (3.4), (3.5) is started at = = 0. We notice that the decomposed
optimality system (3.3), (3.4), (3.5) can be seen as the optimality system for the virtual control problem on each
edge, with solution H, ? updated at the iteration index = + 1.

min
D,6,H

{
� (D, H) + 1

2`

∑
8=1,2

[
|68 |2 + |`H8 + d=8 |2

]}
s. t.(3.6)

V8 (H8) − mG (V8 (mGH8)) = D8 , 8 = 1, 2, G ∈ �8
38 9 V8 (mGH8 (1)) + fH8 (1) = _=8 + 68 , 8 = 1, 2, H1 (0) = 0, H2 (2) = 0.

The proof of this very important feature is left to the reader. It is analogous to the linear result in [10]. We wish to
show the convergence of this iteration, when =→∞. To this end, we introduce the errors

(3.7) H̃=8 := H=8 − H8 , ?̃=8 := ?=8 − ?8 , 8 = 1, 2, = = 1, 2, 3......,

We subtract the state equations and the adjoint equations and obtain the system in terms of the errors.

V8 ( H̃=+18 + H8) − V8 (H8) − mG (V8 (mG H̃=+18 + mGH8)) − mG (V8 (mGH8)) = −
1
a
?̃=+18 8 = 1, 2, G ∈ �8

V′8 ( H̃=+18 + H8) ?̃=+18 − mG (V′8 (mGH=+18 + mGH8)mG ?̃=+18 )
= −(V′8 ( H̃=+18 + H8) − V′8 (H8))?8 + (V′8 (mG H̃=+18 + mGH8) − V′8 (mGH8))mG ?8)(3.8)

+ ^(( | H̃=+18 + H8 − H38 |A−2 ( H̃=+18 + H8 − H38 ) − (|H8 − H38 |A−2 (H8 − H38 )) =: 6=8 , 8 = 1, 2, G ∈ �8
H̃=+11 (0) = 0, H̃=+12 (2) = 0,

?̃=+11 (0) = 0, ?̃=+12 (2) = 0,
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together with the iteration of the transmission conditions

V1 (mG H̃=+11 (1) + mGH1 (1)) − V1 (mGH1 (1)) + fH̃=+11 (1) + `?̃
=+1
1 (1)

= V2 (mG H̃=2 (1) + mGH2 (1)) − V2 (mGH2 (1)) + fH̃=2 (1) + `?̃
=
2 (1)

− (V2 (mG H̃=+12 (1) + mGH2 (1)) − V2 (mGH2 (1))) + fH̃=+12 (1) + `?̃
=+1
2 (1)(3.9)

= −(V1 (mG H̃=1 (1) + mGH1 (1)) − V1 (mGH1 (1))) + fH̃=1 (1) + `?̃
=
1 (1)

V′1 (mG H̃
=+1
1 (1) + mGH1 (1)) (mG ?̃=+11 (1) + mG ?1 (1)) − V′1 (mGH1)mG ?1 (1) + f?̃=+11 (1) − `H̃

=+1
1 (1)

= V′2 (mG H̃
=
2 (1) + mGH2 (1)) (mG ?̃=+12 (1) + mG ?2 (1)) − V′2 (mGH2 (1))mG ?2 (1)) + f?̃=2 (1) − `H̃

=
2 (1)(3.10)

− (V′2 (mG H̃
=+1
2 (1) + mGH2 (1)) (mG ?̃=+12 (1) + mG ?2 (1)) − V′2 (mGH2 (1))mG ?2 (1))) + f?̃=+12 (1) − `H̃

=+1
2 (1)

= −(V′1 (mG H̃
=
1 (1) + mGH1 (1)) (mG ?̃=1 + mG ?1 (1)) − V′1 (mGH1 (1))mG ?1 (1))) + f?̃=1 (1) − `H̃

=
1 (1).

We introduce

X= :=(V1 (mGH=1 (1)) − V1 (mGH1 (1)) + fH̃=1 (1) + `?̃
=
1 (1),

− (V2 (mGH=2 (1)) − V2 (mGH2 (1))) + fH̃=+12 (1) + `?̃
=+1
2 (1),(3.11)

V′1 (mGH
=
1 (1))mG ?

=
1 (1) − V

′
1 (mGH1)mG ?1 (1) + f?̃=1 (1) − `H̃

=
1 (1),

− (V′2 (mGH
=
2 (1))mG ?

=
2 (1) − V

′
2 (mGH2 (1))mG ?2 (1))) + f?̃=2 (1) − `H̃

=
2 (1))

We also introduce

TX= := (V2 (mGH=2 (1)) − V2 (mGH2 (1)) + fH̃=2 (1) + `?̃
=
2 (1)

− (V1 (mGH=1 (1)) − V1 (mGH1 (1))) + fH̃=1 (1) + `?̃
=
1 (1)(3.12)

V′2 (mGH
=
2 (1))mG ?̃

=
2 (1) − V

′
2 (mGH2 (1))mG ?2 (1)) + f?̃=2 (1) − `H̃

=
2 (1)

− (V′1 (mGH
=
1 (1))mG ?

=
1 (1) − V

′
1 (mGH1 (1))mG ?1 (1))) + f?̃=1 (1) − `H̃

=
1 (1).

With (3.11), (3.12), the iteration (3.9), (3.10) can be written as a fixed point iteration

(3.13) X=+1 = TX=, = = 1, 2, .....

We are going to prove that the iteration (3.13) converges. Moreover, in the spirit of [10], we may also introduce the
relaxed fixed point iteration for a given relaxation parameter n ∈ [0, 1).

(3.14) X=+1 = (1 − n)TX= + nX=, = = 1, 2, .....

To begin with, we look at the norm of X=. For this, we introduce

F = :=(3.15)

2f
{
(V1 (mGH=1 (1)) − V1 (mGH1 (1))) H̃=1 (1) − (V2 (mGH=2 (1)) − V2 (mGH2 (1))) H̃=2 (1)
(V′1 (mGH

=
1 (1))mG ?

=
1 (1) − V

′
1 (mGH1 (1))mG ?1 (1)) ?̃=1 (1)

−(V′2 (mGH
=
2 (1))mG ?

=
2 (1) − V

′
2 (mGH2 (1))mG ?2 (1))) ?̃=2 (1)

}
+ 2`

{
(V1 (mGH=1 (1) − V1 (mGH1 (1))) ?̃=1 (1) − (V2 (mGH=2 (1)) − V2 (mGH2 (1))) ?̃=2 (1)

−(V′1 (mGH
=
1 (1))mG ?

=
1 (1) − V

′
1 (mGH1 (1))mGH1 (1)) H̃=1 (1)

+(V′2 (mGH
=
2 (1))mG ?

=
2 (1) − V

′
2 (mGH2 (1))mG ?2 (1)) H̃=2 (1)

}
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and

E= :=
2∑
8=1

{
(V8 (mGH=8 (1) − V8 (mGH8 (1))2 + (V′8 (mGH=8 (1))mG ?=8 (1) − V′8 (mGH8 (1))mG ?8 (1))2(3.16)

+(f2 + `2) ( H̃=8 (1)2 + ?̃=8 (1)2)
}

(3.17)
After some elementary calculations, we arrive at

‖X=‖2 = E= + F =.(3.18)
Similarly, we find
(3.19) ‖TX=‖2 = E= − F =.
We proceed to show that F = is positive definite with respect to the errors. To this end, we multiply below the state
equation and the adjoint equation by H̃=

8
, ?̃=
8
, respectively. This gives

0 =
∫
�8

(
V8 (H=8 ) − V8 (H8) − mG (V8 (mGH=8 ) − V8 (mGH8)) +

1
a
?̃=8 )

)
H̃=8 3G(3.20)

=

∫
�8

(
(V8 (H=8 ) − V8 (H8)) (H=8 − H8) + (V8 (mGH=8 ) − V8 (mGH8))mG (H=8 − H8) +

1
a
?̃=8 H̃

=
8 )

)
3G

− (V8 (mGH=8 ) − V8 (mGH8)) H̃=8 |m�8 :=
∫
�8

�=813G − (V8 (mGH
=
8 ) − V8 (mGH8) |m�8 .

This gives the boundary expressions

(3.21) (V1 (mGH=1 ) − V1 (mGH1)) (1) H̃=1 (1) =
∫
�1

�=113G,

(3.22) (V2 (mGH=2 ) − V2 (mGH2)) (1) H̃=2 (1) = −
∫
�2

�=213G.

Similarly, after multiplying the state equation by ?̃=
8
, we obtain

0 =
∫
�8

(
V8 (H=8 ) − V8 (H8) − mG (V8 (mGH=8 ) − V8 (mGH8)) +

1
a
?̃=8

)
?̃=8 3G(3.23)

=

∫
�8

(
(V8 (H=8 ) − V8 (H8)) ?̃=8 + (V8 (mGH=8 ) − V8 (mGH8))mG ?̃=8 +

1
a
( ?̃=8 )2

)
3G

− (V8 (mGH=8 ) − V8 (mGH8)) ?̃=8 |m�8 :=
∫
�8

�=823G − (V8 (mGH
=
8 ) − V8 (mGH8) |m�8 .

(3.24) (V1 (mGH=1 ) − V1 (mGH1)) (1) ?̃=1 (1) =
∫
�1

�=123G,

(3.25) (V2 (mGH=2 ) − V2 (mGH2)) (1) ?̃=2 (1) = −
∫
�2

�=223G.
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We now multiply the adjoint equation first by ?̃=
8
and obtain

0 =
∫
�8

(
V′8 (H=8 )?=8 − V′8 (H8)?8 − mG (V′8 (mGH=8 )mG ?=8 − V′8 (mGH8)mG ?8) − ^6=8

)
?̃=8 3G(3.26)

=

∫
�8

(
(V′8 (H=8 )?=8 − V′8 (H8)?8) ?̃=8 + (V′8 (mGH=8 )mG ?=8 − V8 (mGH8)mG ?8)mG ?̃=8 − ^6=8 ?̃=8

)
3G

− (V′8 (mGH=8 )?=8 − V8 (mGH8)?8) ?̃=8 |m�8 :=
∫
�8

�=813G − (V
′
8 (mGH=8 )?=8 − V′8 (mGH8))?8) ?̃=8 |m�8 .

This leads to the boundary expressions

(3.27) (V′1 (mGH
=
1 )mG ?

=
1 − V1 (mGH1)mG ?1) (1) ?̃=1 (1) =

∫
�1

�=113G,

(3.28) (V′2 (mGH
=
2 )mG ?

=
2 − V2 (mGH2)mG ?2) (1) ?̃=2 (1) = −

∫
�2

�=213G.

Finally, we multiply the adjoint equation by H̃=
8
and obtain

0 =
∫
�8

(
V′8 (H=8 )?=8 − V′8 (H8)?8 − mG (V′8 (mGH=8 )mG ?=8 − V′8 (mGH8)mG ?8) − ^6=8

)
H̃=8 3G(3.29)

=

∫
�8

(
(V′8 (H=8 )?=8 − V′8 (H8)?8) H̃=8 + (V′8 (mGH=8 )mG ?=8 − V8 (mGH8)mG ?8)mG H̃=8 − ^6=8 H̃=8

)
3G

− (V′8 (mGH=8 )?=8 − V′8 (mGH8)?8) H̃=8 |m�8 :=
∫
�8

�=823G − (V
′
8 (mGH=8 )?=8 − V′8 (mGH8))?8) H̃=8 |m�8 .

From this, we arrive at the boundary terms

(3.30) (V′1 (mGH
=
1 )mG ?

=
1 − V1 (mGH1)mG ?1) (1) H̃=1 (1) =

∫
�1

�=123G,

(3.31) (V′2 (mGH
=
2 )mG ?

=
2 − V2 (mGH2)mG ?2) (1) H̃=2 (1) = −

∫
�2

�=223G.

Recalling the definition (3.15) of F =, we obtain

(3.32) F = = 2f
2∑
8=1

∫
�8

(
�=81 + �

=
81
)
3G + 2`

2∑
8=1

∫
�8

(
�=82 − �

=
82
)
3G.

In order to proceed, we employ the monotonicity property of the functions V8 . During these notes, it will be
convenient to assume the p-structure V8 (B) = W8 |B |?−2B. For 1 < ? ≤ 2 we have

(3.33) ( |0 |?−20 − |1 |?−21) (0 − 1) ≥ (|0 | + |1 |) ?−2 (0 − 1)2.
10



We first look at the terms with factor f. We use (3.33) for �=
81 as follows

(3.34)
∫
�8

�=813G ≥ W8
∫
�8

(
( |H=8 | + |H8 |) ?−2 ( H̃=8 )2 + (|mGH=8 | + |mGH8 |) ?−2 (mG H̃=8 )2

)
3G + 1

a

∫
�8

?̃=8 H̃
=
8 3G.

For �=12 we have∫
�8

�=813G =W8

∫
�8

(
V′8 (H=8 ) ( ?̃=8 )2 + V′8 (mGH=8 ) (mG ?̃=8 )2

)
3G

+ W8
∫
�8

(
V′′8 (H8 + \= ( H̃=8 ))?8 H̃=8 ?̃=8 + V′′8 (mGH8 + \= (mG H̃=8 ))mG ?8mG H̃=8 mG ?̃=8

)
3G + ^

∫
�8

6=8 ?̃
=
8 3G.(3.35)

Hence, ∫
�8

(�=81 + �
=
81)3G ≥W8

∫
�8

(
( |H=8 | + |H8 |) ?−2 ( H̃=8 )2 + (|mGH=8 | + |mGH8 |) ?−2 (mG H̃=8 )2

)
3G

+ W8
∫
�8

(
|H=8 |?−2 ( ?̃=8 )2 + |mGH=8 |?−2 (mG ?̃=8 )2

)
3G(3.36)

+ W8
∫
�8

(
V′′8 (H8 + \= ( H̃=8 ))?8 H̃=8 ?̃=8 + V′′8 (mGH8 + \= (mG H̃=8 ))mG ?8mG H̃=8 mG ?̃=8

)
3G(3.37)

− 1
2a

∫
�8

( ?̃=8 )2 + ( H̃=8 )23G −
^

2

∫
�8

( ?̃=8 )2 + (6=8 )23G.

We now look at the terms with factor `. For �=
82 we have∫

�8

�=823G =W8

∫
�8

(
V8 (H=8 ) − V8 (H8)) ( ?̃=8 ) + (V8 (mGH=8 ) − V8 (mGH8)) (mG ?̃=8 )

)
3G + 1

a

∫
�8

( ?̃=8 )23G,(3.38)

while −�=
82 gives

−
∫
�8

�=823G = − W8
∫
�8

{
V′8 (H=8 ) H̃=8 ?̃=8 + V′8 (mGH=8 )mG H̃=8 mG ?̃=8 3G(3.39)

+(V′8 (mGH=8 ) − V′8 (mGH8))?8 H̃=8 + (V′8 (mGH=8 ) − V′8 (mGH8))mG ?8mG H̃=8
}
3G + ^

∫
�8

6=8 H̃
=
8 3G.

Therefore,∫
�8

�=82 − �
=
823G =W8

∫
�8

(
(V8 (H=8 ) − V8 (H8) − V′8 (H=8 ) H̃=8 ) ?̃=8 + (V8 (mGH=8 ) − V8 (mGH8) − V′8 (mGH=8 )mG H̃=8 ) (mG ?̃=8 )

)
3G

+ W8
∫
�8

(
(V′8 (mGH=8 ) − V′8 (mGH8))?8 H̃=8 + (V′8 (mGH=8 ) − V′8 (mGH8))mG ?8mG H̃=8

)
3G(3.40)

+ ^
∫
�8

6=8 H̃
=
8 3G +

1
a

∫
�8

( ?̃=8 )23G.

11



We note that

^6=8 H̃
=
8 = ^

{
( |H=8 − H38 |A−2 (H=8 − H38 ) − |H8 − H38 | (H8 − H38 ) H̃=8

}
≥ ^( |H=8 − H38 |A−2 ( H̃=8 )2.(3.41)

Moreover, we have

|V8 (H=8 ) − V8 (H8) − V′8 (H=8 ) H̃=8 | ≤ |H8 + XH̃=8 |?−3 | H̃=8 |2(3.42)

|V8 (mGH=8 ) − V8 (mGH8) − V′8 (mGH=8 )mG H̃=8 | ≤ |mGH8 + XmG H̃=8 |?−3 |mG H̃=8 |2.

We can, therefore, estimate the mixed terms

(V8 (H=8 ) − V8 (H8) − V′8 (H=8 ) H̃=8 ) ?̃=8 ≤
1
2
|H8 + XH̃=8 |?−3 | H̃=8 | ( | H̃=8 |2 + | ?̃=8 |2) =: ! ( H̃=8 ) ( | H̃=8 |2 + | ?̃=8 |2)(3.43)

(V8 (mGH=8 ) − V8 (mGH8) − V′8 (mG H̃=8 )mG H̃=8 ) ?̃=8 ≤
1
2
|mGH8 + XmG H̃=8 |?−3 |mG H̃=8 | ( |mG H̃=8 |2 + |mG ?̃=8 |2)

=: ! (mG H̃=8 ) ( |mG H̃=8 |2 + |mG ?̃=8 |2),

where we note that the factors ! ( H̃=
8
), !(mG H̃=8 ) in front of the quadratic terms tend to zero as H̃=

8
, mG H̃

=
8
tend to zero.

The other mixed terms also involve V′′
8
(B), which lead to factors bounded by �8 ( H̃8 , mG H̃8 , ?̃8 , mG ?̃8) multiplied the

adjoint states ?8 , mG ?8 , which, in turn, we will assume to be small in the sequel. Smallness of ?8 , mG ?8 can be
interpreted as the optimal states H8 , mGH8 being close to the target H3

8
. We also define

 8 ( H̃=8 ) := ( | H̃=8 | + 2|H8 |) ?−2,  8 (mG H̃=8 ) := ( |mG H̃=8 | + 2|mGH8 |) ?−2.
12



Then

F = ≥ 2
2∑
8=1

∫
�8

[
f

{
 8 ( H̃=8 ) (( H̃=8 )2 + ( ?̃=8 )2) +  8 (mG H̃=8 ) ((mG H̃=8 )2 + (mG ?̃=8 )2)

−1
2
�8 ?8 (( H̃=8 )2 + ( ?̃=8 )2) −

1
2
�8mG ?8 ((mG H̃=8 )2 + (mG ?̃=8 )2)(3.44)

−1
2
( 1
a
+ ^) (( H̃=8 )2 + ( ?̃=8 )2)

}
+`

{
^( H̃=8 )2 +

1
a
( ?̃=8 )2

−1
2
(�8 ?8 + !8 ( H̃=8 )) (H=8 )2 −

1
2
(�8mG ?8 + !8 (mG H̃=8 )) (mG H̃=8 )2

−1
2
!8 ( H̃=� ) ( ?̃=8 )2 −

1
2
!8 (mG H̃=8 ) (mG ?̃=8 )2

} ]
3G

≥ 2
2∑
8=1

∫
�8

[
f

{
( 8 ( H̃=8 ) −

1
2
( 1
a
+ ^ − �8 |?8 |)) (( H̃=8 )2 + ( ?̃=8 )2)

+( 8 (mG H̃=8 ) −
1
2
�8 |mG ?8 |) ((mG H̃=8 )2 + (mG ?̃=8 )2)

}
+`

{
(^ − 1

2
(�8 |?8 | + !8 ( H̃=8 ))) ( H̃=8 )2 + (

1
a
− 1

2
!8 ( H̃=8 )) ( ?̃=8 )2

−1
2
(�8mG ?8 + !8 (mG H̃=8 )) (mG H̃=8 )2 −

1
2
!8 (mG H̃=8 ) (mG ?̃=8 )2

} ]
Wewould like to see under which condition (3.44) can be made positive. This is indeed possible if !8 ( H̃=8 ), !8 (mG H̃=8 )
are small which, in turn, is true if H̃=

8
, mG H̃

=
8
are small. This is an assumption on the initial neighbourhood of H8 , mGH8 .

Moreover, we can assume, as mentioned above, from the beginning that |?8 |, |mG ?8 | are small. If the smallness
assumption on the original adjoint problem holds and we have an integer = such that !8 ( H̃=8 ), !8 (mG H̃=8 ) are small
enough to make (3.44) positive, then according to ‖X=+1‖2 = ‖TX=‖2 = ‖X=‖2 − F = < ‖X‖=, also the next
iteration will stay in these bounds. Notice that for ? < 2, as in our case here, the coefficients  8 ( H̃=8 )),  8 (mG H̃=8 )
increase when | H̃=

8
|, |mG H̃=8 | decrease. Thus, if we start close enough to to the original solution and if we assume that

the norms of the adjoint problem are small, then we can conclude that by choosing f, `, ^, a appropriately, we can
make (3.44) positive definite with respect to the quadratic terms ( H̃=

8
)2, (mG H̃=8 )2, ( ?̃=8 )2, (mG ?̃=8 )2.

Theorem 3.1. Let the (H8 , ?8) ∈ �1 (�8) and initial errors X0 be sufficiently small. Then there are parameters
f, `, ^, a such that the iteration X=+1 = TX= converges. Moreover, we have

H̃=8 , ?̃
=
8 → 0, =→∞, in �1 (�8), 8 = 1, 2,(3.45)

H̃=8 (1), mG H̃=8 (1), ?̃=8 (1), mG ?̃=8 (1) → 0, =→ 0, 8 = 1, 2.

Proof. We iterate the equation
‖X=+1‖2 = ‖TX=+1‖2 = ‖X=‖ − 2F =

down to zero. This gives

‖X=+1‖2 ≤ ‖X0‖2 −
=∑
;=1
F ; , ∀= ∈ N.
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This implies that F ; → 0 as ; →∞. From the positive definiteness of F provided by (3.44) and our assumption on
the smallness of the data, we arrive at the conclusion. �

Remark 3.2. We remark that when we take ? = 2, then the iterative domain decomposition procedure above reduces
to the well-known iteration from [10].

3.1. Global convergence and separate domain decomposition. The assumption of theorem 3.45 require starting
points close to the true solution. As it becomes obvious from (3.44), the difficulty is with the mixed terms in H̃=

8
, ?̃=
8

and mG H̃=8 , mG ?̃
=
8
that have to be compensated by the corresponding quadratic terms. The point is that we can use

the monotonicity essentially with respect to the state H̃=
8
, while the fact that we work with the system in terms of

the errors forced us to handle differences in the adjoint equation that, in turn, could not be treated by monotonicity.
Therefore, we may want to decouple the state equation from the adjoint equation using another fixed point iteration.

To this end, we introduce the common algorithm

Algorithm

(1) Choose D0

(2) For 8 = 1 until satisfied
(3) (a) Solve for H8 

V8 (H8) − mG (V8 (mGH8) = D8 , 8 = 1, 2, G ∈ �8
H1 (0) = 0, H2 (2) = 0,

H1 (1) = H2 (1), V1 (mGH1) (1) = V2 (mGH2) (1).

(b) Solve for ?8
V′8 (H8)?8 − mG (V′8 (mGH8)mG ?8) = ^( |H8 − H38 |A−2 (H8 − H38 ), 8 = 1, 2, G ∈ �8

?1 (0) = 0, ?2 (2) = 0,
?1 (1) = ?2 (1), V′1 (mGH1) (1)mG ?1 (1) = V′2 (mGH2 (1))mG ?2 (1).

(c) Set D = 1
a
?

(4) Terminate with the (approximate) fixed point D, H, ?.

This algorithm is classic for linear problems. For the p-Laplace operator, this needs further arguments. For the
sake of brevity, we leave the convergence analysis to a forthcoming paper. See, however [17].

The point of interest in these note is that, giving up the concept of decomposing the optimialtiy system at once,
we can concentrate on the two systems in step 3. iteratively. That is to say, we first apply the domain decomposition
procedure to the state system (a) and then to the adjoint system (b). Of course, the adjoint system is linear, given
the state H8 . Hence, the classical P. Lions type non-overlapping domain decompositions applies. See e.g. [10] for
the details. Thus, the problem is with the state system. To the best knowledge of the author, not even for this
p-Laplace type problem results are available in the literature. The only exception is a very recent article [9] where
the p-Laplace problem problem is treated, however, with a slightly but importantly different iteration which, in turn,
is reminiscent of a GaußSeidel type version of the P.L. Lions method, whereas the method of consideration here is
more a Jacobi-type iteration and is, therefore, completely parallel.

In these notes, we just outline the procedure by reducing the one for the optimal control problem in setting the
adjoint variable as well as the parameter ` to zero. For a given control D, we look into the iteration

14



V8 (H8)=+1 − mG (V8 (mGH8)=+1 = D8 , 8 = 1, 2, G ∈ �8
H=+11 (0) = 0, H=+12 (2) = 0,(3.46)

V1 (mGH=+11 ) (1) + fH
=+1
1 (1) = V2 (mGH=2 (1)) + fH

=
2 (1)

−V2 (mGH=+12 (1)) + fH
=+1
2 (1) = −V1 (mGH=1 (1)) + fH

=
1 (1).

In this case the variable X= as well as the iteration operator T reduce to
X= :=(V1 (mGH=1 (1)) − V1 (mGH1 (1)) + fH̃=1 (1) + `?̃

=
1 (1),(3.47)

− (V2 (mGH=2 (1)) − V2 (mGH2 (1))) + fH̃=+12 (1) + `?̃
=+1
2 (1))

We also introduce
TX= := (V2 (mGH=2 (1)) − V2 (mGH2 (1)) + fH̃=2 (1) + `?̃

=
2 (1)(3.48)

− (V1 (mGH=1 (1)) − V1 (mGH1 (1))) + fH̃=1 (1) + `?̃
=
1 (1)).

and F to
F = := 2f

{
(V1 (mGH=1 (1)) − V1 (mGH1 (1))) H̃=1 (1) − (V2 (mGH=2 (1)) − V2 (mGH2 (1))) H̃=2 (1)

}
.(3.49)

From this, we retrieve

F = ≥ 2
2∑
8=1

f

∫
�8

{
 8 ( H̃=8 ) ( H̃=8 )2 +  8 (mG H̃=8 ) (mG H̃=8 )2

}
3G.(3.50)

Then, by the same arguments as above, we obtain convergence H=
8
→ H8 strongly in �1 (�8) together with the correct

transmission conditions for the limit H. As mentioned above, once the state H is established, it is inserted into (3.46)
which provides a linear problem in ?. This can be decomposed by the standard method, provided in [10]. These
decompositions work without a smallness assumption and can thus be applied until the neighbourhood required in
Theorem 3.45 is reached. Due to space limitations, we provide the details along with numerical simulations in a
forthcoming publication.

3.2. General graphs. In order to apply the domain decomposition to a general graph, we first note that it is sufficient
to treat a star-graph with a center node at G = 0 with, say, < edges emerging from this node. We couple these edges,
say at G = 1 with another < edges which, in turn stretch from G = 1 to G = 2. This graph fits with the description in
(2.1). The iteration applied to the corresponding optimality system is then identical to one in (3.3), (3.4), (3.5) with
the exception that it is applied to each coupling point and that for 8 = 1, . . . , < the solutions H=

8
have to be solved for

the star graph. The complete picture along with numerical evidence will be published in a forthcoming article. We
confine ourselves to just two examples.

3.3. Some numerical experiments. In this section, we consider the static optimal control problem for a two-link
model (3.1) and the corresponding optimality system (3.2). The iterative decomposition is based on the system (3.3),
(3.4), (3.4). We choose in particular a constant target function H3 = 1, constant Dirichlet conditions H(G, C) = 1 at
the outer ends G = 0, G = 2 and parameters f = 10, ` = .001, ^ = 100, a = .1. We perform two experiments, one for
? = 3/2, the case of interest in gas flow, and ? = 1.1, which is important in e.g. imaging, where 1 < ? ≤ 2 and the
limiting case ? = 1 are considered. We solve the boundary value problems arising on the full domain and the two
subdomains using the routine bvpc4 from Matlab with a resolution of 14 − 14. We have chosen a constant target
because it is critical, as vanishing H and mGH play a special role for the p-Laplacian. For ? > 2, we, therefore, needed
a regularization. On the left of figure 3.3, where ? = 3/2, we show on the top left the solution of the optimality
system, on the top right the result of the iteration on each subdomain stitched together at G = 1. On the bottom
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Figure 1. Left figure:? = 1.5, f = 10, ` = .001, ^ = 100, a = .1, right figure: ? = 1.1, same parameters

left we display the errors for the primal variables and their derivatives at the interface G = 1 and on the right the
corresponding dual variables. The same configuration is used for ? = 1.1 in the right part of figure 3.3. For more
experiments and a more detailed description, we refer to a forthcoming publication.
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