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CSG: A stochastic gradient method for a wide class of optimization problems
appearing in a machine learning or data-driven context

Lukas Pflug®, Max Grieshammer®, Andrian Uihleint, and Michael Sting;lT

Abstract. In a recent article the so called continuous stochastic gradient method (CSG) for the efficient solu-
tion of a class of stochastic optimization problems was introduced. While the applicability of known
stochastic gradient type methods is typically limited to so called expected risk functions, no such
limitation exists for CSG. The key to this lies in the computation of design dependent integration
weights, which allows for an optimal usage of available information leading to stronger convergence
properties. However, due to the nature of the formula for these integration weights, the practical
applicability was essentially limited to problems, in which stochasticity enters via a low-dimensional
and suficiently simple probability distribution. In this paper the scope of the CSG method is sig-
nificantly extended presenting new ways of calculating the integration weights. A full convergence
analysis for this new variant of the CSG method is presented and its efficiency is demonstrated in
comparison to more classical stochastic gradient methods by means of a number of problem classes,
relevant in stochastic optimization and machine learning.

1. Introduction. In the context of optimization problems in which the expected-value of
a cost function j is minimized, i.e.,

(1.1) min, 0. X)] = [ j(0.a)u(ar)

with probability measure p and the associated random variables X, a variety of different
stochastic optimization schemes has been developed in the past, e.g., [7, 12, 13, 22, 24].
Among the most popular algorithms are the stochastic gradient method (SG) [17] and its
modification the stochastic average gradient method (SAG) [18], both of which shine with
their low iteration cost and have been analyzed extensively. a variety of different stochastic
optimization schemes has been developed in the past. Among the most popular algorithms are
the stochastic gradient method (SG) [17] and its modification the stochastic average gradient
method (SAG) [18]. Both of these methods have been analyzed extensively in literature and
are characterized by a low cost per iteration.

Nonetheless, SG and SAG face a number of known disadvantages, like the lack of efficient
stopping criteria (cf. [15]) or optimal stepsize rules (cf. [14, 19]). To tackle these issues,
a whole variety of modified SG methods can be found in the literature. For example, [7]
uses a trust-region-type model to normalize the steplengths, whereas the iISARAH algorithm
proposed in [13] combines an inner SG scheme with an outer (inexact) full gradient descent
method.

Another disadvantage of SG is the quite restrictive setting of (1.1). [22] and [24] sug-
gest inexact proximal stochastic second-order methods and stochastic primal-dual fixed-point
methods to allow for a different type of objective function appearing in (1.1). In the case that
the constraints include expected-valued functions, a level set method is analyzed in [12].
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An even wider class of problems, can be solved by the continuous stochastic gradient
method (CSG) proposed in [16]. The reason is that combining the information collected in
previous iterations in an optimal way, CSG gains a significantly improved gradient approxi-
mation and is able to estimate the current objective function value during the optimization
process. For a characterization of the class of problems CSG can solve, we refer to Remark
2.3. Here we just note that among them are objective finctions with nested expectation values
(Section 5.2) and problems with chance constraints (Section 5.3).

While this is already known from the original version of CSG [16], there is also a serious
drawback: in order to approximate function values and gradients in the above mentioned
way, integration weights have to be computed by an analytical formula, which requires full
knowledge about the probability measure p. Moreover the evaluation is based on a Voronoi
diagram, whose computation is not tractable, if the dimension of the parameter set X is larger
than 2. As a consequence, in [16] only examples with a one-dimensional uniform distribution
were presented.

In this contribution, we expand the setting of CSG even further by introducing new meth-
ods of calculating the weights used for the gradient and cost function value approximations.
This enables us to apply the CSG algorithm to problems of higher dimension, to arbitrary
measure u and even to problems where the measure p appearing in (1.1) might be unknown,
e.g., in a data-driven context.

Depending on the concrete setting, i.e., depending on the dimensions of 8, x and on how
time-consuming the evaluation of a gradient sample is, the different methods allow us to
continuously trade weight-computation time and speed of convergence (w.r.t. number of
gradient sample evaluations).

In this article we present of a full convergence analysis for the CSG method extended in
this way. In particular, we show that the error in the gradient approximation as well as in
the objective function value approximation vanish as the number of steps increases. As a
consequence these values can be utilized, for instance, to apply stopping criteria based on first
order optimality conditions. Moreover, this potentially allows, to combine the CSG method
with slightly adapted step length strategies as they are known from the world of deterministic
optimization methods, a topic we leave open for future research.

The remaining structure of the paper is as follows. In Section 2, the mathematical structure
of the problems, we would like to solve by the CSG method is outlined in details. In Section 3,
the CSG method with generalized weight computation is presented. Section 4 is devoted to
the convergence analysis and in Section 5 we compare the generalized CSG method to more
traditional SG-type algorithm using three different classes of test problems.

2. Problem setting and definitions. Following the classic setup for expected-value ob-
jective functions, we introduce the set of admissible designs P C R%es and the parameter
set X C R%ear | where dyes, dpar € N. In the optimization process, the drawn random samples
T1,T9,... from the parameter set X are assumed to be realizations of independent uniformly
random variables X; ~ u for all 1 € N, i.e., X1, X5, ... are independent and follow an under-
lying probability distribution p, which may be unknown.

To be precise, we define the following probability space setup:

2
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Definition 2.1 (Probability space setup). The probability space (2, A,P) is given by

Q=N P = N
A= U({Al X ... XA, A; € B(X),Vi,n S N}),

where p®N(Ay x ... x Ap) = [[I2, p(A;) is the product measure, u is a probability measure on
X and o(-) is the smallest o-field that contains -. We denote by supp(u) the support of the
measure W, i.e.,

supp(p) :={x € X : p(B:(z)) > 0 Ve > 0},

where Be(x) denotes an open ball of radius € > 0 around x € X. We write X,, : Q@ — X,
(wk)keN — wy, for the projection to the n = 1,2, ... coordinate and define X := X;.

With this setup, the objective function takes the following form:
Definition 2.2 (Objective function). The objective function J : P — R is given by

ﬂ@:EU&Xﬂz/ﬂ&@MM)

X

with a measurable function j € CY(P x X;R) and random variable X .

Remark 2.3 (Generalization of the setting). During the optimization process, we may
also generate an approximation .J, to the exact objective function value .J (0,) with almost no
additional computational cost. We will show later that ||.J,, — V.J(6,,)||» — 0 (see Remark 4.8).

This enables us to solve a much broader class of optimization problems, where the objective
function may depend non-linearly on the expression above, i.e.,

J(0) == f(0,E[j (0, X)),

with a Lipschitz continuously differentiable function f : P x R — R. Included in the set of
possible objective functions are for example tracking functionals

J(0) := §||n(0,-) — F(O.ELj(0, - X))][7»
and nested expected values
J(0) := Ey[f(Y,Ex[i(6, X)])].

Notice that such settings can not be solved by SG algorithms.

As we are aiming for a gradient based optimization scheme, we further state the derivative of
the objective functional:

Lemma 2.4 (Derivative of objective function). The gradient of the objective functional J is
given by VJ(0) =E[8(0,X)], where X ~ p and & : P x X — R%es denotes V15 (0, ).

Proof. This is a direct consequence of the linearity of the expectation value and the finite-
dimensional derivative of j. Integration and differentiation can be exchanged due to the
Lipschitz continuity of the integrand w.r.t. the integration variable. |
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In order to state and prove convergence results for the algorithm presented in this work,
we define the norms on the used spaces as follows:

Definition 2.5 (Norms on X, P and P x X'). In this contribution, we will use for the norm
on the underlying spaces of the parameter space X and the design space P the notation || - ||,
and |- ||, respectively. Due to norm-equivalence in finite dimensional spaces, the norm used in
the spaces P, X does not have to be specified and can be chosen problem specific. In addition,
we define on P x X the following metric:

d((0,2),(0,2)) == ||(16 = Il , & —2[l,) |, ¥(6,0,2,&) € P> x 2.

Choosing the 1-norm in the three-dimensional space as“outer”-norm is arbitrary and could
for instance - in the other extreme case - be the co-norm and of course could include positive
weights for each individual component.

Assumption 2.6 (Regularity of the §). We assume & : P x X — Res to be bounded and
Lipschitz continuous, i.e., there exist constants C;,L; € Ryg s.t.

|66, 2)|| <,
166, 2) 86, 9), <L, (16— Bl + 1= — 2]l,)

for all 0.0 P andz,i € X. A sufficient condition therefore is to assume Vj to be Lipschitz
continuous in both arguments.

For the convergence analysis of Algorithm 3.1, the following assumptions on the sets P, X
and the measure y are an important ingredient.

Assumption 2.7 (Regularity of P, X and the measure p). The set P C R%es 4s compact
and conver. supp(p) C X with X C R%a is open and bounded. In addition, there exists
M, M,, M, >0 s.t. Ve € (0,M,) there exists X C X satisfying p(X:) > 1 —M,e and

nf p(Be(x)) > M,

where Be(x) C X is an open ball with radius € centered in x € X.

Remark 2.8 (Examples for Assumption 2.7). In most cases, the choice X. = X is suitable,
for example when X satisfies the uniform cone condition (cf. [1, Definitioin 4.8]). However,
there exist cases where the possibility of choosing X. C X in the condition of Assumption 2.7
allows to consider even more general measures and sets.

As example therefore, let X = {1/n : n € N} and p := > .32,27%5,-1(s). Then, for
M, = [n"1,1]N X, it holds

p(Mp)=> 27 F=1-2""
k=1
Thus for e = 27" and ¢ = 1 we obtain u(M,,) > 1—cc and inf ey, p(B:(z)) > 27" = . Since

inf e pu(Be(z)) = u(B(0)) = 2172" there exists no ¢ > 0 such that 2! 72" > ¢27" ¥n € N.
For a uniform distribution and for all 0 < p < oo, the open p—Balls

XP = {z e R™ : ||z, < 1}
4
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satisfy Assumption 2.7 as well. While case 1 < p < oo allows for XY = XP, for 0 < p < 1 we
first have to obtain X? by trimming of the spikes of X.

3. The algorithm. To state the algorithm, we first define the projection operator which
ensures the sequence of generated designs (6,,)necn to be in the set P.

Definition 3.1 (Orthogonal projection). We define the — in the sense of || - ||, — orthogonal
projection onto the set P as follows:

Projp(f) := arg min HG - éH :
feP F

Note that the existence and uniqueness of Projp is guaranteed by the projection theorem (see
e.g. [3]) building on the convexity of P as assumed in Assumption 2.7.

Lemma 3.2 (Properties of Projp). Let P C R%es satisfy Assumpption 2.7. Then the
following holds for all z,y € R%es and z € P:

(a) (Projp(x) - 2)T (Projp(x) — 2) <0,

(b) (Projp(y) — Projp(z))" (y — ) = ||Projp(y) — Projp(z)||2 > 0,

(c) IProjp(y) — Projp(z)|l, < lly — |,

Proof. A proof of (a) can be found in [3, Thm. 1.4.1 (ii)], (b) and (c) correspond to (iii)

and (ii) in [3, Prop. 1.4.1] respectively. [ ]
Given 01, n = 1 and a sequence x1,xs,... of inputs, where we assume that they are
realizations of the independent random variables X7, Xo, ... introduced in Section 2, the CSG

method for the (possibly unknown) measure p is given in Algorithm 3.1.

Algorithm 3.1 CSG method

1: while Termination condition not met do

2:  Sample objective function (optional):
Jn = ](‘9m xn)

3:  Sample gradient:
gn ‘= Vﬁj(ena 517n)

4:  Calculate weights oy,

5. Calculate search direction:

Gn = %2221 AL Ji
6:  Approximation to objective function value (optional):

In = 5 2ok Qi
Choose stepsize 7,
Gradient step:

On+1 := Projp (Gn — TnGn)
9:  Update index:

n<—n+1
10: end while

This manuscript is for review purposes only.
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3.1. Calculating the weights. The quality of the weights oy, appearing in Algorithm 3.1
greatly impacts the accuracy of the gradient approximation G, and therefore directly in-
fluences the overall performance of the CSG method. On the other hand, a more optimal
computation of the weights might be time-consuming. Since the trade-off between the time
spent calculating the weights and the time gained by performing fewer gradient evaluations is
heavily problem-specific, we propose four different methods for the weight-calculation in the
nth step:

Exact. Following an exact nearest neighbor approximation for the integral

VIOn) = [ Voiltnauldo)
X
for each k = 1,...,n we define the set

M, = {x eX: d((@n,x), (Hk,l’k)) < d((enax)a <9ja$j)) for all j € {1,...,n}\ {k}} )

i.e., the set of points x € X such that (6,,x) is closer to (0, xr) than to any other previous
evaluation point. Assuming that the measure p is known, we then set ay := pu(My). This
method has been thoroughly analyzed in [16] and yields the best possible approximation to
the exact gradient, but is computationally infeasible for problems of high dimensions.

Empirical. Utilizing the properties of the empirical measure p,, (see Remark 4.6), we may
replace the exact weights mentioned above by the empirical weights

1 n
1=

where 1,7, denotes the indicator function of the set M. Note that the computation of the
empirical weights requires no knowledge of i and is also feasible for high-dimensional problems,
but needs many samples x; to approximate the exact gradient with a high accuracy.

Exact hybrid. Assuming that the dimension of X is much smaller than the dimension of
P, we might treat the designs and parameters separately. Instead of M}, we now consider the
sets N
Mi={zeX: |z -z, <|lz—ajl, forall j=1,....n}, i=1,...,n

The «j, are now calculated as a combination of the empirical and exact method
n —

(31) o = 3 L, (e)(0E).
i=1

Inexact hybrid. As for the exact weights, the calculation of the exact hybrid weights
requires knowledge of p. If p is unknown, we may replace the factor p(M;) in (3.1) by an
empirical approximation. Since this only requires samples of X, which we assume to have a
plenitude of, we can control the quality of this approximation through the number of samples
we draw. The inexact hybrid weights are therefore calculated as follows:

1 & [n ]
A = WZle(mjl) 1%i<$m),
=1 m=1

6
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N empirical (8 =~ 1)
| B=1.25

< 18=15
8 =175
Bg=2

1 exact hybrid
104 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400
Iterations
Figure 1. Absolute error |0, — 6*| in iteration n for the setting P = [—3,3] = X, j(6,z) = (0 — x)* and

X ~ Ux. The curves correspond to the median of 1000 runs with constant stepsizes T, = 1 and randomized
starting points in P.

where 3 > 1, 1] is the total number of samples we have drawn until step n and x;, denote
the samples where Vyj(6,x) has been evaluated at.

Figure 1 shows that the inexact hybrid method allows us to interpolate between the purely
empirical method and the exact hybrid variant by choosing 8 appropriately.

Remark 3.3. In general, the nearest neighbor approximation, which is used in all methods
mentioned above, worsens as the dimension of P x X increases (cf. [4]). Especially for
problems where dim(P) < dim(X), results from Monte Carlo integration ([23]) suggest that
the performance boost gained by better weight calculation starts to become negligible. The
proposed CSG methods are therefore best suited for optimization problems where X is of
small dimension when compared to P and the evaluation of j(f, x) is time-consuming.

Furthermore, the metric d should be chosen problem-specific to ensure the best possible
performance.

Remark 3.4 (SAG and SG as two extreme cases of the algorithm).
As stated in Definition 2.5, our metric d can be chosen as

d((0,2),(0,2)) = a1]|0 — 0, + az||z — 2|,

where a1, ag > 0 are arbitrary. By choosing a; > ag, the nearest neighbor to (6,,,x) is almost
exclusively determined by the distance in the design variable. Hence, for the weights a; we
get a, = 1 and g, ...,a,—1 = 0, i.e., the CSG algorithm will behave very similar to the usual
SG algorithm.

Analogously, choosing a1 < ag will lead to a performance similar to SAG.

4. Convergence analysis. In this section we will study the convergence of the proposed
algorithm. By the matter of the randomly chosen evaluation point within the algorithm, we
7
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will have to study probabilistic convergence behaviour in terms of “almost sure convergence”.
Therefore, we first state first order optimality conditions, assumptions on the regularity of the
involved functions as well as the steplength 7 and a suitable probability space setting.

4.1. Optimality conditions and assumptions. For h € C'(P) and P convex we have the
following equivalent sufficient conditions for first order optimality:

Corollary 4.1 (Optimality conditions). For all 8* € P the following items are equivalent:
(a) —Vh(O)TO—-6*)<0 VocP
(b) P(O* —tVh(6*)) =60* Vt>0.

A point 6* € P satisfying these conditions is called a stationary point.

Proof. The proof can be found in e.g. [16]. [ |

In order to guarantee that Algorithm 3.1 generates a convergent subsequence, the stepsizes
have to be damped, i.e., (7,)nen has to be a null series with upper and lower bound as stated
in the following Assumption. However, in contrast to the ordinary stochastic gradient decent
method, if Algorithm 3.1 generates — with stepsizes satisfying 7, > 7 > 0 Vn € N — a
convergent sequence, the limit point is a stationary point of the objective function too. This
is shown in Theorem 4.11.

Assumption 4.2 (Steplength). ~ The steplength (Tn)nen in Algorithm 3.1 satisfies the fol-
lowing: AN € N, §,S € Ry and D € ((), m) s.t.

1+

1
B —~ 141 ___p
Sn 1 <71, <Sn max{dpar,2} Vn € Ny y.

These bounds on the steplength satisfy the conditions stated in [17, Eqns. (6) and (26)] as
well as equivalently in [6, Eqn. (4.19)] in the one-dimensional case and can be seen as a higher
dimensional equivalent.

In the following we assume that these assumptions are always satisfied without mentioning
it explicitly.

4.2. Error in the search direction. In this subsection we analyse the error in the n—th
iteration of the search direction G,, and the gradient of the objective functional V.J,. For
this, we define the following random variables:

Definition 4.3 (Random variables). For z € X and w € Q the sequence of random variables
(Zn)pen with Zy : Q@ x X — Rxq is defined by

Zp(w,z) == min d((O(w), Xk(w)), (On(w), z)),

k=1,...,n

where the designs Oy € P for k > 1 depend by their construction on the initial design ©1 and
all “previous” random variables Xi(w),..., Xr—1(w), i.e.,

0101, X1(w), ..., Xr-1(w))

and thus is also a random variable. We shorten this dependency by the notation O(w).

This random variable fulfills the following property:
8
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251 Lemma 4.4. For p almost all x € supp(u)

252 Z]P’ x)>ep) <00 and Z sup P(Z,(-,x) > ep) < 00,
n—1 reX,,
253 with
S D1
254 (4.1) Ep = B n"2 + &, and &, :=mn? 2max{dpar2}

-1
1—2 2 max{dpar,2}

255 Therein, Cy is defined in Assumption 2.6, Xz, in Assumption 2.7 and S,D in Assumption 4.2.

256 Proof. We first define ip € N as an auxiliary index as follows:

. . .,
257 ig:=[n—ay,+1] with ap:=n 2 m>{dpar2},

258 By construction, we have

P(Z,(,2) > ep) < IP’< min d((@k,Xk) (On,x))) > En)

k= 7’07 -
n—1
259 (Z I7:Gill» + mln ||X;€ — |, > 5n)
=10
n—1
<P|C Zﬂ—l— min || X — x|, >5n>_
< = 1/0 k=i 07 T
260 Observe that for n > 2 we obtain for all x € (0,1)
n—1 1 n 1 1
1 = 1- 1- 1— 1—
A z“</iOlS”d8_ (T = (n—a) ) < - (0 = (n—an) )
=10
261 1 an

n_ n-a >: n '<(ZK_.((ZL)_H;L;I:>+(1—/{)(n—an)”

- (n— ap)" > T U m—an)

262 Applying Bernoulli’s inequality in the first term, we conclude

n—1 n
263 .1 <. Lok ) -t + In

Pl 1-—k nt - (n—ap)” (1 —k)(n—ap)~

1 —KQp, an
264 = :
| =« <<n—an>n>+<1—m><n—an>ﬂ
Gnp, Gnp _
265 (4.2 =——=—(1-%&)7"%
266 (42) (n—an)® (1)
9
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Combining Assumption 4.2 and (4.2) yields

n—1 77171 1 -
2 TSS) <SR-

1
1=10 i=ig 0 max{dpar,2}

with D € <0, m) and Kk :=1+D — m € (0,1). Hence, for n > 2 we obtain

n

a,\ —k D___ 1 \7F 1 \—k __ 1 N1
(1 _ l) — (1 = n?2 max{dpar,2} < (1 —n Qmax{dpar,2}> < (1 -9 2max{dpar,2}> )

Collecting these results, we see

—1 —_ —
. S an, S _D
Z Ti < 1 14D 1 < 1 n 2
i—io 1 — 2 2max{dpar.2} p + " max{dpar,2} 1 — 2 2max{dpar,2}
Consequently,
n—1 <
A CsS _Db N
Z HTZGlHP < 2 n 2 =€, —&p.

-t
i=ig 1 — 2 2 max{dpar,2}

By Assumption 2.7, u(X \ X.,) — 0. Hence, for p almost all = € supp(u), there exists
n € N large enough, such that x € &, . Therefore,

P(Zn(-,x) > €n)
SIP’( min || X — x|, Z§n>
k=ig,...,n—1

gIP’(HXk—xHX > &, Vke{io,...,n—1}>

n—1 n—-1
= [T P(1%s — 2l 2 2) = [T (0 = n(B=, (@)
k=19 k=ig

an

< (1 — min {M, (&,)%> | 1})

As &, — 0, there exists N € N s.t. for n > N we obtain

dparD_ dpar Qn
P(Zn('7$) > 5n) < (1 — MQTL 2 2mz‘"{zsﬂlp’ar}) )

For simplicity, we define

_ dpar D . dpar
2 2max{2, dpar }
10

This manuscript is for review purposes only.



286

[\]
co
|

287

288

289

290

291

292

293

294

296
297

298

and recall that log(1 — z) < —z for all z < 1. Since ¢; < 0, for n large enough it holds

dparD dpar an
<1 —M,n ? 2‘“‘""‘{27%“}) = (1 —M,n)" = exp (an log (1 — M,n‘))

c 1+Qi 1 +dpar D dpar
S eXp (_aann 1) — eXp _Mzn 2 max{2,dpar} 2 2 max{2,dpar }

1_1

exp (—MQnHD*?*’) dpar = 1

D__1_ < exp (—M nD) .
exp (—M2n1+2 Tpar T 2 2) dpar > 2 :

Recall that there is N € N such that exp(—z) < 270 for all z > N. It follows that for all n
_2
large enough: exp(—M,nP) < M, °n~2. Hence,
© dpar D dpar an e > _2
3 (1 VI gmp,dw}> <3 exp (-MnP) < 30 M B
n=N n=N n=N
and thus

ZP(ZH(-,.CE) > ep) < 00.
n=1

Finally, note that Assumption 2.7 gives

)
3 |no

sup P(Zn(~a) > en) < (1 e
rEXEn

an 1 1 an
) — (1 —cC- nmax{dparaQ}_ )

with ¢ > 0. By the same steps as above, we obtain

o0

As a direct consequence of the latter result we get almost sure convergence.

Corollary 4.5. For p almost all x € supp(u)
Zn(x) 50 for n— oo.

Proof. The result follows by Lemma 4.4 and the Borel-Cantelli Lemma (see for example
Theorem 2.7 in [11]). [ ]

Remark 4.6 (Empirical distribution). The empirical measure defined as
1 n
(4.3) Hn = n Zl ox,
1=

satisfies p, = p as n — oo almost surely, see [20, Theorem 3]. Here = denotes the weak
convergence of measures which is the weak-* convergence in dual space theory, i.e.,

o = iff /X £ (@) pn(der) — /X f(@)uldr) Vf € (X, R).
11
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See for instance [5] for the empirical distribution and [8, Section 7.3] for a functional
analytical perspective on weak-* convergence in the discussed function space setting.
Since this property of u, is all we need in the following proofs and since the measures

flh = Zéxi'u(]/\zi) and ,uif = Z(SX“,UULBJ (]/\ZJZ) )
i=1 =1

correspondlng to exact hybrid weights and inexact hybrid weights respectively, satisfy u* = u
and pif = i as well, we will w.l.o.g. work with empirical weights only.

Thus, due to the Lipschitz continuity of  as defined in Theorem 2.6, the expected value
VJ(0) =E[6(0, X)] is for n — oo better and better approximated by G:

Theorem 4.7 (Error in gradient approximation).
The norm of the difference between the search direction G, and the gradient of the objective
functional E[6(©,,, X )] vanishes for n — oo, i.e.,

1G — E[8(On, X)]

[F8

%0 and lim E [HG _E[(S(@”’X)]HP} -

n—o0

Proof. For z € supp(p) define

k" (w; ) := ir:glr'r.l.irrlld((@k(w),Xk(w)), (On(w), z)).

For G,, as generated by Algorithm 3.1 with n € N arbitrary but fixed the following holds:

G — E[8(O, X)]

<| / Zaknw Ou(w), 1) — (O (w), ) (d)

(4.4) <L / (w0, )i (dz) + H/ 5(60(w), 2)1m () /5 Ju(dz)

Iy

(i (D8(O4(w), 1) (d2) / 5(On(w),)u(d)

Yy

hY

) pin (dz) / 4(© Yu(dz)

)
y

where p,, is the empirical measure given in Remark (4.3) and L, the Lipschitz constant defined
in Assumption 2.6. We need to prove that both terms in (4.4) vanish for n — occ.
For the first term, the uniform (in n) Lipschitz continuity of Z, (w,-) yields

| Zutwpntan) = [ Zuwayp@) + [ Ziw.oiao) - | Ziw.aula)

g/ Zn(w,z)p(dx) + L, dw (pn, 1),
X
12
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328
329
330
331
332
333

336

337
338
339

341
342

where dy denotes the Wasserstein distance of the measure p,, and p (see [10]). Since X is
bounded, [10, Theorem 6] gives that the Wasserstein distance metrizices the weak topology on
the set of probability measures on X. Since p,, = p almost surely, this gives dy (pin, ) — 0
almost surely. Furthermore, by Assumption 2.6, there exists C' > 0 s.t. 0 < Z,, < C. Using
Corollary 4.5, we obtain Z,(w,x) — 0 for almost all w € Q. Therefore, Lebesgue’s dominated
convergence theorem yields

/ Zn(w, z)p(dx) — 0 for almost all w € Q.
X

In order to show that the second part of (4.4) vanishes, observe that

|/ 00t emetan - [ s, mia
-

<L, /X M= Qe a),

P

/ 5(60(w), &) — 8(On(w), 2)Qu(d(x, 2'))
XxX

P

where Q, (- X X) = u,, and Q,(X x -) = p is an arbitrary but fixed coupling of y,, and p.
By taking the infimum of all such couplings, we again obtain the Wasserstein distance dy of
the measure pu, and p, i.e.,

(4.5) < Lsdw (pn, 1)

P

) i (da) / 50 )u(dz)

By the same arguments as mentioned earlier, dyy (fin, ) — 0 almost surely. Combining all
the above facts gives

1C — E[6(On, X)]llp — 0

almost surely. Since the above quantities are bounded, the almost sure convergence also
implies the convergence in expectation via Lebesgue’s dominated convergence theorem. |

Remark 4.8. Due to the regularity of J, we can show
Hjn —J(0n)|lp — 0

analogously to the proof of Theorem 4.7.

Theorem 4.9 (Sum of error in gradient approximation). The expectation value of the summed
norm of the difference between the search direction G,, and the gradient of the reduced objective
functional VJ weighted by the respected stepsize T, vanishes for n — oo, i.e.,

(4:6) >~ [[Gn — E8(©, 0]l ] < o0
n=1

13
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364

366

367

368

Proof. Recall from the proof of Theorem 4.7 that

B (16, - 2150, X))l <% | [ Zufer x)un<dx>]

H/ ) i (dw) — /X‘S(@n<w)7$)u(dm) J.

We start with deriving an upper bound for the first term on the right hand side of the latter
inequality. Recall the definition of £, in Lemma 4.4, i.e.,

(4.7)

__ 1 D
é’n = n, max{2,dpar} ' 2

with D as defined in Assumption 4.2. Then, analogue to Lemma 4.4 (cf. the proof and the
notation there), together with

D = sup d((évi‘)v(é’f))v

(0,%),(0,2)ePxX

we obtain the following estimate:

B| [ Zutan(an)]| =B | [ 200001z, m0c6, (0 + Znle )1, oo, ()0

<é,+ DE [/ 12, (2)>én (x)un(dx)]

/){Hld ((O1(-), Xk ()),(© (),m))>énﬂn(d$)] .

k=1

Setting ig := [n — ap, + 1] as in the proof of Lemma 4.4 yields

E[/XZ( )Mn(dl“)} én + DE /Hld(ek()Xk())( n()s2))>En Hn (dT)

Since p, is the empirical maesure as defined in (4.3) and due to the linearity of E, we obtain

~ D n n
E [ /X Zn<'a$)ﬂn<dﬂf)] =&t D B[] lueoxon @500

i=1 k=ig
k#i

=t t 237 T B(©40), X4(). (040), Xi()) > 20).
=1 k=ig
ki

Where we used the independency of all (X;);en. Finally, applying Fubini’s theorem results in

48) E| [ 2,0oman)| =2+ ZH/ ), X4(), (On(),2)) > Ea) i d).

=1 k=1
k#1
14
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371 Let X;, C X be the set given in Assumption 2.7. Following the same argumentation as in the
372 proof of Lemma 4.4, we obtain

/X}P’(d((@k(')’Xk(‘)), (On(-),2)) > &) p(dz)
:/ P(d((Ok(-), Xk (), (On(-),2)) > &n) p(da)
X\ Xz,

373

[ PO X)) (Ou()2) > En)ilde)
N

£

S
3 |nOo

< Clén + SGI;(I? P(d((@k()vXk(»’ (Qn()a .T)) > 511) < Clgn + (1 —C-

)
374 with a,, defined as in Lemma 4.4 and ¢ > 0. Utilizing log(1 — z) < —z for all x < 1 shows

D\ @n 1 _
(1 —c- Zi) = exp (an log (1 — ¢ - nmax{dpar.2} 1)) < exp (—can . n%)

1+D

1
= exp (—c -n maﬂdparﬂ}) < exp ( —c- nD) <ép

376 for n large enough. Therefore, we have

17 | B(®L0. X)), (0,().2)) > &, )tde) < (¢ + 1)
378 Inserting into (4.8) yields

379 (4.9) E [/X Zn(-,:):),un(dx)] <& +D((d +1)&,)" " <. g,

380 for mn large enough and some ¢ > 0.
381 Now, in order to bound the second term in (4.7), recall from (4.5) that

382 E H /X 8 (0, )i (d) — 8(6ry, ) ()

] <L, Eldw (. p)],

P

383 where dyy is the Wasserstein distance. By 9, Thm. 1 for ¢ = 3 and p = 1], for all dpar > 1
384 there exists C'(dpar) € Rsp s.t.:

ns, dpar = 1,
~ 1
385 E [dw (pin, p)] < C(dpar) - M3 n_5110g(1 +n), dpar = 2,
n  dpar dpar > 3,
~ _ 1
386 (4.10) < C(dpar) - M3 - n mextdpar2) Jog(1 4 n),

388 with Mj := (fX IIxH}M(d%))VS~
15
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396
397
398
399
400

401

402

103
404
405

106

107
408
409

410
411
412

413

114

415
416

Substituting (4.9) and (4.10) into (4.7) yields

(4.11)
oo ~ o0 ~ oo _ 1
3 nE [||Gn - IE[(S(Q,X)]HP} <> Tudn + Cldpar) My S 7 "5 log(1 + n)
n=N n=N n=N

for N € N large enough. By Assumption 4.2, we have

= —1-D+
™ < Sn

1
max{dpar,2} ,

which, when inserted into (4.11), gives

S 1 [ — B0, 01| <75 S 018 4 Cldpur) S 3 1710 log(1 4 1),
n=N n=N n=

showing that

S [IG  EL80. X1, ] < o0

Before we can present our main result, we collect a few auxiliary results.

Lemma 4.10 (Collection of auxiliary results).

(a) The objective functional value in iteration n € N satisfies

Jn+1 - Jn < _%Hon—i-l - 071”3; + ¢n7

where ¢y, := T, ||V Iy, — éanH@nHP + T,%CHC;’”H?QD and C > 0 denotes a constant de-
pending only on the Lipschitz constants and suprema of the involved functions.

(b) For ¢y, as defined above, it holds Y .- | E[¢y] < cc.

(c¢) For allt >0, we have

IProjp (6 — tGi) — ullp < L1161 — Oul,-

Proof. Assertions (a), (b) and (c) correspond to Lemma 16, Corollary 17 and Lemma 18
in [16]. Note that, by Theorem 4.9, the proofs given therein can be carried over to our setting
as well. |

Theorem 4.11 (Main theorem). Let (0,)nen be generated by Algorithm 3.1 with weights
calculated by one of the methods mentioned in Section 3.1. Then there exists a sub-sequence
(On,.)ken converging to a stationary point, i.e.,

o : 27 _
lgggéfIE [IIProjp(0n — tVJ) —0n]2] =0 for all t > 0.

On the other hand, assume the time-step series (Tp)nen Satisfies T, > 7 for alln € N and
some T > 0. Let further (xn)nen be dense in X and assume (0p,)nen converges to 6% € P.
Then 6* is a stationary point of J, i.e.

[Projp(6* — tV.J(0%)) — 6*|2 =0 for all t > 0.
16
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418

419

420
421

422

123

428

429

430

131

432

433

434

436

Proof. To prove the first part, we show
(4.12) an [[[Projp(6n — tVJy) — O,]|2] < oo for all ¢t > 0.
By the assumed compactness of P and regularity of J, we have

Jing := inf J(0 —00.
(7 gep 0 > e

For arbitrary N € N, Lemma 4.10 (a) gives

N
1

Jint — J1 SE[Jn ] — ZE EPAESY <_7_E|:||9n+1 - 9n||3;} + E[¢n]> :
n=1 n

Rearranging terms and utilizing Lemma 4.10 (b) yields

(4.13) S E[I0nsr — 6ul2] < 1~ s+ 3 Efb] < o0
n=1

n

By Lemma 3.2 (c) and Lemma 4.10 (c), we obtain
IProjp(6n — tVJn) — 6nl?
< (IProip(0n — 1) — Oull, + [Projp(0s — 1¥.) — Projp(6 — 1G], )
t . 2 of? 5
< (Tuenﬂ —Onllp +tGn — wnup> < 5 l10ns1 = Onll7, + 262G = VI3,

n

where we used Young’s inequality in the last line. Therefore, it holds

S nE [||Projp(0n—tVJn) —enui] <22y TiE [||9n+1 —enuf,] +262 TnE[HGn—wnui
n=1 n=1 "

n=1

(4.12) now follows from (4.13) and Theorem 4.9.
For the second part, observe that convergence of (0,,),en and density of (x,)pen in X yield

Zp(x) =0 forallz e X.
Therefore, by similar steps as performed in the proof of Theorem 4.7, it holds
|G = Vull, =0,
where V.J,, denotes V.J(6,). Hence, for all £ > 0 we obtain
[Projp(6* — tV.J(67)) — 6"
= lim [[Projp (6 — (V.7(6,)) — 6],

< lim (HPrij(Gn —tG) = Oull + [Projp (O — tGin) — Projp(6, — tVJn)HP>
t a
< nh_)m <||9n+1 - 0n||7: + ||Projp (0, — tGr) — Projp (0, — tvjn)”??)
< nh_)m *H9n+1 Onll» + nli_)rgotHGn — V|, =0,
where we used Lemma 4.10 (c) for the second inequality. [ ]
17
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5. Numerical Results. In this section, we consider three different settings in which we
compare the CSG methods to suiting algorithms from the literature. The comparison is based
on the number of gradient evaluations, since these represent the time-consuming computations
in complex optimization tasks.

5.1. Comparison with SG. To start our numerical analysis, we consider the problem

min 1/ (z — 6)%dz,
oepP 2 X
where P = X = [-3,1].

To study the behavior of the algorithms, we choose four different stepsizes (n=1, n=2/3,
n~1/3 and a constant stepsize of 1) and track the absolute error in each iteration |6, — 6*|.
In order to obtain meaningful results, the 10000 starting points were chosen randomly in P.
For a comparison, we do the same for the ordinary stochastic gradient descent method (SG),
since it is one of the most commonly used techniques for problems like our example.

Ik 7 =13

Ien —9*|

10~

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Iterations Iterations Iterations Iterations

Figure 2. Comparison of the absolute error |0, — 0*| for SG (red), CSG with empirical weights (green),
exzact hybrid CSG (cyan) and exact CSG (yellow).

Notice that, in contrast to SG, a larger stepsize does not worsen the performance of the
CSG algorithms for our example. Instead, a constant stepsize leads to a faster convergence
for the hybrid and exact CSG method, whereas SG fails to solve the problem.

5.2. Comparison with SCGD. As mentioned in Remark 2.3, the vanishing error in inner
function value approximations allows us to solve optimization problems in which the cost
18
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484

function depends non-linearly on a suiting expectation value. For instance, we may solve the
problem

) 1 0—x 2
(5.1) Ierél?l;l 20/)}(23/4—5/){005 (W>dx> dy,

where P = [0, 10], X = [-1,1] and Y = [-3, 3]. The optimal solution §* = %2 to this example
can be found analytically. Setting

fy(t) == 1—30(2y+t)2 and g (t) := 10cos <0 ; x)’

problem (5.1) can be reformulated as

(5.2) min - Ey[f,(Ex[g.(0)])]-

Since f, is non-linear, the SG algorithm can not be used to solve (5.1). Therefore, we compare
our results with the so called stochastic compositional gradient descent (SCGD) method (see
[21]), which is specifically designed for problems of the form (5.2).

Again, the 1000 starting points are randomly generated. This time however, we draw the
starting points only from the interval [%, %] instead of P = [0, 10]. The reason for this is that
the optimal solution ”72 ~ 4.935 would otherwise be very close to the median starting point,
resulting in artificially small absolute errors for all methods. Since the objective function in
(5.1) is strongly convex in a neighborhood of the optimal solution, the accelerated SCGD
method (see [21]) performed better than the standard version. Therefore, we compared our
results to the aSCGD algorithm and chose the optimal stepsizes for aSCGD according to
Theorem 7 in [21]. For the hybrid, inexact hybrid and empirical CSG algorithm, we chose a
constant stepsize of 3—10, which is a rough approximation to the inverse of the Lipschitz constant
Lys. The resulting graphs are shown in Figure 3.

From a practical viewpoint, one is mainly interested in how many iterations it takes the
error to fall below a desired tolerance. For this purpose, we analyzed the number of steps after
which the different methods achieved a given absolute error with 90% certainty. The results

can be seen in Figure 4.

5.3. Chance constraint problems. As a prototype example for chance constraint prob-
lems, we consider

max 0
o<0,3

s.t. P(O—X*<0)> X ~Uq

DN

with optimal solution 6* = %. By introducing the characteristic function X[ o) and trans-
forming the constraint to a penalty term, we arrive at

! 1
max  # — Amax O,/ 00 0—x2da:—}.
0€[0,3] { 2) Xoo) ) 2

19
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Figure 3. Comparison of the absolute error Figure 4. Minimum number of steps needed
|0n, — 0%|. From top to bottom: aSCGD (red/solid), for aSCGD (red/solid), CSG with empirical weights
CSG with empirical weights (green/dashed), inezact (green/dashed), inexact hybrid CSG with =15
hybrid CSG with 8 = 1.5 (magenta/dash-dotted) and (magenta/dash-dotted) and hybrid CSG (blue/dotted)
hybrid CSG (blue/dotted). The shaded areas indicate such that at least 90% of the runs achieved an absolute
the quantiles Po.1,0.9 (light) and Po.25,0.75 (dark). error smaller than the given tolerance.

Since the penalized objective function is no longer continuously differentiable, we can not
2

486
487 guarantee the existence of a gradient and will have to work with subgradients instead, cf. [2].
488 Notice that the proofs provided above also hold true for a subgradient method, if the stepsize
489 is chosen accordingly. While the computation of a (sub-)gradient of max{0, -} is not an issue,
490 X[0,00) ieeds to be regularized further. The final problem then reads as follows:
, 1! 2 1
491 (5.3) max] 6 — A max {0, i / ) ((tanh (a(f — 2°)) + 1)dz — 5} .

0€0,3

192 Due to the non-linearity of max{0,-}, we again choose the SCGD method for comparison.
493 This time, the objective function is not strongly convex in a neighborhood of 6,,;. Therefore,
494 the stepsizes for the standard SCGD method are chosen according to Theorem 6 in [21], i.e.,
L Lastly, we fix A = 3 and

495 optimal for this setting. For the CSG algorithms, we choose 7, = -
196« = 25. The optimal solution 6,y to (5.3) then satisfies |0* — ,p:| < 1.5 - 1073, The results

497 of 1000 runs with random starting points in [0, %] are presented in Figure 5.

20

This manuscript is for review purposes only.



498
499
500
501
502
503

508
509
510

512

100

107!

1072

|0 — 67

1073

10*4 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Iterations

Figure 5. Comparison of the absolute error |0, — Oopt|. From top to bottom: SCGD (red), CSG with
empirical weights (green), inexact hybrid CSG with 8 = 1.5 (magenta) and hybrid CSG (blue). The shaded
areas indicate the quantiles Po.1,0.9 (light) and Py.2s5,0.75 (dark).

6. Conclusion and Outlook. In this article a more flexible way to compute design de-
pendent integration weights for the efficient approximation of the full cost function and its
gradient when applying the CSG method to a class of stochastic optimization problems was
introduced. While this significantly widened the scope of the CSG method, there are still
a number of research questions, which would be very interesting to be investigated in the
future. First, as a consequence of the strong convergence properties shown in this paper, the
CSG method — in the course of the optimization iterations — behaves more and more like a
fully deterministic descent method. This calls for more elaborate techniques to calculate the
step length such as linesearch or trust region strategies. Another interesting question is, if
convergence of the iterates generated by the CSG method can be shown for a constant choice
of the step size. Indeed the numerical examples we have presented in this paper suggest that
this should be possible. And finally, exploiting specific structures of the given probability
distributions, one could come up with even more efficient integration techniques allowing to
solve problems with high dimensional distributions more efficiently than using the empirical
weight strategy presented in this article.
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