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NODAL STABILIZATION OF THE FLOW IN A NETWORK
WITH A CYCLE

Martin Gugat, Sven Weiland *

Abstract. In this paper we discuss an approach to the stability analysis for classical
solutions of closed loop systems that is based upon the tracing of the evolution of the
Riemann invariants along the characteristics. We consider a network where several edges
are coupled through node conditions that govern the evolution of the Riemann invariants
through the nodes of the network. The analysis of the decay of the Riemann invariants
requires to follow backwards all the characteristics that enter such a node and contribute
to the evolution. This means that with each nodal re�ection/crossing the number of
characteristics that contribute to the evolution increases.

We show how for simple networks with a su�cient number of damping nodal controlers it
is possible to keep track of this family of characteristics and use this approach to analyze
the exponential stability of the system. The analysis is based on an adapted version of
Gronwall's lemma that allows us to take into account the possible increase of the Riemann
invariants when the characteristic curves cross a node of the network.

Our example is motivated by applications in the control of gas pipeline �ow, where the

graphs of the networks often contain many cycles.
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1. Introduction

The boundary stabilization of quasilinear systems has been the subject of
numerous investigations, see for example [13], [5]. Also networked hyperbolic
systems that are de�ned on tree-shaped graphs have been studied (see for example
[11]). In many applications, the graphs of the networks contain cycles, for example
in pipeline networks for gas transportation (see for example [24]). Since the control
actions are concentrated in space in such a way that they can be considered as
point actions, we do not consider distributed control but the problem to stabilize
by controllers that act at certain points in space only. In order to describe such
a situation, the term nodal control is used. We show that even if the network
contains a cycle, the system can still be exponentially stable if the controls are
chosen suitably.

In [22] the boundary control of networks of elastic strings is studied. For
networks of vibrating strings, it is natural to study the problem with controllers
located at the boundary nodes of the network only. The following statement
is made (see also [21]): Let G be a graph containing a circuit. If the strings
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constituing that circuit have rationally dependent optical lengths, then approximate

controllability fails, regardless of how many controls are imposed on the network.

This statement indicates the di�culties that occur in the control of networks with
cycles. These di�culties can be avoided, if suitable nodal controlers are included
within the cycle. Moreover, the exact type of damping conditions is important.
In this paper we consider problems of �ow control with linear Riemann dampers
that have the property that the maximum norm of the Riemann invariants is
decreased as the characteristic curves cross the damping location.

In a network, the scattering e�ect at the nodes can lead locally to increased
maximal values of the states. The nodal control actions have to compensate these
augmentation e�ects. If the combined e�ects of the ampli�cation by the scattering
and the damping e�ect decrease the maximum norm of the solution, the system
can be exponentially stable.

We want to derive results about the exponential stabilization of the system
by pointwise control action. Note that while stabilization problems for quasilinear
hyperbolic problems have been studied in depth (see for example [6], [18], [19])
in these contributions networked systems with cycles have not been considered.
In [1] �nite time stabilization for a network of vibrating strings (governed by the
linear wave equation) with a tree-shaped graph is shown. It is assumed that the
control acts on each vertex of the graph.

This paper can also be seen as an extension of the contribution in [13], where
the stabilization of the �ow in a sequence of pipes with a single compressor has
been analyzed. Lyapunov fuctions have been used successfully to study this type
of problem, for example recently for states withH2- regularity (see [18]). However,
in order to study the decay of the C1-norm that occurs naturally in the context
of classical solutions, due to the non-smoothness of this norm Lyapunov functions
are not a natural tool. Therefore in this paper we follow a di�erent approach that
is based upon the tracing of the characteristic curves along which the values of the
Riemann invariants evolve during the process. This type analysis is related to the
tracing of optical rays in the analysis of the boundary controllability properties of
the wave equation, see [4]. Note that in our analysis, the e�ect of the source term
on the evolution is taken into account since in the model of gas pipeline �ow, this
e�ect is essential.

This paper has the following structure: In Section 2 we describe the model for
the �ow on an edge in the networks that we consider, namely the isothermal Euler
equations. For the �ow through the nodes, we require the conservation of mass that
is guaranteed by the Kirchho� condition and an additional algebraic condition.
In Section 3 we transform the Euler equations using the Riemann invariants. This
enables us to de�ne a control action in Section 4, that acts as a Riemann damper.
In Section 5 we show the exponential stability for the system. We start with a
network consisting of a single edge in 5.1, continue with a star shaped network
in 5.2, then consider a network that is a cycle in 5.3 and �nally a cycle with two
additional edges in 5.4. We show that two controllers su�ce for the stabilization
of this network. Numerical experiments are presented in 5.5.
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2. Networks governed by the isothermal Euler equations

Let a �nite directed graph G = (V, E) be given, where each edge e ∈ E
corresponds to an interval Ie = [0, Le]. The �ow through the edges is governed
by the isentropic Euler equations

∂t

(
ρe

ρeve

)
+ ∂x

(
ρeve

(ve)2 ρe + pe(ρe)

)
= −

(
0

fe ρeve|ve|+ g sin(αe)ρe

)
(2.1)

for the gas density ρe = ρe(t, x) and the gas velocity ve = ve(t, x). The gas �ux
is de�ned by qe(t, x) = (ρeve)(t, x) and t ≥ 0, x ∈ Ie. The parameters fe > 0 and
αe = αe(x) are the friction coe�cient and the slope of the pipe. The number g
denotes the gravitational force and De > 0 the pipe diameter.

Let E0(v) denote the set of edges in the graph that are incident to a vertex
v ∈ V and xe(v) ∈ {0, Le} denote the end of the interval [0, Le] that corresponds
to the edge e that is adjacent to v. Let V0(e) denote the set of nodes adjacent to
some edge e. De�ne

s(v, e) =


−1 if xe(v) = 0 and e ∈ E0(v),

1 if xe(v) = Le and e ∈ E0(v),
0 if e 6∈ E0(v).

(2.2)

We impose the Kirchho� condition∑
e∈E0(v)

s(v, e) (De)2 qe(t, xe(v)) = 0 (2.3)

that expresses conservation of mass at the nodes.

In order to close the system, additional coupling conditions are needed. A
typical choice, leading to well-posed Riemann problems (see [3]) is to require the
continuity of the pressure at v, which means that for all e, f ∈ E0(v) we have

pe(ρe(t, xe(v))) = pf (ρf (t, xf (v))). (2.4)

At one of the the boundary nodes v ∈ V , that is the nodes where |E0(v)| = 1,
we impose a boundary condition of the form

pe(ρe) = peref (2.5)

where peref > 0 is a real number that describes a desired reference pressure.

At the other nodes we prescribe a stabilizing feedback law that will be discussed
below.

In [12] it has been shown for ideal gas that the boundary condition (2.5) at
one of the boundary nodes and boundary conditions of the form

qe = qeref
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at the other boundary nodes (where qeref is a real number that describes a desired
velocity) and the node conditions that require the continuity of the pressure
determine a unique stationary state if for all e ∈ E we have fe > 0 and αe = 0
that is the pipes are horizontal.

For the initial boundary value problems that describe the evolution of the state
on the network, we obtain semi-global classical solutions on a given time interval
[0, T ], provided that the initial data and the boundary data is su�ciently small in
the C1-sense and the initial data are compatible with the boundary conditions and
the node conditions. The semi-global solutions can be obtained using the methods
presented in [23]. The proofs are based upon the method of characteristics, see
also [20] as a classical reference or also [17] for a similar construction of Lipschitz-
continuous solutions.

3. The system in terms of Riemann invariants

Quasilinear hyperbolic systems can be written in diagonal form in terms of
Riemann invariants. Here the �ux, its Jacobian and the eigenvectors are given by

f(ρ, q) =

(
q

q2

ρ + p

)
, Df(ρ, q) =

(
0 1

− q2

ρ2
+ p′(ρ) 2 qρ

)
, `±(ρ, q) =

(
−1

q
ρ ±

√
p′(ρ).

)
In [Chapter 7.3] [9] it is pointed out that every 2 × 2 system of hyperbolic
conservation laws is endowed with a system of Riemann invariants. For the Euler
equations with general pressure law they are given by

R±(ρ, q) = R̃(ρ)± q

ρ
(3.1)

where R̃ is de�ned by

R̃(ρ) =

� ρ

1

√
p′(r)

r
dr.

The speci�c forms for the isentropic law ρ = aργ can be found in [9, Chapter 7.3].
In the sequel we consider the case of ideal gas (γ = 1). Now we state the node
conditions in terms of Riemann invariants.

De�ne the vectors Rvin(t), Rvout(t) ∈ R|E0(v)| in the following manner:
If s(v, e) = 1,Re+(t, xe(v)) is a component ofRvin(t) that we refer to asRein(t, xe(v))
and if

s(v, e) = −1, Rvin(t) contains Re−(t, xe(v)) as a component that we also refer
to as Rein(t, xe(v)).
Moreover, if s(v, e) = 1, Re−(t, xe(v)) is a component of Rvout that we refer to as
Reout(t, x

e(v)) and if s(v, e) = −1, Rvout(t) contains Re+(t, xe(v)) as a component
that we also refer to as Reout(t, x

e(v)).
We assume that the components are ordered in such a way that the j-th

component of Rvout corresponds to the same edge e ∈ E0(v) as the j-th component
of Rvin.
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For a node v ∈ V of the graph and e ∈ E0(v) the node conditions (2.4), (2.3)
can be written in the form of the linear equation

Reout(t, x
e(v)) = −Rein(t, xe(v)) +

2∑
f∈E0(v)

(Df )2

∑
g∈E0(v)

(Dg)2Rgin(t, xg(v)). (3.2)

This can be seen as follows. Equation (3.2) implies that for all e ∈ E0(v), the
value of

Re+(t, xe(v)) +Re−(t, xe(v)) = (Rein +Reout)(t, x
e(v))

is the same, which implies that the value of R̃e(ρe) is independent of e. Since
ρ 7→ R̃(ρ) is strictly monotone increasing, this implies (2.4). We have

s(v, e) [Re+(t, xe(v))−Re−(t, xe(v))] = (Rein −Reout)(t, xe(v)).

Moreover, (3.2) implies∑
e∈E0(v)

(De)2 [Reout(t, x
e(v))−Rein(t, xe(v))] = 0.

Due to (2.4) this implies that equation (2.3) holds.
It is important to look at the structure of the scattering at the node v described

by (3.2) in detail. First note that in the process of re�ection back in the same
pipe e the value of the incoming Riemann invariant is multiplied with the number

κeR = −1 +
2 (De)2∑

f∈E0(v)

(Df )2
.

Note that κeR ∈ (−1, 1). In particular we have |κeR| < 1.

4. Control action

For an edge e ∈ E, in terms of Rieman invariants Re = (Re+, R
e
−) our system

has the form
∂tR

e +D(Re) ∂xR
e = F e(Re) (4.1)

where D(Re) is a diagonal matrix that contains the eigenvalues which depend
continuously di�erentiably onRe and F e is the source term that depends continuously
di�erentiably on Re. We consider subsonic �ow, where one eigenvalue is strictly
greater than zero and the other eigenvalue is strictly less than zero. We assume
thatRe+ corresponds to the positive eigenvalue andRe− corresponds to the negative
eigenvalue.

Let a desired stationary state R̄e be given. At a point xe0 ∈ (0, Le), we consider
control action in the form(

Re+(t, xe0+)−Re+(xe0)

Re−(t, xe0−)−Re+(xe0)

)
= M e

(
Re+(t, xe0−)−Re+(xe0)

Re−(t, xe0+)−Re−(xe0)

)
. (4.2)
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Here M e is a 2× 2 matrix with ‖M e‖∞ ≤ κe, where the matrix norm ‖M e‖∞ is
given by ∥∥∥∥(z11 z12

z21 z22

)∥∥∥∥
∞

= max{|z11|+ |z12|, |z21|+ |z22|}. (4.3)

Assume that there exists a real number α0 > 0 such that for all e ∈ E we have

κe ≤ α0 < 1. (4.4)

If xe0 = 0, we have the feedback law

Re+(t, xe0) = R
e
+(xe0) + κe [Re−(t, xe0)−R

e
−(xe0)]. (4.5)

If xe0 = Le, we have the feedback law

Re−(t, xe0) = R
e
−(xe0) + κe [Re+(t, xe0)−R

e
+(xe0)]. (4.6)

The feedback laws can be stated in terms of the physical variables using (3.1).
Note that in terms of the physical variables, linear Riemann feedback becomes
nonlinear.

If at each edge e ∈ E, we have a control action, it is possible to ensure
exponential decay by choosing κe with a su�ciently small absolute value. However,
in general, a smaller number of control locations is su�cient. In particular, at the
end of the paper we will present a network that contains a cycle that can by
stabilized by two controllers that are located at suitable positions in the cycle.

5. Exponential Stability

First we want to provide a framework that allows us to show exponential
stability with respect to maximum norms for hyperbolic systems. Due to the �nite
speed of propagation of information, our proof requires a special line of arguments
with Gronwall's Lemma. In order to prepare the analysis of the hyperbolic system,
we start with the corresponding lemma. In this lemma, the damping e�ects can
be modelled with a parameter α0 ∈ [0, 1) whereas possible ampli�cation e�ects
can be represented by a parameter α1 > 1.

Lemma 5.1. Let Tr > 0, amax ≥ 0, α0 ∈ [0, 1) and α1 ≥ 1 be given. Let a

continuous real function U(t) be given such that U(t) ≥ 0 for all t ≥ 0.
Assume that for all k ∈ {0, 1, 2, 3, ...} and for all τ ∈ [0, Tr] we have the

inequality

U(k Tr + τ) ≤ α1 U(k Tr) +

� k Tr+τ

k Tr

α1 amax U(s) ds. (5.1)

Moreover, assume that for all k ∈ {0, 1, 2, 3, ...} and for all τ ∈ [0, Tr] we have

the inequality

U((k + 1)Tr) ≤ α0 U(k Tr) +

� (k+1)Tr

k Tr

α1 amax U(s) ds. (5.2)
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De�ne

µ = α0 + α1 [exp(α1 amax Tr)− 1] . (5.3)

Then for all n ∈ {0, 1, 2, 3, ...} we have

U(nTr) ≤ µn U(0). (5.4)

In particular, if µ < 1, this implies that U decays exponentially fast.

Proof. With Gronwall's Lemma, for all τ ∈ [0, Tr], inequality (5.1) implies

U(k Tr + τ) ≤ α1 U(k Tr) exp(α1 amax τ). (5.5)

Inequality (5.2) implies

U((k + 1)Tr) ≤ α0 U(k Tr) +

� Tr

0
α1 amax U(k Tr + τ) dτ.

Inserting (5.5) yields

U((k + 1)Tr) ≤ α0 U(k Tr) +

� Tr

0
α1 α1 amax U(k Tr) exp(α1 amax τ) dτ

= U(k Tr) [α0 + α1 (exp(α1 amax Tr)− 1)] = µU(k Tr)

with µ as de�ned in (5.3). By induction, this implies (5.4). Thus we have proved
Lemma 5.1.

5.1. Exponential stability for a single pipe

In order to apply Lemma 5.1 to our hyperbolic system, we assume that it is in
diagonal form, that is we consider the evolution of the Riemann invariants along
the characteristic curves. We study classical solutions that are de�ned by integral
equations along characteristics as studied for example in [20], [23]. In our context
of closed loop system the existence results for semi-global classical solutions state
that:

For all T > 0 there exists a number ε(T ) > 0 such that for all initial data for

which the maximal C1-norm is less than ε(T ) and that are C1-compatible with the

node conditions and with the feeback laws there exists a unique classical solution

on the time-interval [0, T ]. A classical solution is a continuously di�erentiable
function that satis�es the initial conditions, the node conditions the feedback
laws and the partial di�erential equations.

Moreover, we have an a priori bound for the solution in the sense that there
exists a constant C0(T ) > 0 such that the C1-norm of the solution is bounded
a priori by the product of C0(T ) and the C1-norm of the initial data and the
boundary data (see [23] and the references therein).

For each edge e ∈ E, The eigenvalues of the system matrix that govern the
slopes of the characteristic curves are λe+ = c + ve and λe− = −c + ve, where c
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denotes the sound speed in the gas and ve the velocity of the gas �ow in edge e. If
throughout the process, the maximum norm of the velocity of the �ow is bounded
above by c

2 , for the eigenvalues we have λ
e
+ ∈ [ c2 ,

3
2c] and λ

e
− ∈ [− c

2 , −
3
2c]. Actually,

in the practical operation of gas networks |ve| is much smaller than c/2. Then the
time that a characteristic curve needs to pass the controller in a pipe of length
Le is bounded above by

T0 = 4 max
e∈E

Le

c
. (5.6)

Note that in the case of a single edge, we need not take into account any scattering
e�ect (bifurcation respectively) of the characteristic curves at an interior node. At
the boundary nodes, the characteristic curves are merely re�ected, that is a λ+
characteristic is continued as a λ− characteristic and vice versa. We assume that
the boundary conditions at x = 0 and x = Le are such that the absolute value of
the corresponding component of Re is not increased in the process. Let R denote
the vector of Riemann invariants. Let a desired stationary state R be given (that
is a system state that satis�es the node conditions and the partial di�erential
equations but does not depend on time). In order to analyze the exponential
decay we consider the system for the di�erence

r = R−R. (5.7)

This system still has diagonal form with the same eigenvalues as the original
system, but in the source term di�erent terms appear. More precisely, if we write
the system in the form Ret +D(Re)Rex = F e(Re) (see (4.1)), we have D(R

e
)R

e
x =

F e(R
e
), since R

e
t = 0. This yields

ret +D(R
e

+ re) rex = Ge(re, R
e
),

with

Ge(re, R
e
) = [F e(R

e
+ re)− F e(Re)] + [D(R

e
)−D(R

e
+ re)]D−1(R

e
)F e(R

e
)

= F e(R
e

+ re)−D(R
e

+ re)D−1(R
e
)F e(R

e
)

and the same diagonal matrix D(Re) = D(R
e

+ re). Due to the linearity of the
node conditions (3.2), they are also satis�ed by re. Note that Ge is continuously
di�erentiable in re and Ge(0, R

e
) = 0. Let amax > 0 denote a constant such that

for all su�ciently small values of ‖r‖∞ the absolute value of the continuous source
term component G∗ satis�es the inequality

|G∗(r, R)| ≤ amax ‖r‖∞, (5.8)

where ‖r‖∞ denotes the maximum norm of r:

‖r‖∞ = max
e∈E
{|re+|, |re−|}.
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By di�erentiating the system (4.1), we attain an equation of the form

∂tr
e
∗(τ, ξ

e
∗(τ)) = ∂tr

e
∗(τ0, ξ

e
∗(τ0))+

� τ

τ0

G̃e∗(r
e(s, ξe∗(s)), ∂tr

e(s, ξe∗(s)), R(ξe∗(s))) ds

with a continuous function G̃e

G̃(r, rt, R) = Gr(r, R)rt −Dr(r +R)rtrx

We assume that for all su�ciently small values of ‖v0‖∞ and ‖v1‖∞ we also
have the inequality

‖G̃(v0, v1, v2)‖∞ ≤ amax max{‖v0‖∞, ‖v1‖∞}. (5.9)

Theorem 5.1. Consider a single pipe, that is E = {e} with the system governed

by (4.1) with a stabilizing control action (4.3) as de�ned in Section 4 at a point

xe0 ∈ (0, Le) and boundary conditions

Re+(t, 0) = R
e
+(0) + σ0(R

e
−(t, 0)−Re−(0)) (5.10)

Re−(t, Le) = R
e
−(Le) + σL(Re+(t, Le)−Re+(Le)) (5.11)

with σ0, σL ∈ [−1, 1] at x = 0, x = Le respectively. De�ne Tr = T0 and with α0

from (4.4)
µ = α0 + [exp( amax Tr)− 1] .

Assume that amax > 0 from (5.8), (5.9) is su�ciently small, such that we have

µ < 1. Assume furthermore that

2

c
(1 + amax) ≤ 1. (5.12)

Then there exists a number ε > 0 such that for all initial states with C1-norm

less then ε that are compatible with the boundary and node conditions there exists

a global classical solution and the C1-norm of the r as de�ned in (5.7) decays

exponentially in the sense that V (t+ Tr) ≤ µV (t) where V is de�ned by

V (t) = max
x∈[0,Le]

{‖re(t, x)‖∞, ‖∂tre(t, x)‖∞}.

Proof. We have chosen the time T0 su�ciently large such that after the time
T0 all characteristic curves on the edge e are at least once a�ected by the node
conditions at one of the ends of the edge. Let a natural number N be given such
that

µN max{1, 3

2
c+ amax} ≤ 1. (5.13)

We assume that for the time interval [0, N T0], a semi�global classical solution
exists, that is we choose

T = N T0



10 Martin Gugat, Sven Weiland

and assume that the C1-norm of the initial state is less than the corresponding
bound ε(T ) from the existence result. Note that this also implies that we have an
a priori bound for the solution on [0, NT0], that tends towards 0 with ε→ 0.

We want to use Lemma 5.1 to show that the C1-norm of re(t) decays exponentially.
For ∗ ∈ {+, −} let re∗ denote a component that evolves along the characteristic
curve (s, ξe∗(s)) that satis�es the di�erential equation ∂sξ

e
∗(s) = λ∗(R

e
∗(s, ξ

e
∗(s)))

where λ∗ denotes the eigenvalues corresponding to re∗. Along the characteristic
curve, with τ ∈ [0, N T0] and τ0 ∈ [0, τ ] as long as the characteristic curve is in
the interior of the domain, re∗ satis�es the integral equation

re∗(τ, ξ
e
∗(τ)) = re∗(τ0, ξ

e
∗(τ0)) +

� τ

τ0

G∗(r
e(s, ξe∗(s)), R(ξe∗(s))) ds.

Then for the evolution of re∗ along the characteristic curve (s, ξe∗(s)) due to
the triangle inequality and (5.8) we obtain an estimate of the form

|re∗(τ, ξe∗(τ))| ≤ |re∗(τ0, ξe∗(τ0))|+
� τ

τ0

amax ‖re(s, ξe∗(s))‖∞ ds. (5.14)

For t ∈ [0, N T0], de�ne

U(t) = max
x∈[0,Le]

‖re(t, x)‖∞.

Then due to (5.14), inequality (5.1) holds for all k ∈ {0, 1, 2, 3, ... N − 1} with
α1 = 1. Now we have chosen the time T0 su�ciently large, such that at one
moment t∗ ∈ [0, T0], each characteristic curve (s, ξe∗(s)) reaches the controller at
xe0 where the control action takes place. We have assumed that this control action
reduces the absolute value of the ingoing Riemann invariant by the factor α0. This
means that if τ − τ0 ≥ T0 we improve (5.14) by said factor α0 at least once and
obtain

|re∗(τ, ξe∗(τ))| ≤ α0|re∗(τ0, ξe∗(τ0))|+
� τ

τ0

amax ‖re(s, ξe∗(s))‖∞ ds. (5.15)

Since we have inequality (5.15) for both components of r, we obtain (5.2) for all
k ∈ {0, 1, 2, ... N − 1}. This implies that (5.2) holds for all k ∈ {0, 1, 2, ..., N − 1}.
By Lemma 5.1, we obtain the inequality

U(k T0) ≤ µk U(0)

for all k ∈ {0, 1, 2, ..., N}. With µ < 1 this yields the exponential decay on the
�nite time interval [0, N T0].

Now we consider the evolution of ∂tr
e
∗ along (s, ξe∗(s)). With analogous arguments

as above we obtain

V (k T0) ≤ µk V (0).
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Due to the partial di�erential equation for re we have

rex = D(R
w

+ re)−1[Ge(re)− ret )].

This yields an estimate of the form

max
x∈[0, Le]

|rex(t, x)| ≤ 2

c
V (t) +

2

c
amaxU(t) ≤ 2

c
(1 + amax)V (t).

Now (5.12) implies

max
x∈[0, Le]

{|re(NTr, x)|, |rex(NTr, x)|} ≤ V (NTr).

Moreover we have

max
x∈[0, Le]

|ret (t, x)| ≤
[

3

2
c+ amax

]
max

x∈[0, Le]
{|re(t, x)|, |rex(t, x)|}.

Since V (NTr) ≤ µNV (0) we obtain

max
x∈[0, Le]

{|ret (NTr, x)|, |re(NTr, x)|, |rex(NTr, x)|}

≤ µN max

{
1,

(
3

2
c+ amax

)}
V (0) ≤ ε.

where the last inequality follows with (5.13).
This implies that at the time T = N Tr, the C

1-norm of the solution is
su�ciently small such that we can use it as initial data, to extend our solution to
the next time interval [T, 2T ]. In this way we can obtain a global solution on the
time interval [0,∞) that decays exponentially.

5.2. Exponential stability with respect to the C1-norm for a classical
solution on a star shaped network

In order to develop the analysis for networked structure, it is an important step
to consider star-shaped networks. Star-shaped networks of gas-pipelines have been
the subject of previous investigations, where the exponential decay with respect to
the L2-norm has been shown by suitably chosen Lypunov funtions, see [15]. In this
contribution we present a di�erent approach, where the decay of the maximum
value of the error of Riemann invariants is analyzed by tracing the evolution along
the characteristic curves.

Let again a desired stationary state R on a star-shaped network G = (V,E)
be given that satis�es the partial di�erential equation and the node conditions
but does not depend on time. On each edge e ∈ E, the corresponding state is
denoted by R

e
and satis�es (2.1). Moreover, R satis�es the coupling conditions

(3.2). We consider the system for the di�erence r de�ned in (5.7).
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E is a �nite set of edges and the graph has exactly one interior node v. For
all edges e ∈ E, the end xe = 0 of the interval [0, Le] is adjacent to v. At the ends
Le, for all e ∈ E we have boundary nodes of the network. We assume that at each
of these boundary nodes, control action occurs, that is we have xe0 = Le. De�ne

κ = max
e∈E
|κe|.

The scattering process that occurs at the central node v can be described by a
scattering matrix

Av = (a(e,f)) (5.16)

where (e, f) ∈ E0(v) × E0(v). According to (3.2) the diagonal elements that
describe how much of the ingoing Riemann invariants is re�ected back into the
pipe from where it entered have the form

a(e,e) = −1 +
2 (De)2∑

f∈E0(v)
(Df )2

=
(De)2 −

∑
g∈E0(v), g 6=e(D

g)2∑
f∈E0(v)

(Df )2
∈ (−1, 1). (5.17)

The elements that describe how a part of the Riemann invariant that enters v
from an edge f 6= e is diverted into the pipe e are given by

a(e,f) =
2 (Df )2∑

g∈E0(v)
(Dg)2

. (5.18)

Clearly we have |a(e,e)| < 1. Moreover, we have

‖Av‖∞ =
∑

g∈E0(v)

|a(e,g)| < 3, (5.19)

where ‖Av‖∞ denotes the maximum norm of Av:

‖Av‖∞ = max
e∈E0(v)

∑
g∈E0(v)

|a(e,g)|.

We use

νv := ‖Av‖∞ (5.20)

as a short hand notation. Since νv is the operator norm of the scattering matrix
Av with respect to ‖ · ‖∞, inequality (5.19) implies that the crossing through the
interior vertex can have for the maximal absolute value of the involved Riemann
invariants an ampli�cation e�ect of at most multiplication with νv < 3.

For the analysis of the exponential decay in the network, it is essential that
this ampli�cation e�ect in the interior node can be compensated by the damping
e�ect at the boundary nodes at Le. The feedback law (4.6) leads to a decrease of
the size of the absolute value of the re�ected Riemann invariants by multiplication
of the Riemann invariants that enter the boundary node by a factor α0.



Nodal stabilization of the �ow in a network with a cycle 13

Note that ∂tr
e
± satis�es a node condition and boundary conditions similar as re±.

At v we have

∂tr
e
out(t, x

e(v)) = −∂trein(t, xe(v)) +
2∑

f∈E0(v)

(Df )2

∑
g∈E0(v)

(Dg)2 ∂tR
g
in(t, xg(v)).

(5.21)
Thus we can use the same matrix Av from (5.16) to describe the scattering process
for ∂tr

e
±.

Theorem 5.2. Consider a star-shaped network with one interior node v, that is
governed by (4.1), the coupling condition (3.2) at the interior node (that corresponds
to xe = 0) and stabilizing control actions (4.6) at the boundary nodes xe = Le as
de�ned in Section 4. De�ne Tr = T0 with T0 as in (5.6) and

µ = α0 + [exp( amax Tr)− 1] ,

where α0 = κ ν2v . Assume that amax > 0 is su�ciently small, such that we have

µ < 1. Assume furthermore that

2

c
(1 + amax) ≤ 1. (5.22)

Then there exists a number ε > 0 such that for all initial states with C1-norm

less then ε that are compatible with the boundary node conditions there exists a

global classical solution and the C1-norm of r decays exponentially in the sense

that V (t+ Tr) ≤ µV (t) where V is de�ned by

V (t) = max
e∈E

max
x∈[0,Le]

{‖re(t, x)‖∞, ‖∂tre(t, x)‖∞}. (5.23)

First we discuss the case with zero source term, that is with fe = 0 and αe = 0.
We assume that

κ <
1

9

such that

α0 < 1.

Thus one damping e�ect at a boundary node can compensate the e�ect of two
crossings through the interior node. This is su�cient to prove exponential decay.
Which can be seen as follows. The time Tr is greater than two times the longest
running time through one of the edges. Starting from some point in the network
at a given time t ≥ Tr we follow all the characteristics connected with that point
backwards in time. Then we have at least one crossing through the interior node v.
The Ampli�cation of this crossing is bounded by νv. Moreover, in each connected
characteristic curve, either before or after this crossing there is a re�ection at a
boundary node where the control leads to a damping by the factor κ.
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Furthermore, it may happen that we have more re�ections on short edges, but
the number of ampli�cations at the interior node v is at most 1 larger than the
number of damping actions. Hence for

U(t) = max
e∈E

max
x∈[0, Le]

|re±(t, x)| (5.24)

we obtain the inequality

U(t+ Tr) ≤ κ ν2v U(t) = α0 U(t).

Due to (5.21) we obtain

V (t+ Tr) ≤ α0 V (t)

completely analogously. Assume that the semi-global solution exists on an interval
[0, T ] with T = NTr. Since α0 < 1, similarly as in Lemma 2 from [16], this implies
exponential decay of V (t) on [0, T ].

Now we consider the case with non-zero source term, that is where f ≥ 0 or
αe 6= 0 and give a more detailed proof using a similar approach as in the previous
section. On each edge e ∈ E, we have the integral equations

re±(τ, ξe±(τ)) = re±(τ0, ξ
e
±(τ0)) +

� τ

τ0

Ge±(re(s, ξe±(s))) ds.

Assume once again that for all su�ciently small values of ‖r‖∞ the absolute value
of the source term Ge± satis�es the inequality (5.8), where amax > 0 is an a priori
known constant.

Then for the evolution of re± along the characteristic curve (s, ξe±(s)) we obtain
an estimate of the form

|re±(τ, ξe±(τ))| ≤ νv |re±(τ0, ξ
e
±(τ0))|+

� τ

τ0

νv amax ‖re(s, ξe±(s))‖∞ ds. (5.25)

Here the factor νv appears due to (5.19) and takes into account the e�ect of a
possible scattering at the interior node v.

Exactly as in the case with zero source term, we can argue that for the
connected characteristics the number of ampli�cations at the interior node v
is at most 1 larger than the number of damping actions. Since ν2v κ < 1, with
inequality (5.25) for U as de�ned in (5.24) this yields (5.1) with α1 = νv for all
k ∈ {0, 1, 2, 3, ... N − 1}.

Now we have chosen the time Tr su�ciently large such that at least at one
moment in

[k Tr, (k + 1)Tr]

each characteristic curve is re�ected at a boundary node where the damping
control action takes place. Moreover, the number of crossings through the central
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note v is at most 1 larger than the number of damping actions. Then due to
(5.25), we obtain

|re±((k+1)Tr, ξ
e
±((k+1)Tr))| ≤ α0|re±(k Tr, ξ

e
±(k Tr))|+

� (k+1)Tr

k Tr

νv amax ‖re(s, ξe±(s))‖∞ ds.

This implies that (5.2) holds for all k ∈ {0, 1, 2, ..., N−1} with α0. As in the proof
of Lemma 5.1, we obtain the inequality

U(k T0) ≤ µk U(0)

for all k ∈ {0, 1, 2, ..., N} with

µ = α0 + α1[exp(α1 amax Tr)− 1].

If µ < 1 this yields exponential decay on the �nite time interval [0, N Tr].
Now we consider the evolution of ∂tr

e
± along (s, ξe±(s)). Once again we can

make use of the fact that ∂tr
e
± satis�es a node condition (5.21) and boundary

conditions similar as re±. At x = Le we have

∂tr
e
−(t, xe0) = κe ∂tr

e
+(t, xe0). (5.26)

We have an integral equation of the form

∂tr
e
±(τ, ξe±(τ)) = ∂tr

e
±(τ0, ξ

e
±(τ0))+

� τ

τ0

G̃e±(re(s, ξe±(s)), ∂tr
e(s, ξe±(s)), R(ξe∗(s))) ds

with a continuous function G̃e± and (5.9). With analogous arguments as above we
obtain

V (k Tr) ≤ µk V (0).

This implies that at the time T = N Tr, the C
1-norm of the solution is

su�ciently small such that we can use it as initial data, to extend our solution
to the next time interval [N T0, (N + 1)T0]. In this way we can obtain a global
solution on the time interval [0,∞] that decays exponentially.

5.3. Exponential stability for a network that is a cycle

In order to illustrate the damping e�ect of our control action, consider a
network that is a cycle, that is we have a single edge e with the boundary
conditions

re+(t, 0) = re+(t, Le), re−(t, Le) = re−(t, 0).

We assume that in this interval a control action as de�ned in Section 4 at a point
xe0 ∈ (0, Le) takes place. For the sake of simplicity we consider the case where
the source term is zero, that is the Riemann invariants are constant along the
characteristics. De�ne

U e(t) = max
x∈[0, Le]

{|re+(t, x)|, |re−(t, x)|}.
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For each value re+(t, x) we can follow the corresponding ξ+ characteristic that
transports the value backwards in time. In this system, no bifurcations and
re�ections occur. Therefore it is easy to see that if we follow the characteristic
curve backwards in time for a time interval of length T0, the characteristic curve
crosses the point xe0 where the controller is located. Hence for t ≥ T0 we have the
inequality

|re+(t, x)| ≤ |κe|U e(t− T0).

Analogous arguments yield the corresponding inequality for re−(t, x). Hence we
have

U e(t) ≤ |κe|U e(t− T0).

If |κe| < 1, this implies the exponential decay of U e(t) (see Lemma 2 from [16]).

For the case with non-zero source terms, we have to adapt the arguments as
in the previous section. In particular, again we obtain the decay of the C1 norm
on su�ciently large time intervals, which yields the global existence of a classical
solution.

Of course in practice, circular networks are only interesting if there are additional
entry and exit pipes. We consider an example of this type in the next section.

5.4. Exponential stability for a network with a cycle and two
additional edges.

We consider a network with the four edges α, β, γ, δ and two interior nodes
v0 and v1, see Figure 5.1. Let the lengths of the pipes for β and γ be given with
Lβ > 0 and Lγ > 0. We assume that Lα = Lδ > Lβ and that Lα > Lγ . The ends
0 of the edge α and the end Lδ of the edge δ are boundary nodes. At the node
v0, the edge α is connected with β and γ. The adjacent ends are Lα for the edge
α and 0 for the other two edges. At v1, the edges β and γ are connected with the
edge δ. The adjacent ends are Lβ for the edge β, Lγ for the edge γ and 0 for the
edge δ.

Q v0
α

v1v1

β
Cβ

γ Cγ

S
δ

Fig. 5.1. Circle with two border nodes and two locations for control action

Moreover, we assume that there is a control action (4.2) in the two edges β
and γ represented by the nodes Cβ and Cγ . We assume that the re�ections at the
boundary nodes Q and S do not increase the absolute value of the corresponding
Riemann invariants by the boundary conditions.
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At Q, with a number σα ∈ [−1, 1] we have the feedback law

Rα+(t, 0) = R
α
+(0) + σα [Rα−(t, 0)−Rα−(0)]. (5.27)

At S, with σδ ∈ [−1, 1] we have the feedback law

Rδ−(t, Lδ) = R
δ
−(Lδ) + σδ [Rδ+(t, Lδ)−Rδ+(Lδ)]. (5.28)

The network can be thought of as a compressor station where two compressors
work in parallel. For all e ∈ E = {α, β, γ, δ} de�ne Te = 2L

e

c .
The following theorem gives su�cient conditions for the exponential stability

of the system.

Theorem 5.3. Consider a network consisting of a cycle with locations for control

action in the edges β and γ and two additional edges as de�ned above. De�ne

Tr = 2Tα + max{Tβ, Tγ}. Let α0, amax > 0 be given. De�ne

Z0 = max{|a(α, α)| + α0 νv [|a(α, β)|+ |a(α, γ)|], ν2v α0} (5.29)

(where a(α, α), a(α, β) and a(α, γ) are the entries of the corresponding scattering
matrix, see (5.16) and νv as de�ned in (5.20) denotes the corresponding norm,

see (5.19)) and for a given amax de�ne

µ = Z0 + νv [exp(νv amax Tr)− 1] .

Assume that µ < 1 and that for the control actions we have |κe| ≤ α0. Moreover

assume that
2

c
(1 + amax) ≤ 1. (5.30)

Then there exists a number ε > 0 such that for all intitial states with C1-

norm less then ε that are compatible with the node conditions and the boundary

conditions there exists a global classical solution and the C1-norm decays exponentially

in the sense that V (t+ Tr) ≤ µV (t) where V is as de�ned in (5.23).

Proof. Let a natural number N be given such that

µN max{1, 3

2
c+ amax} ≤ 1. (5.31)

The theory of semi-global solutions implies that for T = N Tr there exists a
number ε = ε(T ) > 0 such that for all initial states with C1-norm less then ε(T )
that are compatible with the node conditions and the boundary conditions there
exists a classical solution on the interval [0, N Tr]. Moreover, this solution satis�es
an a priori inequality, hence by choosing ε > 0 su�ciently small it can also be
guaranteed that the C1-norm of the state is su�ciently small.

First we analyze the evolution of |rα±|. Due to the de�nition of Tr, if we
trace back any characteristic ξα±, it reaches the interior node v0, possibly after
a re�ection at xα = 0 that does not increase the size of the Riemann invariant.
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Let us say the node v0 is reached at the time t∗(v0) ∈ (0, Tr]. Then we have for
all τ ∈ [t∗(v0), Tr]

|rα±(τ, ξα±(τ))| ≤ |rα±(t∗(v0), ξ
α
±(t∗(v0))|+

� τ

t∗(v0)
amax ‖rα(s, ξα±(s))‖∞ ds (5.32)

where the ξα+ characteristic is continued as a ξα− characteristic after the possible
re�ection at xα = 0. The de�nition of Tr implies that the time t∗(v0) > max{Tβ, Tγ}
and thus the two characteristic curves coming from β and γ have already crossed
the damper in the corresponding edge. Hence the size of the corresponding Riemann
invariants has already been reduced by a factor α0. Moreover, due to the structure
of the graph in any case in the edges β and γ there can be at most one interaction
more with a node than with the damper. Hence for t > t∗(v0) before the next
interaction with v0 we have

|rα±(t, ξα±(t))| ≤ [|a(α, α)| + α0 νv [|a(α, β)|+ |a(α, γ)|]] U(0) +

� t

0
amax U(s) ds

(5.33)
where U is as de�ned in (5.24). Moreover, our de�nition of Tr implies that for the
re�ected characteristic in the edge α the number of scattering interactions at v0
can be at most one higher than the number of damping e�ects in the time interval
[0, Tr]. Hence we have

|rα±(Tr, ξ
α
±(Tr))| ≤ [|a(α, α)| + α0 νv [|a(α, β)|+ |a(α, γ)|]] U(0)+

� Tr

0
amax U(s) ds.

(5.34)
Moreover, for all τ ∈ [0, Tr] we have

|rα±(τ, ξα±(τ))| ≤ U(0) +

� τ

0
amax U(s) ds. (5.35)

For the edge δ, we obtain completely analogous estimates.

Now we consider the evolution of the absolute value of the Riemann invariants
on the edge β where the damping control action is located. For ∗ ∈ {+, −} we
consider the evolution of rβ∗ along the corresponding characteristic curve ξ

β
∗ . Then

after a possible control action at xβ0 , due to the de�nition of Tr there is a �rst
time t∗ ∈ [0, Tβ] ⊂ [0, Tr) where the characteristic curve reaches the central node
v0 in the minus-case or the central node v1 in the plus-case.

Then we have for all τ ⊂ [0, t∗]

|rβ±(τ, ξβ±(τ))| ≤ U(0) +

� τ

0
amax U(s) ds. (5.36)

After the re�ection at the central node v1, the ξ
β
+ characteristic is continued as a

ξβ− characteristic and vice versa after the re�ection at v0. Since the scattering is
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governed by the matrices Av0 and Av1 respectively, for τ > t∗ due to (5.19) we
obtain

|rβ±(τ, ξβ±(τ))| ≤ νv U(0) +

� τ

0
νv amax U(s) ds. (5.37)

Since Tα > T β we have 3Tα > Tr > 3Tβ . Hence before the �rst interaction with a
central node, for the re�ected characteristic that is continued backwards in time in
the edge β, there is at least one interaction with the damping control at xβ0 before
the next scattering. In any case the number of scattering interaction at an interior
node is at most one larger that the number of times that of the characteristic curve
crosses the controller. Since νv α0 < 1, we obtain the inequality

|rβ±(Tr, ξ
α
±(Tr))| ≤ ν2v α0 U(0) +

� τ

0
ν2v α0 amax U(s) ds. (5.38)

Moreover, for all τ ∈ [0, Tr] we have

|rβ±(τ, ξα±(τ))| ≤ νv U(0) +

� τ

0
νv amax U(s) ds (5.39)

and the same holds for the edge γ. With (5.39) and (5.35) for all τ ∈ [0, Tr] this
yields the inequality

U(τ) ≤ νv U(0) +

� τ

0
νv amax U(s) ds. (5.40)

De�ne

Z0 = max{|a(α, α)| + α0 νv [|a(α, β)|+ |a(α, γ)|], ν2v α0}

Then from (5.34) and (5.38) we obtain

U(Tr) ≤ Z0 U(0) +

� τ

0
amax U(s) ds.

Then by Lemma 5.1 with α1 = νv we have U(Tr) ≤ µU(0) ≤ ε. By induction, we
obtain U(NTr) ≤ µNU(0) ≤ ε.

Again due to the linearity of the node condition and the control law for the
evolution of ∂tr we obtain completely analogously V (N Tr) ≤ µNV (0) ≤ ε, where
V is as de�ned in (5.23).

For all e ∈ E, due to the partial di�erential equation for re we have

rex = D(R
w

+ re)−1[Ge(re)− ret )].

This yields an estimate of the form

max
e∈E

max
x∈[0, Le]

|rex(t, x)| ≤ 2

c
V (t) +

2

c
amaxU(t) ≤ 2

c
(1 + amax)V (t).
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Now (5.30) implies

max
e∈E

max
x∈[0, Le]

{|re(NTr, x)|, |rex(NTr, x)|} ≤ V (NTr).

Moreover we have

max
e∈E

max
x∈[0, Le]

|ret (t, x)| ≤
[

3

2
c+ amax

]
max
e∈E

max
x∈[0, Le]

{|re(t, x)|, |rex(t, x)|}.

Since V (NTr) ≤ µNV (0) we obtain

max
e∈E

max
x∈[0, Le]

{|re(NTr, x)|, |rex(NTr, x)|}

≤ µN max{1,
(

3

2
c+ amax

)
}max
e∈E

max
x∈[0, Le]

{|re(0, x)|, |rex(0, x)|} ≤ ε.

where the last inequality follows with (5.31).
This implies that at the time T = N Tr, the C

1-norm of the solution is
su�ciently small such that we can use it as initial data, to extend our solution to
the next time interval [N Tr, 2N Tr]. In this way we can obtain a global solution
on the time interval [0,∞] that decays exponentially.

Remark 5.1. Note that if there is only one control action in the cycle, say only on
β and not on γ, at least in the case without source term (that is with amax = 0)
stabilization is not possible. This can be seen as follows. In this case there exist
several stationary states on the network with the same state on β, say R1 and R2.
Hence if we choose re = R2−R1, we have a stationary state that does not decay.

The stationary states can be chosen with constant states for all e ∈ E. In
particular the pressure is constant throughout the network. For both stationary
states we can choose the same value for qβ and pβ . Then we have rβ = 0.

5.5. Exponential stability for non�classical solutions on a star shaped
network: Numerical experiments

The proof of our results for classical solutions depends on the description by
integral equations along the characteristic curves. It is well known, that for less
regular solutions (that is non-classical solutions) such a representation does not
exist. In this Section we consider the same system as in Section 5.2 but we consider
non-classical solutions as de�ned in [7] and [8]. We present a numerical study for
the behaviour of the system with a piecewise constant initial state and absorbing
boundary conditions at the boundary node. The numerical results indicate that
also this system is stabilized by the absorbing boundary conditions. However, we
do not have a proof for this, so this remains an open question for future research.
The asymptotic stabilization of systems of conservation laws by controls acting
at a single boundary point has been considered in [2]. However, for the system
of balance laws that we consider, a method that allows to take into account the
e�ect of the source term is essential.



Nodal stabilization of the �ow in a network with a cycle 21

Fig. 5.2. snapshot at t = 0.35, t = 25.11, t = 49.98 and t = 99.58

In [14], not only the limits of stabilizability for a semilinear model for gas
pipeline �ow are studied, but also an example is presented, where the quasilinear
�ow model becomes unstabilizable for a certain feedback law of Neumann type
namely px = f0 pt at x = 0 and vx = −1

c vt at x = L for all feedback parameters
f0 that are greater than the reciprocal value of the sound speed. However, this
does not imply that the situation for Dirichlet feedback as we consider in this
paper is similar.

The snapshots in Figure 5.5 of the evolution of the pressure starting from a
piecewise constant initial state illustrate the complexity of the dynamics. Here
the aim is to stabilize the system to a state with constant pressure and zero
velocity. At the beginning the pressure is also constant, but on a lower level. At
the in�ow boundary node at x = 0 and the out�ow boundary node at x = 50
the desired values of the Riemann invariants (that is the values of the Riemann
invariants corresponding to the desired terminal state) are prescribed by the
boundary conditions. The numerical solution approaches the desired state rapidly.
However, the question whether the analytical solution shows the same behaviour
is open.

6. Conclusion

We show that for a networked quasi-linear system that is de�ned on a graph
with a cycle, the C1−norm of the state decays exponentially fast if there is
su�cient nodal control action located in the cycle. On account of the fact that the
C1-norm is non-smooth, Lyapunov functions are not a natural tool to show the
exponential decay of classical solutions. Therefore, in our contribution we suggest
a di�erent approach that is based upon the study of the evolution of the value of
the Riemann invariants along the characteristic curves. In the context of networks,
this requires in particular the study of scattering e�ects at interior nodes, that
leads to a branching of the connected characteristic curves. In the analysis, we
carefully trace the evolution of the Riemann invariants along the characteristic
curves. We look at the evolution with a special focus on the moments when the
characteristic curves go through vertices of the graph, both when the characteristic
curves are scattered at interior nodes and when they are re�ected at boundary
nodes.

We study a network with a cycle and show that with a two nodal controllers in
the cycle, the system state given by classical solutions can be stabilized exponentially
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fast. In particular we show the existence of a global classical solution. Note that
this requires weaker regularity assumptions than for the H2 solution (see for
example [19]) that have been studied recently. We expect these results can be
extended to more general networks. For future research, it would be desirable to
extend the analysis to more general networks and to the case where some model
parameters are uncertain, see for example [10].
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