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Abstract. In a recent article the so called continuous stochastic gradient method (CSG) for the efficient solu-5
tion of a class of stochastic optimization problems was introduced. While the applicability of known6
stochastic gradient type methods is typically limited to so called expected risk functions, no such7
limitation exists for CSG. The key to this lies in the computation of design dependent integration8
weights, which allows for an optimal usage of available information leading to stronger convergence9
properties. However, due to the nature of the formula for these integration weights, the practical10
applicability was essentially limited to problems, in which stochasticity enters via a low-dimensional11
and suficiently simple probability distribution. In this paper the scope of the CSG method is sig-12
nificantly extended presenting new ways of calculating the integration weights. A full convergence13
analysis for this new variant of the CSG method is presented and its efficiency is demonstrated in14
comparison to more classical stochastic gradient methods by means of a number of problem classes,15
relevant in stochastic optimization and machine learning.16

1. Introduction. In the context of optimization problems in which the expected-value of17

a cost function j is minimized, i.e.,18

(1.1) min
θ∈Θad

E[j(θ,X)] =

∫
X
j(θ, x)µ(dx)19

with probability measure µ and the associated random variables X, a variety of different20

stochastic optimization schemes has been developed in the past, e.g., [7, 12, 13, 22, 24].21

Among the most popular algorithms are the stochastic gradient method (SG) [17] and its22

modification the stochastic average gradient method (SAG) [18], both of which shine with23

their low iteration cost and have been analyzed extensively. a variety of different stochastic24

optimization schemes has been developed in the past. Among the most popular algorithms are25

the stochastic gradient method (SG) [17] and its modification the stochastic average gradient26

method (SAG) [18]. Both of these methods have been analyzed extensively in literature and27

are characterized by a low cost per iteration.28

Nonetheless, SG and SAG face a number of known disadvantages, like the lack of efficient29

stopping criteria (cf. [15]) or optimal stepsize rules (cf. [14, 19]). To tackle these issues,30

a whole variety of modified SG methods can be found in the literature. For example, [7]31

uses a trust-region-type model to normalize the steplengths, whereas the iSARAH algorithm32

proposed in [13] combines an inner SG scheme with an outer (inexact) full gradient descent33

method.34

Another disadvantage of SG is the quite restrictive setting of (1.1). [22] and [24] sug-35

gest inexact proximal stochastic second-order methods and stochastic primal-dual fixed-point36

methods to allow for a different type of objective function appearing in (1.1). In the case that37

the constraints include expected-valued functions, a level set method is analyzed in [12].38
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An even wider class of problems, can be solved by the continuous stochastic gradient39

method (CSG) proposed in [16]. The reason is that combining the information collected in40

previous iterations in an optimal way, CSG gains a significantly improved gradient approxi-41

mation and is able to estimate the current objective function value during the optimization42

process. For a characterization of the class of problems CSG can solve, we refer to Remark43

2.3. Here we just note that among them are objective finctions with nested expectation values44

(Section 5.2) and problems with chance constraints (Section 5.3).45

While this is already known from the original version of CSG [16], there is also a serious46

drawback: in order to approximate function values and gradients in the above mentioned47

way, integration weights have to be computed by an analytical formula, which requires full48

knowledge about the probability measure µ. Moreover the evaluation is based on a Voronoi49

diagram, whose computation is not tractable, if the dimension of the parameter set X is larger50

than 2. As a consequence, in [16] only examples with a one-dimensional uniform distribution51

were presented.52

In this contribution, we expand the setting of CSG even further by introducing new meth-53

ods of calculating the weights used for the gradient and cost function value approximations.54

This enables us to apply the CSG algorithm to problems of higher dimension, to arbitrary55

measure µ and even to problems where the measure µ appearing in (1.1) might be unknown,56

e.g., in a data-driven context.57

Depending on the concrete setting, i.e., depending on the dimensions of θ, x and on how58

time-consuming the evaluation of a gradient sample is, the different methods allow us to59

continuously trade weight-computation time and speed of convergence (w.r.t. number of60

gradient sample evaluations).61

In this article we present of a full convergence analysis for the CSG method extended in62

this way. In particular, we show that the error in the gradient approximation as well as in63

the objective function value approximation vanish as the number of steps increases. As a64

consequence these values can be utilized, for instance, to apply stopping criteria based on first65

order optimality conditions. Moreover, this potentially allows, to combine the CSG method66

with slightly adapted step length strategies as they are known from the world of deterministic67

optimization methods, a topic we leave open for future research.68

The remaining structure of the paper is as follows. In Section 2, the mathematical structure69

of the problems, we would like to solve by the CSG method is outlined in details. In Section 3,70

the CSG method with generalized weight computation is presented. Section 4 is devoted to71

the convergence analysis and in Section 5 we compare the generalized CSG method to more72

traditional SG-type algorithm using three different classes of test problems.73

2. Problem setting and definitions. Following the classic setup for expected-value ob-74

jective functions, we introduce the set of admissible designs P ⊂ Rddes and the parameter75

set X ⊂ Rdpar , where ddes, dpar ∈ N. In the optimization process, the drawn random samples76

x1, x2, . . . from the parameter set X are assumed to be realizations of independent uniformly77

random variables Xi ∼ µ for all i ∈ N, i.e., X1, X2, . . . are independent and follow an under-78

lying probability distribution µ, which may be unknown.79

To be precise, we define the following probability space setup:80
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Definition 2.1 (Probability space setup). The probability space (Ω,A,P) is given by81

Ω := XN,P := µ⊗N,

A := σ({A1 × . . .×An : Ai ∈ B(X ), ∀i, n ∈ N}),
82

where µ⊗N(A1× . . .×An) =
∏n
i=1 µ(Ai) is the product measure, µ is a probability measure on

X and σ(·) is the smallest σ-field that contains ·. We denote by supp(µ) the support of the
measure µ, i.e.,

supp(µ) := {x ∈ X : µ(Bε(x)) > 0 ∀ε > 0},

where Bε(x) denotes an open ball of radius ε > 0 around x ∈ X . We write Xn : Ω → X ,83

(ωk)k∈N 7→ ωn for the projection to the n = 1, 2, . . . coordinate and define X := X1.84

With this setup, the objective function takes the following form:85

Definition 2.2 (Objective function). The objective function J : P → R is given by86

J(θ) := E
[
j(θ,X)

]
=

∫
X
j(θ, x)µ(dx)87

with a measurable function j ∈ C1(P × X ;R) and random variable X.88

Remark 2.3 (Generalization of the setting). During the optimization process, we may89

also generate an approximation Ĵn to the exact objective function value J(θn) with almost no90

additional computational cost. We will show later that ‖Ĵn−∇J(θn)‖P → 0 (see Remark 4.8).91

This enables us to solve a much broader class of optimization problems, where the objective92

function may depend non-linearly on the expression above, i.e.,93

J̃(θ) := f
(
θ,E[j(θ,X)]

)
,94

with a Lipschitz continuously differentiable function f : P × R → R. Included in the set of95

possible objective functions are for example tracking functionals96

J̃(θ) := 1
2

∥∥h(θ, ·)− f(θ,E[j(θ, ·, X)])
∥∥2

L297

and nested expected values98

J̃(θ) := EY
[
f(Y,EX [j(θ,X)])

]
.99

Notice that such settings can not be solved by SG algorithms.100

As we are aiming for a gradient based optimization scheme, we further state the derivative of101

the objective functional:102

Lemma 2.4 (Derivative of objective function). The gradient of the objective functional J is103

given by ∇J(θ) = E
[
δ(θ,X)

]
, where X ∼ µ and δ : P × X → Rddes denotes ∇1j(θ, x).104

Proof. This is a direct consequence of the linearity of the expectation value and the finite-105

dimensional derivative of j. Integration and differentiation can be exchanged due to the106

Lipschitz continuity of the integrand w.r.t. the integration variable.107
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In order to state and prove convergence results for the algorithm presented in this work,108

we define the norms on the used spaces as follows:109

Definition 2.5 (Norms on X ,P and P ×X ). In this contribution, we will use for the norm110

on the underlying spaces of the parameter space X and the design space P the notation ‖ · ‖X111

and ‖·‖P respectively. Due to norm-equivalence in finite dimensional spaces, the norm used in112

the spaces P,X does not have to be specified and can be chosen problem specific. In addition,113

we define on P × X the following metric:114

d
(
(θ, x), (θ̂, x̂)

)
:=
∥∥(‖θ − θ̂‖P , ‖x− x̂‖X )∥∥1

∀(θ, θ̂, x, x̂) ∈ P2 ×X 2.115

Choosing the 1-norm in the three-dimensional space as“outer”-norm is arbitrary and could116

for instance - in the other extreme case - be the ∞-norm and of course could include positive117

weights for each individual component.118

Assumption 2.6 (Regularity of the δ). We assume δ : P × X → Rddes to be bounded and119

Lipschitz continuous, i.e., there exist constants C
δ
, L

δ
∈ R>0 s.t.120 ∥∥δ(θ, x)

∥∥
P
≤ C

δ∥∥δ(θ, x)− δ(θ̂, x̂)
∥∥
P
≤ L

δ

(
‖θ − θ̂‖P + ‖x− x̂‖X

)121

for all θ, θ̂ ∈ P and x, x̂ ∈ X . A sufficient condition therefore is to assume ∇j to be Lipschitz122

continuous in both arguments.123

For the convergence analysis of Algorithm 3.1, the following assumptions on the sets P,X124

and the measure µ are an important ingredient.125

Assumption 2.7 (Regularity of P, X and the measure µ). The set P ⊂ Rddes is compact126

and convex. supp(µ) ⊂ X with X ⊂ Rdpar is open and bounded. In addition, there exists127

M1 ,M2 ,M3 > 0 s.t. ∀ε ∈ (0,M3) there exists Xε ⊂ X satisfying µ(Xε) ≥ 1−M1ε and128

inf
x∈Xε

µ
(
Bε(x)

)
≥ M2ε

dpar ,129

where Bε(x) ⊂ X is an open ball with radius ε centered in x ∈ X .130

Remark 2.8 (Examples for Assumption 2.7). In most cases, the choice Xε = X is suitable,131

for example when X satisfies the uniform cone condition (cf. [1, Definitioin 4.8]). However,132

there exist cases where the possibility of choosing Xε ⊂ X in the condition of Assumption 2.7133

allows to consider even more general measures and sets.134

As example therefore, let X := {1/n : n ∈ N} and µ :=
∑∞

k=1 2−kδk−1(s). Then, for135

Mn := [n−1, 1] ∩ X , it holds136

µ(Mn) =
n∑
k=1

2−k = 1− 2−n.137

Thus for ε = 2−n and c′ = 1 we obtain µ(Mn) ≥ 1−c′ε and infx∈Mn µ(Bε(x)) ≥ 2−n = ε. Since138

infx∈X µ(Bε(x)) = µ(Bε(0)) = 21−2n , there exists no c > 0 such that 21−2n ≥ c2−n ∀n ∈ N.139

For a uniform distribution and for all 0 < p ≤ ∞, the open p−Balls140

X p :=
{
x ∈ Rdpar : ‖x‖p < 1

}
141
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satisfy Assumption 2.7 as well. While case 1 ≤ p ≤ ∞ allows for X pε = X p, for 0 < p < 1 we142

first have to obtain X pε by trimming of the spikes of X .143

3. The algorithm. To state the algorithm, we first define the projection operator which144

ensures the sequence of generated designs (θn)n∈N to be in the set P.145

Definition 3.1 (Orthogonal projection). We define the – in the sense of ‖ · ‖P – orthogonal146

projection onto the set P as follows:147

ProjP(θ) := arg min
θ̂∈P

∥∥θ − θ̂∥∥
P
.148

Note that the existence and uniqueness of ProjP is guaranteed by the projection theorem (see149

e.g. [3]) building on the convexity of P as assumed in Assumption 2.7.150

Lemma 3.2 (Properties of ProjP). Let P ⊂ Rddes satisfy Assumpption 2.7. Then the151

following holds for all x, y ∈ Rddes and z ∈ P:152

(a) (ProjP(x)− x)T (ProjP(x)− z) ≤ 0,153

(b) (ProjP(y)− ProjP(x))T (y − x) ≥ ‖ProjP(y)− ProjP(x)‖2P ≥ 0,154

(c) ‖ProjP(y)− ProjP(x)‖P ≤ ‖y − x‖P .155

Proof. A proof of (a) can be found in [3, Thm. 1.4.1 (ii)], (b) and (c) correspond to (iii)156

and (ii) in [3, Prop. 1.4.1] respectively.157

Given θ1, n = 1 and a sequence x1, x2, . . . of inputs, where we assume that they are158

realizations of the independent random variables X1, X2, . . . introduced in Section 2, the CSG159

method for the (possibly unknown) measure µ is given in Algorithm 3.1.

Algorithm 3.1 CSG method

1: while Termination condition not met do
2: Sample objective function (optional):

jn := j(θn, xn)
3: Sample gradient:

gn := ∇θj(θn, xn)
4: Calculate weights αk
5: Calculate search direction:

Ĝn := 1
n

∑n
k=1 αkgk

6: Approximation to objective function value (optional):

Ĵn := 1
n

∑n
k=1 αkjk

7: Choose stepsize τn
8: Gradient step:

θn+1 := ProjP
(
θn − τnĜn

)
9: Update index:

n← n+ 1

10: end while

160
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3.1. Calculating the weights. The quality of the weights αk appearing in Algorithm 3.1161

greatly impacts the accuracy of the gradient approximation Ĝn and therefore directly in-162

fluences the overall performance of the CSG method. On the other hand, a more optimal163

computation of the weights might be time-consuming. Since the trade-off between the time164

spent calculating the weights and the time gained by performing fewer gradient evaluations is165

heavily problem-specific, we propose four different methods for the weight-calculation in the166

nth step:167

Exact. Following an exact nearest neighbor approximation for the integral168

∇J(θn) =

∫
X
∇θj(θn, x)µ(dx),169

for each k = 1, . . . , n we define the set170

Mk :=
{
x ∈ X : d

(
(θn, x), (θk, xk)

)
< d
(
(θn, x), (θj , xj)

)
for all j ∈ {1, . . . , n} \ {k}

}
,171

i.e., the set of points x ∈ X such that (θn, x) is closer to (θk, xk) than to any other previous172

evaluation point. Assuming that the measure µ is known, we then set αk := µ(Mk). This173

method has been thoroughly analyzed in [16] and yields the best possible approximation to174

the exact gradient, but is computationally infeasible for problems of high dimensions.175

Empirical. Utilizing the properties of the empirical measure µn (see Remark 4.6), we may176

replace the exact weights mentioned above by the empirical weights177

αk :=
1

n

n∑
i=1

1Mk
(xi) = µn(Mk) ≈ µ(Mk),178

where 1Mk
denotes the indicator function of the set Mk. Note that the computation of the179

empirical weights requires no knowledge of µ and is also feasible for high-dimensional problems,180

but needs many samples xi to approximate the exact gradient with a high accuracy.181

Exact hybrid. Assuming that the dimension of X is much smaller than the dimension of182

P, we might treat the designs and parameters separately. Instead of Mk, we now consider the183

sets184

M̃i =
{
x ∈ X : ‖x− xi‖X ≤ ‖x− xj‖X for all j = 1, . . . , n

}
, i = 1, . . . , n.185

The αk are now calculated as a combination of the empirical and exact method186

(3.1) αk :=
n∑
i=1

1Mk
(xi)µ(M̃i).187

Inexact hybrid. As for the exact weights, the calculation of the exact hybrid weights188

requires knowledge of µ. If µ is unknown, we may replace the factor µ(M̃i) in (3.1) by an189

empirical approximation. Since this only requires samples of X, which we assume to have a190

plenitude of, we can control the quality of this approximation through the number of samples191

we draw. The inexact hybrid weights are therefore calculated as follows:192

αk :=
1

bnβc

n∑
i=1

1Mk
(xji)

bnβc∑
m=1

1
M̃ji

(xm),193
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Figure 1. Absolute error |θn − θ∗| in iteration n for the setting P = [− 1
2
, 1
2
] = X , j(θ, x) = 1

2
(θ − x)2 and

X ∼ UX . The curves correspond to the median of 1000 runs with constant stepsizes τn = 1 and randomized
starting points in P.

where β ≥ 1, bnβc is the total number of samples we have drawn until step n and xji denote194

the samples where ∇θj(θ, x) has been evaluated at.195

Figure 1 shows that the inexact hybrid method allows us to interpolate between the purely196

empirical method and the exact hybrid variant by choosing β appropriately.197

Remark 3.3. In general, the nearest neighbor approximation, which is used in all methods198

mentioned above, worsens as the dimension of P × X increases (cf. [4]). Especially for199

problems where dim(P) � dim(X ), results from Monte Carlo integration ([23]) suggest that200

the performance boost gained by better weight calculation starts to become negligible. The201

proposed CSG methods are therefore best suited for optimization problems where X is of202

small dimension when compared to P and the evaluation of j(θ, x) is time-consuming.203

Furthermore, the metric d should be chosen problem-specific to ensure the best possible204

performance.205

Remark 3.4 (SAG and SG as two extreme cases of the algorithm).206

As stated in Definition 2.5, our metric d can be chosen as207

d
(
(θ, x), (θ̂, x̂)

)
= a1‖θ − θ̂‖P + a2‖x− x̂‖X ,208

where a1, a2 > 0 are arbitrary. By choosing a1 � a2, the nearest neighbor to (θn, x) is almost209

exclusively determined by the distance in the design variable. Hence, for the weights αk we210

get αn ≈ 1 and α1, . . . , αn−1 ≈ 0, i.e., the CSG algorithm will behave very similar to the usual211

SG algorithm.212

Analogously, choosing a1 � a2 will lead to a performance similar to SAG.213

4. Convergence analysis. In this section we will study the convergence of the proposed214

algorithm. By the matter of the randomly chosen evaluation point within the algorithm, we215
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will have to study probabilistic convergence behaviour in terms of “almost sure convergence”.216

Therefore, we first state first order optimality conditions, assumptions on the regularity of the217

involved functions as well as the steplength τ and a suitable probability space setting.218

4.1. Optimality conditions and assumptions. For h ∈ C1(P) and P convex we have the219

following equivalent sufficient conditions for first order optimality:220

Corollary 4.1 (Optimality conditions). For all θ∗ ∈ P the following items are equivalent:221

(a) −∇h(θ∗)T (θ − θ∗) ≤ 0 ∀θ ∈ P222

(b) P(θ∗ − t∇h(θ∗)) = θ∗ ∀t ≥ 0.223

A point θ∗ ∈ P satisfying these conditions is called a stationary point.224

Proof. The proof can be found in e.g. [16].225

In order to guarantee that Algorithm 3.1 generates a convergent subsequence, the stepsizes226

have to be damped, i.e., (τn)n∈N has to be a null series with upper and lower bound as stated227

in the following Assumption. However, in contrast to the ordinary stochastic gradient decent228

method, if Algorithm 3.1 generates – with stepsizes satisfying τn ≥ τ > 0 ∀n ∈ N – a229

convergent sequence, the limit point is a stationary point of the objective function too. This230

is shown in Theorem 4.11.231

Assumption 4.2 (Steplength). The steplength (τn)n∈N in Algorithm 3.1 satisfies the fol-232

lowing: ∃N ∈ N, S,S ∈ R>0 and D ∈
(
0, 1

max{dpar,2}
)

s.t.233

Sn−1 ≤ τn ≤ Sn
−1+ 1

max{dpar,2}
−D ∀n ∈ N>N .234

These bounds on the steplength satisfy the conditions stated in [17, Eqns. (6) and (26)] as235

well as equivalently in [6, Eqn. (4.19)] in the one-dimensional case and can be seen as a higher236

dimensional equivalent.237

In the following we assume that these assumptions are always satisfied without mentioning238

it explicitly.239

4.2. Error in the search direction. In this subsection we analyse the error in the n−th240

iteration of the search direction Ĝn and the gradient of the objective functional ∇Jn. For241

this, we define the following random variables:242

Definition 4.3 (Random variables). For x ∈ X and ω ∈ Ω the sequence of random variables243

(Zn)n∈N with Zn : Ω×X → R≥0 is defined by244

Zn(ω, x) := min
k=1,...,n

d
(
(Θk(ω), Xk(ω)), (Θn(ω), x)

)
,245

where the designs Θk ∈ P for k > 1 depend by their construction on the initial design Θ1 and246

all “previous” random variables X1(ω), . . . , Xk−1(ω), i.e.,247

Θk(Θ1, X1(ω), . . . , Xk−1(ω))248

and thus is also a random variable. We shorten this dependency by the notation Θk(ω).249

This random variable fulfills the following property:250
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Lemma 4.4. For µ almost all x ∈ supp(µ)251

∞∑
n=1

P (Zn(·, x) > εn) <∞ and

∞∑
n=1

sup
x∈Xεn

P (Zn(·, x) > εn) <∞,252

with253

(4.1) εn :=
C
δ
S

1−2
− 1

2max{dpar,2}
· n−

D
2 + ε̃n and ε̃n := n

D
2
− 1

2max({dpar,2} .254

Therein, C
δ

is defined in Assumption 2.6, Xεn in Assumption 2.7 and S,D in Assumption 4.2.255

Proof. We first define i0 ∈ N as an auxiliary index as follows:256

i0 := dn− an + 1e with an := n
1+D

2
− 1

max{dpar,2} .257

By construction, we have258

P(Zn(·, x) ≥ εn) ≤ P
(

min
k=i0,...,n

d((Θk, Xk), (Θn, x))) ≥ εn
)

≤ P

(
n−1∑
i=i0

‖τiĜi‖P + min
k=i0,...,n

‖Xk − x‖X ≥ εn

)

≤ P

(
C

δ

n−1∑
i=i0

τi + min
k=i0,...,n

‖Xk − x‖X ≥ εn

)
.

259

Observe that for n > 2 we obtain for all κ ∈ (0, 1)260

n−1∑
i=i0

1

iκ
≤
∫ n

i0−1

1
sκ ds =

1

1− κ
·
(
n1−κ − (dn− ane)1−κ) ≤ 1

1− κ
·
(
n1−κ − (n− an)1−κ)

=
1

1− κ
·
(
n

nκ
− n− an

(n− an)κ

)
=

n

1− κ
·
(

(n− an)κ − nκ

nκ · (n− an)κ

)
+

an
(1− κ)(n− an)κ

=
n

1− κ
·
(
nκ(1− an/n)κ − nκ

nκ · (n− an)κ

)
+

an
(1− κ)(n− an)κ

.

261

Applying Bernoulli’s inequality in the first term, we conclude262

n−1∑
i=i0

1

iκ
≤ n

1− κ
·

(
nκ
(
1− κ · ann

)
− nκ

nκ · (n− an)κ

)
+

an
(1− κ)(n− an)κ

263

=
1

1− κ
·
(
−κan

(n− an)κ

)
+

an
(1− κ)(n− an)κ

264

=
an

(n− an)κ
=
an
nκ

(1− an
n )−κ.(4.2)265

266
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Combining Assumption 4.2 and (4.2) yields267

n−1∑
i=i0

τi ≤ S
n−1∑
i=i0

1

i
1+D− 1

max{dpar,2}
≤ S annκ (1− an

n )−κ,268

with D ∈
(

0, 1
max{dpar,2}

)
and κ := 1 + D− 1

max{dpar,2} ∈ (0, 1). Hence, for n ≥ 2 we obtain269

(
1− an

n

)−κ
=

(
1− n

D
2
− 1

max{dpar,2}

)−κ
≤
(

1− n−
1

2max{dpar,2}
)−κ
≤
(

1− 2
− 1

2max{dpar,2}
)−1

.270

Collecting these results, we see271

n−1∑
i=i0

τi ≤
S

1− 2
− 1

2max{dpar,2}

an

n
1+D− 1

max{dpar,2}
≤ S

1− 2
− 1

2max{dpar,2}
n−

D
2 .272

Consequently,273

n−1∑
i=i0

‖τiĜi‖P ≤
C

δ
S

1− 2
− 1

2max{dpar,2}
n−

D
2 = εn − ε̃n.274

By Assumption 2.7, µ(X \ Xεn) → 0. Hence, for µ almost all x ∈ supp(µ), there exists275

n ∈ N large enough, such that x ∈ Xεn . Therefore,276

P(Zn(·, x) ≥ εn)

≤ P
(

min
k=i0,...,n−1

‖Xk − x‖X ≥ ε̃n
)

≤ P
(
‖Xk − x‖X ≥ ε̃n ∀k ∈ {i0, . . . , n− 1}

)
=

n−1∏
k=i0

P
(
‖Xk − x‖X ≥ ε̃n

)
=

n−1∏
k=i0

(
1− µ

(
Bε̃n(x)

))
≤
(

1−min
{

M2(ε̃n)dpar , 1
})an

.

277

As ε̃n → 0, there exists N ∈ N s.t. for n ≥ N we obtain278

P(Zn(·, x) ≥ εn) ≤
(

1−M2n
dpar D

2
− dpar

2max{2,dpar}

)an
.279

For simplicity, we define280

c1 :=
dpar D

2
− dpar

2 max{2, dpar}
281
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and recall that log(1− x) ≤ −x for all x < 1. Since c1 < 0, for n large enough it holds282 (
1−M2n

dpar D

2
− dpar

2max{2,dpar}

)an
= (1−M2n

c1)an = exp (an log (1−M2n
c1))

≤ exp (−anM2n
c1) = exp

(
−M2n

1+D
2
− 1

max{2,dpar}
+
dpar D

2
− dpar

2max{2,dpar}

)

=


exp

(
−M2n

1+D− 1
2
− 1

4

)
dpar = 1

exp

(
−M2n

1+D
2
− 1
dpar

+
dpar D

2
− 1

2

)
dpar ≥ 2

≤ exp
(
−M2n

D
)
.

283

Recall that there is N ∈ N such that exp(−x) ≤ x−
2
D for all x ≥ N . It follows that for all n284

large enough: exp(−M2n
D) ≤ M

− 2
D

2 n−2. Hence,285

∞∑
n=N

(
1−M2n

dpar D

2
− dpar

2max{2,dpar}

)an
≤
∞∑
n=N

exp
(
−M2n

D
)
≤
∞∑
n=N

M
− 2

D
2 n−2

286

and thus287
∞∑
n=1

P (Zn(·, x) > εn) <∞.288

Finally, note that Assumption 2.7 gives289

sup
x∈X εn

P(Zn(·, x) ≥ εn) ≤
(

1− c · n
D
2

an

)an
=
(

1− c · n
1

max{dpar,2}
−1
)an

290

with c > 0. By the same steps as above, we obtain291

∞∑
n=1

sup
x∈Xεn

P (Zn(·, x) > εn) <∞.
292

As a direct consequence of the latter result we get almost sure convergence.293

Corollary 4.5. For µ almost all x ∈ supp(µ)294

Zn(·, x)
a.s.−→ 0 for n→∞.295

Proof. The result follows by Lemma 4.4 and the Borel-Cantelli Lemma (see for example296

Theorem 2.7 in [11]).297

Remark 4.6 (Empirical distribution). The empirical measure defined as298

(4.3) µn :=
1

n

n∑
i=1

δXi299

satisfies µn ⇒ µ as n → ∞ almost surely, see [20, Theorem 3]. Here ⇒ denotes the weak300

convergence of measures which is the weak-∗ convergence in dual space theory, i.e.,301

µn ⇒ µ iff

∫
X
f(x)µn(dx)→

∫
X
f(x)µ(dx) ∀f ∈ Cb(X ,R).302
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See for instance [5] for the empirical distribution and [8, Section 7.3] for a functional303

analytical perspective on weak-* convergence in the discussed function space setting.304

Since this property of µn is all we need in the following proofs and since the measures305

µeh
n :=

n∑
i=1

δXiµ(M̃i) and µih
n :=

n∑
i=1

δXjiµbnβc(M̃ji) ,306

corresponding to exact hybrid weights and inexact hybrid weights respectively, satisfy µeh
n ⇒ µ307

and µih
n ⇒ µ as well, we will w.l.o.g. work with empirical weights only.308

Thus, due to the Lipschitz continuity of δ as defined in Theorem 2.6, the expected value309

∇J(θ) = E[δ(θ,X)] is for n→∞ better and better approximated by Ĝn:310

Theorem 4.7 (Error in gradient approximation).311

The norm of the difference between the search direction Ĝn and the gradient of the objective312

functional E[δ(Θn, X)] vanishes for n→∞, i.e.,313

‖Ĝn − E[δ(Θn, X)]‖P
a.s.−→ 0 and lim

n→∞
E
[
‖Ĝn − E[δ(Θn, X)]‖P

]
= 0.314

Proof. For x ∈ supp(µ) define315

kn(ω;x) := arg min
k=1,...,n

d
(
(Θk(ω), Xk(ω)), (Θn(ω), x)

)
.316

For Ĝn as generated by Algorithm 3.1 with n ∈ N arbitrary but fixed the following holds:317

‖Ĝn − E[δ(Θn, X)]‖Y318

=

∥∥∥∥ n∑
i=1

∫
X
δkn(ω;x)(i)δ(Θi(ω), xi)µn(dx)−

∫
X
δ(Θn(ω), x)µ(dx)

∥∥∥∥
Y

319

≤
∥∥∥∥∫
X

n∑
i=1

δkn(ω;x)(i)δ(Θi(ω), xi)− δ(Θn(ω), x)µn(dx)

∥∥∥∥
Y

320

+

∥∥∥∥∫
X
δ(Θn(ω), x)µn(dx)−

∫
X
δ(Θn(ω), x)µ(dx)

∥∥∥∥
Y

321

≤ L
δ

∫
X
Zn(ω, x)µn(dx) +

∥∥∥∥∫
X
δ(Θn(ω), x)µn(dx)−

∫
X
δ(Θn(ω), x)µ(dx)

∥∥∥∥
Y

,(4.4)322

323

where µn is the empirical measure given in Remark (4.3) and L
δ

the Lipschitz constant defined324

in Assumption 2.6. We need to prove that both terms in (4.4) vanish for n→∞.325

For the first term, the uniform (in n) Lipschitz continuity of Zn(ω, ·) yields326 ∫
X
Zn(ω, x)µn(dx) =

∫
X
Zn(ω, x)µ(dx) +

∫
X
Zn(ω, x)µn(dx)−

∫
X
Zn(ω, x)µ(dx)

≤
∫
X
Zn(ω, x)µ(dx) + LZdW (µn, µ),

327
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where dW denotes the Wasserstein distance of the measure µn and µ (see [10]). Since X is328

bounded, [10, Theorem 6] gives that the Wasserstein distance metrizices the weak topology on329

the set of probability measures on X . Since µn ⇒ µ almost surely, this gives dW (µn, µ) → 0330

almost surely. Furthermore, by Assumption 2.6, there exists C > 0 s.t. 0 ≤ Zn ≤ C. Using331

Corollary 4.5, we obtain Zn(ω, x)→ 0 for almost all ω ∈ Ω. Therefore, Lebesgue’s dominated332

convergence theorem yields333 ∫
X
Zn(ω, x)µ(dx)→ 0 for almost all ω ∈ Ω.334

In order to show that the second part of (4.4) vanishes, observe that335 ∥∥∥∥∫
X
δ(Θn(ω), x)µn(dx)−

∫
X
δ(Θn(ω), x′)µ(dx′)

∥∥∥∥
P

=

∥∥∥∥∫
X×X

δ(Θn(ω), x)− δ(Θn(ω), x)Qn(d(x, x′))

∥∥∥∥
P

≤ L
δ

∫
X×X

‖x− x′‖XQn(d(x, x′)),

336

where Qn(· × X ) = µn and Qn(X × ·) = µ is an arbitrary but fixed coupling of µn and µ.337

By taking the infimum of all such couplings, we again obtain the Wasserstein distance dW of338

the measure µn and µ, i.e.,339

(4.5)

∥∥∥∥∫
X
δ(Θn(ω), x)µn(dx)−

∫
X
δ(Θn(ω), x)µ(dx)

∥∥∥∥
P

≤ L
δ
dW (µn, µ).340

By the same arguments as mentioned earlier, dW (µn, µ) → 0 almost surely. Combining all341

the above facts gives342

‖Ĝn − E[δ(Θn, X)]‖P → 0343

almost surely. Since the above quantities are bounded, the almost sure convergence also344

implies the convergence in expectation via Lebesgue’s dominated convergence theorem.345

Remark 4.8. Due to the regularity of J , we can show346

‖Ĵn − J(θn)‖P → 0347

analogously to the proof of Theorem 4.7.348

Theorem 4.9 (Sum of error in gradient approximation). The expectation value of the summed349

norm of the difference between the search direction Ĝn and the gradient of the reduced objective350

functional ∇J weighted by the respected stepsize τn vanishes for n→∞, i.e.,351

(4.6)

∞∑
n=1

τnE
[
‖Ĝn − E[δ(Θ, X)]‖P

]
<∞.352
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Proof. Recall from the proof of Theorem 4.7 that353

E
[
‖Ĝn − E[δ(Θn, X)]‖P

]
≤ L

δ
E
[∫
X
Zn(ω, x)µn(dx)

]
354

+ E

[∥∥∥∥∫
X
δ(Θn(ω), x)µn(dx)−

∫
X
δ(Θn(ω), x)µ(dx)

∥∥∥∥
P

]
.(4.7)355

356

We start with deriving an upper bound for the first term on the right hand side of the latter357

inequality. Recall the definition of ε̃n in Lemma 4.4, i.e.,358

ε̃n := n
− 1

max{2,dpar}
+D

2359

with D as defined in Assumption 4.2. Then, analogue to Lemma 4.4 (cf. the proof and the360

notation there), together with361

D := sup
(θ̃,x̃),(θ̂,x̂)∈P×X

d((θ̃, x̃), (θ̂, x̂)),362

we obtain the following estimate:363

E
[∫
X
Zn(·, x)µn(dx)

]
= E

[∫
X
Zn(·, x)1Zn(·,x)≤ε̃n(x) + Zn(·, x)1Zn(·,x)>ε̃n(x)µn(dx)

]
≤ ε̃n +DE

[∫
X

1Zn(·,x)>ε̃n(x)µn(dx)

]
≤ ε̃n +DE

[∫
X

n∏
k=1

1d((Θk(·),Xk(·)),(Θn(·),x))>ε̃nµn(dx)

]
.

364

Setting i0 := dn− an + 1e as in the proof of Lemma 4.4 yields365

E
[∫
X
Zn(·, x)µn(dx)

]
≤ ε̃n +DE

∫
X

n∏
k=i0

1d((Θk(·),Xk(·)),(Θn(·),x))>ε̃nµn(dx)

 .366

Since µn is the empirical maesure as defined in (4.3) and due to the linearity of E, we obtain367

E
[∫
X
Zn(·, x)µn(dx)

]
= ε̃n +

D

n

n∑
i=1

E

 n∏
k=i0
k 6=i

1d((Θk(·),Xk(·)),(Θn(·),Xi(·)))>ε̃n

 .
= ε̃n +

D

n

n∑
i=1

n∏
k=i0
k 6=i

P
(
d((Θk(·), Xk(·)), (Θn(·), Xi(·))) > ε̃n

)
,

368

Where we used the independency of all (Xi)i∈N. Finally, applying Fubini’s theorem results in369

(4.8) E
[∫
X
Zn(·, x)µn(dx)

]
= ε̃n +

D

n

n∑
i=1

n∏
k=i0
k 6=i

∫
X
P
(
d((Θk(·), Xk(·)), (Θn(·), x)) > ε̃n

)
µ(dx).370
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Let Xε̃n ⊂ X be the set given in Assumption 2.7. Following the same argumentation as in the371

proof of Lemma 4.4, we obtain372 ∫
X
P
(
d((Θk(·), Xk(·)), (Θn(·), x)) > ε̃n

)
µ(dx)

=

∫
X\Xε̃n

P
(
d((Θk(·), Xk(·)), (Θn(·), x)) > ε̃n

)
µ(dx)

+

∫
Xε̃n

P
(
d((Θk(·), Xk(·)), (Θn(·), x)) > ε̃n

)
µ(dx)

≤ c′ε̃n + sup
x∈Xε̃n

P
(
d((Θk(·), Xk(·)), (Θn(·), x)) > ε̃n

)
≤ c′ε̃n +

(
1− c · n

D
2

an

)an
,

373

with an defined as in Lemma 4.4 and c > 0. Utilizing log(1− x) ≤ −x for all x < 1 shows374 (
1− c · n

D
2

an

)an
= exp

(
an log

(
1− c · n

1
max{dpar,2}

−1)) ≤ exp
(
−can · n

D
2

)
= exp

(
−c · n1+D− 1

max{dpar,2}
)
≤ exp

(
− c · nD

)
≤ ε̃n

375

for n large enough. Therefore, we have376 ∫
X
P
(
d((Θk(·), Xk(·)), (Θn(·), x)) > ε̃n

)
µ(dx) ≤ (c′ + 1)ε̃n.377

Inserting into (4.8) yields378

(4.9) E
[∫
X
Zn(·, x)µn(dx)

]
≤ ε̃n +D

(
(c′ + 1)ε̃n

)n−i0+1 ≤ c̄ · ε̃n379

for n large enough and some c̄ > 0.380

Now, in order to bound the second term in (4.7), recall from (4.5) that381

E

[∥∥∥∥∫
X
δ(θn, x)µn(dx)− δ(θn, x)µ(dx)

∥∥∥∥
P

]
≤ L

δ
· E [dW (µn, µ)] ,382

where dW is the Wasserstein distance. By [9, Thm. 1 for q = 3 and p = 1], for all dpar ≥ 1383

there exists C̃(dpar) ∈ R>0 s.t.:384

E [dW (µn, µ)] ≤ Ĉ(dpar) ·M3


n−

1
2 , dpar = 1,

n−
1
2 log(1 + n), dpar = 2,

n
− 1
dpar , dpar ≥ 3,

385

≤ Ĉ(dpar) ·M3 · n
− 1

max{dpar,2} log(1 + n),(4.10)386387

with M3 :=
( ∫
X ‖x‖

3
Xµ(dx)

)
1/3 .388
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Substituting (4.9) and (4.10) into (4.7) yields389

(4.11)
∞∑
n=N

τnE
[
‖Ĝn − E[δ(θ,X)]‖P

]
≤ c̄

∞∑
n=N

τnε̃n + Ĉ(dpar)M3

∞∑
n=N

τnn
− 1

max{dpar,2} log(1 + n)390

for N ∈ N large enough. By Assumption 4.2, we have391

τn ≤ Sn
−1−D+ 1

max{dpar,2} ,392

which, when inserted into (4.11), gives393

∞∑
n=N

τnE
[
‖Ĝn − E[δ(θ,X)]‖P

]
≤ c̄S

∞∑
n=N

n−1−D
2 + Ĉ(dpar)M3S

∞∑
n=N

n−1−D log(1 + n),394

showing that395
∞∑
n=1

τnE
[
‖Ĝn − E[δ(θ,X)]‖P

]
≤ ∞.

396

Before we can present our main result, we collect a few auxiliary results.397

Lemma 4.10 (Collection of auxiliary results).398

399

(a) The objective functional value in iteration n ∈ N satisfies400

Jn+1 − Jn ≤ − 1
τn
‖θn+1 − θn‖2P + φn,401

where φn := τn‖∇Jn − Ĝn‖P‖Ĝn‖P + τ2
nC‖Ĝn‖2P and C ≥ 0 denotes a constant de-402

pending only on the Lipschitz constants and suprema of the involved functions.403

(b) For φn as defined above, it holds
∑∞

n=1 E[φn] <∞.404

(c) For all t ≥ 0, we have405

‖ProjP(θn − tĜn)− θn‖P ≤ t
τn
‖θn+1 − θn‖P .406

Proof. Assertions (a), (b) and (c) correspond to Lemma 16, Corollary 17 and Lemma 18407

in [16]. Note that, by Theorem 4.9, the proofs given therein can be carried over to our setting408

as well.409

Theorem 4.11 (Main theorem). Let (θn)n∈N be generated by Algorithm 3.1 with weights410

calculated by one of the methods mentioned in Section 3.1. Then there exists a sub-sequence411

(θnk)k∈N converging to a stationary point, i.e.,412

lim inf
n→∞

E
[
‖ProjP(θn − t∇Jn)− θn‖2P

]
= 0 for all t ≥ 0.413

On the other hand, assume the time-step series (τn)n∈N satisfies τn ≥ τ for all n ∈ N and414

some τ > 0. Let further (xn)n∈N be dense in X and assume (θn)n∈N converges to θ∗ ∈ P.415

Then θ∗ is a stationary point of J , i.e.416

‖ProjP(θ∗ − t∇J(θ∗))− θ∗‖2P = 0 for all t ≥ 0.417

16

This manuscript is for review purposes only.



Proof. To prove the first part, we show418

(4.12)
∞∑
n=1

τnE
[
‖ProjP(θn − t∇Jn)− θn‖2P

]
<∞ for all t ≥ 0.419

By the assumed compactness of P and regularity of J , we have420

Jinf := inf
θ∈P

J(θ) > −∞.421

For arbitrary N ∈ N, Lemma 4.10 (a) gives422

Jinf − J1 ≤ E[JN+1]− J1 =

N∑
n=1

E[Jn+1 − Jn] ≤
N∑
n=1

(
− 1

τn
E
[
‖θn+1 − θn‖2P

]
+ E[φn]

)
.423

Rearranging terms and utilizing Lemma 4.10 (b) yields424

(4.13)

∞∑
n=1

1

τn
E
[
‖θn+1 − θn‖2P

]
≤ J1 − Jinf +

∞∑
n=1

E[φn] <∞.425

By Lemma 3.2 (c) and Lemma 4.10 (c), we obtain426

‖ProjP(θn − t∇Jn)− θn‖2P
≤
(
‖ProjP(θn − tĜn)− θn‖P + ‖ProjP(θn − t∇Jn)− ProjP(θn − tĜn)‖P

)2

≤
(
t

τn
‖θn+1 − θn‖P + t‖Ĝn −∇Jn‖P

)2

≤ 2t2

τ2
n

‖θn+1 − θn‖2P + 2t2‖Ĝn −∇Jn‖2P ,

427

where we used Young’s inequality in the last line. Therefore, it holds428

∞∑
n=1

τnE
[
‖ProjP(θn−t∇Jn)−θn‖2P

]
≤ 2t2

∞∑
n=1

1

τn
E
[
‖θn+1−θn‖2P

]
+2t2

∞∑
n=1

τnE
[
‖Ĝn−∇Jn‖2P

]
.429

(4.12) now follows from (4.13) and Theorem 4.9.430

For the second part, observe that convergence of (θn)n∈N and density of (xn)n∈N in X yield431

Zn(x)→ 0 for all x ∈ X .432

Therefore, by similar steps as performed in the proof of Theorem 4.7, it holds433

‖Ĝn −∇Jn‖P → 0,434

where ∇Jn denotes ∇J(θn). Hence, for all t ≥ 0 we obtain435

‖ProjP(θ∗ − t∇J(θ∗))− θ∗‖2P
= lim

n→∞
‖ProjP(θn − t∇J(θn))− θn‖P

≤ lim
n→∞

(
‖ProjP(θn − tĜn)− θn‖P + ‖ProjP(θn − tĜn)− ProjP(θn − t∇Jn)‖P

)
≤ lim

n→∞

(
t

τn
‖θn+1 − θn‖P + ‖ProjP(θn − tĜn)− ProjP(θn − t∇Jn)‖P

)
≤ lim

n→∞

t

τ
‖θn+1 − θn‖P + lim

n→∞
t‖Ĝn −∇Jn‖P = 0,

436

where we used Lemma 4.10 (c) for the second inequality.437
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5. Numerical Results. In this section, we consider three different settings in which we438

compare the CSG methods to suiting algorithms from the literature. The comparison is based439

on the number of gradient evaluations, since these represent the time-consuming computations440

in complex optimization tasks.441

5.1. Comparison with SG. To start our numerical analysis, we consider the problem442

min
θ∈P

1

2

∫
X

(x− θ)2dx,443

where P = X = [−1
2 ,

1
2 ].444

To study the behavior of the algorithms, we choose four different stepsizes (n−1, n−2/3,445

n−1/3 and a constant stepsize of 1) and track the absolute error in each iteration |θn − θ∗|.446

In order to obtain meaningful results, the 10000 starting points were chosen randomly in P.447

For a comparison, we do the same for the ordinary stochastic gradient descent method (SG),448

since it is one of the most commonly used techniques for problems like our example.

Figure 2. Comparison of the absolute error |θn − θ∗| for SG (red), CSG with empirical weights (green),
exact hybrid CSG (cyan) and exact CSG (yellow).

449

Notice that, in contrast to SG, a larger stepsize does not worsen the performance of the450

CSG algorithms for our example. Instead, a constant stepsize leads to a faster convergence451

for the hybrid and exact CSG method, whereas SG fails to solve the problem.452

5.2. Comparison with SCGD. As mentioned in Remark 2.3, the vanishing error in inner453

function value approximations allows us to solve optimization problems in which the cost454
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function depends non-linearly on a suiting expectation value. For instance, we may solve the455

problem456

(5.1) min
θ∈P

1

20

∫
Y

(
2y + 5

∫
X

cos
(θ − x

π

)
dx

)2

dy,457

where P = [0, 10], X = [−1, 1] and Y = [−3, 3]. The optimal solution θ∗ = π2

2 to this example458

can be found analytically. Setting459

fy(t) :=
3

10
(2y + t)2 and gx(t) := 10 cos

(θ − x
π

)
,460

problem (5.1) can be reformulated as461

(5.2) min
θ∈P

EY
[
fy(EX [gx(θ)])

]
.462

Since fy is non-linear, the SG algorithm can not be used to solve (5.1). Therefore, we compare463

our results with the so called stochastic compositional gradient descent (SCGD) method (see464

[21]), which is specifically designed for problems of the form (5.2).465

Again, the 1000 starting points are randomly generated. This time however, we draw the466

starting points only from the interval [11
2 ,

19
2 ] instead of P = [0, 10]. The reason for this is that467

the optimal solution π2

2 ≈ 4.935 would otherwise be very close to the median starting point,468

resulting in artificially small absolute errors for all methods. Since the objective function in469

(5.1) is strongly convex in a neighborhood of the optimal solution, the accelerated SCGD470

method (see [21]) performed better than the standard version. Therefore, we compared our471

results to the aSCGD algorithm and chose the optimal stepsizes for aSCGD according to472

Theorem 7 in [21]. For the hybrid, inexact hybrid and empirical CSG algorithm, we chose a473

constant stepsize of 1
30 , which is a rough approximation to the inverse of the Lipschitz constant474

L∇J . The resulting graphs are shown in Figure 3.475

From a practical viewpoint, one is mainly interested in how many iterations it takes the476

error to fall below a desired tolerance. For this purpose, we analyzed the number of steps after477

which the different methods achieved a given absolute error with 90% certainty. The results478

can be seen in Figure 4.479

5.3. Chance constraint problems. As a prototype example for chance constraint prob-480

lems, we consider481

max
θ∈[0, 3

4
]
θ

s.t. P(θ −X2 ≤ 0) ≥ 1

2
, X ∼ U[−1,1]

482

with optimal solution θ∗ = 1
4 . By introducing the characteristic function χ[0,∞) and trans-483

forming the constraint to a penalty term, we arrive at484

max
θ∈[0, 3

4
]

θ − λmax

{
0,

1

2

∫ 1

−1
χ[0,∞)(θ − x2)dx− 1

2

}
.485
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Figure 3. Comparison of the absolute error
|θn − θ∗|. From top to bottom: aSCGD (red/solid),
CSG with empirical weights (green/dashed), inexact
hybrid CSG with β = 1.5 (magenta/dash-dotted) and
hybrid CSG (blue/dotted). The shaded areas indicate
the quantiles P0.1,0.9 (light) and P0.25,0.75 (dark).

Figure 4. Minimum number of steps needed
for aSCGD (red/solid), CSG with empirical weights
(green/dashed), inexact hybrid CSG with β = 1.5
(magenta/dash-dotted) and hybrid CSG (blue/dotted)
such that at least 90% of the runs achieved an absolute
error smaller than the given tolerance.

Since the penalized objective function is no longer continuously differentiable, we can not486

guarantee the existence of a gradient and will have to work with subgradients instead, cf. [2].487

Notice that the proofs provided above also hold true for a subgradient method, if the stepsize488

is chosen accordingly. While the computation of a (sub-)gradient of max{0, ·} is not an issue,489

χ[0,∞) needs to be regularized further. The final problem then reads as follows:490

(5.3) max
θ∈[0, 3

4
]

θ − λmax

{
0,

1

4

∫ 1

−1

(
(tanh

(
α(θ − x2)

)
+ 1
)
dx− 1

2

}
.491

Due to the non-linearity of max{0, ·}, we again choose the SCGD method for comparison.492

This time, the objective function is not strongly convex in a neighborhood of θopt. Therefore,493

the stepsizes for the standard SCGD method are chosen according to Theorem 6 in [21], i.e.,494

optimal for this setting. For the CSG algorithms, we choose τn = 1
n . Lastly, we fix λ = 3 and495

α = 25. The optimal solution θopt to (5.3) then satisfies |θ∗ − θopt| < 1.5 · 10−3. The results496

of 1000 runs with random starting points in [0, 3
4 ] are presented in Figure 5.497
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Figure 5. Comparison of the absolute error |θn − θopt|. From top to bottom: SCGD (red), CSG with
empirical weights (green), inexact hybrid CSG with β = 1.5 (magenta) and hybrid CSG (blue). The shaded
areas indicate the quantiles P0.1,0.9 (light) and P0.25,0.75 (dark).

6. Conclusion and Outlook. In this article a more flexible way to compute design de-498

pendent integration weights for the efficient approximation of the full cost function and its499

gradient when applying the CSG method to a class of stochastic optimization problems was500

introduced. While this significantly widened the scope of the CSG method, there are still501

a number of research questions, which would be very interesting to be investigated in the502

future. First, as a consequence of the strong convergence properties shown in this paper, the503

CSG method – in the course of the optimization iterations – behaves more and more like a504

fully deterministic descent method. This calls for more elaborate techniques to calculate the505

step length such as linesearch or trust region strategies. Another interesting question is, if506

convergence of the iterates generated by the CSG method can be shown for a constant choice507

of the step size. Indeed the numerical examples we have presented in this paper suggest that508

this should be possible. And finally, exploiting specific structures of the given probability509

distributions, one could come up with even more efficient integration techniques allowing to510

solve problems with high dimensional distributions more efficiently than using the empirical511

weight strategy presented in this article.512
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[13] L. M. Nguyen, K. Scheinberg, and M. Takávc, Inexact SARAH algorithm for stochastic optimization,544
Optim. Methods Softw., 36 (2021), pp. 237–258.545

[14] C. Paquette and K. Scheinberg, A stochastic line search method with expected complexity analysis,546
SIAM J. Optim., 30 (2020), pp. 349–376.547

[15] V. Patel, Kalman-based stochastic gradient method with stop condition and insensitivity to conditioning,548
SIAM J. Optim., 26 (2016), pp. 2620–2648.549

[16] L. Pflug, N. Bernhardt, M. Grieshammer, and M. Stingl, CSG: a new stochastic gradient method550
for the efficient solution of structural optimization problems with infinitely many states, Struct. Mul-551
tidiscip. Optim., 61 (2020), pp. 2595–2611.552

[17] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statistics, 22 (1951),553
pp. 400–407.554

[18] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic average gradient,555
Math. Program., 162 (2017), pp. 83–112.556

[19] C. Tan, S. Ma, Y.-H. Dai, and Y. Qian, Barzilai-borwein step size for stochastic gradient descent,557
2016, https://arxiv.org/abs/1605.04131.558

[20] V. S. Varadarajan, On the convergence of sample probability distributions, Sankhyā, 19 (1958), pp. 23–559
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