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Abstract

Wepresent a robust approximation of joint chance constrainedDCOptimal Power Flow in com-
bination with a model-based prediction of uncertain power supply via R-vine copulas. It is ap-
plied to optimize the discrete curtailment of solar feed-in in an electrical distribution network
and guarantees network stability under fluctuating feed-in. This is modeled by a two-stage
mixed-integer stochastic optimization problem proposed by Aigner et al. (European Journal of
Operational Research, (2021)). The solution approach is based on the approximation of chance
constraints via robust constraints using suitable uncertainty sets. The resulting robust optimiza-
tion problem has a known equivalent tractable reformulation.To compute uncertainty sets that
lead to an inner approximation of the stochastic problem, an R-vine copula model is fitted to
the distribution of the multi-dimensional power forecast error, i.e., the difference between the
forecasted solar power and the measured feed-in at several network nodes. The uncertainty
sets are determined by encompassing a sufficient number of samples drawn from the R-vine
copula model. Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which
can be used to draw conditional samples for given solar radiation forecasts. The experimental
results obtained for real-world weather and network data demonstrate the effectiveness of the
combination of stochastic programming and model-based prediction of uncertainty via copu-
las. We improve the outcomes of previous work by showing that the resulting uncertainty sets
are much smaller and lead to less conservative solutions while maintaining the same proba-
bilistic guarantees.

Keywords: chance constrained programming, optimal power flow, robust optimization, mul-
tiple prediction interval, R-vine copula, conditional uncertainty set

1 Introduction

The proportion of renewable energy, such as solar and wind energy, in electrical distribution
networks is constantly increasing. Due to these difficult to predict and highly fluctuating en-
ergy sources, the operational management of electrical networks becomes very challenging.
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Transmission system operators (TSO) have to control the feed-in and the power distribution
in the network and have to meet safety requirements at the same time. If the network risks a
system overload, the feed-in from renewables must be curtailed. However, the curtailed energy
has to be minimized for financial and ecological reasons. Therefore, there is a high demand for
the combination of advanced forecasting and optimization models. In this work, we show how
these models can be applied and combined for the optimal curtailment of solar feed-in in an
electrical distribution network.
The predominantly usedmodel and optimizing the production and distribution of power in an
electrical network is the Optimal Power Flow (OPF) model. In its classic version this is a non-
linear non-convex optimization problem which is hard to solve and was originally introduced
in [12]. For a broad overview of the literature on OPF, we refer to [18] and [19]. Due to the
computational difficulty of the OPF problem, there are some approximation approaches in the
literature. One of the most frequently used approximations is the DC Optimal Power Flow
(DC OPF), see [13]. It results in a power flow model including only linear constraints and
can be solved efficiently with standard software. For the optimization of power grids under
uncertainty the DC OPF model is also used in this work.
In applications to power grids, it is important to ensure that there is a sufficiently high proba-
bility (chosen beforehand) that all safety constraints like transmission limits are satisfied. This
can bemodeledwith a two-stage stochastic optimizationmodel incorporating joint chance con-
straints that enforce the simultaneous satisfaction of several constraints with a predefined prob-
ability. In the first stage, the nominal network operating solution, including generator output,
(discrete) curtailment, power flows and voltage angles, is decided before the realization of un-
certainty is revealed (here-and-now). After the uncertain parameters manifest themselves, the
two-stage variables react to them. In the second stage, the network response to fluctuation en-
sures that there is a high probability of transmission limits being maintained. From a practical
perspective, protection through probabilistic constraints is suitable because short-term over-
loads in the electrical network are acceptable. In the event of larger or longer lasting overloads,
countermeasures will need to be taken, where a TSOwill need to (re-)optimize interventions in
order to stabilize the network. In our model, curtailment limits the output of renewable power
production to a specific percentage proportion of the installed power.
We approximate the probabilistic constraints in the optimization problem using robust con-
straints within a robust safe approximation, see [34]. By a suitable choice of the uncertainty
set we can ensure that all robust feasible solutions are also feasible for the stochastic optimiza-
tion problem. The constraints of the robust approximation thus lead to sufficient conditions
for the chance constraints being satisfied. In particular, we use a mixed-integer linear refor-
mulation for the approximation introduced in [3]. Hence, by solving only one mixed integer
optimization model to global optimality, a robust solution is computed that is feasible for the
chance constrained problem. The respective uncertainty sets are computed with the procedure
proposed in [31] based on the scenario approach (see [10]) of stochastic optimization, which
uses samples from a suitably chosen probability distribution. The present paper proposes sev-
eral enhancements of our previous work, which consist in the utilization of R-vine copulas (see
e.g. [27]), a flexible parametric model to construct multivariate probability densities by decom-
posing them into several bivariate conditional (and univariate) densities to fit distributions to
available data. Note that R-vine copulas contain the family of D-vine copulas as special case,
which we used so far to model data from meteorology and solar power supply, see [41, 44].
From the fitted R-vine copula model we draw samples in order to obtain the uncertainty sets
with the help of the scenario approachmentioned above. Then, in a second step, wemodify the
R-vine copulamodel such thatwe can draw samples from conditional distributions. This allows
us to determine uncertainty sets depending on weather forecasts provided by DWD (German
Meteorological Service) which are significantly smaller and lead to a drastic reduction of con-
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servatism and less costly curtailment with same probabilistic guarantees.
There are many research activities regarding OPF under uncertainty. The goal is to determine
an optimal network configuration that remains feasible under uncertainty where the approach
considered in this paper uses methods and models from stochastic and robust optimization.
We refer to [6] and [36] for a broad overview of these two paradigms regarding optimization
under uncertainty. Note that due to the non-convexity of the nominal AC OPF, only solutions
that are approximately protected against uncertainty can be computed as in [16, 38, 49] with
robust or probabilistic constraints.
Essential for an algorithmically tractable treatment of uncertainty in optimization problems is
the possibility to solve the underlying deterministic problems (without uncertainty) efficiently.
This is why the linear DCOPFmodel is suitable and of great interest. Such uncertain optimiza-
tion problems are usually solved by reformulating them under specific assumptions on the
underlying probability distribution or by using approximation techniques from stochastic pro-
gramming. Most chance constrained OPF problems considered in the literature have separate
chance constraints for each engineering limit, including both generation and transmission lim-
its. For example, the authors of [8, 30] focus on OPF with individual probabilistic constraints
under Gaussian distributions. Uncertainty probabilities for specific classes of probability dis-
tributions are considered robustly in [40, 47]. Furthermore, there is a limited number of papers
that deal with joint chance constraints OPF models. They allowmuch stronger system security
guarantees, but are much harder to solve, see [20]. Most common solution methods are based
on the Boolean or Bonferroni approximation (see e.g. [26]) and on scenario approximations
(see e.g. [35]).
In addition, the curtailment of renewable power is used in practice to reduce the feed-in of re-
newable energy sources, maintaining network stability and avoiding overloads of transmission
lines. The curtailment of uncertain feed-in from renewables has also been considered in sev-
eral OPFmodels. Examples can be found in [3, 16, 37, 39, 45]. Note that there are two principal
types of curtailment strategies, which are usually modeled by additional discrete or continu-
ous decision variables or fixed parameters. The first and more common type of curtailment
uses output capacities, which restrict the maximum possible power input. This limit cannot
be exceeded and any potential power production above the limit is cut off. The second type of
curtailment reduces the produced energy by a fixed value regardless of how high the feed-in
amount is. Chance constraints in combination with curtailment are usually tackled by sam-
pling techniques from stochastic optimization already mentioned above. In the present paper
we use discrete curtailment levels as it is common practice in many industrial applications and
set by law in Germany.
To construct parametric models for multivariate distributions, vine copulas are a versatile tool
which has been used in the literature for similar problems. For example, in [22, 28, 46], copulas
are applied for dependencymodeling of wind power in conjunction with OPF. Furthermore, in
[48], Gaussian copulas are used to determine uncertainty sets for an OPF problemwith chance
constraints.
Themain contribution of the present paper is an extension of the safe approximation of the joint
chance constrained DC OPFmodel introduced in [3], by combining it with a model-based pre-
diction of solar power supply via copulas. Furthermore, additional information gained from
weather data can be integrated into the copula approach and thus conditional distributions of
solar power supply can be modeled. However, with regard to conditional sampling, vine cop-
ulas have some restrictions as described in [14], i.e., when drawing conditional samples from
a given vine copula model, only some components of the underlying vector data can be taken
into account in the conditioning set. To resolve this issue, various algorithms for conditional
sampling from D- and C-vine copulas have been considered in the literature, see [7]. In the
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present paper we propose a modification of the fitting procedure for the more general class of
R-vine copulas. This modification allows us to obtain a suitable R-vine copula for any set of
components on which we want to condition. To the best of our knowledge, this modification
has not yet been considered before.
This rest of this paper is structured as follows. Section 2 recalls the joint chance constrained
DC OPF model considered in [3], together with its robust approximation using box uncer-
tainty sets. Then, in Section 3, the modeling of the underlying multivariate probability dis-
tribution with the help of R-vine copulas is introduced, where suitable uncertainty sets are
constructed via the novel combination of the scenario approach and the fitted R-vine copulas.
The numerical results of case studies based on real-world data for the distribution network of
N-ENERGIE GmbH are presented in Section 4. They demonstrate the benefit of combining
stochastic programming with a model-based prediction of uncertainty via copulas. The com-
puted solutions are robust and lead to relatively small cost increase compared to the nominal
optimization model that ignores uncertainty. The consideration of conditional probability dis-
tributions further improves the solution quality. Finally, Section 5 concludes.

2 Chance Constrained DC Optimal Power Flow Model

In this section, we recall the chance constrained DC optimal power flow model with the possi-
bility to curtail feed-in proposed in [3], which is based on [8].

2.1 Nominal DC Optimal Power Flow with Curtailment

We model the electrical distribution network as an undirected graph G = (N ,L) where N =
{1, . . . , n} for some integer n > 1 represents the set of vertices and L ⊆ N ×N denotes the
set of edges. In the context of power system optimization, vertices are also called nodes or
buses, and edges are called (transmission) lines. The set of those nodes that are connected
with (continuously controllable) slack generators of higher network hierarchies is denoted by
NG ⊆ N . Furthermore, for each k ∈ N we denote the set of adjacent nodes with N (k) ⊆ N .
For notational ease, we assume that every node is connected to (discretely) controllable solar
power generation units. The energy production on a bus without solar feed-in is set equal to
zero.
In order to control the solar feed-in, discrete regulation decisions can be made at each node.
Curtailment is realized by restricting the maximum feed-in to a certain fraction vector β =
(β1, . . . , βn) ∈ S = S1 × . . .× Sn ⊂ [0, 1]n of the installed capacity vector

PI = (PI
1, . . . , PI

n) ∈ [0, ∞)n.

Note that the installed capacity is the intended full-load sustained solar energy production at
each node. In practice, sets of curtailment factors with a small number of levels are common.
Typical sets of curtailment factors for single nodes are {0, 0.3, 0.6, 1.0} or {0, 0.1, 0.2, . . . , 1.0}.
Thus, at a node k ∈ N , the power fed into the network cannot exceed βkPI

k. Any potential
feed-in above this value is cut off. We model the curtailed uncertain solar feed-in Pin

k based on
a given solar power production PPV

k ≥ 0 via

Pin
k =

{
PPV

k , if PPV
k ≤ βkPI

k,
βkPI

k, otherwise,

i.e., Pin
k = min{PPV

k , βkPI
k}.
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In the following, we briefly recall theDCoptimal power flowmodelwith discrete curtailment of
solar feed-in proposed in [3], where Table 1 summarizes the notationused for decision variables
and input parameters.

Symbol Variable
PG

k > 0 generator output on bus k
θk ∈ [−π, π] voltage angle on bus k
pkl ∈ R power flow on line (k, l)
βk ∈ Sk curtailment level on bus k

Symbol Parameter
PD

k ≥ 0 power demand on bus k
bkl > 0 line susceptance of line (k, l)
PI

k ≥ 0 installed solar power on bus k
PPV

k ≥ 0 uncertain solar feed-in on bus k
PG,−

k ≥ 0 lower generator bound on bus k
PG,+

k > 0 upper generator bound on bus k
d+kl > 0 transmission limit of line (k, l)

Table 1: Notation for decision variables and input parameters

Decision variables are the vectors of generator outputs PG = (PG
k )k∈NG ∈ [0, ∞)|NG|, voltage

angles θ = (θ1, . . . , θn) ∈ [−π, π]n, power flows p = (pkl)(k,l)∈L ∈ R|L| and curtailment factors
β ∈ S , where |NG|, |L| denote the cardinalities of the sets NG and L, respectively. The model
reads as follows:

min
PG,θ,p,β

∑k∈NG
fk(PG

k ) + ∑k∈N ck(βk) (1a)

such that PG
k + min{PPV

k , βkPI
k} − PD

k = ∑l∈N (k) pkl for all k ∈ NG, (1b)
min{PPV

k , βkPI
k} − PD

k = ∑l∈N (k) pkl for all k ∈ N \NG, (1c)
pkl = bkl(θk − θl) for all (k, l) ∈ L, (1d)
− d+kl ≤ pkl ≤ d+kl for all (k, l) ∈ L, (1e)
PG,−

k ≤ PG
k ≤ PG,+

k for all k ∈ NG, (1f)

where the functions fk : [0, ∞) → [0, ∞) and ck : [0, 1] → [0, ∞) model generator and curtail-
ment costs, respectively.
The equality constraints (1b)-(1d) model the active power flow, which is determined by the
power flow equations (1d) and Kirchhoff’s first law where we distinguish the two cases with
and without generators, see (1b) and (1c) respectively. Note that the power at each node has
to be balanced. This means that at each node k ∈ N the active power production PG

k + Pin
k ∈

[0, ∞) from generators and renewables equals the demand PD
k ≥ 0 plus the active power sent

to adjacent nodes ∑l∈N (k) pkl ∈ R. The active power flow on transmission line (k, l) ∈ L is the
product of voltage angle difference θk − θl ∈ [−2π, 2π] and susceptance bkl > 0. At the same
time, the transmission limits considered in (1e) must not be exceeded. The vector of generator
outputs PG can be continuously controlled within the generator bounds considered in (1f).
Furthermore, we assume that there is a bus k0 ∈ N with a reference angle θk0 = 0.
The optimization task consists in minimizing the objective function given in (1a) which is the
sum of power generation costs ( fk) and curtailment costs (ck) subject to the constraints men-
tioned above. Note that the functions fk for all k ∈ NG and ck for all k ∈ N can be assumed to
be linear or convex quadratic in the generator output. Since the minimum expressions in (1b)
and (1c) can be linearized by introducing auxiliary variables and additional linear constraints
(see e.g. [42]), the optimization problem considered in (1) is a mixed-integer linear or convex
quadratic program and can be solved efficiently to global optimality with standard techniques
and software using, e.g., the Gurobi optimizer [23].
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2.2 Uncertainty Modeling

In practice, the vector of solar power production PPV = (PPV
1 , . . . , PPV

n ) ∈ [0, ∞)n is not known
in advance. In addition, the production of renewable power can be subject to high fluctuations
and is therefore an uncertain quantity. Using a network operating strategy that is computed
by ignoring such uncertainties, a sudden fluctuation of renewable energy can lead to overloads
in the electrical network. In the worst case, this can lead to failure of network elements owing
to cascade effects. To prevent this, the optimization model explained in Section 2.1 has to be
extended in order to take such fluctuations into account, and individual feed-in units may have
to be regulated. In particular, we model the vector of produced solar power PPV as the sum of
a vector PF = (PF

1 , . . . , PF
n ) ∈ [0, ∞)n of forecasted solar power and a random fluctuation vector

X = (X1, . . . , Xn) : Ω→ R
n defined on some probability space (Ω,F , P), i.e.,

PPV
k = PF

k + Xk for all k ∈ N . (2)

However, in a first step, we need to determine a nominal operating solution (PG, θ, p) together
with a curtailment decision β that is feasible for the nominal feed-in vector PF (correspond-
ing to X = 0), i.e., the decision variables PG, θ, p, β have to fulfill the constraints (1b)-(1e),
where PPV is given in (2) with X = 0. In addition, we require that, with high probability,
the network reaction to fluctuating feed-in remains feasible, see the chance constraint given
in (6g) below. To model this kind of network reaction, we consider randomized duplicates
PG,X : Ω → [0, ∞)|NG|, θX : Ω → [−π, π]n and pX : Ω → R

|L| of the decision variables PG, θ, p
introduced in Section 2.1, which depend on the realizations X(ω) for ω ∈ Ω of the random
fluctuation vector X. Note that realizations X(ω) 6= 0 of X may lead to a changed distribution
of power in the network and, therefore, to an imbalanced network. The generators then change
their output to PG,X(ω) in order to balance the total active network power. Furthermore, the
decision variables θX and pX are adjusted correspondingly to ensure feasibility.
Thus, in the setting of the two-stage stochastic optimization problem described above (see
also Sections 2.3 and 2.4), the variables PG, θ, p refer to first-stage (or here-and-now) deci-
sions. They must be decided for the nominal feed-in vector PF (corresponding to X = 0),
before uncertainty is revealed. Moreover, for fixed first-stage variables PG, θ, p, any realiza-
tion X(ω) 6= 0 of X leads to a reaction of the network by choosing optimal second-stage (or
wait-and-see) variables PG,X(ω), θX(ω), pX(ω), where we assume that the power generation is
balanced by the Automatic Generation Control [9]. This means that the total power generation
mismatch ∆X = ∑k∈N (min{PF

k + Xk, βkPI
k} −min{PF

k , βkPI
k}) is shared among all generators

according to given participation factors αk ∈ [0, 1] for every k ∈ NG such that ∑k∈NG αk = 1.
More precisely, for each ω ∈ Ω we put

PG,X(ω)
k = PG

k − αk∆X(ω) for all k ∈ NG. (3)

The vector of decision variables θX is adjusted in a way that the power balance equations

PG,X(ω)
k + min{PF

k + Xk(ω), βkPI
k} − PD

k = ∑l∈N (k) bkl(θ
X(ω)
k − θ

X(ω)
l ) for all k ∈ NG, (4a)

min{PF
k + Xk(ω), βkPI

k} − PD = ∑l∈N (k) bkl(θ
X(ω)
k − θ

X(ω)
l ) for all k ∈ N \NG (4b)

are fulfilled for each ω ∈ Ω. Furthermore, for each ω ∈ Ω we put

pX(ω)
kl = bkl(θ

X(ω)
k − θ

X(ω)
l ) for all (k, l) ∈ L. (5)

It can be shown, see [3], that for each realization X(ω) of X the equation system given in (4a)-
(4b) has a uniquely determined solution θX(ω), i.e., the wait-and-see variables PG,X(ω), θX(ω),
and pX(ω) are uniquely determined by (3), (4a)-(4b), and (5).
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2.3 Chance Constrained DC Optimal Power Flow

By construction, the vectors pX and PG,X of power flows and generator outputs are randomvari-
ables that depend on the realization X(ω) of the random fluctuation vector X and on the val-
ues of first-stage decision variables PG, θ, p, β. Thus, we are searching for solutions (PG, θ, p, β)
which satisfy the limits of type (1e) and (1f) for power flows and generators outputs, respec-
tively, with a probability of at least 1− ε for some small number ε ∈ [0, 1].
We model this requirement by a joint chance constraint in order to guarantee network stability.
This means that the desired compliance probabilities for all power flows and generator outputs
are simultaneously met. Thus, combining all modeling elements considered in the previous
sections, we formulate the joint chance constrained DC optimal power flow problem with dis-
crete curtailment as follows:

min
PG,θ,p,β

∑k∈NG
fk(PG

k ) + ∑k∈N ck(βk) (6a)

such that PG
k + min{PF

k , βkPI
k} − PD

k = ∑l∈N (k) pkl for all k ∈ NG, (6b)
min{PF

k , βkPI
k} − PD

k = ∑l∈N (k) pkl for all k ∈ N \NG, (6c)
pkl = bkl(θk − θl) for all (k, l) ∈ L, (6d)
− d+kl ≤ pkl ≤ d+kl for all (k, l) ∈ L, (6e)
PG,−

k ≤ PG
k ≤ PG,+

k for all k ∈ NG, (6f)

P

({
ω ∈ Ω : −d+kl ≤ pX(ω)

kl ≤ d+kl for all (k, l) ∈ L
}
∩{

ω ∈ Ω : PG,−
k ≤ PG,X(ω)

k ≤ PG,+
k for all k ∈ NG

}) ≥ 1− ε, (6g)

where the wait-and-see variables PG,X(ω)
k , pX(ω)

kl are defined in (3) and (5), respectively.

2.4 Safe Approximation of the Chance Constraints

Chance constrained optimization problems like (6) are in general hard to solve and may not be
algorithmically tractable. Therefore, a large number of approximation techniques can be found
in the literature, see [36] for a broad overview of the paradigm of stochastic optimization.
Thus, following [34], we will replace the chance constraint considered in (6g) by a strictly
robust protection against a suitably chosen uncertainty set B ∈ B(Rn) that fulfills

P({ω ∈ Ω : X(ω) ∈ B}) ≥ 1− ε, (7)

where B(Rn) denotes the σ-algebra of Borel sets in the n-dimensional Euclidean spaceRn.
The robust approximation of (6) is then given by

min
PG,θ,p,β

∑k∈NG
fk(PG

k ) + ∑k∈N ck(βk) (8a)

such that PG
k + min{PF

k , βkPI
k} − PD

k = ∑l∈N (k) pkl for all k ∈ NG, (8b)
min{PF

k , βkPI
k} − PD

k = ∑l∈N (k) pkl for all k ∈ N \NG, (8c)
pkl = bkl(θk − θl) for all (k, l) ∈ L, (8d)
− d+kl ≤ pkl ≤ d+kl for all (k, l) ∈ L, (8e)
PG,−

k ≤ PG
k ≤ PG,+

k for all k ∈ NG, (8f)
max
u∈B

pu
kl ≤ d+kl , min

u∈B
pu

kl ≥ −d+kl for all (k, l) ∈ L, (8g)

max
u∈B

PG,u
k ≤ PG,+

k , min
u∈B

PG,u
k ≥ PG,−

k for all k ∈ NG, (8h)

7



where PG,u
k , pu

kl are determined as in (3) and (5) replacing X(ω) by u.
One can show that every feasible solution of the safe approximation (8) is feasible for (6), see
[21]. To ensure that the safe approximation generates not overly conservative solutions, the
uncertainty set B should be chosen as small as possible, but as large as necessary. Assuming
that

B = [`1, u1]× . . .× [`n, un] ⊂ Rn (9)
for some ` = (`1, . . . , `n), u = (u1, . . . , un) ∈ Rn such that `k < uk for all k ∈ N , it has been
shown in [3] that the optimization problem (8) possesses an equivalent mixed-integer linear
reformulation which - although being NP-hard in general - can be solved e.g. with the Gurobi
optimizer [23] within reasonable time also for huge instances.

3 Modeling the Distribution of the Random Forecasting Error

In order to solve the safe approximation (8) of the stochastic optimization problem (6) de-
scribed in Section 2.3, a suitable uncertainty set B ⊂ Rn has to be determined such that (7)
holds. For the novel construction of uncertainty sets with the help of copulas, we propose
a method for modeling the multivariate probability distribution of the n-dimensional power
forecasting error X = PPV − PF introduced in (2). The model for the distribution of X is based
on R-vine copulas, which are fitted to empirical data.
Tomake the paper self-contained, we first give a brief overview of some fundamentals of copula
theory in Section 3.1. In Sections 3.2 and 3.3 we explain how R-vine copulas are structured and
how they can be fitted to empirical data. Once an R-vine copula is fitted for the distribution of
the randomfluctuation vector X, in Section 3.4we explain how samples can be drawn from it, in
order to determine an uncertainty set B ⊂ Rn of the form given in (9) which satisfies a slightly
modified version of condition (7), see Section 3.6. Furthermore, in Section 3.5 we propose a
modification of the fitting procedure for R-vine copulas in order to fit the distribution of the
(2n)-dimensional random vector (S, X) to empirical data, where S : Ω → [0, ∞)n models the
forecasted solar radiation at the n nodes of the electrical network. This allows for an enhanced
modeling of uncertainty sets Bs ∈ B(Rn) conditioned on S = s for any given radiation forecast
s ∈ [0, ∞)n.

3.1 Copulas: Definition and Sklar’s Representation Formula

A bivariate copula C : [0, 1]2 → [0, 1] is the cumulative distribution function (CDF) of a two-
dimensional random vector U = (U1, U2) : Ω → [0, 1]2, where both marginal distributions (of
U1 and U2) are the standard uniform distribution on the unit interval [0, 1], i.e., it holds that
C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2) with C(u, 1) = u1 and C(1, u2) = u2 for any u1, u2 ∈ [0, 1].
Moreover, by the choice of the copula C : [0, 1]2 → [0, 1] the mutual interdependence of the
components U1 and U2 can be described. For example, the product copula, where

C(u1, u2) = u1 u2 for all u1, u2 ∈ [0, 1], (10)

models the case that U1 and U2 are independent random variables. On the other hand, if
C(u1, u2) = min{u1, u2} for all u1, u2 ∈ [0, 1], then P(U1 = U2) = 1, i.e., the components U1
and U2 are identical almost surely. Besides these two extreme cases, many further (parametric)
families of bivariate copulas C : [0, 1]2 → [0, 1] can be found in the literature, which model the
case that U1 and U2 are neither independent nor identical. In particular, for the purposes of the
present paper, the following bivariate copula families will be considered: Gaussian, Student t,
Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 and their rotations, see e.g. [27, 33] for details.
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Note that the notion of a copula is not restricted to the bivariate case. For any integer m ≥ 2, the
function C : [0, 1]m → [0, 1] is called a copula if it is the CDF of an m-dimensional randomvector
U = (U1, . . . , Um) : Ω → [0, 1]m such that the (marginal) distributions of U1, . . . , Um are the
standard uniformdistribution on the unit interval [0, 1]. The importance of copulas results from
Sklar’s representation formula, see [27, 33], which states that the CDF of any random vector
Y = (Y1, . . . , Ym) : Ω → R

m with arbitrary (not necessarily uniform) marginal distributions
can be written as the superposition of the univariate CDFs of Y1, . . . , Ym and a certain copula
C : [0, 1]m → [0, 1]. More precisely, it holds that

F1,...,m(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)) for all y1, . . . , ym ∈ R, (11)

where F1,...,m : Rm → [0, 1]with F1,...,m(y1, . . . , ym) = P(Y1 ≤ y1, . . . , Ym ≤ ym) is the CDF of the
m-dimensional random vector Y and Fi : R → [0, 1] with Fi(yi) = P(Yi ≤ yi) is the CDF of its
ith component Yi for each i ∈ {1, . . . , m}. Vice versa, for any sequence F1, . . . , Fm of univariate
CDFs and for any copula C, the superposition of F1, . . . , Fm and C considered on the right-hand
side of (11) is the CDF of an m-dimensional random vector.

3.2 R-vine Copulas

Note that the representation formula given in (11) can not directly be used in order to fit multi-
variate probability distributions to data. For this, sufficiently simple and, simultaneously, flex-
ible parametric families of multivariate copulas C : [0, 1]m → [0, 1] are needed. One possible
way to construct such parametric copula families is given by so-called R-vine copulas (regular
vines), which is a generalization of D-vine copulas recently applied, e.g. in [41, 44], to model
data from meteorology and solar power supply.

1

2

3

4

5

1, 2 2, 3 3, 4

3, 5
1, 3 | 2

2, 5 | 3

2, 4 | 3

1, 5 | 2, 3
4, 5 | 2, 3

1, 4 | 2, 3, 5

Figure 1: Example of the structureR = (T1, . . . , T4) for an R-vine copula consisting of four trees
with T1 at the bottom and T4 at the top.

The structure of R-vine copulas offers the advantage that the probability distribution of the m-
dimensional random vector Y = (Y1, . . . , Ym) to be modelled can be expressed in terms of a
number of bivariate copulas. Hereby the structure of an R-vine copula is given by a vector of
treesR = (T1, . . . , Tm−1) with the following properties, see also Figure 1:

1. T1 = (V1, E1) consists of the set of vertices V1 = {1, . . . , m} and some set of edges E1 ⊂
V1 × V1.
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2. For the remaining trees T2 = (V2, E2), . . . , Tm−1 = (Vm−1, Em−1), it holds that Vi = Ei−1
for each i = {2, . . . , m− 1}, i.e., the set of vertices Vi of Ti consists of the edge set of the
previous tree Ti−1.

3. For each i ∈ {1, . . . , m− 2}, two edges in tree Ti are joined by an edge in tree Ti+1 only if
these edges share one common vertex.

Let E(R) denote the set of all edges inR, meaning that E(R) = E1 ∪ . . . ∪ Em−1. Furthermore,
we need the following notation. First, for each e = {v1, v2} ∈ E1 we define S(e) = ∅ and
O(e) = {v1, v2}. Next, we iterate over i ∈ {2, . . . , m− 1} and, for each e = {v1, v2} ∈ Ei, we
define S(e) = S(v1) ∪ S(v2) ∪ (O(v1) ∩ O(v2)) and O(e) = (O(v1) ∪ O(v2)) \ S(e). We call
S(e) the conditioning set and O(e) the conditioned set of edge e. According to [29], it holds
that |O(e)| = 2 for each e ∈ E(R) and, for each pair of indices {i, j} ∈ {1, . . . , m} × {1, . . . , m}
with i 6= j, there is exactly one edge e ∈ E(R) such that O(e) = {i, j}. Thus, for each each
e ∈ E(R), there are indices o1, o2 ∈ {1, . . . , m} such that {o1, o2} = O(e) and o1 < o2.
Suppose now that Y = (Y1, . . . , Ym) is a random vector with continuously differentiable CDF
F1,...,m : Rm → [0, 1], where the joint probability density of Y is denoted by f1,...,m : Rm →
[0, ∞), and f1, . . . , fm : R → [0, ∞) are the marginal (univariate) densities of the compo-
nents Y1, . . . , Ym. Furthermore, let R = (T1, . . . , Tm−1) be a vector of trees with the properties
mentioned above. Then, the following representation formula is true, see [5, 15, 27]: For any
y = (y1, . . . , ym) ∈ Rm such that f1,...,m(y) > 0 it holds that

f1,...,m(y) = ∏
e=(o1,o2)∈E(R)

co1,o2|YS(e)=yS(e)

(
Fo1|YS(e)=yS(e)(yo1), Fo2|YS(e)=yS(e)(yo2)

) m

∏
i=1

fi(yi), (12)

where YS(e) denotes the random vector consisting of those components of Y = (Y1, . . . , Ym) the
indices of which belong to the set S(e) ⊂ {1, . . . , m}, and, analogously, yS(e) is the correspond-
ing subvector of (y1, . . . , ym). Furthermore, co1,o2|YS(e)=yS(e) : R2 → [0, ∞) denotes the bivariate
copula density of the conditional probability distribution of the two-dimensional random vec-
tor (Yo1 , Yo2) given that YS(e) = yS(e), and Foj|YS(e)=yS(e) : R→ [0, 1] is the conditional CDF of Yoj

given that YS(e) = yS(e), where j = 1, 2.
Note that the right-hand side of (12) is the product of uni- and bivariate functions. Thus, in
order to determine the multivariate probability density f1,...,m, we just have to determine the
univariate (marginal) densities f1, . . . , fm, the (conditional) univariate CDFs Foj|YS(e)=yS(e) , and
the (conditional) bivariate copula densities co1,o2|YS(e)=yS(e) for all e = (o1, o2) ∈ E(R), where the
recursion formulas (see [1])

Fo1|YS(e)∪{o2}=yS(e)∪{o2}
(yo1) =

d
dyo2

Co1,o2|YS(e)=yS(e)

(
Fo1|YS(e)=yS(e)(yo1), Fo2|YS(e)=yS(e)(yo2)

)
d

dyo2
Fo2|YS(e)=yS(e)(yo2)

(13)

and

Fo2|YS(e)∪{o1}=yS(e)∪{o1}
(yo2) =

d
dyo1

Co1,o2|YS(e)=yS(e)

(
Fo1|YS(e)=yS(e)(yo1), Fo2|YS(e)=yS(e)(yo2)

)
d

dyo1
Fo1|YS(e)=yS(e)(yo1)

(14)

are used in order to determine the univariate CDFs Foj|YS(e)=yS(e) for j = 1, 2.

3.3 Fitting R-vine Copulas to Empirical Data

In this section we outline how the representation formula given in (12) can be utilized in order
to fit an m-dimensional probability density f1,...,m to empirical data, i.e., for a given sample
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of k realizations y(1) = (y(1)1 , . . . , y(1)m ), . . . , y(k) = (y(k)1 , . . . , y(k)m ) ∈ Rm of the random vector
Y = (Y1, . . . , Ym), where we use the sequential algorithm proposed in [17] . First, for each
i ∈ {1, . . . , m}, we use the sample yi = (y(1)i , . . . , y(k)i ) to determine a kernel density estimator
(KDE) f̂i : R → (0, ∞), see [43], for the marginal density fi of the i-th component Yi of Y,
which is numerically integrated in order to obtain the univariate CDF F̂i : R→ [0, 1]. Then, in
the next step, a valid tree T1 = (V1, E1)with V1 = {1, . . . , m} is chosen such that the expression

I(E1) = ∑
e=(o1,o2)∈E1

|τ̂((F̂o1(y
(1)
o1 ), . . . , F̂o1(y

(k)
o1 )), (F̂o2(y

(1)
o2 ), . . . , F̂o2(y

(k)
o2 )))| (15)

is maximized with respect to E1, where τ̂ denotes an empirical version of Kendall’s tau, which
is defined for pairs of realizations {(x1, y1) . . . , (xn, yn)} of two random variables X and Y

τ̂(x, y) =
2

n(n− 1) ∑
i<j

sgn(xi − xj) sgn(yi − yj), (16)

where x = (x1, . . . , xn) and y = (y1, . . . , yn).
In other words, the edge set E1 is chosen such that the sum of pairwise empirical correlations
between Yo1 and Yo2 is maximized, where the sum extends over all edges e = (o1, o2) ∈ E1.
Subsequently, for each e = (o1, o2) ∈ E1, a bivariate copula Ce is fitted. For this, the indepen-
dence of Yo1 and Yo2 is checked via a statistical test [17]. If the null hypothesis (stating that Yo1

and Yo2 are independent) is not rejected, then the product copula given in (10) is chosen for Ce.
Otherwise, an (unconditional) bivariate copula Ĉe and its parameters are fitted to the data vec-
tors (F̂o1(y

(1)
o1 ), . . . F̂o1(y

(k)
o1 )) and (F̂o2(y

(1)
o2 ), . . . F̂o2(y

(k)
o2 )) with the help of a maximum likelihood

method [27].
Now, analogously to (15), a valid tree T2 = (V2, E2) with V2 = E1 is selected such that the
following expression is maximized:

I(E2) = ∑
e∈E2

|τ̂((F̂
o1|YS(e)=y(1)S(e)

(y(1)o1 ), . . . , F̂
Yo1 |YS(e)=y(k)S(e)

(y(k)o1 )), (F̂
o2|YS(e)=y(1)S(e)

(y(1)o2 ), . . . ,

F̂
Yo2 |YS(e)=y(k)S(e)

(y(k)o2 )))|.

Note that |S(e)| = 1 for all e ∈ E2. Thus, using (13) and (14), the conditional CDFs F̂
o1|YS(e)=y(`)S(e)

and F̂
o2|YS(e)=y(`)S(e)

for ` ∈ {1, . . . , k}, can directly be obtained from the (unconditional) bivariate
copula Ĉo1,o2 and the (unconditional) CDFs F̂o1 and F̂o2 , which are determined as described
above. Then, for each e ∈ E2 and o1, o2 ∈ O(e), a bivariate copula Ĉo1,o2|S(e) and its parameters
are fitted to the data vectors (F̂

oj|YS(e)=y(1)S(e)
(y(1)oj ), . . . , F̂

Yoj |YS(e)=y(k)S(e)
(y(k)oj )) for j = 1, 2, where the

simplifying assumption is made that the copula Ĉo1,o2|S(e) = Ĉo1,o2|YS(e)=yS(e) does not depend on
the given realization yS(e) of YS(e), see e.g. [24].
Finally, in the same way as described above, the trees Ti = (Vi, Ei), the conditional CDFs
F̂

oj|YS(e)=y(`)S(e)
for j = 1, 2 and ` = 1, . . . , k, and the bivariate copulas Ĉo1,o2|S(e) are determined

for all e ∈ Ei and i = 3, . . . , m− 1.

3.4 Sampling fromMultivariate Probability Densities

In Section 3.3 we showed how the multivariate probability density f̂ : Rm → [0, ∞) given by
the representation formula

f̂1,...,m(y1, . . . , ym) = ∏
e∈E(R)

ĉo1,o2|S(e)
(

F̂o1|YS(e)=yS(e)(yo1), F̂o2|YS(e)=yS(e)(yo2)
) m

∏
i=1

f̂i(yi) (17)
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for (y1, . . . , ym) ∈ Rm can be fitted to empirical data. We now explain how samples can be
drawn from the probability density given in (17).
Recall that the Rosenblatt transform [27] maps a sample y = (y1, . . . , ym) of a random vec-
tor Y = (Y1, . . . , Ym) with joint probability density f1,...,m : Rm → (0, ∞) onto a sample u =
(u1, . . . , um) of a vector of independent anduniformlydistributed randomvariablesU = (U1, . . . , Um) :
Ω→ [0, 1]m such that

u1 = FY1(y1),
u2 = FY2|Y1=y1

(y2),

u3 = FY3|Y1=y1,Y2=y2
(y3),...

um = FYm|Y1=y1,...,Ym−1=ym−1
(ym),

where FYi |Y1=y1,...,Yi−1=yi−1
: R → [0, 1] denotes the (conditional) CDF corresponding to the

conditional density fYi |Y1=y1,...,Yi−1=yi−1
: R → (0, ∞) for i = 1, . . . , m − 1. Assuming that the

densities fYi |Y1=y1,...,Yi−1=yi−1
for i = 1, . . . , m − 1 are positive, the CDFs FYi |Y1=y1,...,Yi−1=yi−1

are
bijective for i = 1, . . . , m− 1 and thus, by applying the inverse CDFs to both sides of the above
equations, we obtain the inverse Rosenblatt transform:

F−1
Y1

(u1) = y1,

F−1
Y2|Y1=y1

(u2) = y2,

F−1
Y3|Y1=y1,Y2=y2

(u3) = y3,...
F−1

Ym|Y1=y1,...,Ym−1=ym−1
(um) = ym,

which maps a sample u = (u1, . . . , um) of U onto a sample y = (y1, . . . , ym) of Y. Note that the
(inverse) Rosenblatt transform works for any permutation of the indices 1, . . . , m.
Now, consider some sequence of edges e(1), . . . , e(m−1) with e(i) ∈ Ei for i = 1, . . . , m− 1 such
that e(i) ∈ e(i+1) for i = 1, . . . , m − 2. For the given edges, it follows from the third property
of the trees T1, . . . , Tm−1 introduced in Section 3.2 that there is a permutation (o1, . . . , om) of
(1, . . . , m) such that o1 ∈ O(e(1)) and oi+1 ∈ O(e(i)) for i = 1, . . . , m − 1. Thus, the inverse
Rosenblatt transform can be used as follows, in order to draw a sample (y1, . . . , ym) from the
probability density f̂1,...,m given in (17):

F̂−1
o1

(uo1) = yo1 ,...
F̂−1

oi |YS(e(i−1))∪{oi−1}
=yS(e(i−1))∪{oi−1}

(uoi) = F̂−1
oi |Y{o1,...,oi−1}=y{o1,...,oi−1}

(uoi) = yoi ,
...

F̂−1
om|YS(e(m−1))∪{om−1}

=yS(e(m−1))∪{om−1}
(uom) = F̂−1

om|Y{o1,...,om−1}=y{o1,...,om−1}
(uom) = yom ,

where u = (u1, . . . , um) is a sample of a vector of independent and uniformly distributed
random variables U = (U1, . . . , Um) : Ω → [0, 1]m, the (unconditional) CDF F̂o1 is given by
an integrated kernel density estimator (KDE), and the (conditional) CDFs F̂oi |YS(e(i−1))∪{oi−1}

for
i = 2, . . . , m are determined as described in Section 3.3.
Later on, in Section 4, the algorithms stated in Sections 3.3 and 3.4 are applied to derive the
numerical results presented in this paper, where the implementation provided by the python
library pyvinecopulib [32] is used.
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3.5 Conditional Sampling

In the previous section we described a method how to sample from a multivariate distribution
with the help of the Rosenblatt transform. This method is used in Section 4 below in order to
draw samples from the (unconditional) distribution of the forecasting error X = PPV − PF.
Furthermore, to model the distribution of the random fluctuation vector X more accurately, we
modify the approach considered in Sections 3.3 and 3.4 such that we can draw samples from
the conditional distribution of X for any given radiation forecast S = s. For D-vine copulas, a
similar conditional sampling algorithm can be found in [2] and [7].
Let m, m′ ≥ 1 be some integers with m′ < m. We first explain the reasons why the fitting
and (unconditional) sampling approach considered in Sections 3.3 and 3.4 has to be modified
such that we can draw samples from arbitrary conditional distributions of a random vector
Y = (Y1, . . . , Ym), i.e., to draw samples y = (y1, . . . , ym) from the conditional distribution ofY =
(Y1, . . . , Ym), given that Yi1 = yi1 , . . . , Yim′ = yim′ for some subset of indices D = {i1, . . . , im′} ⊂
{1, . . . , m} and some vector (yi1 , . . . , yim′ ) ∈ Rm′ ,
Recall that the (direct and inverse) Rosenblatt transform considered in Section 3.4 works for
arbitrary permutations of the sampling order provided that all conditional CDFs required for
this transformation are known. Here, the sampling order refers to the order of the marginal
dimensions from which samples are drawn. However, if we want to obtain these CDFs with
the help of (13) and (14), the structure of the underlying R-vine copula restricts the choice of
possible sampling orders. To understandwhy this is the case, note that in order to sample in any
given order would require the construction of arbitrary (conditional) CDFs, the total number
of which is equal to m2m−1. However, an R-vine copula of dimension m consists of m(m−1)

2
bivariate copulas. With the help of (13) and (14) two (conditional) CDFs can be obtained from
each bivariate copula, i.e., we can obtain m(m − 1) (conditional) CDFs in total from a given
R-vine copula, which limits the number of possible sampling orders.
Consider the R-vine copula in Figure 1 which has (1, 2, 3, 5, 4) as a possible sampling order. To
sample in this orderwith the inverse Rosenblatt transform, we obtain the required inverse CDFs
F−1

Y1
, F−1

Y2|Y1=y1
, F−1

Y3|Y1=y1,Y2=y2
, F−1

Y5|Y1=y1,Y2=y2,Y3=y3
and F−1

Y4|Y1=y1,Y2=y2,Y3=y3,Y5=y5
from the marginal

distribution 1 and the copulas 1, 2 , 1, 3 | 2 , 1, 5 | 2, 3 and 1, 4 | 2, 3, 5 respectively. Note that
this sampling order is possible because each copula corresponds to an edge connected to the
previous copula or marginal distribution, e.g., 1, 3 | 2 corresponds to an edge connected to 1, 2

while 1, 2 corresponds to the edge connected to 1 . This ensures that a suitable copula for the
next dimension in the sampling order exists.
Now consider the sampling order (1, 2, 3, 4, 5), which is impossible. Analogously to the previ-
ous sampling order the inverseCDFs F−1

Y1
, F−1

Y2|Y1=y1
and F−1

Y3|Y1=y1,Y2=y2
can be obtained. However,

to obtain the 4th necessary inverse CDF F−1
Y4|Y1=y1,Y2=y2,Y3=y3

for the inverse Rosenblatt transform,
the copulas 1, 4 | 2, 3 or 3, 4 | 1, 2 are required which do not exist within the considered R-vine
copula.
As shown in Theorem 5.1 in [14], an R-vine copula of dimension m has only 2m−1 possible
sampling orders. This is due to the fact that every possible sampling order corresponds to a
vector λ = (λ1, . . . , λm) = (v1, . . . , vm−1, e) with vi ∈ Ti and e ∈ Em−1, i.e., the CDF used in
the first equation of the Rosenblatt transform is the marginal CDF Fv1 whereas the conditional
CDFs of the equations thereafter are given by the copulas corresponding to λ2, . . . , λm. Recall
that for each equation of the Rosenblatt transformation the dimension of the condition of the
corresponding conditional CDF grows by one. This restricts the choice of λi+1 to copulas for
which it holds that λi ∈ λi+1 for all i ∈ {1, . . . , m− 2}, i.e., λi ∈ Ti must be a vertex of the edge
λi+1 ∈ Ti+1, because only then the copula corresponding to λi+1 can be used to construct a
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conditional CDF with a valid condition for the (i + 1)-th equation of the Rosenblatt transform.
We thus modify the fitting process for vine copulas presented in Section 3.3 such that a vec-
tor λ = (λ1, . . . , λm) as described above exists for a given set of indices D = {i1, . . . , im′} ⊂
{1, . . . , m}. For this, we consider T D

1 = (VD
1 , ED

1 ) = (D, {e ∈ E1 : e ⊆ D}), i.e., T D
1 is a graph

with vertex set D and edges e ∈ E1 which connect two vertices in D. For i > 1, we recursively
define T D

i = (VD
i , ED

i ) = (ED
i−1, {e ∈ Ei : e ⊆ ED

i−1}). Note that in general T D
i is not a tree

but a forest, however, only if all T D
i are trees the vector (T D

1 , . . . , T D
m′ ) is a valid R-vine copula.

This is necessary to construct an inverse Rosenblatt transform for the dimensions in D, or more
generally speaking, it is necessary for the construction of an inverse Rosenblatt transform for
all dimensions {1, . . . , m} where the dimensions in D occur at the beginning.
To ensure that there is a sampling order in which all indices in D are in successive order, we
choose the graphs T D

i in the fitting process of the R-vine copula such that I(ED
i ) in (15) is

maximized (as in the unmodified fitting process considered in Section 3.3), where additionally
it must hold that T D

i is a tree for all i ∈ {1, . . . , m′} because only then we can chose a sampling
order where λi ∈ λi+1 holds for all i ∈ {1, . . . , m− 1}.
Without loss of generality, we now assume that D = {1, . . . , m′}. Thus, we omit the first m′

equations of the inverse Rosenblatt transformand sample values ym′+1, . . . , ym for the remaining
m−m′ components via

F−1
Yn+1|Y1=y1,...,Yn=ym′

(um′+1) = ym′+1,...
F−1

Ym|Y1=y1,...,Ym−1=ym−1
(um) = ym.

As an example, consider again the R-vine copula in Figure 1 and the set D = {1, 2, 3} to sam-
ple from the conditional distribution of (Y4, Y5) |Y1=y1,Y2=y2,Y3=y3 . The graphs T D

1 , T D
2 and T D

3
with the sets of vertices { 1 , 2 , 3 }, { 1,2 , 2,3 }, { 1,3 | 2 } and the corresponding edges corre-
spond to the lower left part of the diagram. Since the graphs T D

1 , T D
2 and T D

3 are trees and
(T D

1 , T D
2 , T D

3 ) is a valid R-vine copula, sampling orders with 1, 2 and 3 at the beginning are
possible.
Nowconsider D = (1, 2, 4) forwhich T D

1 = ({ 1 , 2 , 4 }, {{ 1 , 2 }}) is not a tree and the vector
(T D

1 , T D
2 , T D

3 ) is not an R-vine copula. Since 4 is not connected to 1 or 2 in T D
1 there can be

neither 1, 4 nor 2, 4 in T D
2 and in turn there can be neither 2, 4 | 1 nor 1, 4 | 2 in T D

3 . Therefore
it is not possible to obtain the required inverse CDFs for an inverse Rosenblatt transform for
which the sampling order begins with the elements of D.
In the following section, we explain how the construction of uncertainty sets is performed with
the scenario approach from stochastic optimization. We then use the copula-based modeling
from this section in order to construct high-quality uncertainty sets for givenweather situations.

3.6 Scenario Approach to Determine a Suitable Uncertainty Set

In order to determine a suitable uncertainty set of the form given in (9) which satisfies (a
slightly modified version of) condition (7), we apply, as in [3], an idea described in [31] and
formulate the estimation of the uncertainty set B = [`1, u1] × . . . × [`n, un] ⊂ Rn as an aux-
iliary probabilistic optimization problem. Then, for this problem with chance constraints, we
apply the scenario approach proposed in [11], i.e., the chance constraints considered in (7)
are replaced by constraints based on a sufficiently large number of samples drawn from the
probability distribution of the random forecasting error X = PPV− PF. In this work this distri-
bution is fitted to empirical data, using the algorithm described in Section 3.3, and simulation
is performed with the technique described in Section 3.4.
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The auxiliary optimization problem in its general form consists of a chance constraint model for
the enclosure B ∈ B(Rn) of the probability mass of X = (X1, . . . , Xn) satisfying the condition
P({ω : X(ω) ∈ B}) ≥ 1− ε for some ε ∈ (0, 1), see (7). At the same time, this problem aims for
an uncertainty set B such that its size is as small as possible. Thus, in order to apply the scenario
approach proposed in [11] to determine an uncertainty box B = [`1, u1]× . . .× [`n, un] ⊂ Rn,
we consider the probabilistic optimization problem

min
`,u∈Rn ∑k∈N (uk − `k) (18a)

such that P({ω : `k ≤ Xk(ω) ≤ uk for all k = 1, . . . , n}) ≥ 1− ε, (18b)

where the minimum in (18a) extends over all ` = (`1, . . . , `n), u = (u1, . . . , un) ∈ Rn with
`k < uk for all k = 1, . . . , n.
Thus, to control the size of the set B, we minimize the sum of interval lengths uk − `k. In
contrast, if minimization of the box volume were used instead, this would lead to a non-convex
objective. In this case, the scenario approach proposed in [11] is no longer applicable. Although
the solution of (18) does not necessarilyminimize the box volume, the solution of the following
scenario program does. This is why this choice of objective is suitable. We further explain this
after introducing our scenario program.
Suppose that N > 0 samples x1, . . . , xN are independently drawn from the probability distri-
bution of X. Instead of (18b), in our scenario approach we want to ensure that the samples
x1, . . . , xN are included in the uncertainty set B. The resulting scenario program for computing
B = [`, u] is thus given by

min
`,u∈Rn

∑k∈N (uk − `k) (19a)

such that ` ≤ xi ≤ u for all i = 1, . . . , N. (19b)

The solution of this optimization problem can be written explicitly as [`∗, u∗], where `∗k =
mini=1,...,N{xi

k} and u∗k = maxi=1,...,N{xi
k} for every vector component k. It is true that set

B∗ = [`∗, u∗] alsominimizes the volume over all sets [l, u] containing the samples x1, . . . , xN . Al-
though, in general, the solution of problem (18) does not calculate boxes withminimal volume,
this is the case for the optimization problem given in (19).
From the results presented in [11], we know that the optimal solution B∗ = [`∗, u∗] of (19)
fulfills condition (18b) with a confidence probability of at least 1− δ for some small δ ∈ (0, 1)
if N > 0 is chosen such that

2n−1

∑
j=0

(
N
j

)
εj(1− ε)N−j ≤ δ.

Note that in the latter inequality, the necessary number of samples N > 0 for a predefined
confidence level 1− δ ∈ (0, 1) is given implicitly. However, an explicit sufficient condition has
been derived in [4], which reads as

N ≥
⌈

1
ε

e
e− 1

(
2n− 1 + ln

1
δ

)⌉
. (20)

Furthermore, we determine the optimal solution B∗s = [`∗s , u∗s ] of (19) based on samples drawn,
as described in Section 3.5, from the conditional distribution of X for given radiation forecasts
S = s.
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4 Numerical Results

In order to derive the results presented in this section we used the library pyvinecopulib
[32]. Furthermore, we utilized Gurobi 9.1.2 [23] as solver for mixed-integer linear pro-
grams. The computations were carried out by means of a python implementation on a cluster
using 4 cores of a machine with two Xeon E3-1240 v6 “Kaby Lake” chips (4 cores, HT disabled)
running at 3.7 GHz with 32 GB of RAM.

4.1 Data Description

Data regarding power measurements as well as weather forecasts were provided by the dis-
tribution network operator N-ERGIE Netz GmbH (NNG) and the German weather service
Deutscher Wetterdienst (DWD). In particular, NNG provided data of solar power supply at
more than 150 feed-in points and corresponding active power measurements at 13 network
nodes (buses) measured in 15-minute intervals. Moreover, NNG provided data regarding the
positions of network nodes (buses) and their connections through lines (branches) which in-
clude resistance values and transmission limits of each line in the distribution network. A frag-
ment of the NNG distribution network with 34 nodes and 37 lines is visualized in Figure 2. The
solar power forecast PF is provided by a model proposed in [41].
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Figure 2: Sketch of NNG subnetwork, where (slack-)generator nodes are denoted by +, solar
feed-in points by ? and load buses by •.

DWD provided hourly forecasts of global horizontal irradiation, which were generated by the
ensemble system of the numerical weather prediction model COSMO-DE, called COSMO-DE-
EPS, and statistically interpreted based on synoptic observations atweather stations byEnsemble-
MOS of DWD, see [25]. The weather forecasts are issued on a 20 km × 20 km grid covering
Germany and parts of the neighboring countries at every third hour. The forecasts of global
horizontal irradiation were provided with forecast lead times up to 19 hours, where the mea-
surements and forecasts range over the months May, June and July of the years 2015-2017.
We split the data into a training set and a validation set. The training set is used to fit model
parameters and consists of data from the years 2015 and 2016. Based on the validation set from
2017 the accuracy of the predictions generated by the fitted model is evaluated.

4.2 Fitting Unconditional and Conditional Distributions of Forecasting Errors

In this section we discuss the fitting of R-vine copulas, as outlined in Sections 3.3 and 3.5, in or-
der to determine uncertainty sets B∗ of the form introduced in Section 3.6. First we explain how
tomodel the (unconditional) distribution of the n-dimensional random vector X = PPV− PF of
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power forecasting errors at the n nodes of the electricity network considered in the present pa-
per, where n = 13. Besides this, we additionally consider the random vector S = (S1, . . . , Sn) :
Ω → [0, ∞)n, which describes the forecasted solar radiation at the n nodes of the electricity
network, and we model the conditional distribution of X given that S = s for some s ∈ [0, ∞)n.
Moreover, we consider two further types of conditional distributions of X under the condition
that S = s and Sk = sk, respectively, for some s ≥ 0, sk ≥ 0 and k ∈ {1, . . . , n}, where

S =
1
n

n

∑
k=1

Sk.

Figure 3: Histograms and fitted KDEs of forecasting errors Xk, Xk′ (left, in MW) and forecasted
radiations Sk, Sk′ (right, in kWh

m2 ) for two examples of solar feed-in points k, k′ ∈ {1, . . . , n}.

As outlined in Section 3, copula theory allows for the modeling of the multivariate distribution
of randomvectors like the randompower forecasting error X : Ω→ R

n. In order to estimate the
univariate (marginal) CDFs FX1 , . . . , FXn we use numerically integrated KDEs, with a Gaussian
kernel and a bandwidth being equal to the estimated standard deviations σk of Xk for k =
1, . . . , n, see the left column of Figure 3. Once an R-vine copula is fitted to the distribution of
X, as descibed in Section 3.3, we are able to draw realizations from the fitted distribution of X,
with which the uncertainty set B∗ can be determined as described in Section 3.6. This method
results in one single uncertainty set B∗ for all considered hours, since the fitted R-vine copula
models the (unconditional) distribution of X, irrespective of other variables, which are possibly
correlated with X. Thus, it is sensible to investigate if and to which extent the random vector
X of power forecasting errors depends on various other variables, like the random vector S of
forecasted solar radiations at the n nodes. For this reason, we also model various conditional
distributions of X.
To condition on the forecasted solar radiation vector S, we consider the three cases mentioned
above, i.e., S = s, S = s, and Sk = sk for some k ∈ {1, . . . , n}. Fromameteorological perspective,
the network nodes inN are in close geographical proximity and, therefore, the forecasted solar
radiations S1, . . . , Sn at the n network nodes are highly correlated. Thus, it might be sufficient
to consider either the average solar radiation S or the solar radiation Sk for one single node,
instead of the random vector S, which reduces the complexity of the copula model without
much loss of information.
As can be seen in Figure 3, the power forecasting errors Xk, Xk′ have unimodal distributions
which are well approximated by KDEs. For the forecasted solar radiations, Sk, Sk′ , however,
the values of the densities are significantly larger than zero at the distribution limits. Since the
kernel of the KDE would cross the bounds of the distribution for data points close to those
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bounds, we first transform the components of S, as well as S and Sk, using the mapping T :
[a, b] → [−∞, ∞] with T(x) = F−1

N(0,1)(FU(a,b)(x)) for each x ∈ [a, b], where FN(0,1) is the CDF
of the standard normal distribution and FU(a,b) is the CDF of U(a, b), the uniform distribution
for the interval [a, b] for some a, b ∈ R with a < b. Thus, T maps the bounded interval [a, b]
ontoR. Since the endpoints a and b are mapped to−∞ and ∞, respectively, we choose them to
be slightly outside the bounds of the solar radiation distribution such that T does not map any
data point to ±∞. The ranges of values of the transformed random variables T(S), T(S) and
T(Sk) are unbounded and we can apply kernel density estimators to their transformed data
points T(s), T(s) and T(sk), where T(s) = (T(s1), . . . , T(sn)). Finally, we transform the density
functions f̂T(Si) back to the interval [a, b] with f̂S(x) = 1

c f̂T(S)(T(x)) for each x ∈ [a, b], where
c > 0 is a normalizing constant.

(a) Conditioning on solar radia-
tion at all nodes.

(b) Conditioning on average so-
lar radiation.

(c) Conditioning on solar radia-
tion at single nodes.

Figure 4: Histograms of 10,000 simulated conditional forecasting errors Xk, Xk′ (in MW), given
that S = s (left), S = s (middle), and Sk = sk, Sk′ = sk′ (right), for two examples of
solar feed-in points k, k′ ∈ {1, . . . , n} and for three different quantile values of s, sk, sk′

or a vector of quantile values s ∈ [0, 1]13. The colors indicate the quantiles of fore-
casted solar radiation on which the samples are conditioned, i.e., blue, green and red
corresponds to low, medium and high solar radiation, respectively.

Once the densities of the marginal distributions of X and S, as well as the densities of S and
Sk are determined, they are numerically integrated to obtain the corresponding CDFs with
which an R-vine copula is fitted, as described in Section 3.3. Now we can draw samples from
the (unconditional and conditional) R-vine copula model with which we construct uncertainty
sets B∗, as described in Section 3.6. Figure 4 shows the histograms of samples drawn from
conditional R-vine copula models for different solar radiation forecasts and, in particular, how
the conditional error distribution changes for different forecasted solar radiations.
To check howwell the R-vine copulamodel captures the correlations of the dataset of forecasted
radiations and power forecasting errors, we compare the values of empirical Kendall’s tau (see
(16)) for all pairs of components of the vector (S1, . . . , Sn, X1, . . . , Xn). It can be seen in Figure 5
that the R-vine copula model manages to capture the correlation within the underlying dataset
quite well, since the values of empirical Kendall’s tau computed from the dataset of forecasted
radiations and power forecasting errors (left) and from simulated realizations of the R-vine
copula model (right), respectively, show very similar correlation structures.
Note that we consider copulas with up to 26 dimensions while the available dataset contains
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only 180 data points. This makes it difficult to reliably assess the goodness of fit of the copula
model. However, in the following we evaluate the entire model chain with various validation
scores in order to assess the additional benefit of the copula model.

Figure 5: Empirical Kendall’s tau computed from the dataset of forecasted radiations and power
forecasting errors (left) and from simulated realizations of the R-vine copula model (right) for
all pairs of components of the vector (S1, . . . , Sn, X1, . . . , Xn). Top left: τ(Xi, Xj). Bottom right:
τ(Si, Sj). Top right and bottom left: τ(Xi, Sj).

4.3 Analyzing the Size of Uncertainty Sets

We now analyze the size of uncertainty sets for the robust approximation of chance constraints
using the scenario approach described in Section 3.6. The resulting sets depend on the samples
drawn from the unconditional probability distribution and the three conditional distributions
of power forecasting errors, respectively, considered in Section 4.2. Note that the minimum
number N of samples required for the scenario approach, determined by means of (20), goes
from N = 48 (for 1 − ε = 0.01) over N = 469 (1 − ε = 0.9) to N = 4684 samples (for
1− ε = 0.99). In practice, a coverage probability 1− ε of about 0.9 is often practically relevant
and therefore N = 469 samples are sufficient for the scenario approach with a confidence of
1− δ = 0.99.
For the numerical results discussed in the present section, we use an average uncertainty set
which is obtained from applying the scenario approach 500 times. In this way, our numerical
results become reproducible because the average uncertainty set does not change significantly,
when the procedure described above is repeated.
Figure 6 shows values of the size measure given in (18a), i.e. for the sum of interval lengths,
of uncertainty sets computed exemplarily for a usual summer day at noon with an average
hourly global horizontal irradiation of 0.63kWh

m2 , in dependence of different values of the cov-
erage probability 1− ε with a confidence of 1− δ = 0.99. Note that smaller confidence levels
would lead to smaller uncertainty sets, but the quality of these sets also decreases. In partic-
ular, there would no longer be a confidence probability of 0.99 that the computed uncertainty
set covers the chosen probability mass of 1− ε.
The values displayed in Figure 6 are normalized by the size of the largest uncertainty set, namely
the unconditional uncertainty set for a coverage probability of 0.99. It can be seen that the sizes
of the uncertainty sets increase with increasing probabilities 1 − ε as the confidence regions
cover a larger set of realizations of the random vector X of power forecasting errors. In com-
parison to the uncertainty sets constructed with conditional probability distributions of X, the
unconditional distribution of X leads for all coverage probabilities 1− ε to larger uncertainty
sets. Thus, with knowledge on the forecasted solar radiation, it is possible to adapt the un-
certainty sets to the current weather situation, which leads to small sizes. Not surprisingly,
the conditional distribution of X with given solar radiation at all n solar feed-in nodes yields
the smallest uncertainty sets for all coverage probabilities 1− ε. However, the differences be-
tween these sizes and those obtained for the other two conditional settings with less complete
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Figure 6: Average size of uncertainty sets for varying coverage probabilities 1− ε and with a
confidence of 1− δ = 0.99, using the unconditional distribution of X (no), and the conditional
distribution given that S = s (all), S = s (avg) and S19 = s19 (one), respectively.

information on the forecasted solar radiation, i.e. knowledge of average solar radiation (avg),
and at one single node (one), are not too large. Furthermore, the size differences between the
conditional settings ’avg’ and ’one’ are negligible.

condition ∅ emp. coverage probab. ∅ size reduction ∅ volume reduction
no 0.89 − −
avg 0.90 −7.12% −40.0%
one 0.90 −7.14% −40.6%
all 0.88 −8.53% −55.3%

Table 2: Average empirical coverage probability and average reduction of size/volume of un-
certainty sets for the four (unconditional/conditional) settings ’no’, ’avg’, ’one’ and ’all’ of the
distribution of the power forecasting error X, baesd ondata for each day in the validation datset.

The numerical results presented in the remaining part of this section concern the case 1− ε =
0.9, i.e. the practically most relevant value of the coverage probability 1 − ε. For this safety
margin, we analyze the uncertainty sets obtained for the four (unconditional and conditional)
distributions of X described above and for each day in the validation dataset. In particular,
we determine the empirical coverage probability by counting how often the realizations drawn
from the respective distribution of the random vector X belong to the corresponding uncer-
tainty set. Furthermore, we compute and compare the average size of the uncertainty sets, i.e.
the sum of interval lengths, and their average volume, i.e. the product of interval lengths. The
results are displayed in Table 2, where it can be seen that the four different settings lead to
similar empirical coverage probabilities around the given level of 0.9. On the other hand, the
reductions of size and volume of uncertainty sets implied by considering conditional distri-
butions of the power forecasting error X are clearly visible. Again, the case with given solar
radiation at all n solar feed-in nodes yields the smallest uncertainty sets, whereas the size dif-
ferences between the conditional settings ’avg’ and ’one’ are negligible.
To further analyze the impact of additional knowledge regarding solar radiation forecast on
size and location of uncertainty sets, we determined uncertainty sets for a rather sunny day at
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Figure 7: Uncertainty sets in MW (ε = 0.1, δ = 0.01) for average solar radiation forecast of
0.76 kWh

m2 (left) and 0.18 kWh
m2 (right), using the unconditional distribution of X (no), and the

conditional distribution given that S = s (all), S = s (avg) and S19 = s19 (one), respectively.

noon with a high average solar radiation forecast of 0.76 kWh
m2 and a less sunny day at noon with

a low average solar radiation forecast of 0.18 kWh
m2 . The results are shown in Figure 7, where the

uncertainty sets are plotted via their confidence intervals (in MW) for each solar feed-in point.
It turned out that the lengths of the confidence intervals significantly shrink by considering
conditional distributions of the power forecasting error X, given a high average solar radiation
forecast. More precisely, the lower endpoints of the confidence intervals are shifted upwards,
i.e., negative power forecasting errors are less likely, whereas the upper endpoints remain al-
most unchanged, see Figure 7 (left). On the other hand, for low average radiation forecast,
the confidence intervals are shifted downwards by considering conditional distributions of the
power forecasting error, but their lengths remain almost unchanged, see Figure 7 (right).
Finally, we note that also the results of the numerical experiments presented in [3] are based on
(measured) power feed-in data fromNNG and forecasted radiation data fromDWD.However,
the used database differs from that of the present paper, where, in addition, solar power fore-
cast data are exploited provided by the forecasting model of [41]. In this way, by modeling the
multivariate probability distribution of solar power forecast data via R-vine copulas, it is pos-
sible to determine conditional uncertainty sets, which meet the desired coverage probability of
0.9. They have significantly smaller sizes than the corresponding unconditional uncertainty sets
from [3] which led to an larger empirical coverage of 0.98 although 1− ε = 0.9 was required.

4.4 Robust Curtailment

As important as the size of the computed uncertainty sets is the quality of solutions obtained
by solving the robust approximation (8) of the chance constrained optimization problem de-
scribed in (6). In order to solve (8), we use the network parameters given by the power network
operator NNG. The curtailment options for the feed-in nodes in the electrical power network
of NNG are βk ∈ {0, 0.1, 0.2, . . . , 1.0}. Moreover, the participation factors of the generators
are fixed values given by NNG (α31 = α34 = 0.05, α32 = α33 = 0.45). There are no costs
affiliated with the power transfer at the (slack-) generators on the boundary nodes. Hence,
there are no generator production costs and the corresponding term in the objective function
is given as ∑k∈NG fk(PG

k ) with fk(PG
k ) = 0 for each k ∈ NG. The curtailment costs are modeled

as ∑k∈N ck(βk) with ck(βk) = PI
k(1− βk) for each k ∈ N . The minimization of this objective

function leads to a minimum curtailment of solar feed-in.
Due to the balanced network situations in the historical data, there is no need to curtail the so-
lar feed-in in the instances from the validation set. There is also no danger of overload and the
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optimization leads to trivial solutions with a curtailed solar power equal to 0. Thus, in order
to generate test cases with critical network situations (and non-trivial solutions), we artificially
increased the solar power feed-in, whereas the network topology, transmission line parameters
and the power demand remained unchanged. More precisely, based on the data of the vali-
dation set, we increased the installed solar power and the feed-in up to the by NNG planned
total solar power capacities of the year 2022 and the planned total solar power increase of year
2025. The corresponding scaling of power generation forecast and uncertainty sets creates an
oversupply of renewable energy, and therefore it is more likely in these instances that a curtail-
ment will be required. Furthermore, in addition to the up-scaled solar power, we simulated the
impact of transmission line failure on the solution of our optimization problem.
Thus, we now discuss further details for the following experimental setups:
A: Installed solar power as planned in 2025,
B: Installed solar power as planned in 2022 with a failure of lines (6, 19) and (9, 30).

To obtain the results, a mixed-integer optimization problem was solved for each instance and
each (unconditional and conditional) uncertainty set. The computing times are very low and,
thus, solutions can be generated efficiently. Indeed, the average computing times for the two
settings are 2.8s (setting A) and 1.1s (setting B), with a maximal run time of 8.2s (setting A)
and 4.0s (setting B).

condition setting A setting B
nominal 19 (20.7%) 38 (41.3%)

no 2 (2.2%) 3 (3.3%)
avg 3 (3.3%) 2 (2.2%)
one 2 (2.2%) 2 (2.2%)
all 2 (2.2%) 2 (2.2%)

Table 3: Number of instances where a nominal solution of (1) without probabilistic constraints
leads to overload in the network compared to robust solutions (with security of 1− ε = 0.9)
using the four (unconditional/conditional) types ’no’, ’avg’, ’one’ and ’all’ of uncertainty sets.

The robustness of a solution of (8) can be validated by checking if the computed network con-
figuration leads to an overload after the realization of uncertainty. The corresponding entries
in Table 3 show that nominal solutions generated without probabilistic constraints (or, in other
words, for 1− ε = 0) lead to overload in a large amount of test instances. In contrast, only up
to three robust solutions lead to constraint violation in each setting for the different probabilis-
tic models. The relative frequencies for this is therefore below the given threshold of ε = 0.1.
This indicates the feasibility of the robust solutions for the chance constraints. This shows that
the robust protection against uncertainties is necessary and reasonable, since the number of
technical constraint violation could be strongly reduced in the numerical experiments.
To further investigate the quality of solutions of (8), we computed the amount of curtailed
solar power of the robust solution in comparison to the solution of the nominal problem (1)
without a protection against uncertainty. The increase in curtailed energy of the robust solu-
tions in comparison to the nominal ones can be interpreted as the cost of robust protection.
That means how much the curtailment costs increase due to the protection against uncertain-
ties. Figure 8 shows box plots for the increase of relative curtailment costs using the four (un-
conditional/conditional) types ’no’, ’avg’, ’one’ and ’all’ of uncertainty sets. One can see that,
again, the addition of further knowledge about the solar radiation improves the performance in
both settings. This corresponds to the size reduction of the uncertainty sets recognized in Sec-
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Figure 8: Box plots of relative cost increase by the robust protection using the four (uncondi-
tional/conditional) types ’no’, ’avg’, ’one’ and ’all’ of uncertainty sets. The box extends from the
lower to upper quartile values with a line at the median and a marker at the arithmetic mean.
The whiskers extending from the boxes show the maximum ranges of relative cost increase.

tion 4.3. Overall, the relative cost increase in all experiments is relatively small. However, using
the samples drawn from the three conditional distributions of power forecasting errors enable
us to further reduce the amount of wasted energy under the same solution guarantees, where,
again, the conditional settings ’avg’ and ’one’ have a similar impact. In comparison with the
preliminary results obtained in [3], the amount of curtailed energy could drastically reduced
on average from about 13% to 5% under the same solution quality guarantees. This coincides
with the reduction of uncertainty set size discussed at the end of Section 3.6.
In summary, the obtained results show that the scenario approach for the considered instances
in combination with the copula-based stochastic modeling of power forecasting errors leads to
high-quality solutions. The addition of further knowledge about the current weather situation
allows us to construct more precise uncertainty sets. We are able to produce robust solutions
with a relative small increase of curtailment costs, while maintaining the same level of protec-
tion.

5 Conclusion

In this paper, we combine the robust approximation of chance constrained DC Optimal Power
Flowwith a probabilistic uncertainty model based on R-vine copulas to reduce the curtailment
of solar power while keeping the power grid stable. The chance constrained DCOptimal Power
Flow determines appropriate levels of curtailment based on a deterministic forecast for the
expected solar power feed-in anduncertainty sets, i.e., multidimensional cuboidswhich contain
the forecasting error with a given probability. These uncertainty sets are approximated with
the help of the multivariate probability distribution of the forecasting error at all considered
power grid nodes. This results in less curtailments and a more stable power grid compared to
the results of a model without uncertainty sets.
To further improve upon these results, we incorporate knowledge about solar radiation in the
solution process by considering the conditional forecasting error distribution for a given solar
radiation forecast. This leads to sharper distributions, i.e., the forecasting error can be predicted
with higher accuracy, which results in smaller uncertainty sets. Compared to the unconditional
case, this leads to even less curtailments and improved stability of the power grid.
Our numerical results demonstrate the applicability of our procedure and the positive effects
of incorporating a probabilistic model for the distribution of random solar radiation vectors.
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Future research can transfer our solution framework to different applications under uncertainty
like in energy network optimization.
Future research could add further features and investigate questions arising from the applica-
tion, for example adding optimal transmission switching under uncertainty or including stor-
age elements and unit commitment constraints over time. From a mathematical point of view,
it would be interesting to study different geometries for uncertainty sets to further reduce the
conservatism of the robust approximation. Themajor challenge is to find assumptionswhere an
equivalent reformulation for the resulting problems is possible. In order to improve the copula-
based sampling from conditional probability distributions, it might be promising to add more
information (e.g. temperature, solar altitude, time) to the model.
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