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Abstract

This paper studies the numerical simulation of gas networks with regulating elements using differen-
tial algebraic equations (DAEs) in combination with least-squares collocation. In contrast to classical
collocation methods, more collocation points than degrees of freedom for the collocation polynomials are
used. Recently, it has been shown that such a least-squares collocation has a regularizing effect for DAEs,
in particular for DAEs with higher index. In each time step of the numerical integration, one has to solve
a system of nonlinear equations that is nonsmooth due to the regulating elements in the gas networks.
We consider four solvers one of which explicitly exploits the inherent nonsmooth nature. Numerical
results are given for three different test cases with increasing complexity illustrating the feasibility of
the proposed approach to approximate a solution of the DAE and the advantageous performance of the
nonsmooth solver that is based on the concept of abs-linearization.
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1 Introduction

Given the ongoing and substantial transformation of the energy market, the simulation of energy systems becomes
more and more important. This also includes the gas industry in its entirety. In the future one may either utilize
gas network infrastructures for the dynamical energy storage to smoothen the highly volatile generation of renewable
energy sources [Fed21] or one may want to shift from mostly methane to pure hydrogen transport [Eur20] or both.
Either way this will increase the complexity and dynamics for controlling gas networks. More variability of demand
and supply has to be considered given the different properties of hydrogen compared to natural gas [Hop+20].

Here, we study industry relevant modellings for various types of gas network components, also called elements, from
recent research and combine them into a comprehensive modelling framework for the description of gas networks
using differential algebraic equations (DAEs). We include advanced features such as transient target value control,
also known as set-point value control, for actively regulating network elements, i.e., regulators and compressors.
The coverage of the additional capabilities leads to nonsmoothness in the overall mathematical model rendering it to
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become piecewise differentiable. The resulting gas network DAEs may have a varying number of dynamic components.
Furthermore, such DAEs may change their index when valves switch from open to close and vice versa. Therefore, we
study the least-squares collocation method for such network DAEs. This approach shows a surprising well behavior
for the numerical solution of higher index DAEs [Han+17; HM21c]. Convergence theory for this class of numerical
integration methods and for numerous types of DAEs has been established [HM21b; HM21a; HMT19], but is still
under ongoing research and investigation.

We aim to contribute numerical verification from computational experiments via the following setup: Numerical
integrators for DAEs typically generate a sequence of root problems, which in our case are both overdetermined and
nonsmooth. These generated subproblems correspond to a minimization problem of a scalar-valued objective function,
once some norm has been applied onto it. Such a nonsmooth minimization is still a challenging problem. Therefore,
sometimes the nonsmoothness is simply ignored when solving such problems, see, e.g., [LO13]. Other approaches are
based on bundle methods that employ numerous parameters, see, e.g., [Bag+20] for a recent overview. In contrast
to that, we embed a dedicated algorithm, called SALMIN, as proposed in [FWG19]. SALMIN exploits explicitly
the structure provided by the nonsmoothness of so-called abs-smooth objectives defined below in more detail. The
nonsmooth optimization problems stemming from the approximate solution of DAEs lead exactly to abs-smooth target
functions and hence we use SALMIN as an alternative to other solvers. We compare SALMIN with the least-squares
solver of scipy. Either solver is employed to solve the nonsmooth subproblems from a sequence of overdetermined
root problems generated by the least-squares collocation method.

The paper is structured as follows: In Section 2 we introduce and cite a version of isothermal Euler equations suited
for the modelling of gas flow in pipes and pipeline segments. In the next step, Section 3 presents an elaborated math-
ematical modelling framework for the formulation of gas networks as nonsmooth differential algebraic equations,
capable to describe entire national gas grids. Towards that goal and still within the same section, we gather and
describe industry-relevant modellings for valves, control valves and compressors, but also reenact a topology-adaptive
discretization approach for pipes modelled with the aforementioned variant of Euler equations. Subsequently, Sec-
tion 4 introduces and substantiates the least-squares collocation approach for the numerical integration of differential
algebraic equations arising from gas network modelling. In Section 5, the SALMIN approach already mentioned
above is described briefly. It will be used to solve the nonsmooth optimization problems which are sequentially
generated by the least-squares collocated integration. Numerical results comparing the performance of SALMIN
with the least-squares solver of scipy are contained in Section 6. For this purpose, we apply the solvers within the
least-squares collocated integration to approximate the gas flow for three distinct gas network instances. The three
gas network instances range from two consecutive pipes, over a single control valve up to a gas network of 70 nodes
with a complex gas network station the hearth of the network. Hence, these examples cover elements of all types
that were introduced in Section 3. Finally, a summary and an outlook are given in Section 7.

2 Pipe Physics

The physics of gas flowing through a pipe can be described by the Euler equations. In [Dom+21] a variety of simplified
models have been derived, ranging from the original Euler equations via temperature-independent isothermal models
up to purely algebraic ones. Here, we focus on the ISO2 system of equations, reading

∂t
(
ϕ(p)

)
+ κ∂xq(t) = 0, (1a)

∂tq +A∂xp+
λκ

2D

q|q|
ϕ(p)

+
g

κ
sin(θ)ϕ(p) = 0, (1b)

with the function

ϕ(p) =
p

z(p)
.

On this modelling level, all terms are included that significantly contribute to the real gas network flow. The intrinsic
quantities are the pressure p ≡ p(x, t) and the flow q ≡ q(x, t), each being a function in two arguments. The first
argument is a one-dimensional space variable x ∈ Ω = [0, L] ⊂ R parameterizing the longitudinal axis of the pipe.
We refer to x = 0 ∈ Ω as the left end and to x = L ∈ Ω as the right end of the pipe, where L > 0 denotes the length
of the pipe. Note that this just indicates the topological orientation of the pipe and does not necessarily coincide
with the flow direction of the gas, which can go either way. The second argument of both pressure and flow is the
time t ∈ [t0, T ]. The other parameters appearing in (1) are described in Table 1.
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Parameter Description

D Pipe diameter

A =
1

4
πD2 Pipe cross-sectional area

θ Pipe slope angle (compared to the ground)

g Gravitational acceleration

κ =
RsT

A

Fraction of the specific gas constant,
the temperature and the pipe cross-sectional area

λ Friction factor (see subsection 2.1)

z(p) Real gas factor depending on the pessure (see subsection 2.2)

Table 1: Parameters appearing in the ISO2 system of equations (1)

2.1 Friction Factor Model

The friction factor is a crucial part of the empirical Darcy-Weißbach model for friction of transported fluid media
within a pipe [Bro02]. It is crucial as it allows a granular specialization of that model as a trade-off between relatively
high accuracy versus faster computable approximations. Correspondingly, literature offers quite a variety of models,
each with different emphasis. Decent summaries beyond industrial norm defining documentations can be found, e.g.,
in [Dom+21] as well as in [Ben+19]. For our purpose we will use the Nikuradse formula [Nik50] which is given by

λ =
[
−2 log10

(
r/(3.71D)

)]−2
(2)

and which is an explicit simplification of the otherwise implicit Colebrook-White [CW37; Bro02] formula. With r we
denote the roughness of the pipe wall surface that should be provided in [m].

2.2 Real Gas Factor Model

The real gas factor adjusts the behaviour of an actual composition of gas from the expected behaviour of idealized gas,
which is an abstract concept in chemistry. This factor is a quantity that can actually only be measured in experiments.
However, it is assumed that it has an equivalent power series representation referred to as Virial expansion [Onn91].
Partial sums, i.e., polynomials, can be estimated by best fitting approaches and are typically accepted and used as
model. Here, we will make use of the AGA formula [SL21; Dom+21] from the American Gas Association which is
linear in p and considered accurate up to pressures p ≤ 70[bar]. Other potential options can be taken from further
literature, e.g., [Pap68; Sal02; Dom+21; Ben+19].

3 Gas Network Modelling

We follow the approach in [Dom+21] and model a gas network as an oriented graph G = (V, E) with a set of nodes
V and a set of edges E . Each edge e ∈ E has a fixed orientation and so we may denote the two nodes belonging to an
edge as left node vl ∈ V and right node vr ∈ V, with the convention that the edge is directed from left to right. Note
that the orientation of the edge does not imply gas flowing only in that direction. In particular, positive flow values
correspond to gas flowing from left to right whereas negative flow values correspond to gas flowing from right to left.

We distinguish nodes with respect to their modelling. In Vpset we collect all nodes with a fixed pressure. Fixed
pressure means the existence of a time-dependent function chosen in advance, yielding the respective pressure value
at each point in time. We call them pressure nodes. All other nodes are collected in Vqset. Note that V = Vpset ∪̇Vqset

holds.

Regarding the edge elements, we focus on networks consisting of pipes, valves and regulating elements (regulators
and compressors). Thus, we impose the partition E = Epip ∪̇ Eval ∪̇ Ereg.
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3.1 Nodal equations

For pressure nodes, i.e., nodes u ∈ Vpset, the pressure is given by the pressure boundary condition
...

pset
u (t)

...


u∈Vpset

.

For all other nodes, i.e., u ∈ Vqset, a Kirchhoff-type flow balance equation

Apip,lqpip,l +Apip,rqpip,r +Avalqval +Aregqreg = qset(t) (3)

is given. For junction nodes, there is neither an incoming nor an outgoing flow, i.e., qset = 0. For the demand nodes,
we have an outgoing flow qset ≥ 0. For source nodes with a fixed inflow, we have qset ≤ 0. The flows qpip,l, qpip,r, qval

and qreg represent the flows at the left end of pipes, at the right end of pipes, through valves and through regulating
elements, respectively. The matrices used in (3) are (constant) incidence matrices given by

Apip,l :=
(
apip,l
ij

)
i=1,...,|Vqset|
j=1,...,|Epip|

, apip,l
ij :=

{
−1 if node i is the left node of pipe j,

0 else,

Apip,r :=
(
apip,r
ij

)
i=1,...,|Vqset|
j=1,...,|Epip|

, apip,r
ij :=

{
1 if node i is the right node of pipe j,

0 else,

Aval :=
(
aval
ij

)
i=1,...,|Vqset|
j=1,...,|Eval|

, aval
ij :=


−1 if node i is the left node of valve j,

1 if node i is the right node of valve j,

0 else,

Areg :=
(
areg
ij

)
i=1,...,|Vqset|
j=1,...,|Ereg|

, areg
ij :=


−1 if node i is the left node of regulating element j,

1 if node i is the right node of regulating element j,

0 else,

3.2 Edge element equations

3.2.1 Pipes

Since we are looking for numerical solutions the equations (1) need to be discretized. We follow the approach in
[Ben+19] of discretizing first in space to obtain a differential algebraic equation system and make use of a topology-
adapted left-right discretization scheme ([Huc18], [Ben+19]) resulting in an index-1 DAE. Then, for each pipe e ∈ Epip,
the spatially discretized equations have the form

d

dt
ϕ(pr,e) +

κe
Le

(qr,e − ql,e) = 0,

d

dt
ql,e +

Ae
Le

(pr,e − pl,e) +
λeκe
2De

ql,e|ql,e|
ϕ(pr,e)

+
g

κe
sin(θe)ϕ(pr,e) = 0,

where Le is the length of pipe e, ϕ(p) = p
z(p)

and

pl,e(t) := pe(0, t), ql,e(t) := qe(0, t), pr,e(t) := pe(Le, t), qr,e(t) := qe(Le, t).

Collecting all left pressures pl,e of pipes in the vector ppip,l, all right pressures pr,e of pipes in the vector ppip,r, all left
flows ql,e of pipes in the vector qpip,l and all right flows qr,e of pipes in the vector qpip,r, we obtain the pipe equation
system

d

dt
ϕ̄(ppip,r) +Dq(qpip,r − qpip,l) = 0,

d

dt
qpip,l +Dp(ppip,r − ppip,l) + ffric(ppip,r, qpip,l) + fgrav(ppip,r) = 0

4



with Dq := diag{..., κe
Le
, ...}e∈Epip , Dp := diag{..., Ae

Le
, ...}e∈Epip ,

ϕ̄(p) :=


...

ϕ(pe)
...


e∈Epip

, ffric(p, q) :=


...

λeκe
2De

qe|qe|
ϕe(pe)

...


e∈Epip

, fgrav(p) :=


...

g
κe

sin(θe)ϕe(pe)
...


e∈Epip

.

Collecting all pressures of nodes u ∈ Vqset in the vector p, we have

ppip,l = −A>pip,lp−A>pip,sp
set, ppip,r = A>pip,rp.

Here, Apip,s is the incidence matrix describing the (left) connections of pipes to pressure nodes, i.e., the definition
coincides with the definition of Apip,l but the rows represent the nodes u ∈ Vpset instead of the nodes u ∈ Vqset.

Note that we used here the assumption that pressure nodes are not located at right ends of pipes. It is always possible
to give all pipes an orientation satisfying this assumption unless there is one pipe that connects two pressure nodes.
The latter case is not really useful in practice. Furthermore, such a pipe could be modelled as a connection of two
pipes of half length having the additional connecting node as right node.

Consequently, we can summarize the pipe equations as

A>pip,r
d

dt
φ(p) +Dq(qpip,r − qpip,l) = 0, (4a)

d

dt
qpip,l +Dp(A

>
pip,rp+A>pip,lp) + fpip(p, qpip,l, t) = 0 (4b)

with

fpip(p, q, t) := ffric(A>pip,rp, q) + fgrav(A>pip,rp) +DpA
>
pip,sp

set(t) and φ(p) :=


...

ϕ(pu)
...


u∈Vqset

.

3.2.2 Valves

Valves are represented as edges in the overall graph. The mathematically idealized valve knows two definitive states.
There is the ideal-open state which allows a bidirectional, unresisted and drag-free flow of gas, always balancing the
adjacent node pressures. The other or ideal-closed state does not allow any exchange of gas or equivalently enforces
q = 0. The main purpose from a modelling point of view is the manipulation of the underlying topology at simulation
runtime. In between, there may or may not be a short-lived transition phase. Hence, we require a piecewise linear,
continuous profile function Θ : [t0, T ]→ [0, 1] to determine the state. Thus, the idealized valve on edge e ∈ Eval may
be modelled via

0 =

{
pr,e − pl,e if Θe(t) = 1,

qe else.

Another, but continuous version derived from the one above is provided by

0 = µe q̇e + Θe(t) · (pr,e − pl,e) + νe(1−Θe(t))qe,

with µe = 0 to achieve an algebraic constraint or µe > 0 to achieve a differential constraint. The factors µe > 0 and
νe > 0 can be used for suitable scaling. Collecting all left pressures pl,e of valves in the vector pval,l, all right pressures
pr,e of valves in the vector pval,r and all flows qe through valves in the vector qval, we obtain the valve equation system

Dvalq̇val +DΘ(t) · (pval,r − pval,l) +Dν(I −DΘ(t))qval = 0

with Dval := diag{..., µe, ...}e∈Eval , Dν := diag{..., νe, ...}e∈Eval and DΘ(t) := diag{...,Θe(t), ...}e∈Eval . Furthermore,
we know that

pval,r − pval,l = A>valp+A>val,sp
set(t).
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Here, Aval,s is again an incidence matrix. It is defined as Aval but the rows represent the nodes u ∈ Vpset instead of
the nodes u ∈ Vqset. Hence, we may summarize the valve equations as

Dvalq̇val + fval(p, qval, t) = 0 (5)

with

fval(p, qval, t) := DΘ(t)A>valp+Dν
(
I −DΘ(t)

)
qval +A>val,sp

set(t).

3.2.3 Actively Regulating Elements – Regulators & Compressors

In order to actively control the gas transportation process, so called regulators (also referred to as control valves)
and compressors are in use for the up- and down-regulation of gas flow q. Regulators one-way down regulate gas by
creating resistance, whereas the up-regulation is accomplished by compressors. The amount or intensity of regulation
is not determined by hand. Instead, so-called target or set point values are used to define desired states. Regulators
and compressors adjust themselves to get as close as possible. There are many different potential kinds of target
values, we will present five. Target values are represented by time-dependent profile functions, which we assume to be
piecewise linear in the sense of [Sch12]. They are part of the overall scenario description and are hence supposed to
be provided upfront. The first four target values define two desired ranges for the left p` right pressure pr. Those are
pl : [t0, T ]→ R≥0, i.e., the desired minimal target pressure on the left and pl : [t0, T ]→ R≥0, the desired maximal
target pressure on the left as well as pr, pr : [t0, T ]→ R≥0 the minimal and maximal target pressures on the right.

The fifth and final target value is qset : [t0, T ]→ R defining a desired level of gas flow. These five target values are by
no means bounds, since maintaining all five target values simultaneously may sometimes result in conflicts. Instead,
there is a prioritizing hierarchy among target values that is condensed and summarized in Table 2, which itself is
merged and derived from Table 1 in [HPS21] as well as Table 5.2 in [Str21].

affected target value priority violation scenario response to violation
lower left pressure pl 2 pl > p` closing

upper right pressure pr 2 pr < pr closing
upper left pressure pl 1 pl < p` opening
lower right pressure pr 1 pr > pr opening

flow set qset 0 qset < q closing
flow set qset 0 qset > q opening

Table 2: Table of all target value violations, their priority of being treated and their responses to violation

A single regulator e ∈ Ereg is represented by the following circuit symbol

vl vr

pl,e pr,eqe

and a target value compatible model as suggested by [Str21] and [HPS21] reads

0 = µq̇e −max(−νqe,min(pl,e −max( pl, pr,e),min( pr, pl,e)− pr,e,

max(ν(qset − qe), pl,e − pl, pr − pr,e))),

}
(6)

with µ = 0 to achieve an algebraic or µ > 0 for a differential constraint. Again, the factors µ > 0 and ν > 0 can be
used for suitable scaling. Likewise, an idealized compressor e ∈ Ereg is represented by the following circuit symbol

vl vr

pl,e pr,eqe

and a target value compatible model is suggested by [Str21] as

0 = µq̇e −max(−νqe, pl,e − pr,e,min(pl,e − pl, pr − pr,e,

max(ν(qset − qe), pl,e − pl, pr − pr,e))),

}
(7)
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with µ = 0 to achieve an algebraic or µ > 0 for a scalable differential constraint.

Consequently, the regulating element on edge e can be modelled as

µeq̇e − freg,e(pl,e, pr,e, qe) = 0

with the continuous and piecewise differentiable function

freg,e(pl, pr, q) :=

max
{
− νeq, min

{
pl −max{ pl, pr}, min{ pr, pl} − pr,max{νe(qset − q), pl − pl, pr − pr}

}}
in case of a regulator e ∈ Ereg and

freg,e(pl, pr, q) := max
{
− νeq, pl − pr,min

{
pl − pl, pr − pr,max{νe(qset − q), pl − pl, pr − pr}

}}
in case of an idealized compressor e ∈ Ereg.

Collecting all left pressures pl,e of regulating elements in the vector preg,l, all right pressures pr,e of regulating elements
in the vector preg,r and all flows qe of regulating elements in the vector qreg, we obtain the regulating element equation
system

Dregq̇reg − fr(preg,l, preg,r, qreg) = 0

with Dreg := diag{..., µe, ...}e∈Ereg ,

fr(preg,l, preg,r, qreg) :=


...

freg,e(pl,e, pr,e, qe)
...


e∈Ereg

.

The left and right pressures preg,l and preg,r can again be expressed by the nodal pressures p and pset as

preg,l = −A>reg,lp−A>reg,lsp
set, preg,r = A>reg,rp+A>reg,rsp

set,

where Areg,l and Areg,r are incidence matrices defined as Apip,l and Apip,r, but the columns represent the regulating
elements instead of pipes. Note that Areg = Areg,r + Areg,l. Analogously, Areg,ls and Areg,rs are incidence matrices.
They are defined as Areg,l and Areg,r, but the rows represent the nodes u ∈ Vpset instead of the nodes u ∈ Vqset.
Hence, we may summarize the regulating element equations as

Dregq̇reg − freg(p, qreg, t) = 0 (8)

with

freg(p, qreg, t) := fr(−A>reg,lp−A>reg,lsp
set(t), A>reg,rp+A>reg,rsp

set(t), qreg).

3.3 DAE network model

Collecting the edge element equations (4), (5) and (8) and the nodal equations (3), we obtain the gas network DAE

A>pip,r
d

dt
φ(p) +Dq(qpip,r − qpip,l) = 0, (9a)

d

dt
qpip,l +Dp(A

>
pip,r +A>pip,l)p+ fpip(p, qpip,l, t) = 0, (9b)

Dval
d

dt
qval + fval(p, qval, t) = 0, (9c)

Dreg
d

dt
qreg − freg(p, qreg, t) = 0, (9d)

Apip,lqpip,l +Apip,rqpip,r +Avalqval +Aregqreg = qset(t). (9e)

Additionally, we have technical bounds of the form

fpb(p) = 0, fqb(qpip,l, qpip,r, qval, qreg) = 0 (9f)

with continuous, piecewise smooth functions fpb and fqb.

The next section describes a numerical solution approach for such network DAEs.
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4 Least-squares Collocation Method for Differential Algebraic Equa-
tions

The gas network DAE (9) can be written as

A
d

dt
ψ(x(t)) + b(x(t), t) = 0 (10)

with x = (p, qpip,l, qpip,r, qval, qreg),

A =



A>pip,r 0 0 0
0 I 0 0
0 0 Dval 0
0 0 0 Dreg

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, ψ(x) :=


φ(p)
qpip,l

qval

qreg



and

b(x, t) :=



Dq(qpip,r − qpip,l)

Dp(A
>
pip,r +A>pip,l)p+ fpip(p, qpip,l, t)

fval(p, qval, t)

−freg(p, qreg, t)

Apip,lqpip,l +Apip,rqpip,r +Avalqval +Aregqreg − qset(t)

fpb(p)

fqb(qpip,l, qpip,r, qval, qreg)

fcap(p)


.

Suppose the function z(p) describing the real gas factor is differentiable, then also ψ(x) is differentiable and the gas
network DAE (10) can be written in standard form as

fs(x
′(t), x(t), t) = 0 (11)

with

fs(y, x, t) := Aψ′(x)y + b(x, t).

Notice that we also may equivalently formulate the gas network DAE (10) with a properly stated derivative term.
For that purpose, we collect the flows of all valves and regulating elements that are modelled with a dynamic term
(corresponding to µe 6= 0) in q̄val and q̄reg, respectively. Additionally, we delete the (zero) columns in Dval and Dreg

corresponding to the flows of valves and regulating elements that are modelled without a dynamic term (µe = 0) and
denote them by D̄val and D̄reg. Furthermore, we delete all node entries from φ(p) for each node that does not have
a right end of a pipe connected to it. We denote the result as φ̄(p). Correspondingly, we delete all zero columns of
A>pip,r and Ā>pip,r represents the remaining matrix. Then, the gas network DAE (10) is equivalent to

fp
( d

dt
dp(x(t)), x(t), t

)
= 0 (12)

with fp(y, x, t) := Apy + b(x, t) and

Ap =



Ā>pip,r 0 0 0
0 I 0 0
0 0 D̄val 0
0 0 0 D̄reg

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, dp(x) :=


φ̄(p)
qpip,l

q̄val

q̄reg

 .
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Both representations of the gas network equations (10) with or without the technical bounds (9f) are special cases of
general nonlinear differential algebraic equations of the form

f
( d

dt
d(x(t)), x(t), t

)
= 0, (13)

where f : Rk × Rm × [a, b] → Rn. With a proper choice of the pipe directions and some additional conditions to
the positions of valves and regulators, the resulting DAE system has index 1 [HT17; Huc18]. Next, we introduce the
least-squares collocation approach introduced in [HMT19; HM21a] for (13) combined with the initial value condition

x(a) = x0. (14)

Note that x0 is assumed to be consistent, that means there is a continuous solution x of (13) on [a, b] that satisfies
x(a) = x0. The least-squares collocation approach computes continuous, piecewise polynomial solutions xp, i.e.,
solutions belonging to the space

Xp := {x ∈ C([a, b],Rm) | x|Ik ∈ PN (Ik) ∀k = 1, ...,K}

where [a, b] is decomposed into subintervals Ik with k = 1, ...,K and PN (Ik) is the set of polynomials on Ik with degree
at most N . We speak of a least-squares collocation solution of (13) if xp ∈ Xp with xp(a) = x0 is a least-squares
solution of

f
( d

dt
d(xp(tp)), xp(tp), tp

)
= 0, tp ∈ Tp (15)

with the finite set Tp ⊂ [a, b] of collocation points. For simplicity, we choose the same number M of collocation points
in each subinterval. In case of classical collocation, we have M = N . Here, we also allow M > N .

Let {bk0(t), ..., bkN (t)} be a set of polynomial basis functions spanning PN (Ik). Then, we can write

xp(t) =

N∑
i=0

bki(t)cki on Ik. (16)

We consider two possible choices, firstly the monomial basis and secondly the Lagrange basis. For the monomial
basis representation we choose tk ∈ Ik for k = 1, . . . ,K and have

bki(t) = (t− tk)i.

For the Lagrange basis we choose tk0, . . . , tkN ⊂ Ik for k = 1, . . . ,K and have

bki(t) :=

N∏
j=0
j 6=i

t− tkj
tki − tkj

.

Note that cki = xp(tki) for the monomial basis whereas cki = x
(i)
p (tk)/(i!) for the Lagrange basis. The collocation

equations have then the form

f
(
g′t(tp, c),

N∑
i=0

bki(tp)cki, tp
)

= 0, tp ∈ Tp ∩ Ik, k = 1, ...,K, (17)

with c := (cki)k=1,...K,i=0,...,N and

g(t, c) := d(xp(t)) = d
( N∑
i=0

bki(t)cki
)
.

Consequently, we have to solve the overdetermined nonlinear root problem

F̂ (c) = 0 (18)

with

F̂ (c) :=


...

f
(
g′t(tp, c),

N∑
i=0

bki(tp)cki, tp
)

...

 , tp ∈ Tp ∩ Ik, k = 1, ...,K.
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5 Solving Overdetermined Nonlinear Root Problems using Non-
smooth Optimization

Overdetermined nonlinear and possibly nonsmooth systems of equations like the one given in Eq. (18) can be formu-
lated as optimizations problems using an appropriate norm of the resulting vector. Then, an argument that yields
zero as value of the objective function corresponds to a solution of the system of equations. The employed norm as
well as the equations considered may lead to a nonsmooth target function. In this paper, we will consider the specific
target function

F (c) = ‖F̂ (c)‖22 (19)

originating from the least-squares collocation as described in the last section. Note that the norm that we use here
does not cause additional nonsmoothness.

The solution of nonsmooth optimization problems is still a challenging task. When the objective is convex, subgra-
dient methods can be used, but they converge only with a sublinear rate, see, e.g., [Sho98, Chapter 2]. A better
rate of convergence can be shown for bundle methods and gradient sampling, see, e.g., [KM10] or [BLO05]. How-
ever, these methods require the choice of various parameters and the performance is somewhat erratic. For a large
class of piecewise smooth function, a completely new solution approach called Successive Abs-Linear MINimization
(SALMIN) was developed in recent years, see, e.g., [FWG19]. Its convergence analysis is complete and even quadratic
convergence can be achieved under suitable circumstances [GW19b]. For the SALMIN approach, it is assumed that
the nonsmoothness of the target function F (.) is caused by the evaluation of the absolute value function only. Then,
at a given argument c, a local, piecewise linear model denoted by ∆F (c; .) can be derived using the technique of
abs-linearization as introduced in [Gri13]. In the same paper, it was shown that ∆F (c; .) provides a second order
approximation of F (.), a property that serves as one of the main building blocks in the convergence analysis of the
SALMIN approach. Another desirable property of these piecewise linearizations is that their representation can be
factored and normalised into a specialized block matrix-based representation called abs-linear form (ALF). Hence,
ALFs are operator representations of piecewise linear functions that can be realized or implemented as a slight as well
as modular update on top of any existing modern matrix or linear algebra software package [Gri+15; Str+14]. Only
small changes of existing tools for algorithmic differentiation like ADOL-C [WG12], cycADa [cyc21] or Tapenade
[HP13] were required to obtain the local abs-linear model ∆F (c; .) in ALF in a completely automated way. Hence,
this ingredient required by SALMIN is available once a code to evaluate F (.) is available. For the numerical experi-
ments in the subsequent section we used cycADa as tool for algorithmic piecewise linearization and numpy [Har+20]
as package for linear algebra and matrix manipulation to generate the ALF representations of the local abs-linear
model ∆F (c; .). Finally, cython [Beh+11] allowed us to connect the python parts of our implementations with the
C++ kernel of SALMIN.

Keeping it very brief and denoting the vector of optimization variables in iteration k with ck, the optimization
approach of SALMIN can be described by the iteration

ck+1 = ck + arg min
∆c

{
∆F (ck; ∆c) +

ωk

2
‖∆c‖2

}
. (20)

As can be seen, only one parameter, namely the penalty factor ωk, occurs. Starting from an initial choice ω0, the
convergence analysis of SALMIN also provides an automatic adaptation of this parameter. Given the structure as
stated in Eq. (20), SALMIN can be interpreted as a quadratic overestimation method, where the error between the
local, piecewise linear model ∆F (c; .) and the real function F (.) is bounded by a power of the distance, see, e.g.,
[Gri81]. The SALMIN approach is in some sense also related to a proximal point method. However, in Eq. (20)
the local abs-linear model of the function F (.) to be minimized at the current iterate ck is used instead of the
original nonlinear function F (.). This fact makes the inner arg min problem of Eq. (20) considerably easier to solve in
comparison to usual proximal point approaches. An adapted algorithm with provable finite convergence to determine
a solution ∆c∗ of the corresponding piecewise linear objective with a quadratic penalty term was proposed and
analysed in [GW19a]. Furthermore, the solution ∆c∗ provides a very simple stopping criterion for the SALMIN
approach in that the outer iteration terminates as soon as the objective function reduction promised by the solution
of the inner problem falls below a user supplied tolerance. Then, an at least approximately stationary point is reached.
Hence, no generalized gradients or ε−subdifferentials have to be provided and evaluated.
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6 Numerical Experiments and Data Availability

In this section we present three distinct instances of gas network simulations. An instance contains all necessary
information for the creation of a network model (9). These information are usually provided in the form of data
sheets using csv, xml, json or similar data formats and markup languages. Furthermore, this data is typically
divided and grouped into static information mostly regarding the network’s topology or dynamic information making
up a scenario. This is a useful separation as it is possible to have different scenarios addressing the same network
topology. The GasLib data base [Sch+17a; Sch+17b], although offering instances for time-stationary optimization of
gas networks only, follows the same data separation paradigm.

The details on all three instances presented here are publicly available. All necessary data regarding the first instance
is presented in this paper. The data regarding the second instance which we referred to as the single control valve
can be found in [HPS21]. The data of the 3rd or modified GasLib-40 is contained in [Str21]. Being called modified
the third instance is derived from the GasLib-40 instance from the aforementioned GasLib data base (see [Sch+17a;
Sch+17b] or gaslib.zib.de). Additional dynamical instances can also be found within [Ben+19].

The focus of our numerical experiments is on the employed routines to solve the overdetermined root problems, i.e.,
(18) or alternatively (19), created by the outer least-squares collocation integrator as described in Section 4. More pre-
cisely, we want to compare SALMIN with the trust region reflective algorithm mode of scipy.optimize.least_squares
from scipy [Vir+20]. We will henceforth refer to the latter simply as scipy-ls-trf for short. The scipy-ls-trf solver is
dedicated to solve differentiable overdetermined root problems in a least-squares sense. The robustness and accessi-
bility of scipy methods and routines turned them into a quasi-standard in python for numerical and computational
science research to solve various optimization and root solving tasks. Hence, the two central questions we aim to
contribute to are:

1. Is scipy-ls-trf a viable option within the simulation of piecewise differentiable gas network instances although
its convergence theory does not apply?

2. How does SALMIN perform in comparison?

For each instance we will compare in total four configurations of the two solvers. The four configurations either
address (18) directly or solve (19) instead. Furthermore, some configurations will be fed with automatically computed
derivative information whilst other rely on their build-in finite differences scheme. By the term derivative information
we refer to the Jacobian matrix for scipy-ls-trf or the abs-linear form (ALF, see Section 5) for SALMIN yielding the
following four configurations:

• SALMIN solving (19) and provided with ALFs computed by algorithmic differentiation,

• scipy-ls-trf-vec-jac solving (18) and provided with Jacobian matrices computed by algorithmic differentiation,

• scipy-ls-trf-jac solving (19) and provided with Jacobian matrices computed by algorithmic differentiation,

• scipy-ls-trf-nojac solving (19) and approximating Jacobian matrices internally by finite differences.

Furthermore, we will compare the performance of all four configurations while using monomial as well as Lagrange
basis functions for the representation for all polynomials from each subinterval of the piecewise polynomial xp ∈ Xp.
Hence, we deal with results from eight simulation runs per instance, i.e., all four configuration times the two polynomial
bases in consideration. We will use a constant time resolution or constant time step width h > 0 in the minute range
per instance. Finally, and to conclude the documentation of the experiment parameters, the collocation points Tp∩Ik
per subinterval Ik = [ak, bk] will be chosen as

Tp ∩ Ik ≡ {ak + i+1
M
· (bk − ak) | i = 0, 1, . . . ,M − 1},

where M = N + 1 (in the sense of Section 4).

Ultimately we will compare all configurations in terms of the number of function evaluations (nfev) as well as how
many generations of derivative operators (njev) have been invoked per solver configuration to fully integrate the
corresponding instance numerically. The shorthands nfev and njev are part of a nomenclature taken over from scipy
directly. Of course the letter j within njev were supposed to refer to term Jacobian matrix which makes sense in
context of scipy methods and solvers. In our experiments, however, the phrase derivative operator refers to the
ALF for the first configuration SALMIN, to the algorithmically computed Jacobian for the scipy-ls-trf-vec-jac as
well as scipy-ls-trf-jac configurations or to the finite difference approximation of a Jacobian in context of the last or
scipy-ls-trf-nojac configuration.
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Figure 2: Simulation result for the two pipes instance

6.1 Two Pipes

The first instance serves as a validation of the functionality of the SALMIN solver. We consider the simple network
of two connected pipes as depicted in Figure 1.

The pressure at the source node on the left is fixed at pset = 32[bar], while the flow going into the sink node on the
right is fixed at qset = 80

[
kg
s

]
. The initial values of the other pressures are given by the same value of 32[bar], the

other flows are starting with a value of 0
[

kg
s

]
. The simulation has been run with a step size of h = 30s.

The simulation results can be seen in Figure 2. The observed results are nearly identical to those obtained by an
implicit Euler scheme and the residuals of the system equations, starting at an order of 10−3, quickly tend to zero,
indicating a good approximation of the true solution.

The results also can be interpreted quite nicely. The network dynamics determine the gradient of the pressure p2

to be proportional to the difference of flows qr2 − ql2. Since qr2 is fixed by qset and ql2 starts at 0
[

kg
s

]
, a large flow

difference leads to a quickly dropping pressure p2. Likewise, the increasing pressure difference p2− p1 implies a surge
of the flow ql2. Similar arguments hold for p1 and ql1. After about 35 minutes, as the dynamic flows align to the
fixed flow qset, the pressures also stabilize. The network dynamic enters the steady state that is uniquely determined
by the boundary data.

Figures 3 and 4 demonstrate a particular dependence on the choice of polynomial basis functions already in this simple
example. While the convergence of the different configurations is almost perfectly steady in the case of Lagrange
basis functions, the configuration scipy-ls-trf-vec-jac shows a clearly unstable behavior when using monomial basis
functions. Furthermore, scipy-ls-trf-vec-jac causes 30 to 60 times more function and Jacobian evaluations than
SALMIN despite the fact that the resulting solution is far from the true one. SALMIN comes out ahead as the
clear winner with the least amount of function and Jacobian evaluations and a stable convergence behavior in the
monomial basis case. This is also true in the Lagrange basis case, albeit by a much more narrow margin. Table 3
aggregates the results.
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Figure 3: The two pipes instance – number of function evaluations nfev as well as number of Jacobian or
ALF evaluations njev per configuration and per time step utilizing monomial basis functions
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Figure 4: The two pipes instance – number of function evaluations nfev as well as number of Jacobian or
ALF evaluations njev per configuration and per time step utilizing Lagrange basis functions

Configuration Monomial base Lagrange base
label solves get derivative nfev njev nfev njev

SALMIN (19) yes 531 257 483 241
scipy-ls-trf-vec-jac (18) yes 17759 16727 524 524

scipy-ls-trf-jac (19) yes 2745 507 960 240
scipy-ls-trf-nojac (19) no 2678 400 960 240

Table 3: Aggregated table of total numbers per configuration, extracted from Figures 3 and 4
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6.2 The Single Control Valve

The second instance should be considered a nonlinear, nonsmooth modelling stress test as well as a benchmark on
simulating the active regulation behaviour of control valves. Although it is rather small in terms of its topology its
complexity stems from many changes of the target value controls. This instance had been hand crafted by experts
from the gas transportation industry solely as a demonstration of the hierarchical logic behind the many different
target values in use for control valves from gas networks [HPS21]. Hence, it never was nor is supposed to resemble
or reflect a desired control in the day-to-day transport operation. On the contrary, this instance, i.e., the scenario,
should be considered extreme in that it keeps itself artificially busy throughout. However, simulation technology has
to be able to withstand and solve it successfully.

The network comprises two pipes and a single control valve in a sequential configuration (see Figure 5). At any point
in time, 10

[
kg
s

]
are supplied at the source node IN0 on the left but simultaneously also taken from the sink node

OUT0 on the right. In other words, the networks supply and demand are constant and always balanced. An optimal
control of the control valve in the meaning of efficient network operation would be to do nothing and let the flow
pass unhindered. However, network efficient operation is not the goal here.

Instead, the following changes in control take place over time: Initially the target value for the flow qset (or q set
in Figure 5) forces the passing gas flow down onto 9

[
kg
s

]
, which the control valve actually can realize by creating

resistance. Correspondingly, the control valve builds up a pressure difference, as the left pressure p` (or p l in Figure
5) is rising and the right pressure pr (or p r in Figure 5) is falling. After the first hour, the target flow lifts up and pulls
the actual flow which leads to a rapid decline of the pressure difference until it gets balanced. After balancing the
input-to-output pressure ratio the actual flow returns and stabilizes at 10

[
kg
s

]
, although the target flow still demands

a higher flow, but control valves are not allowed to compress gas. At the beginning of the second hour the target
flow drops down to 6

[
kg
s

]
and pulls the actual flow with it. Once more, this leads to a build up in pressure difference

as well. Half an hour later, the target value for the flow as well as the actual flow will return together to 10
[

kg
s

]
and

hence the pressure difference becomes constant. Within the fourth hour, the upper limiting target value for the right
pressure pr (or p r upper from Figure 5) suddenly demands the actual right pressure to be reduced down to 47[bar].
The control valve is able to achieve this by shutting tightly momentarily. It is important to note here that any target
value for pressures overrides the target value for flow. In the transition from the fifth into the sixth hour, basically
the same happens again but driven by a sudden rise in the lower limiting target value for the left pressure pl (or
p l lower in Figure 5). The next three incidents take place between the sixth and the eighth hour, where we can
observe three spikes in the flow as a reaction of the right pressure pr (p r) being raised three times by lowering the
limiting target value for the right pressure pr (or p r lower in Figure 5) in rather small incremental steps. However,
the right pressure does not follow pr (p r lower) all the way up to 47[bar] during the third jump, because the left
pressure p` hits its lower limiting target value pl (p l lower). Thus, as a second important fact we point out that
target values for pressures that potentially decrease the gas flow overrule those that potentially increase it.

One first clear observation that can be obtained from the Figures 6 and 7 or Table 4 is the substantial impact of
the choice of the polynomial base. The various scipy related configurations are affected to various degrees. When
using monomial basis functions both Jacobian-fed scipy based configurations, i.e., scipy-ls-trf-jac as well as scipy-ls-
trf-vec-jac, demonstrate a very unstable convergence behaviour. They generate outlier statistics in Table 4 requiring
20 up to a 100 times more function evaluations and derivative operator computations. Furthermore, their demand
is fluctuating considerably from time step to time step. In contrast to this the same two configurations prove to
be quite competitive when using Lagrange basis functions. A rather strange side effect which we have double- and
triple-checked is that the pair of scipy-ls-trf-jac and scipy-ls-trf-nojac suddenly have an identical performance under
the use of the Lagrange basis. However, the single SALMIN configuration appears almost unaffected and hence
rather robust against the choice of the set of basis functions. Using either basis SALMIN always requires the least
number of function evaluations as well as the second and third lowest amount of derivative, i.e., ALF, computations
of all configurations. There is one noteworthy feature shared by SALMIN and scipy-ls-trf-vec-jac while using the
Lagrange base, namely the appearance of one spike in nfev and njev on a single time spot when the target value
pr pulls the pressure curve pr to rise up, which in turn causes the flow to spike up, too. The magnitude of the
flow spike correlates directly with the time step width or resolution h. This may be considered a deficiency of the
underlying control valve model which could be easily fixed by introducing slope limiter abs(q̇) ≤ cq̇ to cap the speed
of change of the flow. Such a slope limiter would also improve the behaviour of the SALMIN and scipy-ls-trf-vec-jac
configuration.
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top) and the flow (in the bottom) of the control valve; net topology plotted in between the graphs

Configuration Monomial base Lagrange base
label solves get derivative nfev njev nfev njev

SALMIN (19) yes 786 366 849 402
scipy-ls-trf-vec-jac (18) yes 17891 17836 901 867

scipy-ls-trf-jac (19) yes 85426 82475 1152 288
scipy-ls-trf-nojac (19) no 3851 509 1152 288

Table 4: Aggregated table of total numbers per configuration, extracted from Figures 6 and 7
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Figure 7: The single control valve instance – number of function evaluations nfev as well as number of
Jacobian or ALF evaluations njev per configuration and per time step utilizing Lagrange basis functions

6.3 The Modified GasLib-40

The final instance brings everything together into a small-sized network of 70 nodes that had been derived from the
GasLib-40 instance contained in gaslib.zib.de (see [Sch+17a; Sch+17b; Sch+17c]) which originally does consist of
40 nodes. The full list of differences between the original and the derived modified version can be found in [Str21].
However, the most relevant differences include

• relocation of all entry and exit nodes, where gas can be supplied and taken,

• introduction of a complex gas network station at the hearth of the network, allowing complex routing strategies
to take control over transport operations,

• addition of a time-dynamical, i.e., transient scenario.

The gas network station consists of a multitude of valves, a single control valve and three ideal compressors. The
transient scenario makes use of three distinguished principal configurations of the gas network station. All three
principal configurations are at display within Figure 8. As a brief reminder the scenario details are provided in
[Str21]. Within the first ten hours, using the principal configuration A, gas is pulled from the north west and north
east, gets compressed and pushed into the south. Within the next ten hours, using the principal configuration B, gas
from the north east gets distributed and pushed to the north west as well as the south. In the last chunk of about
ten hours, using the principal configuration C, the north east gets disconnected from the gas network station while
gas from the south is supplied to the north west.

Once more, we observe a distinct behaviour comparing simulations when using monomial versus Lagrange basis
functions. Another similarity between this instance and the single control valve instance is that the simulations
from the configurations scipy-ls-trf-jac and scipy-ls-trf-nojac when using Lagrange basis functions share an identical
performance according to Table 5. However, in many other aspects the results draw a different picture in comparison
to the single control valve instance. This time scipy-ls-trf-jac and scipy-ls-trf-nojac appear to suffer in terms of nfev
from choosing the monomial basis according to Table 5. On the other hand, scipy-ls-trf-nojac requires the least
amount of Jacobian approximations, i.e., njev, although SALMIN also requires relatively few computations of ALFs.
More precisely, SALMIN requires the second and third smallest amount of derivative computations, i.e., njev, across
both polynomial basis options. In other words, while different options and parameters fed to scipy have their sweet
spots here and there it is actually SALMIN offering consistently stable and low costs for solving this instance.
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a) general network topology as gas network circuit; b) enlargement of network station and three principal
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blocking flow in any direction, light green elements allow and actively control one-directional flow

Configuration Monomial base Lagrange base
label solves get derivative nfev njev nfev njev

SALMIN (19) yes 588 277 435 209
scipy-ls-trf-vec-jac (18) yes 394 362 503 484

scipy-ls-trf-jac (19) yes 15816 13869 744 186
scipy-ls-trf-nojac (19) no 2712 186 744 186

Table 5: Aggregated table of total numbers per configuration, extracted from Figures 9 and 10
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Figure 9: The modified GasLib-40 instance – number of function evaluations nfev as well as number of
Jacobian or ALF evaluations njev per configuration and per time step utilizing monomial basis functions
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Figure 10: The modified GasLib-40 instance – number of function evaluations nfev as well as number of
Jacobian or ALF evaluations njev per configuration and per time step utilizing Lagrange basis functions
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7 Conclusion and Outlook

We presented a modelling of gas networks with advanced features using differential algebraic equations including
models for valves, regulators, compressors and a topologically adaptive discretization of the isothermal Euler equations
for pipes and pipelines. In addition, the models for control valves and compressors allow their control via target values
reflecting their real world use within the dispatching of gas networks. For the actual numerical simulation, a least-
squares collocation approach is presented, where for each time step an overdetermined system of nonsmooth nonlinear
equations has to be solved. Besides targeting the system of equations directly, we also propose to reformulate this
task as the solution of a nonsmooth nonlinear optimization problem.

Four different variants for solving either the system of equations or the reformulated optimization problem using either
algorithmically computed or approximated derivatives are considered. Three of these approaches are already widely
used but ignore the inherent nonsmoothness of the underlying problems. The fourth approach relies on SALMIN,
which is a dedicated optimization algorithm for nonsmooth problems. This new approach explicitly exploits the
nonsmooth character of the optimization problem.

The obtained numerical results validate the proposed approach based on a modelling using DAEs in combination with
a least-squares collocation and the nonsmooth solver SALMIN. Furthermore, it is illustrated that this nonsmooth
optimization approach using abs-linearization outperforms the already established solvers in several ways. For once,
the numbers of function evaluations and derivative computations, gathered to measure the computational work, as
required by SALMIN range among the smallest, hence most efficient of all four choices across all gas network simulation
instances. In addition to that, all three other options are very sensitive regarding the choice of the polynomial basis
functions used to represent the numerical solution. Although we can achieve good results when using the Lagrange
basis, the three classical approaches do suffer from choosing the monomial basis instead and without hinting a clear
pattern in which way or why exactly. In total contrast the SALMIN approach does not suffer from the choice of
either polynomial basis in consideration, instead always achieving good performance at equally good results.

The three gas network instances in consideration have been carefully designed with the ideal of bringing mathematics
into application in mind. Each one of these instances is relevant as it adopts real world aspects. Hence, this
feasibility study proves the potential of implementing and integrating our approaches, the overall framework and its
models into the gas transportation industry. Furthermore, we pave the way for further theoretical studies comprising
for example the theory concerning the proposed integration approach like error estimators. Here, one could also
take the inexact solution of the optimization problems in each time step into account. Furthermore, nonsmooth
generalization of collocation incorporating abs-polynomial expansions as developed within [Str21; STG21; GST21]
should be considered next.
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