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Abstract. Every optimization problem has a corresponding veri�cation problem that
checks whether a given optimal solution is in fact optimal. In the literature there are a lot
of such ways to verify optimality for a given solution, e.g., the branch-and-bound tree. To
simplify this task, Baes et al. introduced optimality certi�cates for convex mixed-integer
nonlinear programs and proved that these are bounded in the number of integer vari-
ables. We introduce an algorithm to compute the certi�cates and conduct computational
experiments. Through the experiments we show that the optimality certi�cates can be
surprisingly small.

1. Introduction

With every optimization problem we have an associated veri�cation problem: Is a
given solution actually optimal? In many cases this problem is as di�cult as the original
optimization problem. One way of dealing with this problem is to produce a certi�cate as
part of the solution algorithm. The idea is to compute a mathematical object with short
encoding length in addition to the solution that aids veri�cation. The classical example
for this is the dual solution of a linear program. But for many problems it is unclear what
would be a “good” certi�cate.

One class of problems, where this is unclear is the class of mixed-integer nonlinear
programs (MINLP). In this article, we are speci�cally dealing with convex MINLPs, that
is, MINLPs whose continuous relaxation is a convex optimization problem. There exist
a number of solution methods like Branch-and-Bound, Outer Approximation, Extended
Cutting Plane, Extended Supporting Hyperplane or Generalized Benders Decomposition
(for a state-of-the-art survey of solution methods and software for convex MINLPs, see
Kronqvist et al. 2019). From all of these methods one can extract a certi�cate, for instance
for branch-and-bound, one can record all branching decisions and, thus, reconstruct the
full tree. But these certi�cates are large, both in theory and typically also in practice.

In Baes et al. (2016), the authors proposed a new type of certi�cate for convex MINLP.
The authors propose an extension to the standard KKT-conditions to optimization problems
with a convex objective function, functional constraints and integrality constraints for
some variables. In their case, the certi�cate, is a set of points, each having a set of Lagrange
multipliers. A result of Baes et al. (2016) is that the number of points which are at most
necessary to form such an optimality certi�cate is 2= , where = ∈ N is the number of integer
variables. While this is still not small, it is smaller than a full enumeration of all integer
points for real-world mixed-integer problems. To verify their certi�cate, it is necessary to
solve one integer linear program and one convex program per certi�cate point. We note
that this certi�cate has been generalized to in�nite-dimensional problems in Jahn and
Knossalla (2018). Furthermore the geometric approach of Baes et al. (2016) is also used
in Basu et al. (2017) where objective functions are convex, but general feasible sets, are
investigated.
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Left open by Baes et al. (2016) was the question how to compute their certi�cates
e�ciently. Beyond that, it was open how their worst-case bound relates empirically to
the true certi�cate size of mixed-integer nonlinear problems as they appear in classical
problem classes or applications.

Our contribution is that we a) propose an algorithm to compute the optimality certi�-
cates introduced in this manuscript, b) evaluate the results on instances from the MINLPLib
and MIPLIB, and c) provide sharper bounds on certi�cate sizes for speci�c problem classes
and structured problems while retaining the same worst-case bound. To achieve these
results, we will work with a slight generalization of the certi�cate proposed in Baes et al.
(2016) that allows us to be more �exible in the algorithms and helps us to prove tighter
bounds for speci�c problems.

The structure of the paper is the following. The subsequent Section 2 formally in-
troduces the problem. The following Section 3 generalizes the optimality certi�cate
introduced in Baes et al. (2016) while an algorithm to compute such generalized optimality
certi�cates is introduced in Section 4. In Section 5 we prove tighter upper bounds on the
certi�cate size for some classes of optimization problems. In Section 6 we brie�y discuss
similarities and di�erences to other optimality certi�cates. Computational experiments
are presented in Section 7. In the last Section 8 we give an outlook on the topic.

2. Problem statement

In this section, we introduce our notation, de�ne the core concepts, and state our
assumptions that hold throughout this article.

We consider mixed-integer convex problems of the form
min
I,~

5 (I,~) (1a)

s.t. 6(I,~) ≤ 0, (1b)

I ∈ Z=, ~ ∈ R3 , (1c)

where 5 : R=+3 → R is a convex function and 6 : R=+3 → R� for � ∈ N is a component-
wise convex function, i.e., each 6 9 : R=+3 → R with 9 = 1, . . . , � is a convex function. We
denote G B (I,~).

In general for optimization problems there are various ways to certify optimality for a
certain optimal solution. A classical example for such an optimality certi�cate is a solved
Karush-Kuhn-Tucker system (Kuhn and Tucker 1951) for convex optimization problems.

However, Problem (1) contains integer variables, which makes it much more di�cult to
specify an optimality certi�cate. Nevertheless most algorithms that solve such optimization
problems to optimality determine an optimality certi�cate implicitly. For example, a branch-
and-bound algorithm generates a branch-and-bound tree with leaves either being pruned,
infeasible or being solved to optimality. Knowing all the leaves is su�cient to proof that a
feasible solution is optimal by solving one convex optimization problem per leaf.

Unfortunately, the number of leaves in a branch-and-bound tree is not bounded by the
number of integer variables only. We later give examples for this in Section 6.

As mentioned in the introduction, Baes et al. (2016) introduced a certi�cate that is
bounded in the number of integer variables. Their certi�cate consists of pairs of mixed-
integer points and halfspaces in the space of integer variables. This enables to proof the
optimality for one given solution by solving one continuous optimization problem per
point and one linear integer problem.

In line with Baes et al. (2016), we make the following assumptions throughout the
paper.

Assumption 2.1 (Baes et al. 2016). The set of continuous minima of Problem (1) exists and
is bounded.
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This assumption is needed as we use the boundedness of the sub-level sets later on
and these sets are unbounded in case the set of continuous minima is unbounded. Thus
without the assumption, we would not be able to form the optimality certi�cates.

De�nition 2.2 (Baes et al. 2016). The constraints 6(I,~) ≤ 0 ful�ll the mixed-integer slater
condition, if for every point (I,~) ∈ Z= ×R3 with 6(I,~) ≤ 0 there exists a ~̃ ∈ R3 such that
6(I, ~̃) ≤ 0 and 6 9 (I, ~̃) < 0 for every function 6 9 with 9 = 1, . . . , � that is not a�ne linear.

Assumption 2.3 (Baes et al. 2016). We assume Problem (1) ful�lls the mixed-integer slater
condition.

We need to make this assumption because in order to form the optimality certi�cates
one needs to solve the KKT-systems corresponding to the convex problems that arise when
the integer variables are �xed to some value and are considered to be continuous. Thus the
mixed-integer Slater condition ensures that we can solve the KKT-systems corresponding
to these problems. This implies that ful�lling any other regularity condition for the
problems with �xed integer variables would also be �ne.

One key idea of the certi�cate is to �nd a compact encoding of a set of integer points
that cannot be extended to optimal solutions. In our case, these sets will be complements
of a polyhedron that does not contain integer feasible points in its interior. Hence, we will
use the following de�nition as a short-hand:

De�nition 2.4 (Mixed-integer-free polyhedra). A polyhedron P ⊆ R=+3 is called mixed-
integer-free if its interior does not contain any mixed-integer point (I,~) ∈ Z= × R3 .

As pointed out later in this article, generalized optimality certi�cates consist of a
collection of half spaces, which are induced by suspension points and normal vectors,
which are de�ned as follows.

De�nition 2.5 (Induced half space, suspension point, normal vector). The induced half-
space of a point G̃ ∈ R=+3 and a vector ℎ̃ ∈ R=+3 is given by

H(G̃, ℎ̃) := {G ∈ R=+3 | ℎ̃> (G − G̃) < 0}. (2)

We call G̃ a suspension point ofH(G̃, ℎ̃) and ℎ̃ ∈ R=+3 the corresponding normal vector .

Note thatH(G̃, ℎ̃) represents an open half space for reasons we give later. By H̄ (G̃, ℎ̃)
we denote the associated closed half-space. Using De�nition 2.5 and the following two
lemmas we give a geometric intuition into the optimality certi�cates. Lemma 2.6 is used
later on to construct half-spaces that are de�ned in the space of integer variables, but are
valid for all feasible mixed-integer points.

Lemma 2.6. Let a set G ⊆ R=+3 be given and de�ne a respective superset as elimG ={
(I,~) ∈ R=+3 | ∃(Ī, ~̄) ∈ G, Ī = I

}
. Then elimG ⊆ H̄ (G̃, ℎ) if

(i) G ⊆ H̄ (G̃, ℎ)
(ii) ℎ4 = 0 for all 4 ∈ {= + 1, . . . , = + 3}.

The halfspaceH(G̃, ℎ) supports elimG if G̃ ∈ G.

Proof. Let ℎ and G̃ = (Ĩ, ~̃) satisfy the two properties of the lemma. Now let G = (I,~) ∈
elimG. By de�nition of elimG, there exists a point Ḡ = (Ī, ~̄) ∈ G with Ī = I. From
the �rst property it follows that Ḡ ∈ H̄ (G̃, ℎ). Hence, ℎ> (Ḡ − G̃) ≤ 0. Split ℎ> = [ℎ>Ī ℎ>~̄ ].
Then the second property is equivalent to ℎ>~̄ = 0. Hence, ℎ>Ī (I − Ĩ) ≤ 0 holds. This
inequality holds also for G , hence G ∈ H̄ (G̃, ℎ) holds. The second claim follows directly
from G ⊆ elimG. �

Lemma 2.7 shows that conic combinations of valid normal vectors ℎ are also valid,
which will be used to generate certi�cate half-spaces later on.
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Lemma 2.7. Let G ⊆ R=+3 , G̃ ∈ G and ℎ1, . . . , ℎ� ∈ R= . Let G ⊆ H̄ (G̃, ℎ8 ) for all
8 ∈ {1, . . . , � }. Then for all ℎ ∈ cone(ℎ1, . . . , ℎ� ) the inclusion G ⊆ H̄ (G̃, ℎ) holds.

Proof. Let G ∈ G. As ℎ ∈ cone(ℎ1, . . . , ℎ� ), there exists a _ ∈ R� with _ ≥ 0 such that
ℎ =

∑
1≤8≤� _8ℎ8 . By assumption ℎ>8 (G − G̃) ≤ 0 for all 8 ∈ {1, . . . , � }. Then

ℎ> (G − G̃) =
�∑
8=1

_8ℎ
>
8 (G − G̃) ≤

�∑
8=1

_80 ≤ 0.

�

A key idea necessary to build the following optimality certi�cates is the set of
continuous-relaxed feasible points, which have a better objective value than the point in
consideration.

De�nition 2.8 (Sublevel-set). Let G̃ be a feasible point of Problem (1), then the sublevel-set
at G̃ is given as

S(G̃) := {G ∈ R=+3 | 5 (G) < 5 (G̃), G ∈ G},
where

G := {G ∈ R=+3 | 6 9 (G) ≤ 0 for all 9 = 1, . . . , � }
is the continuous-relaxed feasible set of Problem (1).

As a side note, sublevel-sets of convex optimization problems are convex.
Now we can state the intuition behind the optimality certifcates. Given a convex

mixed-integer nonlinear problem an optimality certi�cate for a point G̃ is given through
a mixed-integer free polyhedron. To be more precise, a polyhedron that contains all
points that have a better objective value than point G̃ , while disregarding the integrality
constraint, i.e., the sublevel-set. This implies that — in case this polyhedron does not
contain any mixed-integer points — G̃ must be optimal to the mixed-integer problem.
However, the question remains how to obtain such a polyhedron. These polyhedra P in
question are constructed such that P = elimP as then they do not contain a mixed-integer
point. Furthermore, they are constructed by the intersection of halfspacesH . Therefore
the vectors ℎ de�ning the polyhedron % contain zero entries in the continuous dimensions
by Lemma 2.6. Then Lemma 2.7 shows that the vectors ℎ can be constructed out of a conic
combination of vectors that lead to valid inequalities. By convexity any vector ℎ in the
subgradient at a point G leads to a valid constraint for the optimization problem at hand.
Thus the certi�cates consist of suspension points G1, . . . , G� with corresponding vectors
ℎ1, . . . , ℎ� where ℎ8 is a conic combination of vectors of the subgradient of G8 .

Thus we are given an optimal point G̃ together with suspension points G1, . . . , G� and
corresponding vectors ℎ1, . . . , ℎ� . These suspension points G1, . . . , G� and corresponding
vectors ℎ1, . . . , ℎ� then de�ne halfspacesH := H(G8 , ℎ8 ) that each contain the feasible set
in case G8 is infeasible or — in case G8 is feasible — contain the sublevel-set of G8 . This
implies that the intersection of the halfspacesH forms the aforementioned polyhedron
P.

The following Theorem 2.9, directly taken from Baes et al. (2016), speci�es the aforemen-
tioned optimality certi�cate. Thus this theorem o�ers a way to construct a corresponding
halfspace to each mixed-integer point through a suspension point and corresponding
normal vector which is a conic combination of subgradients. Furthermore, it gives an
upper bound on the size that only depends on the number of integer variables (but is
exponential in that number).

Theorem 2.9 (Baes et al. 2016). Let the set of continuous minima of Problem (1) exist
and be �nite. And let the constraints 6(I,~) ≤ 0 ful�ll the mixed-integer slater condition.
Then the point Ĝ ∈ Z= × R3 is optimal for the mixed-integer constrained problem (1) if and
only if 6(Ĝ) ≤ 0 and there exist � ≤ 2= points G1 = Ĝ, G2, . . . , G� ∈ Z= × R3 and � vectors
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D1, . . . , D� ∈ R� +1+ with corresponding ℎ8,� +1 ∈ m5 (G8 ) and ℎ8 9 ∈ m6 9 (G8 ) for 9 = 1, . . . , � and
8 = 1, . . . , � such that the following �ve conditions hold:

(i) If 6(G8 ) ≤ 0 then 5 (G8 ) ≥ 5 (Ĝ), D8,� +1 > 0 and D8 96 9 (G8 ) = 0 for 9 = 1, . . . , � .
(ii) If 6(G8 ) � 0 then D8,� +1 = 0 and D8 9 = 0 for all 9 ∉ C8 := {1 ≤ 9 ≤ � | 6 9 (G8 ) =

max1≤;≤� 6; (G8 )}.
(iii) 1 ≤ | BD?? (D8 ) | ≤ 3 + 1 for 8 = 1, . . . , � .

(iv) {G ∈ R=+3 |
� +1∑
9=1
D8 9ℎ

>
8 9 (G − G8 ) < 0 for all 8 = 1, . . . , � } ∩ (Z= × R3 ) = ∅.

(v)
� +1∑
9=1
D8 9ℎ8 9 ∈ R= × {0}3 for 8 = 1, . . . , � .

The theorem guarantees the existence of a system of 2= feasible solutions or suspension
points.

We proceed with explaining the underlying ideas of Theorem 2.9 in detail in the
following Section 3, to state the de�nition of generalized optimality certi�cates and give a
few results how to determine these in the following.

3. Generalized optimality certificate

The certi�cate presented in the last section has two major drawbacks: The rules of
constructing the half spaces corresponding to suspension points are overly restrictive;
additionally the theorem is a pure existence result and does not o�er a way to construct a
set with cardinality 2= of suspension points with corresponding half spaces. To overcome
this, one main goal of this paper is to make it possible to compute the optimality certi�cates.
Hence, we introduce a generalized version of the optimality certi�cates introduced by
Baes et al. (2016), which we refer to as generalized optimality certi�cate in the following.

The generalized version allows for more �exibility in choosing the corresponding half
spaces. To be more clear, in contrast to Baes et al. (2016), we allow that more than 3 + 1
vectors can be used to generate a normal vector, that de�nes the half space in question.
We would like to note that this may allow for certi�cates with fewer suspension points
and corresponding normal vectors. This is also demonstrated in some of the examples
later.

Because we introduce the generalized optimality certi�cates in order to do our compu-
tational experiments, we establish a procedure to derive generalized optimality certi�cates.
This is done using dual multipliers and follows directly after the de�nition of our gen-
eralized optimality certi�cates. With the help of this procedure, we will be able to state
an algorithm to constructively determine generalized optimality certi�cates in the next
section.

Now, if one �nds a feasible point Ĝ of Problem (1) for which the corresponding sublevel-
set or a set where this is contained in does not contain any feasible point, this can be seen
as a certi�cate of optimality. In the optimality certi�cate stated in the previous section,
these supersets have been open polyhedra de�ned by the intersection of the half spaces
corresponding to the suspension points. We follow this idea and show how to construct a
mixed-integer-free polyhedron that completely contains the sublevel-set S(Ĝ) and does
not contain any mixed-integer point. Then the only di�erence is that more freedom
in choosing the half spaces exists. The emerging polyhedron serves as an optimality
certi�cate for point Ĝ .

As a short prerequisite, we need to de�ne the feasible- and infeasible-�ber-subproblems.
As a side note, these will also be important for the calculation of the normal vectors
{ℎ1, . . . , ℎ� } later on.

De�nition 3.1 (Feasible- and infeasible-�ber-subproblem). For a point Ĩ ∈ Z= the set
{Ĩ} × R3 is called the �ber of Ĩ. Based on this, we de�ne the feasible-�ber-subproblem for
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Ĩ ∈ Z= as
min
I,~

5 (I,~) (3a)

s.t. I = Ĩ (3b)
6(I,~) ≤ 0 (3c)

I ∈ R=, ~ ∈ R3 (3d)

and the infeasible-�ber-subproblem for Ĩ ∈ Z= as
min
I,~,@

@ (4a)

s.t. I = Ĩ (4b)
6(I,~) ≤ @ (4c)

@ ∈ R≥0, I ∈ R=, ~ ∈ R3 . (4d)

If Problem (3) is feasible, we call the corresponding �ber a feasible �ber, otherwise an infeasible
�ber.

The general ideas behind the optimality certi�cates in Baes et al. (2016) stay the same,
thus the generalized optimality certi�cates also consist of tuples of suspension points and
normal vectors, which together induce halfspaces. The intersection of these halfspaces
de�nes a mixed-integer-free polyhedron. Therefore the structure of Baes et al. (2016) stays
intact.

Furthermore, we also distinguish between feasible and infeasible suspension points. The
idea is that for a feasible suspension point the corresponding halfspace is chosen such that
it contains the sublevel-set of the suspension point. For an infeasible suspension point the
corresponding halfspace is chosen such that it contains the feasible set. This implies that
every point, which is feasible and has a better objective value than all suspension points is
inside the intersection of these halfspaces. If this polyhedron is mixed-integer-free, then
all feasible suspension points with the best objective values are optimal solutions of the
initial optimization problem. This is also the structure in Baes et al. (2016). Nevertheless,
we are convinced that due to less restrictive limitations in the election of corresponding
half spaces, our certi�cates can be computed more easily.

For improved practicability of the optimality certi�cates we want to introduce the
concept of support sets. For a large proportion of mixed-integer optimization problems
emerging in practical applications, there are parts of Z= that are not relevant to the
optimization problem, e.g., because they are known to be infeasible or not optimal. Take for
example an arbitrary binary program, where the feasible region of the “integer” variables
is just the 0-1-cube, which is way smaller than Z= . For this reason, we make regions
which can in some sense “easily” excluded from the optimization process irrelevant for
the corresponding optimality certi�cates. This new structure enables also to make some
interesting theoretical observations, for instance more precise bounds for speci�c problem
structures (see Section 5 and 6).

De�nition 3.2 (Support set). Given Problem (1) where X∗ is the set of optimal solutions to
Problem (1) we say a setZ ⊆ Z= with X∗ ∩ (Z × R3 ) ≠ ∅ is a valid support set.

In case the use of a support set is reasonable for the optimization problem under
consideration, i.e., Z ≠ Z= , we replace the integrality constraints I ∈ Z= by I ∈ Z. For
better readability we useZ andZ × R3 interchangeably.

Furthermore, we like to note that the support set – in theory – can be any integer set. In
the following, however, we always use the support set {I ∈ Z= | 6 9 (I, 0) ≤ 0 for all 9 ∈ �̃ },
whereby �̃ := { 9 ∈ � | 6 9 (I,~) = 6 9 (I, 03 ) for all I ∈ Z=, ~ ∈ R3 }, i.e., we consider the set
de�ned by all constraints that do not depend on continuous variables.
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3.1. De�ning the generalized optimality certi�cate. Now that we have all de�nitions
that are needed to introduce an optimality certi�cate we can formally de�ne our notion of
the aforementioned generalized optimality certi�cate. Here we restrict ourselves to the
following case, which is very common in the MINLP literature.

Assumption 3.3. The set of feasible �bers in the support setZ is �nite, i.e.,

|Z ∩ {I ∈ Z= | ∃~ ∈ R3 : 6(I,~) ≤ 0}| < ∞.

Now that we introduced all necessary de�nitions and ideas we can de�ne the gen-
eralized optimality certi�cate, which certi�es optimality for a given feasible solution of
the underlying optimization problem. We proof this shortly after the de�nition and an
example which may give the reader a better intuition of optimality certi�cates.

De�nition 3.4 (Generalized optimality certi�cate). We call a set of suspension points
G1, . . . , G� together with normal vectors ℎ1, . . . , ℎ� a generalized optimality certi�cate for
Problem (1) if

(i) ℎ8 ∈ R= × {0}3 for all 8 = 1, . . . , � ,
(ii) H(G8 , ℎ8 ) ⊇ S(G8 ) for all feasible G8 ,
(iii) H(G8 , ℎ8 ) ⊇ G for all infeasible G8 ,
(iv) ⋂

8=1,...,�
H(G8 , ℎ8 ) ∩ Z × R3 = ∅, (5)

where S(G8 ) is the sublevel-set at G8 , G is the continuous-relaxed feasible set andH(G8 , ℎ8 ) is
the induced open half-space of G8 and ℎ8 .

As previously stated, the main di�erence between the certi�cate introduced in the
last section and the generalized certi�cate is a distinct level of �exibility in choosing the
normal vector ℎ. This is illustrated by the following example, which tries to �nd the most
upper-right point in a circle on a plane.

Example 3.5. Let a problem be given as

min
I

2∑
?=1
−I? (6a)

s.t.
2∑
?=1

I2
? ≤ 1 (6b)

I ∈ Z= . (6c)

Then the suspension point (2, 0) leads to the normal vector _(1, 0) with some multiplier
_ > 0. However, the normal vector (1,−1) is also valid, but can not be generated by dual
variables. These vectors are depicted in Figure 1 and visualize that the normal vectors could
be chosen more freely as they do not depend on the subgradient of the constraints that are not
ful�lled.

For the sake of completeness, the following theorem states, that whenever a generalized
optimality certi�cate is known, the best among the feasible suspension points is an optimal
solution of the corresponding optimization problem. Hence, the certi�cate we introduced
really does what it should do, i.e., De�nition 3.4 indeed certi�es an optimal solution at the
e�ort of checking if the system of certi�cate points has properties (i) to (iv) in De�nition 3.4.
We want to explicitly exclude making statements for optimization problems without a
feasible solution.
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I1

I2

1

1

ℎ1

ℎ2

Figure 1. Feasible set of Problem (6a) and possible normal vectors for
suspension point (2, 0): ℎ1 the normal vector generated by Baes et al.
(2016) and ℎ2 an example for a normal vector of a generalized certi�cate.
Thus ℎ2 can not be derived using subgradients – but it is a valid normal
vector to a generalized optimality certi�cate.

Theorem 3.6. If Problem (1) has an optimal solution, then a feasible suspension point of a
generalized optimality certi�cate with best objective value is an optimal solution.

Proof. Let Ĝ be an optimal solution to the optimization problem (1), then this point is
either a suspension point or not. In case it is a suspension point, the theorem holds directly.
In the latter case, this point has to be cut o� by some certi�cate constraint, because the
optimal solution is a mixed-integer point by feasibility. Because the induced halfspaces in
the certi�cates contain the sublevel-sets of their respective suspension points it follows
that there is a suspension point that has a better or equal optimal value than the point Ĝ .
Then this suspension point is the optimal point adressed in the theorem. �

Before we present the results which are relevant for the computations of generalized
optimality certi�cates, we present some very basic properties of the certi�cates. These are
not directly relevant for the further results of this section, but they may give the reader a
good intuition of the objects under consideration. This is why we present it on this point in
the paper. All normal vectors corresponding to suspension points must have zero entries
in all continuous dimensions. Hence the halfspaces which are de�ned by the normal
vectors and the �ber corresponding to the suspension point are disjoint. Additionally they
have to contain the sublevel-set of the suspension point. Therefore, it is impossible to �nd
appropriate normal vectors for feasible suspension points which are not optimal on their
own �ber. This result is recorded in the following lemma.

Lemma 3.7. Let ((I8 , ~8 ), ℎ8 ) be a certi�cate point. If the point has Properties (i) and (ii)
in De�nition 3.4, then ~8 is an optimal solution of Problem (3)(I8 ), i.e., the �ber problem
corresponding to I8 .

Proof. Assume that ~8 is not an optimal solution of Problem (3)(I8 ). Then there exists a
point ~̃8 feasible for Problem (3)(I8 ) and ful�lling 5 (I8 , ~̃8 ) < 5 (I8 , ~8 ). Hence, this point
is in the sublevel-set, i.e., (I8 , ~̃8 ) ∈ S(I8 , ~8 ). Additionally, from Property (i) follows that
ℎ>8 ((I8 , ~̃8 ) − (I8 , ~8 )) = (ℎ̆8 , 03 )> (0=, (~̃8 − ~8 )) = 0. Hence, the point is not in the induced
half spaceH((I8 , ~8 ), ℎ8 ). This implies that the point does not have Property (ii), which is
the desired result. �
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In the following we keep the notation (ℎ̆, 03 ) = ℎ for the ease of notation.
As a side note, the inequality “<” in De�nition (2) cannot be replaced by “≤”, as then it

would be possible to form a certi�cate without a feasible point. This is demonstrated by
the following example.

Example 3.8 (Infeasible certi�cate). Given a problem

min
I1,I2

0

s.t. I1 = 0
I2 = 0

I ∈ Z2 .

We use the suspension point (1, 0) with the normal vectors (0, 1) and (0,−1). This would be a
certi�cate with the de�nition using “≤” as the arising halfspacesH are {I ∈ Z2 | I2 ≤ 0}
and {I ∈ Z2 | I2 ≥ 0} which contain the only feasible point (0, 0) and would form a valid
certi�cate. However this certi�cate would not contain the optimal solution.

It is straight-forward that the optimality certi�cate introduced by Baes et al. (2016),
which is stated through Theorem 2.9, is a special case of a generalized optimality certi�cate
introduced in De�nition 3.4. The support set in this case is given less restrictive as in our
setting asZ = Z= × R3 , which is not �nite as required for Assumption 3.3 holding true.
Nevertheless, we can formulate the following corollary.

Corollary 3.9. Every optimality certi�cate stated through Theorem 2.9 in combination with
Z = Z= × R3 is a generalized optimality certi�cate.

According to this, generalized optimality certi�cates which are bounded in size exist
for all optimization problems for which the above assumptions hold. This is recorded in
the next corollary.

Corollary 3.10 (Generalized Certi�cate). There is a certi�cate according to De�nition 3.4
with at most 2= many inequalities where = is the number of integer variables.

In the remainder of the section, we formulate certain results for generalized optimality
certi�cates, which are mainly required to introduce an algorithm to compute generalized
optimality certi�cates, but are also very interesting standing alone.

3.2. Constructing a generalized optimality certi�cate. The next two propositions
state that a normal vector for a given suspension point can generally be linearly combined
of subgradients of the objective function and the active or violated constraints at the sus-
pension points. The �rst proposition corresponds to feasible suspension points, the second
to infeasible ones. Nevertheless, the propositions do not (yet) o�er a constructive way to
derive the linear coe�cients, but they are a good start point to elaborate a constructive
way to obtain valid normal vectors. The �rst Proposition 3.13 motivates the procedure how
to compute corresponding normal vectors to feasible suspension points because it shows
that the normal vectors can be obtained solving a system of equations. With an abuse of
notation, for any functions 5 we write from now on, shortly ∇5 for an arbitrary element
in the subgradient m5 of the potentially non-di�erentiable function 5 . The following two
lemmas allow us to formalize the intuition behind the optimality certi�cates.

Lemma 3.11. Let G̃ with 6 9 (G̃) ≥ 0 and ℎ ∈ m6 9 (G̃). Then G ⊆ H(G̃, ℎ).
Proof. Let G ∈ G. Hence, 6 9 (G) ≤ 0 holds. From the subgradient inequality, we can deduce
that

0 ≥ 6 9 (G) ≥ 6 9 (G̃) + ℎ> (G − G̃) ≥ ℎ> (G − G̃).
�

Lemma 3.12. Let G̃ ∈ G and ℎ ∈ m5 (G̃). Then S(G̃) ⊆ H (G̃, ℎ).
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Proof. Let G ∈ S(G̃). Hence, 5 (G̃) ≥ 5 (G) holds. From the subgradient inequality, we can
deduce that

5 (G) ≥ 5 (G̃) + ℎ> (G − G̃).
Hence,

0 ≥ 5 (G) − 5 (G̃) ≥ ℎ> (G − G̃).
�

Now we can state how the certi�cate half spaces can be generated using subgradients
in the feasible and infeasible case.

Proposition 3.13. Let G̃ be a feasible point of Problem (1), and let �(G̃) ⊂ {1, . . . , � } be the
set of active constraints in G̃ . Let ℎ̃ ∈ R= × {0}3 with ℎ̃ ≠ 0=+3 be a vector such that there are
vectors ℎ 9 ∈

⋃
9 ∈�(G̃) m6 9 (G̃) ∪ m5 (G̃) such that ℎ̃ is a conic combination of the ℎ 9 . Then ℎ̃ and

G̃ together ful�ll Properties (i) and (ii) of De�nition 3.4 and G̃ is a feasible suspension point.

Proof. Lemmas 3.11 and 3.12 show that the subgradients de�ne valid constraints while
Lemma 2.7 shows that the conic combinations of the subgradients lead to constraints that
are valid as well. Then Lemma 2.6 shows that the arising constraint supports the set S(G̃).
And Property (i) is ful�lled by prerequisite. �

Analogously, normal vectors corresponding to infeasible suspension points can be
linearly combined of subgradients of violated constraints.

Proposition 3.14. Let (G̃) be an infeasible point of Problem (1), and let V(G̃) := { 9 ∈
1, . . . , � | 6 9 (G̃) > 0} be the set of violated constraints. Let ℎ̃ ∈ R= × {0}3 with ℎ̃ ≠ 0=+3 be a
vector such that there are vectors ℎ 9 ∈

⋃
9 ∈V(G̃) m6 9 (G̃) such that ℎ̃ is a conic combination

of the ℎ 9 . Then ℎ̃ and G̃ together ful�ll Properties (i) and (iii) of De�nition 3.4 and (G̃) is an
infeasible suspension point.

Proof. Lemma 3.11 shows that the subgradients de�ne valid constraints while Lemma 2.7
shows that the conic combinations of the subgradients lead to constraints that are valid as
well. And Property (i) is ful�lled by prerequisite. �

We pursue the approach to combine normal vectors of subgradients of constraints and
the objective function to formulate the next lemmas, that allow to derive normal vectors
to corresponding suspension points via observing certain dual variables.

More speci�cally, we show that to determine valid normal vectors it is only necessary
to observe the Lagrange multipliers of solved �ber subproblems. This comes in handy
because then one can simply use the dual variables given by standard solvers to obtain
the corresponding normal vectors. Thus one does not have to solve systems of equations
for that and can instead use an out-of-the-box solution.

3.2.1. Computing dual multipliers and normal vectors. This allows us to proof two lemmas
stating that a valid certi�cate plane can be constructed of the Langrange Multipliers of
Constraints (3b) for feasible certi�cate points or of Constraints (4b) for infeasible certi�cate
points.

Lemma 3.15. The dual multipliers of Constraints (3b) of Problem (3) for a feasible �ber
point Ĩ ∈ Z de�ne a valid certi�cate vector ℎ ∈ R=+3 for the point, i.e., Property (ii) holds for
(Ĩ, ℎ).

Proof. Let Ĩ be a feasible �ber point. By Assumption 2.2, our �ber problem (3) for Ĩ satis�es
Slater’s condition. Let G̃ = (Ĩ, ~̃) be an optimal solution. Hence, by Rockafellar (1970,
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Theorem 28.3) there exist _ ≥ 0, ∇5 (G̃), ∇6 9 (G̃) — where we denote speci�c elements of
the respective subgradients with ∇ and unit vectors as 4? — and [ ∈ R= such that

0=+3 = ∇5 (G̃) +
�∑
9=1

_ 9∇6 9 (G̃) +
=∑
?=1

[?

(
4?
03

)
0 ≥ 6(G̃) ⊥ _ ≥ 0.

Hence,

ℎ :=
[
−[
0

]
= ∇5 (G̃) +

�∑
9=1

_ 9∇6 9 (G̃).

Thus it is possible to form a vector from a conic combination such that its entries in the
continuous dimensions are zero. Additionally from Lemma 2.7 it follows that ℎ is a valid
certi�cate vector as it is a conic combination of subgradients. �

Then we can state the following observation.

Observation 3.16. The vector ℎ corresponding to suspension point G̃ is zero if and only if G̃ is
an optimal solution of the continuous relaxation to the underlying mixed-integer problem (1).

Conversely, we show how the dual variables corresponding to infeasible �bers are used
to generate normal vectors.

Lemma 3.17. The dual multipliers of Constraints (4b) of Problem (4) for an infeasible �ber
point Ĩ ∈ Z de�ne a valid certi�cate plane ℎ ∈ R=+3 for the point, i.e., Property (iii) holds for
(Ĩ, ℎ).

Proof. Let 40 be the unit vector corresponding to variable @. Let Ĩ be an infeasible �ber
point. By assumption, our �ber problem for Ĩ satis�es Slater’s condition. Let G̃ = (I,~), @̃
be an optimal solution to the �ber subproblem (4). Hence, there exist _ ≥ 0, [ ∈ R= and
∇5 (G̃), ∇6 9 (G̃) — where we again denote speci�c elements of the respective subgradients
with ∇ — such that

0=+3 = 40+
=∑
?=1

[?4?+
∑
9 ∈�(G̃)

_ 9 (∇6 9 (G̃)−40) =
©­«1 −

∑
9 ∈�(G̃)

_ 9
ª®¬ 40+

=∑
?=1

[?4?+
∑
9 ∈�(G̃)

_ 9∇6 9 (G̃).

With�(G̃) denoting the set of active constraints. Now, as the values of 6 9 (G̃) do not depend
on @, we can split this relation into two conditions:

1=+3 =
∑
9 ∈�(G̃)

_ 9 ,

0=+3 =

=∑
?=1

[?4? +
∑
9 ∈�(G̃)

_ 9∇6 9 (G̃).

From the second relation, we obtain as in the previous lemma that

ℎ :=
[
−[
0

]
=

∑
9 ∈�(G̃)

_ 9∇6 9 (G̃).

Then it follows from Lemma 2.7 that ℎ is a valid certi�cate vector. �

After establishing this lemma we now showed how to obtain the normal vectors
corresponding to feasible or infeasible suspension points. This means that we now can
introduce an algorithm that computes optimality certi�cates for given problems.
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4. Determining optimality certificates

In order to empirically investigate the results obtained so far, we �rst introduce Al-
gorithm 1 that returns a certi�cate for a given Problem (1). This certi�cate does not
necessarily have an appropriately small size. Hence we introduce Algorithm 2 which takes
a possibly too large certi�cate and reduces its size to at most 2= points. Although it is
pretty straight-forward to check if a certi�cate is valid, we formally introduce Algorithm 3
for this purpose.

4.1. Computing a certi�cate. From Assumption 3.3, we know that explicitly stated with
the help of an appropriate convex representable support setZ, there is a �nite number
of potentially feasible �bers. An appropriate subset of these forms together with the
constraints de�ning the support set a certi�cate. The strategy of Algorithm 1 we propose
is to go through the �ber set in a dedicated order, calculate the corresponding certi�cate
plane, and to check if the polyhedron de�ned by all certi�cate planes so far is empty.
In a nutshell, Algorithm 1 repeatedly solves an optimization problem. This contains all
certi�cate planes determined so far as constraints. It is de�ned on the support setZ, i.e.,
the space of integer variables of Problem (1), and maximizes the distance to all certi�cate
planes found so far and inserts for a feasible solution of the optimization problem a new
certi�cate plane. Algorithm 1 stops if the maximal distance to the certi�cate planes is
equal to 0.

Formally, the problem of the (� + 1)-th iteration of Algorithm 1 is
max
Y,I

Y (7a)

s.t. ℎ̆>8 (I − I8 ) + Y ≤ 0 for all 8 = 1, . . . , � (7b)
0 ≤ Y ≤ Ỹ, I ∈ Z, (7c)

whereby (I8 , ℎ̆8 ) are for 8 = 1, . . . , � the integer parts of the certi�cate points determined in
previous iterations, and Ỹ is an arbitrary positive real.

Once found an optimal solution of Problem (7), Algorithm 1 determines a certi�cate
plane by solving Problem (3), or, in case this is infeasible, by solving Problem (4) in
connection, determines KKT-Multipliers for the �xing Constraints (3b)/(4b) and derives
a new certi�cate plane ℎ̆�+1 ≠ 0 corresponding to a feasible solution of Problem (7). The
vector ℎ̆�+1 ≠ 0 can not become zero, as then the KKT-system of the entire problem would
have been solved and therefore the continuous relaxation would yield a solution to the
mixed-integer problem. Then no certi�cate is needed.

In the following we proof that Algorithm 1 calculates a generalized certi�cate.

Corollary 4.1. Algorithm 1 returns a generalized certi�cate in a �nite number of steps.

Proof. We proof �rst that the algorithm terminates. Problem (7)’s feasible region is a
subset of the support set Z. This is a �nite set. The algorithm picks a point I� in this
feasible region and inserts a constraint (7b) into Problem (7). This constraint implies that
the point I� from now on has objective value 0 since the inserted constraint reduces to
Y ≤ 0 for I = I� . For this reason, the algorithm leaves the while-loop after at most |Z|
iterations. Thus the algorithm terminates.

It remains to show that the points which are returned form a valid certi�cate. To
check if a collection of suspension points and normal vectors, (G8 , ℎ8 )8=1,...,� is a generalized
certi�cate, we have to make sure that the properties from De�nition 3.4 hold for the point
system, to be precise, that Property (i) holds for all normal vectors, Property (ii) holds for
all feasible certi�cate points, Property (iii) holds for all infeasible certi�cate points and
Property (iv) holds for the system of certi�cate points.

Property (i) is correct by construction of the ℎ8 = (ℎ̆8 , 03 ).
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Algorithm 1 Determine a valid certi�cate (G8 , ℎ8 )8=1,...,� for � ∈ N.

Input A Problem (1)
Output An optimality certi�cate for Problem (1)

1: � ← 0.
2: while Problem (7)’s optimal value > 0 do
3: � ← � + 1
4: Set I� to a solution of Problem (7) with strictly positive value.
5: Solve Problem (3)(I� ) and if it is infeasible, solve Problem (4)(I� ).
6: Set ~� to an optimal solution of either Problem (3)(I� ) or, if it is infeasible, of

Problem (4)(I� ).
7: Set G� to (I� , ~� ).
8: Set ℎ̆� to the dual multipliers of (3b) or (4b) and set ℎ� to (ℎ̆� , 03 ).
9: Set ℎ� ← ℎ�

‖ℎ� ‖ 2
.

10: Add a new Constraint (7b) for (I� , ℎ̆� ) to Problem (7).
11: return (G8 , ℎ8 )8=1,...,� .

Property (iv): Assume there exists a G̃ = (Ĩ, ~̃) ∈ P. Ĩ can be extended to a feasible
solution for (7) with a strictly positive value of Ỹ = −min8=1,...,� ℎ̆

>
8 (I8 − Ĩ). But the while-

loop of the algorithm is not left when the optimal value of (7) is not 0. A contradiction.
Property (ii): Let G8 be a feasible point of Problem (1). Since the corresponding certi�cate

plane ℎ8 is set to the duals of Constraints (3b), we can apply Lemma 3.15, yielding the
required result.

Property (iii): Let G8 be an infeasible point of Problem (1). Since the corresponding
certi�cate planeℎ8 is set to the duals of Constraints (4b), we can apply Lemma 3.17, yielding
the required result. �

Beyond that, the certi�cate calculated by Algorithm 1 has interesting properties, as
stated in the next lemma.

Lemma 4.2. The polyhedron P de�ned by the certi�cate calculated by Algorithm 1 has the
same dimension as 2>=E (Z) or is the empty set.

Proof. We proof this by induction over � .
Induction start: We start with the polyhedron 2>=E (Z) with the right dimension. Induction
step: Let P�−1 denote the polyhedron de�ned after � − 1 steps of the while loop of the
algorithm. Assume it has the right dimension. The point I� added in the while loop of the
algorithm has to be in the relative interior of P�−1: The euclidean distance of a point I8
to a the hyperplane induced by a constraint (7b) for 8̃ , 8̃ ∈ {1, ..., � − 1}, i.e., ℎ̆8̃ (I − I8̃ ) = 0

is exactly ℎ̆8̃

‖ℎ̆8̃ ‖2

>
(I8̃ − I8 ); since the polyhedron is restricted by �nitely many of these

hyperplanes, an open ball with radius being equal to the minimum over all these distances,

n := min
8̃∈{1,...,�−1}

ℎ̆8̃

‖ℎ̆8̃ ‖2

>

(I8̃ − I8 )

is contained in the polyhedron, and hence the point is in the relative interior of the
polyhedron. Whatever hyperplane containing I8 we insert, exactly half of the ball is fully
contained in the new polyhedron, if the hyperplane is not de�ned by normal vector 0.
This half ball contains another ball with radius n

2 , i.e., the polyhedron de�ned by the
intersection of P�−1 and the new certi�cate plane remains full dimensional. If the normal
vector is 0, the resulting polyhedron is the empty set. �
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4.2. Reducing the size of a certi�cate. To reduce a certi�cate calculated by Algorithm 1,
we propose Algorithm 2. Given a valid generalized certi�cate of size possibly larger than

Algorithm 2 Reduce certi�cate size to � ≤ 2= .

Input A certi�cate to Problem (1)
Output A reduced certi�cate to Problem (1)

1: for 8 = 1, . . . , � do
2: Replace Constraint (7b) for (I8 , ℎ̆8 ) in (7) by ℎ̆>8 (I − I8 ) ≥ 0.
3: if Optimal value of (7) > 0 then
4: Replace ℎ̆>8 (I − I8 ) ≥ 0 by Constraint (7b) for (I8 , ℎ̆8 ) in (7).
5: else
6: Remove ℎ̆>8 (I − I8 ) ≥ 0 from (7).
7: Remove (G8 , ℎ8 ).
8: return (I8 , ℎ8 ) for all 8 = 1, . . . , �

2= , it returns a certi�cate of size at most 2= . To show this, we need the following auxiliary
lemma.

Lemma 4.3. Let (I8 , ℎ̆8 )8=1,...,� be a collection of vectors in Z= × R= . Let the optimal value of
(7) be 0. Then, for all 8 ′ = 1, . . . , � , either the optimal value of the problems

max Y (8a)

s.t. ℎ̆>8 (I − I8 ) + Y ≤ 0 for all 8 = 1, . . . , � : 8 ≠ 8 ′ (8b)
Y ≥ 0, I ∈ Z (8c)

and

max Y (9a)
s.t. ℎ>8 (I − I8 ) + Y ≤ 0 for all 8 = 1, . . . , � : 8 ≠ 8 ′ (9b)

ℎ̆>8′ (I − I8′) ≥ 0 (9c)
Y ≥ 0, I ∈ Z (9d)

coincide or the optimal value of (8) is 0 and problem (9) is infeasible.

Proof. The optimal value of (7), as well as the optimal value of (9), are lower bounds for
the optimal value of (8) since the latter is a relaxation of the prior ones.

Case (9) is infeasible: Assume we have a point (Î, Ŷ) feasible for (8) with Ŷ > 0. Since
(7) has optimal value 0, the point is not in the open halfspace ℎ̆>

8′ (I − I8′) < 0. This point is
feasible for (9). A contradiction.

Case (9) is feasible. If the optimal value of (8) is 0, we are done, all optimal values are
equal. If not, let (Î, Ŷ) denote an optimal solution of (8). Hence Ŷ is the corresponding
optimal value. It is also feasible for (9), since otherwise Î can be completed to a feasible
solution of (7), with a strictly positive value of Ỹ := min(Ŷ, ℎ̆>

8′ (I8′ − Î)) > 0. Hence, the
optimal values of (8) and (9) coincide. �

Lemma 4.3 justi�es Line 2 of Algorithm 2. The following corollary can be shown now.

Corollary 4.4. Algorithm 2 reduces the size of a given certi�cate (G8 , ℎ8 )8=1,...,� to at most
2= , while = is the number of integer variables.

Proof. Let the input of the algorithm be a valid optimality certi�cate (G8 , ℎ8 )8=1,...,� with
� ∈ N possibly greater than 2= .

First we show that the for-loop of the algorithm preserves the certi�cate property.
In the loop no certi�cate points are added, so every certi�cate point is valid. We apply
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Lemma 4.3 to show that the interior of the certi�cate polyhedron remains integer-free,
since the algorithm is constructed to only remove certi�cate points for which this holds.

It remains to show that the algorithm reduces the size of the certi�cate to at most 2= .
We refer to a corollary from Doignon (1973) (slightly adapted in formulation).

Corollary 4.5. If a �nite collection of at least 2= convex sets of a lattice L = has an empty
intersection, then there exists a subcollection of 2= members with an empty intersection.

Assume now that the returned certi�cate’s size is greater than 2= . Then, the application
of Proposition 4.5 guarantees the existence of a subset of 2= certi�cate points with empty
intersection. For this reason, there is a certi�cate point which has not been removed by
the algorithm and for which the removal of the corresponding constraint would not have
raised the objective value of (7) over 0. A contradiction. �

4.3. Verifying a certi�cate. For the sake of completeness we want to propose a simple
procedure to verify if a certi�cate is valid. The procedure has two steps. The �rst is to
evaluate if the polyhedron de�ned by the certi�cate points and hyperplanes, (G8 , ℎ8 )8=1,...,�
is empty. It is to check if the optimal value of the linear (M)IP (7) is equal to 0. The second
step is to check whether (I8 , ℎ̆8 ) de�nes a valid certi�cate plane for all 8 = 1, . . . , � . This
can be done applying Algorithm 3. Algorithm 3 checks for each certi�cate point if the

Algorithm 3 Check certi�cate planes

Input A certi�cate to Problem (1)
Output A Boolean indicating whether the certi�cate is valid

1: retval← True
2: Remove integrality constraints of (1).
3: for 8 = 1, . . . , � do
4: Add constraint ℎ>8 (G − G8 ) ≥ 0 to Problem (1) and solve it.
5: if Objective value is smaller than 5 (G8 ) for feasible points or problem is not

infeasible for infeasible points then
6: retval← False
7: return retval

sublevel-set corresponding to the certi�cate point is contained in the feasible halfspace of
the certi�cate plane.

Observation 4.6. Algorithm 3 applied to a set of vectors (G8 , ℎ8 ) in (Z= ×R3 ) × (R= × {0}3 )
returns true if and only if every point in the set with feasible G8 has Property (ii) and every
point in the set with infeasible G8 has Property (iii).

5. Size of optimality certificates

The subject of this section are statements on the size of the generalized certi�cate
(De�nition 3.4). First, we will utilize mathematical results regarding lattices to prove a
statement about convex MINLPs with certain support sets, reducing the upper bound on
necessary certi�cate bounds considerably. Then we will derive upper bounds for certi�cate
sizes of linear MIPs. Finally, we comment on certi�cate sizes if the underlying problem
has a block structure.

5.1. Using lattices to reduce the size of a certi�cate. A relevant subclass of convex
MINLPs has the property, that there exist some linear equality constraints which have
nonzero coe�cients only for integer variables.

A popular example for that is the linear regression problem with subset selection
constraints (see, e.g., Konno and Yamamoto 2009), i.e., a linear regression problem for
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which only : ∈ N of the regression coe�cients are to be nonzero. This problem can be
modeled as a convex MINLP with the described properties.

Since this problem class is relevant, we derive some tighter upper bounds on certi�cate
sizes for this kind of problems in the following. As background, we need some basic facts
about lattices, which are taken from Bertsimas and Weismantel (2005).

De�nition 5.1 (Lattice). Let � = [11, . . . , 1<] ∈ Q=×< be a matrix whose column vectors
11, . . . , 1< are linearly independent. The set

L = L(�) = {I ∈ R= | I = �E with E ∈ Z<}
is called the lattice generated by �. The matrix � is called a basis of L(�).

In the following, we will need that we can always decompose the basis into a standard
form.

Lemma 5.2. Let � ∈ Z=̃×= be a matrix of full row rank and let 1 ∈ Z=̃ and F := {I ∈ Z= |
�I = 1}. Then it holds that

(i) There exists a unimodular matrix * ∈ Z=×= such that �* = [!, 0] with ! ∈ Z=̃×=̃
lower triangular and invertible.

(ii) F ≠ ∅ if and only if !−11 ∈ Z=̃ .
(iii) If F ≠ ∅, then every element I of F is of the form

I = *1!
−11 +*2Ī, Ī ∈ Z=−=̃,

and*1,*2 are appropriate submatrices of* , i.e.,* = [*1,*2].
(iv) L = {I ∈ Z= | �I = 0} is a lattice.

We can apply Lemma 5.2 directly in the special case that the equality constraints in our
MINLP only contain integer variables. This yields the following result.

Lemma 5.3. Let Z̃ be an intersection convex subset of Z= . Consider the set Z := {I ∈
Z̃ : 0>9 I = 1 9 , 9 = 1, . . . , =̃}, for some 0 9 ∈ Z= linear independent and 1 9 ∈ Z. Then, either
Z is empty or there exist ! ∈ Z=̃×=̃ , lower triangular, *1 ∈ R=×=̃,*2 ∈ R=×=−=̃, [*1,*2]
unimodular, such that the convex MINLP

min 5 (I,~)
s.t. 6(I,~) ≤ 0

I ∈ Z, ~ ∈ R3

can be reformulated with = − =̃ integer variables, as

min 5 (*1!
−11 +*2I,~)

s.t. 6(*1!
−11 +*2I,~) ≤ 0

I ∈ {Ĩ ∈ Z=−=̃ | *1!
−11 +*2Ĩ ∈ Z̃}, ~ ∈ R3 .

This optimization problem is a convex MINLP.

This allows us to tighten the general bound for convex MINLP with equality constraints
in the support set.

Theorem 5.4. Let the support setZ for the domain of the integer variables I of a convex
MINLP (1) have a superset given by a system of =̃ linear, linear independent, integral equations
de�ned on the integer variables. Then, themaximum size of a generalized optimality certi�cate
reduces to 2=−=̃ .

Proof. This follows directly from Lemma 5.3.
Let I1, . . . , I� ∈ Z=−=̃ be suspension points of a certi�cate for the transformed problem and
let ℎ̆1, . . . , ℎ̆� ∈ R=−=̃ the corresponding normal vectors. *2 has a full column rank, so we
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can explicitly de�ne the pseudo inverse matrix* †2 := (* >2 *2)−1* >2 . A certi�cate for the

original problem is given by Ĩ8 := *1!
−11 +*2I8 and ˜̆

ℎ8 := (* †2 )>ℎ̆8 .
Consider some point Ī in the convex hull ofZ contained in the strict (feasible) sublevel-set
of a certi�cate point Ĩ8 of the original optimization problem. Since *1!

−11 + *2I is an
bijection between the a�ne hull of Z and R=−=̃ , there exists a unique point Ī ′ in R=−=̃
such that Ī = *1!

−11 +*2Ī
′ and we know that Ĩ8 = *1!

−11 +*2I8 . It holds that Ī ′/I8 in the
reformulated optimization problem has the same objective value than Ī /̃I8 in the original
one, Ī ′ has to be in the half-space de�ned by (I8 , ℎ̆8 ). Hence,

0 > ℎ̆>8 (Ī ′ − I8 ) = ℎ̆>8 *
†
2*2 (Ī ′ − I8 ) = (10a)

((* †2 )
>ℎ̆8 )> ((*1!

−11 +*2Ī
′) − (*1!

−11 +*2I8 )) = ˜̆
ℎ
>
8 (Ī − Ĩ8 ). (10b)

Furthermore, the polytope de�ned by (Ĩ8 ,˜̆ℎ8 )8=1,...,� is integer free: assume that there is
an integer point in the certi�cate polytope, then we can apply the same transformations
as in (10) to deduce the existence of an integer point in the certi�cate polyhedron of the
reformulated problem. A contradiction.
Further it holds that the best certi�cate point in the reformulated problem is also a
certi�cate point for the original problem and both are the integer optimal solution for
their corresponding problems.
Hence, (Ĩ8 ,˜̆ℎ8 )8=1,...,� de�nes a certi�cate of the original problem, with size at most 2=−=̃
since this is a valid bound for the certi�cate of the reformulated problem. �

In summary, we have shown that when we add linearly independent linear equality
constraints, each additional constraint consisting of only integer variables reduces the
maximum certi�cate size by half.

Next, we derive upper bounds for linear MIPs which rather depend on the number
of constraints involved than the number of integer variables, which might, in various
special cases, be tighter than the bounds which can be obtained by the number of integer
variables.

5.2. Upper bounds for certi�cate sizes of linear problems. In this section upper
bounds on the size of a certi�cate are examined. We start with an upper bound for the
simplest subclass of problems, the pure integer linear problems. Using these insights, we
can give an upper bound on the size of a generalized certi�cate (see De�nition 3.4) for
mixed-integer linear problems.

We consider mixed-integer linear problems of the form
min
I,~

2> (I,~) (11a)

s.t. �(I,~) ≤ 1, (11b)

I ∈ Z=, ~ ∈ R3 , (11c)

whereby 2 ∈ R=+3 , � ∈ R� ×(=+3) , and 1 ∈ R� . Bounds on variables are explicitly added as
constraints.

Lemma 5.5. For a pure integer linear problem with � constraints and optimal solution Ĝ
exists an optimality certi�cate according to Theorem 2.9 consisting of at most � + 1 points.

Proof. Suppose that we have an optimality certi�cate according to Theorem 2.9. As
the number of continuous variables 3 equals zero, for each multiplier vector D8 ∈ R� +1+ ,
8 = 1, . . . , � , the condition (iii) |supp(D8 ) | = 1 holds. That is, each vector D8 has exactly one
positive entry. Since dim(D8 ) = � + 1, at most � + 1 of them are linear independent.

Suppose now that the certi�cate has � > � + 1 points. Then, there exist two suspension
points G1, G2 with corresponding linear dependent D1, D2. Let D1 = _D2 with _ > 0, and let
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entry ; ∈ {1, . . . , � + 1} be positive. Moreover, for the subgradients holds ℎ1; = ℎ2; since all
constraints are linear.

The corresponding hyperplanes are
� +1∑
9=1
D19ℎ

>
19 (G − G1) < 0 and

� +1∑
9=1
D29ℎ

>
29 (G − G2) < 0, (12)

and with the above observations follows:
D1;ℎ

>
1; (G − G1) < 0 ⇐⇒ _D2;ℎ

>
2; (G − G1) < 0 ⇐⇒ _D2;ℎ

>
2;G < _D2;ℎ

>
2;G1 ⇐⇒

D2;ℎ
>
2;G < D2;ℎ

>
2;G1 and D2;ℎ

>
2; (G − G2) < 0 ⇐⇒ D2;ℎ

>
2;G < D2;ℎ

>
2;G2, and therefore (12)

holds if and only if D2;ℎ
>
2;G < min(D2;ℎ

>
2;G1, D2;ℎ

>
2;G2). Thus one of the two points can be

removed. This procedure can be repeated until only � + 1 points are left which form the
certi�cate. �

This implies that the number of necessary certi�cate points does not directly depend
on the computational complexity of a problem. As in this case, e.g., the NP-hard Knapsack
Problem (see, e.g., Martello et al. 1990) will need maximal 2= + 2 certi�cate points. 2= + 1
points corresponding to constraints (2= bound constraints, 1 linear constraint) and 1
optimal point corresponding to the objective function.

We further illustrate that the size of an optimality certi�cate can be smaller than 2= in
the case of linear integer problems via the following example.

Example 5.6. Consider the problem

min
I
I1 + I2

s.t. I1 + I2 ≥ −
1
2

I1, I2 ∈ Z.
We only need suspension points (0, 0) and (0,−1) with the respective normal vectors (1, 1)
and (−1,−1). This gives an optimality certi�cate of size 21 instead of 22.

In the following, we extend Lemma 5.5 for mixed-integer linear problems. For this, we
need two auxililary lemmas that follow directly from standard arguments. The �rst lemma
relates extreme rays of a cone to the extreme rays of its embedding in a higher dimensional
space. In the second lemma, we give an upper bound on the number of extreme rays of
such a cone.

Lemma 5.7. Given a matrix" ∈ RU×V and a vector< ∈ RU . Let D∗ be an extreme ray of
cone  1 = {D ∈ RV | "D = 0, D ≥ 0}. Then, the extended vector

[
D∗
0
]
is an extreme ray of

the cone

 2 =

{[
D

D̃

]
∈ RV+1

���� [",<] [DD̃] = 0,
[
D

D̃

]
≥ 0

}
.

Proof. Since D∗ ∈  1 follows [",<]
[
D∗
0
]
= 0,

[
D∗
0
]
≥ 0 and, therefore,

[
D∗
0
]

is element
of  2. Suppose that

[
D∗
0
]

is not an extreme ray of  2. Then there exist E,F ∈  2, so that[
D∗
0
]
= `E + (1 − `)F , with 0 < ` < 1, E ≠ _F , _ > 0. So follows 0 = `EV+1 + (1 − `)FV+1

which holds if and only if EV+1 = FV+1 = 0. Then there exist E∗,F∗ ∈ RV such that E =
[
E∗
0
]

andF =
[
F∗
0

]
and thus E∗,F∗ ∈  1. Moreover, D∗ = `E∗ + (1 − `)F∗ and thus D∗ cannot

be an extreme ray of  1, which is a contradiction. �

Lemma 5.8. Given a matrix " ∈ RU×V with U < V . The number ? of extreme rays of the
cone {D ∈ RV | "D = 0, D ≥ 0} is bounded from above by

? ≤
(

V

V − 1 − rank(")

)
. (13)
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In particular, ? can be bounded by

? ≤
{(

V
U+1

)
U ≤ b V−1

2 c,( V

b V2 c
)

otherwise.

Proof. The �rst inequality follows from the fact that every extreme ray D∗ of a polyhedral
cone in RV can be de�ned by V − 1 linearly independent constraints binding at D∗. Due to
the properties of the binomial coe�cient the second inequality holds. �

The following statement extends Lemma 5.5 for the case of mixed-integer linear prob-
lems.

Theorem5.9. Let amixed-integer linear problem (11) and an optimality certi�cate according
to Theorem 2.9 be given. ℎ 9 is the unique gradient of constraint 9 and ℎ39 denotes the entries
corresponding to the 3 continuous variables. Let ? be the number of extreme rays of the cone
�

� = {D ∈ R� +1 |
� +1∑
9=1
D 9ℎ

3
9 = 03 , D ≥ 0}.

Then, there exists a certi�cate according to Theorem 2.9 with at most ? points, with

? ≤
(

� + 1
� − rank( [ℎ31 , . . . , ℎ3� +1])

)
.

Proof. Since we only have linear constraints the subdi�erential contains only the unique
gradient and it is independent of the suspension point G8 , i.e., ℎ 9 := ℎ8, 9 . Moreover, due to
(iii) 1 ≤ | supp(D8 ) | ≤ 3 + 1 holds. That is, each D8 has at most 3 + 1 non-zero entries. For
every certi�cate point 8 holds for D8

� +1∑
9=1
D8 9ℎ 9 ∈ R= × {0}3 , D8 9 ≥ 0

and thus
� +1∑
9=1
D8 9ℎ

3
9 = 03 , D8 9 ≥ 0.

Let ? be the number of extreme rays of this cone and let E@ , @ = 1, . . . , ? , be the extreme
rays. For every certi�cate point 8 , the corresponding D8 is a convex combination of extreme
rays, i.e.,

D8 =

?∑
@=1

_8@E@, _
8 ∈ R?≥0 .

And we can choose this convex combination in such a way that the number of extreme
rays C8 needed is bounded by 3 , i.e., | supp(_8 ) | = C8 ≤ 3 . If _8@ ≠ 0, only entries of E@ , which
are non-zero in D8 , can be non-zero. This implies that the non-zero entries of the extreme
ray correspond to constraints which are violated at the current suspension point. Hence,
every extreme ray E@ with _8@ ≠ 0 also leads to a valid normal vector for the suspension
point. Then, take C8 copies of this certi�cate point and the corresponding extreme rays as
hyperplanes. The original hyperplane is removed. This procedure also leads to a certi�cate.
According to Lemma 5.7 the extreme rays for one certi�cate point are a subset of the
extreme rays of

{D 9 ∈ R� +1 |
� +1∑
9=1
D 9ℎ

3
9 = 03 , D 9 ≥ 0},

by setting [",<] = [ℎ31 , . . . , ℎ3� +1], V := � , and U := 3 . As in the proof of Lemma 5.5
parallel hyperplanes can get removed. So there exists a certi�cate with at most ? points,
whereby ? can be estimated by Lemma 5.8. �
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Table 1. Upper bounds on the size of a generalized certi�cate (� : number
of constraints, =: number of integer variables).

integer mixed-integer

linear � + 1
( � +1
� −rank( [ℎ31 ,...,ℎ3� +1 ])

)
(Lemma 5.5) (Theorem 5.9)

convex 2= 2=
(Example 6.3) (Example 6.3)

Remark 5.10. If we have a pure integer linear problem, rank( [ℎ31 , . . . , ℎ3� +1]) = rank(0) = 0
holds and thus there exist

(
� +1
�

)
= �+1 possibilities and the formula is the same as in Lemma 5.5.

Remark 5.11. Due to Corollary 3.9 all upper bounds also hold for the generalized optimality
certi�cate.

We summarize our results about upper bounds in Table 1.

5.3. In�uence of a block structure on the size of a certi�cate. Optimization prob-
lems with block structure occur frequently in di�erent areas, see, e.g., (Martin 1999; Geißler
et al. 2018; Schewe et al. 2020). If di�erent blocks are connected by constraints, this is
called bordered block diagonal form (Borndörfer et al. 1998). A bordered block diagonal
form is desirable, because it can guide and speed up a solution process for optimization
problems. We want to investigate in this section what in�uence the presence of such a
structure has on the properties of an optimality certi�cate. To do this, we take a two-step
approach. First, we consider the simple case of uncoupled blocks, where the individual
blocks are not connected. We then look at the more interesting case of coupled blocks by
examining the bordered block diagonal form. In order to exploit the block structures to
form smaller certi�cates we give a new de�nition of a generalized certi�cate for problems
with block structure.

We consider the convex mixed-integer nonlinear problem

min
G

,∑
F=1

5F (GF) (14a)

s.t. 6F (GF) ≤ 0, for allF = 1, . . . ,, (14b)

GF ∈ Z=F × R3F (14c)
where, is the number of blocks. It is obvious that one can determine an optimality
certi�cate for each block independently, since the blocks are not coupled. From the
individual optimality certi�cates, one can then simply create an optimality certi�cate for
the entire problem. Thus, one obtains an optimality certi�cate that is linear in, and not
exponential.

Observation 5.12. Let Problem (14) be given, then the problem decomposes into independent
problems min{5F (GF) | 6F (GF) ≤ 0, GF ∈ Z=F × R3F } for F ∈ {1, . . . ,, }, which can be
optimized independently.

This observation implies that in case we are given a problem of Form (14), one can
form separate certi�cates for each blockF ∈ {1, . . . ,, } in order to certify the optimality
of the entire problem.

Thus we give the de�nition of a block-structured generalized optimality certi�cate which
is necessary to use – and not the generalized optimality certi�cates like before – as
exempli�ed by Example 5.15.
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De�nition 5.13 (Block-structured generalized optimality certi�cate). Let Problem (14)
be given, then the F ∈ {1, . . . ,, } generalized optimality certi�cates GF1 , . . . , G

F
�
together

with normal vectors ℎF1 , . . . , ℎ
F
�
for each block F ∈ {1, . . . ,, } form a block-structured

generalized optimality certi�cate.

Lemma 5.14. Let Problem (14) be given, then the corresponding block-structured generalized
optimality certi�cate has at most size

∑,
F=1 2=F .

Proof. For each blockF = 1, . . . ,, on its own it is possible to �nd an optimality certi�cate
with at most the size of 2=F . �

We need to consider block-structured generalized optimality certi�cates and not gener-
alized optimality certi�cates as in the rest of the paper. This is illustrated by the following
example.

Example 5.15. Problem (18) can be split into blocks where each block only consists of one
dimension. Thus we certify optimality by introducing half-spaces

(−1)> (I? − 0) < 0
(1)> (I? − 1) < 0

for all ? ∈ {1, . . . , =}. This encloses a mixed-integer free polyhedron and certi�es optimality
for the entire problem.

We like to note that this is technically not an optimality certi�cate in the sense of
De�nition 3.4 as here ( 1

2 , 1.1) would be cut o� by the certi�cate even though it is contained
in the sublevel set of all optimality certi�cates. However, it is a block-structured generalized
optimality certi�cate and therefore, in order to certify optimality, one does not need 2=
certi�cate half-spaces.

Furthermore, the proof of Lemma 5.14 shows that any smaller optimality certi�cate for
one block can also be exploited for an optimality certi�cate for the entire problem. Thus,
using the bounds shown in Section 5.2, further statements about optimality certi�cates
can be achieved.

Building on Lemma 5.14, we now examine the case of problems with bordered block
diagonal form. For this we consider the problem

min
I,~

,∑
F=1

5F (IF, ~F) (15a)

s.t. 6F (IF, ~F) ≤ 0 for allF = 1, . . . ,, (15b)
� (I1, . . . , I, ) ≤ E (15c)

(IF, ~F) ∈ Z=F × R3F , (15d)

where E ∈ R: , : ∈ N, ; B
∑,
F=1 =F , and a function � : Z; → R: . Note that we

are considering in problem (15) a special form of a bordered block diagonal form, since
there are only integer variables present within the coupling constraint (15c). Examples
of problems with this type of coupling constraint are competitive market equilibrium
problems (Bikhchandani and Mamer 1997; Bikhchandani, Ostroy, et al. 2002) and the
?-median problem (Daskin and Maass 2015).

De�nition 5.16. Let G̃ be a point of Problem (15) then we de�ne the projection of the sublevel
set of projection of S(G̃) into the dimensions of blockF as

SF (G̃) :={GF ∈ Z=F × R3F | ∃G : � (I1, . . . , IF, . . . , I, ) ≤ E, 6F (IF, ~F) ≤ 0,
5 (G1, . . . , GF, . . . , G, ) < min

G
5 (G1, . . . , G̃F, . . . , G, ) for allF = 1, . . . ,, }.
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Lemma 5.17. Let G̃ be a point of Problem (15) and let G̃F be the corresponding variable
from blockF . Then there is a corresponding normal vector ℎF to G̃F . Such that the projection
SF (G̃) then is contained in the setHF (G̃F, ℎF) := {GF ∈ Z=F × R3F | ℎ>F (GF − G̃F) < 0}:

(16a)
SF (G̃) ⊂ HF (G̃F, ℎF). (16b)

Proof. As the projection of the sublevel-set SF (G̃) is convex there is a corresponding
normal vector ℎF ful�lling the Relation (16a). �

Hence, we can deduce the following bound on problems in block bordered diagonal
form where all coupling constraints only contain integer variables.

Theorem 5.18. Let Problem (15) be given with support set {I ∈ Z= |
� (I1, . . . , IF, . . . , I, ) ≤ E} then there exists a block-structured generalized optimality
certi�cate of size

∑,
F=1 2=F , where, corresponds to the number of blocks.

Proof. Lemma 5.17 shows that for feasible suspension points there are corresponding
normal vectors. In case a suspension point is infeasible the corresponding inequality
that contains all feasible points for the block does not cut o� any feasible point of the
entire Problem (15). Therefore certi�cates for each block can be formed and therefore
block-structured generalized optimality certi�cate exists for the entire problem. �

Here the size of the block-structured generalized optimality certi�cate can be smaller
as well in case there are smaller certi�cates for the blocks.

6. Comparison to other optimality certificates

In this section we show that the optimality certi�cates that were introduced in this
paper may lead to smaller certi�cates than the original certi�cates in Baes et al. (2016) and
we show that the branch and bound algorithm may yield a partial optimality certi�cate.

6.1. Original certi�cate. In this subsection we study lower bounds on the size of a
certi�cate according to Theorem 2.9, show that a generalized certi�cate can be smaller
than this bound, and give an example where the size of both certi�cates must be 2= .

For this reason, we introduce Algorithm 4, which calculates a lower bound on the size
of a certi�cate according to Theorem 2.9. This algorithm initializes at �rst a counter C
with one and a set - with the optimal solution Ĝ of the optimization problem (1). Then,
the algorithm checks for every constraint of the input problem whether omitting it would
yield a better optimal objective value. If this is the case, counter C is increased by one and
a feasible solution G 9 with better objective value is added to - . Finally, C is divided by 3 + 1
to take the in�uence of continuous variables into account. A lower bound on the size of a
certi�cate introduced by Baes et al. (2016) is given by return value C as stated in the next
lemma.

Lemma 6.1. Let a mixed-integer convex problem (1) with optimal solution Ĝ be given and
let a certi�cate according to Theorem 2.9 exist. Then, Algorithm 4 determines a lower bound C
of points in a certi�cate according to Theorem 2.9.

Proof. To get a mixed-integer-free polyhedron, every point in - has to get cut o� by a

certi�cate point with corresponding hyperplane. Let G8 with hyperplane ℎ8 :=
� +1∑
9=1
D8 9ℎ8 9

be a valid certi�cate point according to Theorem 2.9. Choose G; ∈ - arbitrarily. Due
to the properties in 2.9, the convexity of the constraints and the objective function, and
the construction of G; in Algorithm 4, hyperplane ℎ8 can cut o� point G; if and only if
D8; ≠ 0. Moreover, there is a 1-1-correspondence between points in - and constraints or
the objective function. Since property (iii), 1 ≤ | supp(D8 ) | ≤ 3 + 1, has to hold, hyperplane
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Algorithm 4 Computing a lower bound on the size of a certi�cate

Input A Problem (1) with optimal solution Ĝ
Output Minimum number C of points in a certi�cate

1: C ← 1.
2: - ← {Ĝ}. ⊲ Add optimal solution.
3: for 9 = 1, . . . , � do
4: Solve (1) without constraint 6 9 (G) ≤ 0.
5: Let G 9 be an optimal solution or a feasible solution with 5 (G 9 ) < 5 (Ĝ).
6: if 5 (G 9 ) < 5 (Ĝ) then
7: C ← C + 1.
8: - ← - ∪ {G 9 }.
9: C ← d C

3+1 e ⊲ Consider continuous variables.
10: return C

I1

I2

Î Ĩ

I1 I2

Figure 2. Feasible set of Problem (17), the certi�cate generated by Baes
et al. (2016) (red), and a generalized certi�cate (blue).

ℎ8 at point G8 can cut o� maximal 3 + 1 points of - . Thus, minimal |- |
3+1 certi�cate points

are necessary. �

The following example visualizes Lemma 6.1. Moreover, it shows, that these bounds are
not transferable to generalized certi�cates, since the generalized certi�cate can be smaller.

Example 6.2. Consider the following pure integer linear program with three constraints.

min
I
− I2 (17a)

s.t. − I1 + I2 ≤ 0 (17b)
0.5 − I1 + I2 ≤ 0 (17c)
− 1 + 0.6I1 + I2 ≤ 0 (17d)

I ∈ Z2. (17e)

The optimal solution is Ĝ = (0, 0). If constraint (17b) or (17d) are removed, the objective
value decreases. So, Algorithm 4 states, that a certi�cate according to Theorem 2.9 needs at
least three points. Whereas there is a generalized certi�cate that requires only two hyperplanes.
See Figure 2.

However, the following example shows that the bound of 2= for the number of necessary
hyperplanes can not be reduced.
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Example 6.3.

min
I

=∑
?=1
(I? −

1
2
)2 (18a)

s.t. I ∈ Z= . (18b)

In this problem the certi�cate of minimal size is given with the suspension points I8 = {0, 1}= ,
where the normal vectors ℎ8 are given via ℎ8,? = 2I8,? − 1. This stems from the fact that the
sublevel-sets for all points are =-dimensional balls around the center ( 1

2 , . . . ,
1
2 ). This shows

that the aforementioned bound can not be reduced.

The previous Example 6.3 also shows that reducing the feasible set to only cover binary
variables (I ∈ {0, 1}=) does not reduce the necessary size of the certi�cate. Furthermore,
setting the support set Z to {0, 1}= does not change this as then still all points in the
support set are needed to form the certi�cate. However, in the case of pure integer linear
problems the support setZ can be set at the feasible region of the considered problem.
This decreases the size of a certi�cate to only one inequality as this is su�cient to form
the mixed-integer free polyhedron.

6.2. Branch-and-Bound. In this subsection we show that the branch-and-bound algo-
rithm yields valid certi�cate half-spaces, but does not form an entire certi�cate in general.
As the branch-and-bound algorithm yields mixed-integer feasible points in its search tree
these points can be used to generate a certi�cate. However, these points and normal
vectors do not necessarily form a generalized certi�cate.

6.2.1. Partial certi�cate through branch-and-bound. Some nodes in the branch and bound
tree can be used to generate valid certi�cate half-spaces. So we are given an optimization
Problem (1). Let Î be a suspension point of the certi�cate. Then we compute the normal
vector through

∇5 (Î, ~) +
∑
9 ∈�

_ 9∇6 9 (Î, ~) = ℎ (19a)

with ℎ ∈ R= × 03 , see Lemma 3.15. Now let Î ∈ Z= be a mixed-integer feasible solution to
a branch-and-bound node, i.e., which branches e.g.

min
I,~

5 (I,~) (20a)

s.t. 6(I,~) ≤ 0 (20b)
I? ≤ 1? for all ? ∈ B (20c)

I ∈ R=, ~ ∈ R3 . (20d)
with 1 ∈ Z= and B being the set of branched variables.

We use this to show that the arising problems help form a certi�cate as feasible nodes
of the branch-and-bound – together with corresponding dual variables – lead to valid
certi�cate half-spaces. This is explained precisely in the following lemma.

Lemma 6.4. Given a Node (20) in a branch-and-bound algorithm with optimal solution
(Î, ~̂) ful�lling the mixed-integer constraint Î ∈ Z= , then the dual variables [ corresponding
to the �xing constraint (20c) form the corresponding normal vector ℎ to the point (Î, ~̂) in
the following way. For the integral dimensions of ℎ we set

ℎ? =

{
−[? , if ? ∈ B
0, else

for all ? ∈ 1, . . . , =

and for the continuous dimensions we set ℎ4 = 0.
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Proof. We need to show that the ℎ̃ that we compute through the procedure given in
Lemma 6.4 ful�lls the properties of De�nition 3.4. We do that by applying Lemma 3.15.
The corresponding KKT-system to the Node (20) is

∇5 (Î, ~) +
�∑
9=1

_ 9∇6 9 (Î, ~) +
∑
?∈B

[?

(
4?
03

)
= 0=+3

0 ≥ 6(Î, ~) ⊥ _ ≥ 0
0 ≥ I − 1 ⊥ [ ≥ 0.

However, solving this system leads to a solution to the KKT-systems arising from the
feasible-�ber subproblems (3), see Lemma 3.15. This infers that the duals [ can be used to
generate the normal vectors ℎ with the described procedure. �

This implies that solving an optimization Problem (1) via a branch-and-bound algorithm
while using KKT-systems to solve the nodes may lead to an optimality certi�cate where
the feasible nodes are the suspension points and the corresponding normal vectors are
automatically given as described above.

An example for yielding an entire certi�cate instead of just some hyperplanes for
feasible suspension points is given by Problem (18), as no node will be pruned, because all
suspension points in the certi�cate have the same objective value.

6.2.2. Branch-and-bound does not yield an entire generalized certi�cate. To observe that
the branch-and-bound algorithm does not yield an entire generalized certi�cate we give
the following example:

Example 6.5.

min
I
(I1 −

1
10
)2 + (I2 −

1
2
)2

s.t. I ∈ Z2 .

In the �rst step we solve continuous-relaxation of the problem which leads to the solution
( 1

10 ,
1
2 ) with objective value 0. First we branch on I1 which leads to the solutions I1 ≤ 0 : (0, 1

2 )
and I1 ≥ 1 : (1, 1

2 ) with objective values 1
4 and 5

4 . Then we branch on I2 which, for I1 ≤ 0,
leads to solution (0, 0) and for I1 ≥ 1, I1 ≥ 1 to (1, 0) with objective values 0 and 1. This
implies that we can prune I1 ≥ 1, I2 ≥ 1 and I1 ≥ 1, I2 ≤ 0, as the objective values for
I1 ≤ 0, I2 ≥ 1 and I1 ≤ 0, I2 ≤ 0 are smaller than for I1 ≥ 1.

This implies we have the multipliers for (0, 0), (0, 1) but this leads to the vectors ( −2
10 ,−1)

and ( −2
10 , 1). Thus, it does not form a generalized certi�cate. See Figure 3.

Therefore, the branch-and-bound algorithm does not yield an entire generalized certi�-
cate.

6.2.3. Using a branch-and-bound tree as a certi�cate. As the branch-and-bound tree certi�es
optimality we show that considering the generalized optimality certi�cates is worthwhile
because they are bounded by 2= and the branch-and-bound tree is not bounded by the
number of integer variables. Instead it is bounded by the variable bounds of the integer
variables. The following example shows that the branch-and-bound tree may contain
more nodes than the generalized optimality certi�cate.
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I1

I2

G0

ℎ1

ℎ2

Figure 3. Branch-and-bound nodes with corresponding half spaces.
Marked with an “x0” the continuous optimum, blue the solutions after
branching at I1, solutions, that are pruned, highlighted in red.

Example 6.6. Observe the following problem with its optimum at I = (97, 103).
min
I
I1 + I2

s.t. I2 =
103
97
I1

I1 ≥
1
2

I ∈ Z2.

The branch-and-bound algorithm has to branch alternating between I1 and I2 in order
to reach the optimum. This leads to more nodes being computed than needed to form an
optimality certi�cate, as this needs at maximum 22 hyperplanes. In order to store the infor-
mation we need less storage with using the certi�cate than storing the information through
the branch-and-bound algorithm.

7. Computational results

In this section we carry out computational experiments in order to investigate the prop-
erties that the generalized optimality certi�cates and Algorithm 1 have with respect to prob-
lems stemming from the MINLPLib (Bussieck et al. 2003) and the MIPLIB 2017 (Gleixner
et al. 2021).

As in theory the optimality certi�cates can be exponential in size, one can not expect
to compute optimality certi�cates for all problems — thus we investigate how many
certi�cates can be computed and whether there are properties of the problems that a priori
allow to asses whether an optimality certi�cate can be computed.

We will show that optimality certi�cates can be computed for realistic instances and that
the size of these optimality certi�cates are mostly considerably lower than the theoretical
worst upper bound of 2= . Furthermore, we show that the computational time for these
optimality certi�cates that could be computed is viable.

Subsequently, we investigate which sizes the optimality certi�cates have with respect
to the number of integer variables. In addition, we would like to know which impact the
linearity of mixed-integer linear problems has in comparison to the convexities of the
convex mixed-integer nonlinear problems.
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Table 2. Computational results of Algorithm 1 on MINLPlib (Bussieck
et al. 2003)

Statistics Results Instances

Computation time # Hyperplanes # Integer variables # Continuous Variables

Mean 132.8 s 7316.8 16.4 7366.2
Std 381.8 s 14 696.5 9.8 27 483.9
Min 0.0 s 1 3 3
25% 0.4 s 18.5 10 21
50% 1.5 s 174 14 62
75% 10.3 s 1025.5 19.5 585
Max 1479.8 s 40 947 40 106 705

These main topics are investigated, �rst, for convex mixed-integer nonlinear problems
and, second, for mixed-integer linear problems. Hereby we state the results for each type
of problem and then discuss and compare them later on.

7.1. Computational setup. We compute the certi�cates on the Woody cluster of the
RRZE-HPC (Regionales Rechenzentrum Erlangen 2021) with four Xeon E3-1240 v5 CPUs
running with 32 GB of RAM and 3.50 GHz. Furthermore we set an internal RAM
limit in our code of 20 GB. The underlying optimization problems are solved by using
Gurobi 9.1 (Gurobi Optimization, LLC 2021) while the algorithm itself is implemented in
Python 3.7.

The optimality certi�cates are computed for instances from the MIPLIB 2017 (Gleixner
et al. 2021) for the mixed-integer linear case and for the convex mixed-integer non-
linear case we compute certi�cates for problems from the MINLPLib (Bussieck et al.
2003). We downloaded and selected the respective instances using the MIPLibing li-
brary (Serra and O’Neil 2020). The code is available at https://github.com/
lhuembs/certificates.

7.2. Convex mixed-integer nonlinear problems. We picked the instances from the
MINLPLib (Bussieck et al. 2003) via the following pattern: The instances contain at least
one continuous variable in line with the mixed-integer linear problems. As here only one
certi�cate half-space is needed because these instances have a linear objective function
which, together with the support set, forms a certi�cate. Furthermore we only considered
instances that have a proven convex relaxation as otherwise Theorem 3.6 can not be
applied. Thus we were left with 67 instances. Of these 67 instances 66 could be solved by
Gurobi within our time-limit of 3000 seconds.

We were able to compute 15 certi�cates for the remaining 66 problems. Thus we
could provide certi�cates of optimality for almost a quarter of all instances. Therefore,
as stated before, it could be shown that for many instances optimality certi�cates could
be computed within viable time. In the following we investigate what characterizes the
instances that we could compute certi�cates for and what di�ers the uncomputable ones
from the computable ones. We then reduced the certi�cates that we could compute via
Algorithm 2.

Concerning the question which certi�cates could be computed: we were able to compute
optimality certi�cates for all problems that contain less than 18 integer variables. On the
upper end: The problem, for which we could compute a certi�cate, that contains the most
integer variables has 40 integer variables.

Hereby in Figure 4 one can see that the number of half-spaces needed to form a
certi�cate is not exponential and thus the theoretical bound of 2= is not attained in general,
as already stated in the introduction to this section. In the following we further explain

https://github.com/lhuembs/certificates
https://github.com/lhuembs/certificates
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Figure 4. Results of computations of Algorithm 1 on MINLPlib (Bussieck
et al. 2003); in red exponential function 2I

for which instances we could compute optimality certi�cates and what characterizes them.
In addition, we show that the optimality certi�cates could be computed in viable time –
when a certi�cate could be computed.

Most of these certi�cates could be computed quite fast as the following metrics, given
in seconds, show. The mean computational time was 132.8 s. Which is fast considering the
fact that the optimality certi�cates — in theory — may need up to 2= half-spaces. However,
later on we show that the optimality certi�cates that we computed do not need that
many half-spaces and therefore this explains why the computation time is smaller than
expected. The standard deviation was 381.8 s which is quite high given the short mean
computation times. This can be explained by the fact that often the optimality certi�cates
are extremely small, e.g., only one half-space is needed. Sometimes, on the other hand,
the certi�cates need a considerable number of half-spaces and thus the computation time
for these instances is much larger. The minimal computation time that was needed to
�nd a certi�cate was 0.0 s. This happened when computing the optimality certi�cate for
the instance “st_miqp4”. This instance only needs 6 hyperplanes to form a certi�cate
and has 3 integer variables. Furthermore, the 25% percentile was 0.4 s while the median
was 1.5 s. So both of these computation times are very small while the number still more
than doubles from 25% percentile to median. The 75% percentile was 10.3 s, which is
considerably higher than the median. Thus most of the certi�cates could be computed
quite fast. This is also explained by the small size of most optimality certi�cates that we
could compute. However, the maximal computation time of a certi�cate that was found
was 1479.8 s. In this case, the instance “cvxnonsep_normcon30r”, 40 947 half-spaces were
computed. So naturally computing this large number of half-spaces takes more time than
the other instances. In the following it will also be shown that this instance has the largest
certi�cate that could be computed.

However, these computational results regarding the computational time show that
when an optimality certi�cate could be computed it normally did not take much time and
therefore one can give computing an optimality certi�cate a try as it is not so expensive
regarding the computational time.

The results illustrate that most certi�cates do not need many certi�cate points as the
mean size of the certi�cates is 7316.8. Thus this is quite small given the fact that the sizes
of optimality certi�cates grow exponentially in the number of integer variables. Here the
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Table 3. Computational results of Algorithm 1 on MIPLIB (Gleixner
et al. 2021)

Statistics Results Instances

Computation time # Hyperplanes # Integer variables # Continuous Variables

Mean 3480.3 s 1996.3 3231.0 6319.4
Std 5481.8 s 4508.4 5993.8 9589.3
Min 0.1 s 1 1 30
25% 43.1 s 5.5 3.5 150
50% 1146.6 s 146 174 2467
75% 4530.6 s 254.5 4254.5 7339
Max 20 025.0 s 19 130 22 326 34 324

standard deviation was 14 696.5 which is high given the small mean. However, as we will
see, most optimality certi�cates are small in size while few are quite large. The minimum
size that was needed is 1, which happened for the instance “clay0204m”. This instance has
32 integer variables, which shows that the sizes of the certi�cates can be quite small despite
a larger number of integer variables and thus the upper bound on the half-spaces needed of
4 294 967 296 is not obtained. The 25% percentile of the half-spaces needed was 18.5 and the
50% percentile was 174 which are both quite small given that the median number of integer
variables in the set of instances that were computed is 14 which would potentially lead to
16 384 half-spaces. The 75% percentile was 1025.5 and the maximal size of a certi�cate that
was found was 40 947 which corresponds to the instance “cvxnonsep_normcon30r” which
was mentioned before. This instance has 15 integer variables which is smaller than the
number of integer variables that the instance “clay0204m” has. Surprisingly, “clay0204m”
needs far fewer half-spaces to form a certi�cate as stated above. On the basis of the
large di�erence between the maximum and 75% percentile one can also see that this huge
number of half-spaces needed in the instance “cvxnonsep_normcon30r” is an outlier. In
addition, from Table 2 it can be seen that there are instances that need the upper bound of
2= certi�cate half spaces. This is the case of “cvxnonsep_normcon20r” and “squ�015-060”
in addition the instances “cvxnonsep_normcon30r”,“squ�015-080” and “squ�010-080” have
more certi�cate half spaces than 2= , which happened because Algorithm 2, which reduces
the certi�cates, did not �nish within the time limit.

Therefore, it could be shown that when an optimality certi�cate could be computed the
resulting optimality certi�cate it normally was smaller in size than the worst case upper
bound of 2= . Thus storing optimality certi�cates usually does not take much space and
therefore computing them is actually worthwhile.

7.3. Mixed-integer linear problems. We picked the instances from the MI-
PLIB 2017 Benchmark (Gleixner et al. 2021) via the following pattern: The instances
contain at least one continuous variable, as otherwise only one certi�cate hyperplane is
needed, and are feasible. The Benchmark contains 129 instances that meet these criteria.
Of these 129 instances Gurobi was able to compute 125 instances within our time limit of
21000 seconds. We set this time limit as there were some instances for which we could
�nd a certi�cate close to the initial time limit of 3000 seconds. For 31 of these instances
we were able to compute an optimality certi�cate and furthermore we were able to reduce
the certi�cates according to Algorithm 2 in 12 cases.

Therefore again it is worth a try computing optimality certi�cates as many optimality
certi�cates could be computed withing viable time.

In Figure 5, we can observe that the number of half-spaces needed to form a certi�cate
is far from exponential in the number of integer variables for the examples for which
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Figure 5. Results of computations of Algorithm 1 on MIPlib Bench-
mark (Gleixner et al. 2021); in red exponential function 2I

we could compute a certi�cate. In the following we further explain for which instances
we could determine optimality certi�cates and what characterizes them similar as in the
preceding subsection on convex MINLPs. Furthermore we investigate the computation
times of the certi�cates.

The mean computational time was 3480.3 s which is far higher than in the case of
MINLPs but here the time limit also was higher. We used a higher time limit in the case of
MIPs as here test results showed that some certi�cates may be computed using a higher
computation time and therefore an increase in the time limit was seen as a good way
to compute additional certi�cates. Hereby the standard deviation was 5481.8 s which
is quite high given the small mean computation time. In the following we can see that
the sizes of the certi�cates vary widely also as in the preceding subsection regarding
mixed-integer nonlinear problems. This then explains the high standard deviation. The
minimal computation time that was needed to �nd a certi�cate was 0.1 s which happend
for the instance “cbs-cta” which only needs one half-space to form a certi�cate. Also the
25% percentile was quite small 43.1 s similar to the MINLPs. However the median was
considerably higher at 1146.6 s. Furthermore the 75% percentile was 4530.6 s and thus by
far higher than in the case of convex mixed-integer nonlinear problems. Thus most of
the certi�cates could be computed quite fast but needed more time than in the case of
MINLPs. The maximal computation time of a certi�cate that was found was quite high at
20 025.0 s which was the certi�cate for the instance “neos-3216931-puriri”. This instance
needed 215 half-spaces to form a certi�cate.

Thus the initial time limit is su�cient for most of the certi�cates but some could be
solved using the higher time limit. Therefore most optimality certi�cates that could be
computed were computed relatively fast. Therefore, like in the case of convex mixed-
integer nonlinear problems, trying to compute optimality certi�cates is worth a try.

The sizes of the certi�cates are in mean 1996.3 while the standard deviation is 4508.4.
Surprisingly, 3 instances only need one hyperplane to form a certi�cate. This can be seen
as even the 25% percentile is 5.5. Furthermore the 50% percentile is small at 146. The
75% percentile still is at 254.5 which is small given the number of integer variables in the
instances. The maximal size of a certi�cate that could be computed was 19 130 which was
the case for the instance “app1-1”. Therefore, as a lot of optimality certi�cates are quite
small in size, it is worthwhile computing and storing these optimality certi�cates.
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7.4. Discussion.

7.4.1. Convex mixed-integer nonlinear problems. All of the results show that if one �nds a
certi�cate at all it will be found fast and the corresponding size of the certi�cate is quite
small. Thus trying to compute optimality certi�cates is worth a try as often a certi�cate
can be found, and in case it is found, it does not take up many resources.

In addition, we explained earlier on that the number of integer variables heavily
in�uences the algorithm’s ability to �nd an optimality certi�cate. In the following we
further show which parameters in�uence whether the optimality certi�cates can be
computed.

In the MINLPLib the number of integer variables that are part of a nonlinear function is
given. Here we see that we only could compute 3 instances which contain such a variable.
Hereby the maximal number of these variables for which we still could compute a certi�cate
is 15. We think that the occurrence of integer variables in nonlinear constraints lead to non-
polyhedral sublevel-sets, which makes a description via halfspaces uneconomical. Thus
one has to keep this in mind when computing optimality certi�cates for such instances –
one may not be able to generate an optimality certi�cate. In Section 5 it was shown that
linearities can positively in�uence the number of half-spaces that are needed. Furthermore
Problem (18) shows an extreme example for a mixed-integer nonlinear problem where
the fact that the sublevel-set is not polyhedral leads to the maximal size of certi�cates.
Therefore linearity in the integer variables positively in�uences the algorithm’s ability to
compute certi�cates and trying to compute optimality certi�cates for this type of instances
is promising.

In addition, the MINLPLib shows the number of linear constraints, where it can be
seen that the number of linear constraints also positively in�uences computability. With
the exception of one instance the number of linear constraints is 4 or larger. The rule of
thumb is that more linear constraints are better for our algorithm. These observations
also can be explained like in the preceding block as also in the case of constraints linearity
is positive for computing optimality certi�cates.

All of these points mentioned also are re�ected by the number of nonlinear nonzeros in
the Jacobian. Here we could only compute certi�cates for 2 instances which have more than
0 nonlinear nonzeros. In the entire test set that we aimed to compute certi�cates for there
are about half of the instances greater with a number greater than zero in this identi�er.
This further shows that — as a rule of thumb — the closer to a linear mixed-integer problem
the instance is, the easier it is to compute the corresponding certi�cate.

The instances in our test set all either have a convex objective and linear constraints or
they have a linear objective and convex constraints. Here it shows that even though there
are 38 instances with linear objective function and 27 instances with convex objective
function we can compute optimality certi�cates for 12 instances with convex objective
function and only for 3 instances with convex constraints. This can be explained by the
fact that the objective function is only one function and there — in general — is more
than one constraint. Thus there is the possibility to introduce more nonlinearities via the
constraints than the objective function.

Furthermore, an interesting observation that could be made is that computing new
certi�cate half-spaces can be done very fast. In general it took less than one second to
compute a new one. Even the 99.99% percentile of the computation time to �nd a new
certi�cate half-space normally took less than ten seconds. This can be explained by the
small number of integer variables that the instances in question have. The corresponding
master problems (7b) then reduce to small mixed-integer linear problems which can be
computed quite fast by Gurobi. The remaining �ber subproblems (3b) and (4b) then
reduce to convex problems that are easy to solve as well. Therefore the half-spaces can be
computed fast for these instances in question.
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To summarize, we can state that the number of integer variables in�uence the ability to
�nd optimality certi�cates as predicted by the theory. The second major observation is that
linearity positively in�uences the algorithm. This can be seen by the number of integer
variables, the nonlinear nonzeros in the Jacobian and the number of linear constraints.
Thus, in case the optimization problem at hand contains only few integer variables or
is “close” to being a linear mixed-integer problem an optimality certi�cate probably can
be computed. In case the optimality certi�cate can be computed it most likely will be
computed fast and it will not need many half-spaces.

7.4.2. Mixed-integer linear problems. In the case of mixed-integer linear problems the
in�uence of integer variables on the ability to compute certi�cates could not be seen. The
instance with the most integer variables for which we could compute a certi�cate is the
instance “satellites2-40” with 34 324 integer variables. In this case only 167 certi�cate
half-spaces were needed which further illustrates that the certi�cates can be quite small
regardless of the integralities.

Additionally, we investigated how the type of problem in�uences our ability to compute
certi�cates. Here it can be said that, e.g., for half of the instances (3 out of 6) with the
tag “integer knapsack” a certi�cate could be computed. This might be attributed to
the observation in Section 5 that the knapsack problem can be certi�ed using only one
additional half-space. This argument is unfortunately weakened by the fact that for only a
quarter of all instances with the tag “knapsack” (5 out of 20) we could compute a certi�cate.

7.4.3. Comparison. To extend the discussion on the speed with which we can compute
certi�cate half-spaces we can state that in the case of mixed-integer linear problems, as a
rule of thumb, it takes longer to compute new half-spaces. Sometimes it takes minutes to
�nd a new one. However, it can be stated that this is harder for the mixed-integer linear
problems. We assume this is because of the number of integer variables that the instances
have. The mean of the number of integer variables is 1914 in mixed-integer linear case
while in the case of convex mixed-integer nonlinear problems this was 30 so the master
problem (7b) is easier to solve.

Furthermore, we could observe that in the case of linear mixed-integer problems
certi�cates could be computed for problems with more integer variables. This can be
attributed to the observations made from the computations of the convex mixed-integer
problems as here – as a rule of thumb – it is more to be able to compute a certi�cate the
closer it is to linearity.

In summary, the following can be concluded. If a certi�cate can be computed, it
will most likely be small and can be computed in a short time, while the problem for
which it is to be computed either has only a few integer constraints or has no signi�cant
nonlinearities. Therefore for this type of instances trying to compute optimality certi�cates
is very promising.

8. Outlook and conclusion

In this paper we extended a concept of optimality certi�cates that was introduced
by Baes et al. (2016). This was done in order to be able to compute optimality certi�cates
which was not possible before. Thus we introduced an algorithm that can use any solver as
a black box in order to compute the optimality certi�cates. We showed that the optimality
certi�cates we introduced are at most as large than the previous optimality certi�cates.
The optimality certi�cates presented in Baes et al. (2016) and the generalized optimality
certi�cates have the same theoretical upper bound, but there are problems where the
generalized optimality certi�cates are smaller than the original optimality certi�cates.
Furthermore, we exploited special structures of optimality problems to extract smaller



REFERENCES 33

upper bounds on the sizes of optimality certi�cates. This could be done, e.g., for mixed-
integer linear problems, problems with equality constraints and problems with block
structure.

On the empirical side, we computed optimality certi�cates for instances from the
MIPLIB and MINLPLib. Here it could be shown that often the optimality certi�cates are
smaller than theory tells. In addition we investigated which properties of the problems
are correlated with the existence of small optimality certi�cates, or at least with the ability
of our algorithm to compute these.

There still are open questions regarding the optimality certi�cates. For example, we
consider it possible to exploit the non-uniqueness of valid half-spaces corresponding to
certi�cate points to generate even smaller optimality certi�cates.

In addition, there might be structures in optimization problems that can be exploited in
order to obtain smaller certi�cates.

Furthermore the duality theory in Baes et al. (2016) can be generalized to use our
optimality certi�cates and seems very intriguing.

On the computational side, the optimality certi�cates have the potential to provide use-
ful dual information, which could speed up for example the branch-and-bound algorithm.

All of these questions are out of scope for this paper but open interesting possibilities
for future work.
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