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Abstract. We investigate a class of generalized Nash equilibrium problems (GNEPs) in
which the objectives of the individuals are interdependent and the shared constraint consists
of a system of partial differential equations. This setup is motivated by the modeling of
strategic interactions of competing firms, which explicitly take into account the dynamics
of transporting a commodity, such as natural gas, through a network. We establish the
existence of a variational equilibrium of the GNEP. In the case of symmetric firms, we identify
an equivalent optimization problem. We use this model to numerically explore the impact
of linepacking, that is the use of the network as a temporary storage device. In particular,
we study the firms’ decisions under various linepacking abilities and analyze which market
participants benefit from it.

1. Introduction

The framework of equilibrium problems considerably contributes to the understanding of a
wide array of real-world problems, ranging from management and micro-economics applications
to a variety of design problems in engineering. Specifically, non-cooperative game theory has
turned out to be a useful tool in analyzing the actions of agents (or players) on markets. In
such a context, one seeks solutions in which each player’s individual objective is maximized
subject to individual (or so-called private) constraints, and no player has an incentive to take
decisions deviating from a so-called Nash equilibrium (Nash 1950). For classic Nash equilibrium
problems (NEPs), the coupling between individuals occurs in the objective functionals only,
whereas the feasible sets (or constraints) are independent. If the latter are also interdependent,
one faces a so-called generalized Nash equilibrium problem (GNEP).

In this work, we investigate GNEPs in which the dynamics of transporting a given good over
a network are described by a system of partial differential equations (PDEs), which constitutes
a shared constraint that is taken into account by all players. This is highly relevant, e.g., in the
case of liberalized energy markets, where conversion and trading of energy carriers is organized
by competing private companies that seek to maximize their profits in a non-cooperative fashion.
With a short time horizon, as in an intraday market, it is important to consider a high-fidelity
model of the dynamics when transporting goods with slow transients such as natural gas or
hydrogen. Moreover, in our setup, the objective functionals are interdependent such that the
actions of rivals have a direct impact on the value of the objective of the respective individual.
This allows us to consider classic situations of strategically interacting firms; see, e.g., Cournot
(1838) for the seminal article in this area. The focus here is on the solution concept called
variational equilibrium (VE) for which the common multipliers associated with the shared
constraints have a clear economic interpretation.

In view of the aforementioned application regarding liberalized gas markets, in this work we
first provide conditions for the existence of a solution to the governing system of PDEs, with
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enough regularity to ensure the existence of multipliers to the shared constraints. Secondly, we
show the existence of a VE that solves the underlying jointly convex GNEP. For symmetric
setups, we identify a reformulation of the original equilibrium problem as a single optimization
problem, which allows us to derive a solution algorithm for finding such a VE. Finally, we apply
our algorithm to a suitable test instance, which is motivated by the trading and transporting of
natural gas. Our numerical results highlight crucial dynamical aspects in the context of gas
markets such as the impact and value of linepacking. The latter refers to the action of changing
the amount of gas stored in the pipe, the so-called linepack. When such a linepacking occurs,
the transportation network acts as a temporary storage device. This allows to take advantage
of price variations or to overcome fluctuations in supply and demand.

Our work contributes to several strands of the literature. Indeed, equilibrium problems
that are subject to network constraints have received considerable attention. In the context
of energy markets, these settings have been studied mainly for the analysis of electricity and
gas markets. There, we find many contributions that consider strategic interactions of firms
in the presence of shared and static, i.e., stationary, network constraints; see, e.g., Chen and
Wang (2014), Schiro et al. (2013), Wei and Smeers (1999), and R. Wilson (2008) as well as,
more recently, Holmberg and Philpott (2018). Due to its physical properties, a steady-state
approximation of electricity transmission is well accepted for many market applications. Owing
to slower speeds of propagation, a stationary approach cannot capture, however, all aspects of
the dynamic evolution of gas transported in a network.

Another strand of literature explicitly considers strategic interaction of firms in a dynamic
context—but in the absence of shared network constraints. In several contributions, firms, e.g.,
experience adjustment costs when changing their output; see Caruana and Einav (2008), Jun
and Vives (2004), and Wirl (2010). Other contributions have analyzed situations in which
strategic firms exploit a private resource stock (Ledvina and Sircar 2011) or accumulate private
productive capacities over time (Lambertini and Palestini 2014). Similar to our approach, in
these contributions, the interactive nature of the situation analyzed also arises due to firms’
profits being influenced by all rivals’ actions. However, there are no shared constraints that
restrict the choices of the firms.

Several works on dynamic oligopoly models do consider shared constraints. Benchekroun
(2003, 2008) studies differential games in which firms jointly exploit a common renewable
production asset. More recent articles further elaborate on this; see, e.g., Colombo and
Labrecciosa (2015, 2019) and Xin and Sun (2018), who consider different types of strategic
behavior among firms. Note that for all these problems, the shared constraint can be represented
by a single state variable governed by an ordinary differential equation (ODE). For a proper
modeling of the physics underlying the network transportation aspect of our setup, we have to
consider a spatially distributed state variable governed by a system of PDEs.

Several recent works analyze GNEPs involving shared constraints governed by PDEs (Dreves
and Gwinner 2016; Gugat and Steffensen 2018; Hintermüller and Surowiec 2013; Hintermüller,
Surowiec, and Kämmler 2015; Kanzow et al. 2019). While the structural assumptions vary
among these contributions, the results and methods are mostly applied to instances in which
objective functionals are of tracking type and the shared constraint is a scalar PDE. In our
setup, we consider objectives that model market interaction of strategic firms. In addition,
the shared constraint comprises a system of PDEs, which allows to appropriately capture the
physical phenomena under consideration.

The remainder of this paper is structured as follows. After this introduction, we present
the stylized GNEP model coupling markets and transport phenomena in Section 2. Section 3
provides general well-posedness results for the system of PDEs under investigation. In Section 4,
we establish the existence of a VE for the jointly convex GNEP under consideration. A
reformulation of the GNEP that allows for a computational approach to determine a VE is
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given. We illustrate the important role of linepacking in Section 5 and finally conclude in
Section 6.

Notations. For a given Banach space X, its dual is given by X∗. If A : X → Y is a linear
and continuous mapping between Banach spaces, its adjoint is denoted by A∗ : Y ∗ → X∗. The
continuous and dense embedding of a Banach space X into Y is represented by X ↪→ Y . With Ω
being an open interval of R, for any integer p (and even for p = +∞), the function space Lp(Ω)
is the standard Lebesgue space. For any real s, Hs(Ω) is the L2(Ω)-based Sobolev space of
order s. Let f : R→ X and T > 0. If t 7→ ‖f(t)‖X lies in Lp(0, T ) and is Bochner measurable,
then f ∈ Lp(0, T ;X). The space C([0, T ];X) consists of all X-valued continuous functions
on [0, T ] equipped with the norm of uniform convergence. For more background on these spaces,
see, e.g., Adams and Fournier (2003). As we have only one spatial dimension, denoted by x,
the Laplacian operator ∆ has the same action as taking second partial derivatives ∂2/∂x2.
When applied to a vector-valued function, its action is to take second partial derivatives of each
component. As a shorthand notation, for any function f depending on x and t, ft, fx and fxx
denote, respectively, the first-order derivative with respect to t, x, as well as the second-order
derivative with respect to x. For a given set S, its closure is denoted by S̄, its interior by intS,
and its indicator function by δS . The subdifferential of a convex function g : X → R ∪ {+∞} is
represented by ∂g : X ⇒ X∗. When S is convex, the normal cone NS(·) is the subdifferential
of δS(·).

2. A GNEP Model for Gas Markets with Transport

For the ease of exposition, we investigate a stylized intraday gas market over a single pipe e.
The pipe’s diameter De > 0 is typically much smaller than its length Le > 0. Hence, a 1d
model for the flow of gas is appropriate. Let Ae := (De)2π/4 be the constant cross-sectional
area of the pipe. We consider the case of an isothermal flow, i.e., the temperature Temp > 0

of gas is constant, and denote the density by ρe, pe is the pressure, and cs =
√
RsTemp is the

speed of sound for a given specific gas constant Rs. The state equation is given by the ideal
gas law pe = c2sρ

e, and the velocity of gas is assumed to be small with respect to cs. Given the
operational conditions in a pipeline system, the evolution of the gas can be modeled by the
system

pet − εpexx +
c2s
Ae
qex = 0,

qet − εqexx +Aepex = −σeAe q̌
e

p̌e

(
qe − q̌e

2p̌e
pe
)
− Aeg sinϕe

c2s
pe,

(1)

where ε > 0, σe := 16c2sλ
e/(π2(De)5), λe ≥ 0 is the friction coefficient, g is the gravitational

acceleration, and ϕe is the constant angle of the pipe with the horizontal plane. The pair (p̌, q̌),
with p̌ > 0 and q̌ > 0, is a reference state. System (1) comes from the linearization and viscosity
regularization of the hyperbolic system known as “ISO2” in the model catalog of Domschke et al.
(2021), which presents different models for gas flow in pipelines depending on the operational
conditions. The boundary conditions for (1) are of Dirichlet type. Among other gases, flows of
natural gas and hydrogen can be modeled by (1).

Alternatively to the single-pipe scenario, a small pipeline network whose graph (N , E) is a
directed tree, i.e., a directed acyclic graph, may be considered. In such a setting, at a node where
multiple pipes meet, two relations have to hold: (i) The pressures at the common endpoints of
these pipes are identical and (ii) the inflows and outflows of gas are balanced. In our subsequent
exposition we will, however, stick to the single-pipe setting for convenience as this allows us to
emphasize the GNEP aspect.

We now consider a gas market over one pipe with two nodes labeled in and out, respectively.
For the ease of notation, subsequently we drop all superscripts related to the pipe’s identifier.
Further, we assume thatM strategic firms (producers) may inject gas at the in node and sell it at
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the out node. Concerning the equilibrium setting, we consider the case of Cournot competition:
With the goal of maximizing their respective profit over a finite time period [0, T ], T > 0, each
firm strategically decides on the injected mass flow qin

i at pressure pin
i and the mass flow qout

i at
pressure pout

i , which they withdraw from the pipe. Let us state here that below we use the terms
“firm”, “agent”, or “player” as synonyms. We denote by ui := (pin

i , q
in
i , p

out
i , qout

i ) the decisions of
firm i and let u := (u1, . . . , uM ) be the entire decision vector. With respect to notation, below
the classic game-theoretic convention is invoked that for any i, u = (ui, u−i), where u−i collects
the decisions of all the other firms except ui. Mathematically, it is supposed that each ui belongs
to U ⊆ L2(0, T )4. In the pipe, the state variable is y := (p, q) : (0, L)× (0, T )→ R2. Then the
aforementioned Dirichlet boundary conditions are given by y(0, ·) = u0

Γ and y(L, ·) = uLΓ , where
the nodal state values u0

Γ := (pin, qin) and uLΓ := (pout, qout) are related to the firms’ actions by

u0
Γ =

(
M∑
i=1

pin
i

M
,

M∑
i=1

qin
i

)
, uLΓ =

(
M∑
i=1

pout
i

M
,

M∑
i=1

qout
i

)
. (2)

The relations on the mass flows fit the above stated conditions at a junction. For the pressures,
this is also the case if all firms choose the same pressures and we focus on this latter case.
Furthermore, we consider lower and upper bound constraints on the pressures and mass flows.
For given bounds

¯
y := (

¯
p,

¯
q) and ȳ := (p̄, q̄), these state constraints are represented by

y ∈ K := {y ∈ C([0, T ];C([0, L])2) |
¯
y ≤ y(x, t) ≤ ȳ for all (x, t) ∈ [0, L]× [0, T ]}, (3)

where the space C([0, T ];C([0, L])2) is chosen in order to guaranteed the existence of associated
Lagrangian multipliers for a primal-dual stationarity characterization of optimal solutions
resp. equilibria, below. Since firms are fully aware of both the system (1) and the bound
constraints (3), they all take into account the same, and thus shared, network constraints. Let S
be the so-called control-to-state operator, which gives the solution (state) y of the PDE system
for a given (control) u. Then, the inclusion y = S(u) ∈ K represents the shared constraint of
the underlying GNEP.

Now, at any time t ∈ [0, T ], there is a given demand of gas at the consumption node. Further,
the price of gas is given by an inverse demand function P (t, qout(t)), where qout is the total
amount of gas at the exit node. On the other hand, it is assumed that each firm chooses to
inject the amount qin

i (t) at a cost of ci(t) qin
i (t). For our subsequent investigation, we invoke

the following assumption on the data.

Assumption. (i) It holds P (t, qout(t)) := β(t) − α(t) qout(t), where P is a measurable
function in t.

(ii) There exist finite numbers αmin and αmax such that 0 < αmin ≤ α(t) ≤ αmax holds for
almost all t ∈ (0, T ).

(iii) For any firm i ∈ {1, . . . ,M}, there exists a constant c̄i > 0 such that |ci(t)| ≤ c̄i for
almost all t ∈ (0, T ) and ci is measurable.

A single agent’s (firm i ∈ {1, . . . ,M}) maximization problem reads

max
ui∈U

∫ T

0

(
P

(
t,

M∑
k=1

qout
k (t)

)
qout
i (t)− ci(t) qin

i (t)

)
dt−Ri(ui) (4a)

subject to (s.t.) 0 ≤ qin
i (t) ≤ q̄in

i for almost all t ∈ (0, T ), (4b)∫ T

0

(
qout
i (t)− qin

i (t)
)

dt ≤ 0, (4c)

S(ui, u−i) ∈ K, (4d)

where q̄in
i is a given production-specific capacity bound. Considering the convex function Ri

in the objective allows for instance to influence, specifically regularize, the state at final time
(i.e., at t = T ) in the pipe. Indeed, the initial state is likely to be rather regular (in space), but
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without any additional consideration, the final state is only required to satisfy the constraint (4d).
Constraint (4c) ensures that over the entire time period, each firm has injected at least as
much gas as it has withdrawn. This is important since at the beginning of the time period,
the pipe does contain some gas as we require the initial state y0 := (p0, q0) to fulfill the given
upper and lower bounds. Hence, (4c) ensures that there is no free gas for any of the firms. In
problem (4), the constraints (4b) and (4c) are private, whereas (4d) is shared among producers.
The collection of these M -many optimization problems gives rise to a GNEP, which is studied
in more detail in Section 4, below.

As a benchmark for the GNEP solution, we consider the corresponding welfare maximization
problem. In fact, the overall welfare is given by the total consumer surplus minus the total
production cost: ∫ T

0

(∫ qout(t)=
∑M

i=1 q
out
i (t)

0

P (t, τ) dτ −
M∑
i=1

ci(t)q
in
i (t)

)
dt.

After replacing the innermost integral by its expression and noting that we only need to consider
the total amount of gas withdrawn, the associated welfare maximization problem reads:

max
u∈U

∫ T

0

(
β(t)qout(t)− 1

2
α(t)qout(t)qout(t)−

M∑
i=1

ci(t)q
in
i (t)

)
dt−R(u)

s.t. 0 ≤ qin
i (t) ≤ q̄in

i for almost all t ∈ (0, T ) and all i ∈ {1, . . . ,M},∫ T

0

(
qout(t)−

M∑
i=1

qin
i (t)

)
dt ≤ 0,

S(u) ∈ K,

(5)

where u := (pin, pout, (qin
1 , . . . , q

in
M ), qout), and R sums up all Ri, i = 1, . . . ,M . Note that from

any solution u? of the GNEP with identical pressure variables, i.e., (u?i , u
?
−i) is a solution to (4)

for all i ∈ {1, . . . ,M} and (pin
i , p

out
i ) = (pin

j , p
out
j ) for all i, j ∈ {1, . . . ,M}, a feasible point for

the welfare maximization problem can be constructed. Therefore, from a solution of the GNEP,
a lower bound on the optimal function value in (5) can be obtained.

3. Well-Posedness of the gas flow PDE system

Before analyzing our GNEP, we first address the well-posedness of the PDE system (1)
over a pipe with a solution of sufficient regularity to ensure the existence of multipliers for
the shared constraint. The spatial domain of the pipe is Ω := (0, L), with L > 0, and we set
ΩT := Ω× (0, T ) for a time horizon T > 0. The system of PDEs modeling the flow of gas is
given by

pt − εpxx +
c2s
A
qx = 0, in ΩT , (6a)

qt − εqxx +Apx = −σAq̌
p̌

(
q − q̌

2p̌
p

)
− Ag sinϕ

c2s
p, in ΩT , (6b)

p(0, ·) = pin, p(L, ·) = pout, q(0, ·) = qin, q(L, ·) = qout, in (0, T ), (6c)
p(·, 0) = p0, q(·, 0) = q0, in Ω, (6d)

where (p0, q0) is the initial state and (p̌, q̌) ∈ C([0, T ];C(Ω̄)2), with p̌ bounded away from
zero, is a given reference state. For our analysis, we transform (6) into a system of PDEs
with homogeneous Dirichlet boundary conditions. For this purpose, we require the boundary
data (pin, pout, qin, qout) to be in the Sobolev space H1(0, T )4. Then, for the boundary data
upΓ := (pin, pout) and uqΓ := (qin, qout), we construct extensions upΩ (resp. uqΩ) of u

p
Γ (resp. uqΓ) to

the entire domain Ω. Specifically, for any (x, t) ∈ ΩT , we set upΩ(x, t) and uqΩ(x, t) to be the
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linear interpolation of the values of upΓ and uqΓ at both ends of the pipe. More precisely, we
define the operator E : H1(0, T )2 → H1(0, T ;Hs(Ω)), with s being an arbitrary positive integer,
as

E(v1, v2)(t)(x) :=
L− x
L

v1(t) +
x

L
v2(t). (7)

This yields upΩ := E(upΓ) as well as uqΩ := E(uqΓ). From the expression in (7), (upΩ)x and (uqΩ)x
are constant with respect to x. Hence, these extensions indeed belong to H1(0, T ;Hs(Ω)). We
then consider the shifted state variables p̃ := p− upΩ and q̃ := q− uqΩ, which are solutions to the
system

p̃t − εp̃xx +
c2s
A
q̃x = −(upΩ)t −

c2s
A

(uqΩ)x, in ΩT , (8a)

q̃t − εq̃xx +Ap̃x + σA
q̌

p̌
q̃ +

[
Ag sinϕ

c2s
− σA q̌2

2p̌2

]
p̃

= −(uqΩ)t −A(upΩ)x + σA
q̌

p̌
uqΩ +

[
Ag sinϕ

c2s
− σA q̌2

2p̌2

]
upΩ, in ΩT , (8b)

p̃(0, ·) = p̃(L, ·) = 0, q̃(0, ·) = q̃(L, ·) = 0, in (0, T ),(8c)

p̃(·, 0) = p̃0 := p0 − upΩ(·, 0), q̃(·, 0) = q̃0 := q0 − uqΩ(·, 0), in Ω. (8d)

Remember that the feasible set of each firm includes the constraint y ∈ K with K given in (3)
and that for analytical but also numerical reasons one wishes to characterize a solution of (4)
by Lagrange multipliers. This leads us to seek solutions of (6) with higher regularity than
the classic parabolic one; cf. (10) below for the latter. In this vein, our subsequent approach
provides us, under appropriate assumptions, with a unique solution of (6) in the space

Y := {y ∈ L2(0, T ;H2(Ω)2) ∩ L∞(0, T ;H1(Ω)2) and yt ∈ L2(0, T ;L2(Ω)2)}.
Then, by the Aubin–Lions Lemma (see Lemma A.1 in Appendix A), we have the (even
compact) embedding of Y into C([0, T ];C(Ω̄)2). The latter space is instrumental in proving the
existence of an interior point for the constraint y ∈ K. As a consequence, Slater’s constraint
qualification (CQ) is satisfied, which yields the existence of a (bounded) Lagrange multiplier
for this constraint.

For the proof of higher regularity we proceed as follows. First, the existence and uniqueness
of a solution with classic parabolic regularity is obtained via classic results on abstract parabolic
problems. Then, for the additional regularity, we do not wish to follow the usual path of showing
temporal regularity and then spatial regularity as terms involving the time derivative of the
control are already present in (8a) and (8b). Rather, we only show additional spatial regularity,
first for (p̃, q̃) and then for (p̃t, q̃t). Indeed, under appropriate regularity of the shifted initial
state and the right-hand side,the solution (p̃, q̃) satisfies

(p̃, q̃) ∈ L2(0, T ;H2(Ω)2) ∩ L∞(0, T ;H1
0 (Ω)2),

(p̃t, q̃t) ∈ L2(0, T ;L2(Ω)2),

which leads to (p, q) ∈ Y .
Let V := H1

0 (Ω)2 and H := L2(Ω)2. We denote any element v of V, resp. H, by (vp, vq),
where both vp and vq belong to H1

0 (Ω), resp. L2(Ω). This specific notation is inspired by the
variable names for gas pressure and flow. It is well-known that H1

0 (Ω) is dense in L2(Ω) and
that the embedding of H1

0 (Ω) into L2(Ω) is compact. Therefore, we have the Gelfand triple

V ↪→ H ↪→ V∗.
Let (·, ·)H denote the inner product of H and let ‖ · ‖H be the corresponding norm. For any v, w
in H, we have (v, w)H = (vp, wp)L2(Ω) + (vq, wq)L2(Ω) and ‖v‖2H = ‖vp‖2L2(Ω) + ‖vq‖2L2(Ω). The
norm of V is denoted by ‖ · ‖V . In the following, we consider a system of parabolic PDEs with
the lower-order terms having generic coefficients. This allows us to streamline the presentation
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and also invoke these results for an associated adjoint system in future works. Let the bilinear
form aτ : [0, T ]× V × V → R be defined as

aτ (t, v, w) := −ε (∇v,∇w)H + θp (∇vq, wp)L2(Ω) + θq (∇vp, wq)L2(Ω)

+
∑

i,j∈{p,q}

(γij(t)vi, wj)L2(Ω) + τ (v, w)H ,
(9)

where ε > 0, both θp and θq are non-zero constants, and each γij belongs to C([0, T ];C(Ω̄)) with
magnitude bounded by γ̄ij . The parameter τ is fixed later. By applying the Cauchy–Schwarz
inequality to each term in (9), we see that the bilinear form aτ is bounded, i.e., there exists
C > 0 such that |aτ (t, v, w)| ≤ C‖v‖V‖w‖V for all v, w ∈ V and t ∈ [0, T ]. Let Lτ (t) be an
operator in H with action

Lτ (t)v := −
(
ε 0
0 ε

)
∆v +

(
0 θp
θq 0

)
∇v +

(
γpp(t) + τ γpq(t)
γqp(t) γqq(t) + τ

)
v,

and domain D(Lτ (t)) ≡ (H2(Ω) ∩H1
0 (Ω))2. Recall that v ∈ D(Lτ (t)) is equivalent to

v ∈ V, Lτ (t)v ∈ H, and (Lτ (t)v, w)H = aτ (t, v, w) for all w ∈ V.
We are going to investigate a problem of the following form: Find v ∈ L2(0, T ;V) with
vt ∈ L2(0, T ;V∗) such that given v0 ∈ H and ` ∈ L2(0, T ;V∗), it satisfies v(0) = v0 and for all
w ∈ V, we have

d

dt
(v(·), w)H + a0(·, v(·), w) = (`(·), w)H

in the sense of D∗(0, T ), the space of distribution on (0, T ). This is referred to as Problem (P).
As it is usual in the parabolic case, rather than requiring the coercivity of the bilinear form a0,
it is sufficient to check that a0 satisfies a weaker condition, namely Gårding’s inequality (also
known as weak coercivity).

Lemma 3.1 (Gårding’s inequality for a0). Consider the bilinear form defined in (9). Then,
there exists two constants τ̄ , ζ, with ζ > 0, such that for all v ∈ V and t ∈ [0, T ], we have

a0(t, v, v) + τ̄‖v‖2H ≥ ζ‖v‖2V .

Proof. Take t ∈ [0, T ]. We use classic inequalities to get the following bound on the second
term in the right-hand side of (9):

(∇vq, vp)L2(Ω) ≥ −‖∇vq‖L2(Ω)‖vp‖L2(Ω) ≥ −κ2‖∇vq‖2L2(Ω) −
1

4κ2
‖vp‖2L2(Ω)

for any κ2 > 0. Similarly, for the third term of (9) we have

(∇vp, vq)L2(Ω) ≥ −κ3‖∇vp‖2L2(Ω) −
1

4κ3
‖vq‖2L2(Ω)

with κ3 > 0. Finally, each term in the sum (fourth term) is bounded from below by

(γpp(t)vp, vp)L2(Ω) ≥ −γ̄pp‖vp‖
2
L2(Ω), (γqq(t)vq, vq)L2(Ω) ≥ −γ̄qq‖vq‖

2
L2(Ω),

(γpq(t)vp, vq)L2(Ω) ≥ −κpqγ̄pq‖vp‖
2
L2(Ω) −

γ̄pq
4κpq

‖vq‖2L2(Ω),

(γqp(t)vq, vp)L2(Ω) ≥ −κqpγ̄pq‖vq‖
2
L2(Ω) −

γ̄pq
4κqp

‖vp‖2L2(Ω),
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where κpq > 0 and κqp > 0 involve γ̄pq and γ̄pq. Now, we set κ2 := ε
2|θp| and κ3 := ε

2|θq| and let
τ̄p := γ̄pp + γ̄pqκpq + γ̄qp(4κqp)

−1 as well as τ̄q := γ̄qq + γ̄qpκqp + γ̄pq(4κpq)
−1. Then, we get

a0(t, v, v) ≥ ε

2
‖∇v‖2H −

(
|θp|
2ε

+ τ̄p

)
‖vp‖2L2(Ω) −

(
|θq|
2ε

+ τ̄q

)
‖vq‖2L2(Ω)

≥ ε

2
‖v‖2V −

(
θ2
p

2ε
+ τ̄p +

ε

2

)
‖vp‖2L2(Ω) −

(
θ2
q

2ε
+ τ̄q +

ε

2

)
‖vq‖2L2(Ω).

With τ̄ being the maximum of the coefficients in front of ‖vp‖2L2(Ω) and ‖vq‖2L2(Ω), we obtain

a0(t, v, v) ≥ ε

2
‖v‖2V − τ̄‖v‖2H,

which completes the proof. �

Since the time horizon T is finite, we continue our investigation with the coercive bilinear
form a := aτ̄ . Indeed, if z is the solution of

d

dt
(z, w)H + a(t, z, w) =

(
eτ̄ t`, w

)
H for all w ∈ V,

z(0) = v0

in the sense of D∗(0, T ), then v = z eτ̄ t is a solution of Problem (P). For more details, see Dautray
and J.-L. Lions (2000, Remark 2, p. 512), Schwab and Stevenson (2009, Appendix A), or Renardy
and Rogers (2004, p. 383). In the following, we set L := Lτ̄ and we continue to use ` to denote
the constant terms of the system of PDEs.

Proposition 3.2. Suppose that v0 ∈ H and ` ∈ L2(0, T ;V ∗). Then, there exists a unique
solution v to Problem (P) with

v ∈ L2(0, T ;V) and vt ∈ L2(0, T ;V∗). (10)

Moreover, there exists C > 0 such that the following estimate holds for all t ∈ (0, T ]:

‖v(t)‖2H + ‖v‖2L2(0,t;V) ≤ C(‖v0‖2H + ‖`‖2L2(0,t;V∗)). (11)

Proof. The existence result is classic; see Theorem 1 and 2 in Dautray and J.-L. Lions (2000)
(on Pages 512–513), Theorem 1.37 in Hinze et al. (2009), or Theorem 11.3 in Renardy and
Rogers (2004). The estimate is provided in Hinze et al. (2009, Theorem 1.35) and Dautray and
J.-L. Lions (2000, Page 515). �

For the additional regularity, we follow the procedure outlined in Dautray and J.-L. Lions
(2000, Remark 2, Page 532) for our system. Let us first check that over the domain Ω, the
operator L satisfies the Ladyzhenskaya–Sobolevski inequality.

Lemma 3.3 (Ladyzhenskaya–Sobolevski-type inequality). There exists c1, c2 > 0 such that for
any fixed t ∈ [0, T ], we have

(L(t)v,−∆v)H ≥ c1‖v‖
2
H2(Ω)2 − c2‖v‖

2
H for all v ∈ D(L(t)).

Proof. We proceed as in P. L. Lions (1981, Proof of Theorem 1.1). Let v ∈ D(L(t)) ≡
(H2(Ω) ∩H1

0 (Ω))2 and consider the splitting v =: (vp, vq). First, thanks to Lemma A.3, we get
that the second-order terms in L satisfy

ε (∆vp,∆vp)L2(Ω) + ε (∆vq,∆vq)L2(Ω) ≥
ε

2
‖v‖2H2(Ω)2 − ε(C

′′ + 1)‖v‖2H (12)

for some constant C ′′ > 0. Then, moving on to the first-order terms in L, we have
(∇vq,∆vp)L2(Ω) ≥ −‖∇vq‖L2(Ω)‖∆vp‖L2(Ω)

≥ −κ1‖vq‖H2(Ω)‖∆vp‖L2(Ω) − Cκ1
‖vq‖L2(Ω)‖∆vp‖L2(Ω)

≥ −κ1

2
‖vq‖2H2(Ω) − Cκ1

Cκ′1‖vq‖
2
L2(Ω) − (κ′1 +

κ1

2
)‖vp‖2H2(Ω),

(13)
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where we used the relation (41) in Lemma A.2 and Cauchy’s inequality. Similarly, we have

(∇vp,∆vq)L2(Ω) ≥ −
κ2

2
‖vp‖2H2(Ω) − Cκ2Cκ′2‖vp‖

2
L2(Ω) − (κ′2 +

κ2

2
)‖vq‖2H2(Ω).

Finally, with τpp = τqq = τ̄ and τpq = τqp = 0, for i, j being p or q we have

((τij + γij(t))vi,∆vj)L2(Ω) ≥ (τij + γ̄ij)(−κi,j‖vj‖2H2(Ω) − Cκi,j
‖vi‖2L2(Ω)) (14)

for all t ∈ [0, T ]. Summarizing, we derived lower bounds for (L(t)v,∆v)H in terms of
‖vp‖2H2(Ω), ‖vq‖

2
H2(Ω), ‖vp‖

2
L2(Ω), and ‖vq‖

2
L2(Ω) for all t ∈ [0, T ]. Furthermore, the magnitude

of the terms ‖vp‖2H2(Ω) and ‖vq‖2H2(Ω) in (13)–(14) can be controlled by choosing κ1, κ
′
1, κ2, κ

′
2,

and κi,j . Hence, for any values of θp, θq, τ̄ , and γ̄ij , one can select these quantities such that
the contribution of ‖vp‖2H2(Ω) (resp. ‖vq‖2H2(Ω)) in (13)–(14) is larger than − ε4‖vp‖

2
H2(Ω) (resp.

− ε4‖vq‖
2
H2(Ω)). Finally, using (12), we obtain

(L(t)v,−∆v)H ≥
ε

4
‖v‖2H2(Ω)2 − Ctotal‖v‖2H,

with a suitably chosen Ctotal > 0. �

Now, we are ready to state the desired regularity result.

Proposition 3.4. Suppose that v0 ∈ V and ` ∈ L2(0, T ;H). Then, the solution v to Problem (P)
satisfies

v ∈ L∞(0, T ;V) ∩ L2(0, T ;H2(Ω)2)

with the estimate

‖v‖L∞(0,T ;V) + ‖v‖L2(0,T ;H2(Ω)2) ≤ C(‖v0‖V + ‖`‖L2(0,T ;H))

for some C > 0.

Proof. We follow Dautray and J.-L. Lions (2000, Remark 2, Page 532). To this end, we consider
the following approximation

Vm := span {Wj}mj=1

of V, where Wj = (ej , ej) is defined by the (normalized) eigenfunctions ej of the Laplacian in
the Dirichlet problem

−∆ej = νjej in Ω

and ej(0) = ej(L) = 0. These functions form an orthonormal basis of L2(Ω) and belong to
H1

0 (Ω) ∩ C∞(Ω); see Brezis (2010, Theorem 9.31). Note that the sequence {ej/
√
νj + 1}∞j=1

forms an orthonormal basis of H1
0 (Ω). For the initial state of the finite-dimensional problem

over Vm, we choose v(m)(0) ∈ Vm such that v(m)(0) converges to v0 as m → ∞ in V. With
v(m) =

∑m
j=1 ζjWj being the solution to the Galerkin approximation of order m to Problem (P),

for almost all t ∈ (0, T ), we have(
d

dt
v(m)(t), w

)
H

+ a(t, v(m)(t), w) = (`(t), w)H (15)

for all w ∈ Vm ⊂ H. For almost all t in (0, T ), we take w = νjζj(t)Wj in (15) and sum all the
equalities. This yields(

d

dt
v(m)(t),−∆v(m)(t)

)
H

+
(
L(t)v(m)(t),−∆v(m)(t)

)
H

=
(
`(t),−∆v(m)(t)

)
H
.

After integrating by part the first term and exchanging the partial derivatives, we have(
d

dt
∇v(m)(t),∇v(m)(t)

)
H

+
(
L(t)v(m)(t),−∆v(m)(t)

)
H

=
(
`(t),−∆v(m)(t)

)
H
.
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Then, we integrate w.r.t. t and get

1

2
‖∇v(m)(t)‖2H +

∫ t

0

(
L(t)v(m)(s),−∆v(m)(s)

)
H

ds

=

∫ t

0

(
`(s),−∆v(m)(s)

)
H

ds+
1

2
‖∇v(m)(0)‖2H.

Using Lemma 3.3, there exists strictly positive constants c1 and c2 such that

1

2
‖∇v(m)(t)‖2H + c1

∫ t

0

‖v(m)(s)‖2H2(Ω)2ds

≤ 1

2
‖∇v(m)(0)‖2H +

∫ t

0

‖`(s)‖H‖∆v(m)(s)‖Hds+ c2

∫ t

0

‖v(m)(s)‖2Hds,

(16)

where we used that ` ∈ L2(0, T ;H). Now, there exists C c1
2
> 0 such that∫ t

0

‖`(s)‖H‖∆v(m)(s)‖H ds ≤ C c1
2

∫ t

0

‖`(s)‖2Hds+
c1
2

∫ t

0

‖v(m)(s)‖2H2(Ω)2 ds.

Using the estimate in (11), we know that there exists a positive constant Cc2 such that

c2

∫ t

0

‖v(m)(s)‖2Hds ≤ Cc2
[∫ t

0

‖`(s)‖2V∗ds
]

+
1

2
‖v(m)(0)‖2H −

1

2
‖v(m)(t)‖2H

holds. To get an upper bound independent of m, we use the last two relations in (16) and the
boundedness of the sequence v(m)(0) ∈ Vm as it converges to v0 as m→∞ in V . Thus, we get

1

2
‖v(m)(t)‖2V +

c1
2

∫ t

0

‖v(m)(s)‖2H2(Ω)2 ds ≤ C0‖v0‖2V + Crhs

∫ t

0

‖`(s)‖2Hds. (17)

Hence, v(m) ∈ L∞(0, T ;V) ∩ L2(0, T ;H2(Ω)2). Then, using classic arguments, at the
limit m→∞, the solution v also fulfills (17). The estimate is then obtained based on this
inequality. �

Let us now turn our attention to the characterization of the control-to-state mapping. We
start with the following relation between ` and the boundary values.

Lemma 3.5. Let uΓ ∈ H1(0, T )4 and ` be the right-hand side of the equations (8a)–(8b). Then,
there exists C > 0 such that

‖`‖L2(0,T ;H) ≤ C‖uΓ‖H1(0,T )4 .

Proof. In this proof, C is a positive constant that may take different values depending on the
context. We show that the inequality ‖`‖2L2(0,T ;H) ≤ C‖uΓ‖2H1(0,T )4 holds. First, note that for
any (x, t) ∈ ΩT , we have

(upΩ)t(x, t) =
L− x
L

(pin)t(t) +
x

L
(pout)t(t), (upΩ)x(x, t) =

pout(t)− pin(t)

L
,

and similar relations hold for (uqΩ)t and (uqΩ)x. With ` =: (`p, `q), for all s ∈ (0, T ), we have

‖`p(·, s)‖2L2(Ω) ≤ C
(
‖(upΩ)t(·, s)‖2L2(Ω) + ‖(uqΩ)x(·, s)‖2L2(Ω)

)
.

Using the expressions above for (upΩ)t and (upΩ)x, it holds that

‖`p(·, s)‖2L2(Ω) ≤ C
(
(pin(s))2 + ((pout)t(s))

2 + (qin(s))2 + (qout(s))2
)
.
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Now for `q, using similar arguments, we have

‖`q(·, s)‖2L2(Ω)

≤ C
(
‖(uqΩ)t(·, s)‖2L2(Ω) + ‖(upΩ)x(·, s)‖2L2(Ω) + ‖uqΩ(·, s)‖2L2(Ω) + ‖upΩ(·, s)‖2L2(Ω)

)
≤ C

(
(qin(s))2 + ((qout)t(s))

2 + (pin(s))2 + ((pout)t(s))
2

+(pin(s))2 + (pout(s))2 + (qin(s))2 + (qout(s))2
)
.

Hence, it holds that

‖`‖2L2(0,T ;H) = ‖`p‖2L2(0,T ;L2(Ω)) + ‖`q‖2L2(0,T ;L2(Ω))

≤ C
[
‖pin‖2L2(0,T ) + ‖pout‖2L2(0,T ) + ‖qin‖2L2(0,T ) + ‖qout‖2L2(0,T )

+ ‖(pin)t‖2L2(0,T ) + ‖(pout)t‖2L2(0,T ) + ‖(qin)t‖2L2(0,T ) + ‖(qout)t‖2L2(0,T )

]
.

This concludes the proof. �

Finally, the desired regularity result for the solution of the system can be obtained. As the
shifted initial state has to be in H1

0 (Ω)2, there are compatibility conditions between the initial
state and the value of the controls at t = 0. To capture these, we define

Z := {(y0, uΓ) ∈ H1(Ω)2 ×H1(0, T )4 | p0(0) = pin(0), p0(L) = pout(0),

q0(0) = qin(0), q0(L) = qout(0)}.

Lemma 3.6. Given y0 ∈ H1(Ω)2, assume that the boundary control uΓ satisfies (y0, uΓ) ∈ Z.
Then, the unique solution y = (p, q) of (6) has regularity

y ∈ L∞(0, T ;H1(Ω)2) ∩ L2(0, T ;H2(Ω)2) and yt ∈ L2(0, T ;H),

and there is a linear and continuous mapping SPDE : Z → Y such that y = SPDE(y0, uΓ).

Proof. The hypothesis allows us to invoke Lemma 3.5 and Proposition 3.4. Given data
(y0, uΓ) ∈ Z, let v be the unique solution of Problem (P) with initial state v0 = y0 −
(E(upΓ), E(uqΓ))>(·, 0). From Proposition 3.4, we have

v ∈ L∞(0, T ;H1
0 (Ω)2) ∩ L2(0, T ;H2(Ω)2) ⊂ L2(0, T ; (H2(Ω) ∩H1

0 (Ω))2), (18)

and then v ∈ D(L(t)) for all t ∈ [0, T ]. Moreover, Problem (P) is equivalent to vt = `− Lv in
L2(0, T ;V∗) plus initial and boundary conditions; see Remark 2, Page 512 in Dautray and J.-L.
Lions (2000). As `− Lv ∈ L2(0, T ;H) ⊂ L2(0, T ;V∗), we have vt ∈ L2(0, T ;H). Furthermore,
with v satisfying (18), the estimate

‖vt‖L2(0,T ;H) ≤ ‖`‖L2(0,T ;H) + ‖Lv‖L2(0,T ;H)

≤ ‖`‖L2(0,T ;H) + CL‖v‖L2(0,T ;H2(Ω)2)

holds due to the boundedness of L. In combination with the estimates from Proposition 3.4
and Lemma 3.5, we get

‖v‖L∞(0,T ;V) + ‖vt‖L2(0,T ;H) + ‖v‖L2(0,T ;H2(Ω)2) ≤ C(‖v0‖V + ‖uΓ‖H1(0,T )4).

From v, the unique solution y of (6) is given by

y = v +

(
E(upΓ)
E(uqΓ)

)
.

Recall that E : H1(0, T )2 → H1(0, L;H2(Ω)) is linear and bounded. Therefore, we get the
boundedness of SPDE. �
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Before moving on to the analysis of the GNEP, let us define the control-to-state mapping S.
The compatibility condition (y0, uΓ) ∈ Z restricts the solution operator to be well-defined on a
subset of H1(0, T )4. More precisely, with uy0Γ := (p0(0), p0(L), q0(0), q0(L)), the set of boundary
controls compatible with y0 is Uy0 := {uΓ ∈ H1(0, T )4 | uΓ(0) = uy0Γ }. With ûy0 ∈ Uy0 the
constant function ûy0 ≡ uy0Γ , the relation between any boundary control uΓ ∈ Uy0 and the state
can be written as

y = SPDE(y0, uΓ) = SPDE(y0, û
y0) + SPDE(0, uΓ − ûy0),

where
uΓ − ûy0 ∈ Û := {û ∈ H1(0, T )4 | û(0) = 0} (19)

is the Banach space (with the norm of H1(0, T )4) of controls compatible with the initial state
being 0. With Ŝ0 : Û → Y given by û 7→ SPDE(0, û), the control-to-state operator S : Uy0 → Y
is given by

S(uΓ) := SPDE(y0, û
y0) + Ŝ0(uΓ − ûy0) = y. (20)

4. Analysis of the jointly convex GNEP

Given the well-posedness of the PDE governing the gas flow, we now study the underlying
GNEP. The space of pressures (resp. mass flows) at the pipe’s endpoints is P := H1(0, T )2 (resp.
Q := H1(0, T )2). Each firm’s decision variable ui =: (pi, qi), where pi and qi are the pressure
and mass flow variables, is an element of U := P ×Q and we define U := UM as we consider
M -many firms. The set of initial states compatible with the constraint y ∈ K is given by:

Y ad
0 := {y0 ∈ H1(Ω)2 |

¯
y ≤ y0(x) ≤ ȳ for all x ∈ [0, L]},

where
¯
y, ȳ ∈ R with

¯
y ≤ ȳ are fixed. The mapping in (2) between the players’ decisions and the

boundary values is L : U → U with

L := (Lp,Lq) with Lp(u) :=
1

M

M∑
i=1

pi and Lq(u) :=

M∑
i=1

qi.

While this does not impose the continuity of the pressure, we shall see that this particular
choice of Lp allows us to show existence of solutions to the game such that the continuity of
pressure holds.

In our analysis below we invoke the following notation. As previously discussed, the
control-to-state operator S is only well-defined on a subset of U that lacks the vector space
structure. To facilitate the handling of the compatibility conditions, we perform a change
of variables. Given y0 = (p0, q0), consider the constant functions p̂0(t) := (p0(0), p0(L)) and
q̂0(t) := (q0(0)/M, q0(L)/M) for all t ∈ [0, T ]. With ûy0i := (p̂0, q̂0), the shifted decisions
for player i are given by ûi = ui − ûy0i , and these quantities are collected in û and ûy0 .
With P̂ := {p̂ ∈ P | p̂(0) = 0} and Q̂ := {q̂ ∈ Q | q̂(0) = 0}, the assumptions stated
in (23) and (24) below allow us to define the feasible sets for the pressures and mass flows
as P̂ ad := {p̂ ∈ P̂ | p̂ + p̂0 ∈ P ad} and Q̂ad

i := {q̂ ∈ Q̂ | q̂ + q̂0 ∈ Qad
i }. In the light of the

definition of Û in (19), we note that Û = P̂ × Q̂. Also, as closed subspaces of H1(0, T )2,
equipped with the norm of H1(0, T )2, both P̂ and Q̂ are Banach spaces. Furthermore, from
the inclusions H1

0 (0, T )2 ⊂ P̂ ⊂ L2(0, T )2 and P̂
∗
⊂ H−1(0, T )2, we infer that P̂ is dense

in L2(0, T )2. Coupled with the continuous injection of H1(0, T ) in L2(0, T ), we deduce that
we have the Gelfand triples P̂ ↪→ L2(0, T )2 ↪→ P̂

∗
and Q̂ ↪→ L2(0, T )2 ↪→ Q̂

∗
. The space

Z := (Û
∗
)M is isomorphic to Û

∗
, denoted by Z ' Û

∗
. We can thus identify any element of Z

with a unique element of Û
∗
and vice-versa. The duality pairing between Û and Z is given by
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〈z, u〉Z,Û =
∑M
i=1 〈zi, ui〉Û∗,Û . Then, the feasible set for ûi is a subset of the Banach space Û .

The affine mapping Ŝ : Û → Y , from the players’ actions to the state, is given by

y = Ŝ(û) = SPDE(y0, û
y0) + Ŝ0(L(û)).

With Li : P̂ × Q̂ → P̂ × Q̂ given by Li(ûi) := (M−1q̂i, q̂i) for all i ∈ {1, . . . ,M}, we define
Ŝi(ûi) := Ŝ0(Li(ûi)). Then, for a given û−i, the mapping from each player’s control ûi to the
state y reads

Ŝ(ûi, û−i) = Ŝi(ûi) + SPDE(y0, û
y0) + Ŝ0(L(0, û−i)).

Note that Ŝi : Û → Y is well defined and linear. The feasible set for each agent is given by the
set-valued map Ĉi : ÛM−1 ⇒ Û defined as

Ĉi(û−i) := {ûi ∈ Ûad
i | Ŝ(ûi, û−i) ∈ K}, (21)

where Ûad
i := P̂ ad × Q̂ad

i . As both Ûad
i and K are non-empty, closed, and convex, the fact

that Ŝ is affine ensures that the images of Ĉi(û−i) are closed and convex (if non-empty). The
part of the objective functional that intertwines the players’ decision variables is the revenue
functional

ri(q
out
i , qout

−i ) :=

∫ T

0

(
α(t)

M∑
k=1

qout
k (t)− β(t)

)
qout
i (t)dt.

With ûi =: (p̂in
i , p̂

out
i , q̂in

i , q̂
out
i ), in the shifted variables, we get

r̂i(q̂
out
i , q̂out

−i ) := ri(q̂
out
i + q0(L)/M, q̂out

−i + q0(L)/M)

=

∫ T

0

[
α(t)

M∑
k=1

q̂out
k (t)− (β(t)− α(t)q0(L))

] [
q̂out
i (t) + q0(L)/M

]
dt.

Note that for all q̂out
−i ∈ L2(0, T )M−1, the mapping q̂out

i 7→ r̂i(q̂
out
i , q̂out

−i ) is convex and continu-
ously Fréchet differentiable. The expression of the gradient w.r.t. the first variable reads

∇q̂out
i
r̂i(q̂

out
i , q̂out

−i ) = α

M∑
k=1

q̂out
k + α q̂out

i − (β − α̂q0(L))

with α̂ := α(1 +M)/M . Let e ∈ Û
∗
, d1 : Û × ÛM−1 → Û

∗
, and d2 : Û → Û

∗
be such that for

any wi = (wp0i , w
pL
i , wq0i , w

qL
i ) ∈ Û the following holds:

〈d1(ûi, û−i), wi〉Û∗,Û =

(
α

M∑
k=1

q̂out
k , wqLi

)
L2(0,T )

,

〈d2(ûi), wi〉Û∗,Û =
(
α q̂out

i , wqLi

)
L2(0,T )

,

〈e, wi〉Û∗,Û =
(
β − α̂q0(L), wqLi

)
L2(0,T )

.

Finally, we define the functionals ĝp(p̂i) := gp(p̂i + p̂0) and ĝqi (q̂i) := gqi (q̂i + q̂0).
We are now ready to state our main result.

Theorem 4.1. Given an initial state (p0, q0) ∈ Y ad
0 , consider the following jointly convex

GNEP with M players, where the optimization problem associated with player i ∈ {1, . . . ,M} is
given by

min
ui∈U

fi(ui, u−i) :=

∫ T

0

(
α(t)

M∑
k=1

qout
k (t)− β(t)

)
qout
i (t)dt+ gi(ui)

s.t. ui ∈ P ad ×Qad
i , S(ui, u−i) ∈ K,

(22)
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where gi(ui) = gp(pi)+gqi (qi) with both gp and gqi being lower semicontinuous and proper convex
functions. Assume that for each player, the subdifferential ∂gi is defined everywhere and that
the sets K, P ad ⊂ P as well as Qad

i ⊂ Q are closed and convex. In addition, P ad and Qad
i

satisfy the property that

p ∈ P ad =⇒ pin(0) = p0(0) and pout(0) = p0(L), (23)

q ∈ Qad
i =⇒ Mqin

i (0) = q0(0) and Mqout
i (0) = q0(L). (24)

Furthermore, suppose that there exists ū ∈
∏M
i=1(P ad × Qad

i ) such that Slater’s constraint
qualification (CQ)

S(ū) ∈ intK (25)
holds. Finally, assume that the subdifferential of the sum Mgp(p) +

∑M
i=1 g

q
i (qi), when restricted

to P ad ×
∏M
i=1Q

ad
i , is coercive. Then, there exists a variational equilibrium to the GNEP with

all pressures pi, i ∈ {1, . . . ,M}, being identical.

Proof. We proceed in three steps: First, we show that there exists a solution to the GNEP
for which the first-order conditions for the players’ optimization problems exhibit the same
multiplier for the shared constraint S(u) ∈ K. Second, we formulate a reduced generalized
equation with only one boundary pressure variable and show that its solution set is non-empty.
Lastly, from any solution of the latter problem, we construct a solution to an operator equation
associated with the first part and therefore to the jointly convex GNEP.

Step #1: We focus on the first-order optimality condition for the minimization problem
associated with player i. For this purpose, take any fixed û−i such that Ĉi(û−i) 6= ∅ holds.
Since for any û−i, the partial map fi(·, û−i) is lower semicontinuous and convex, for ūi to be
optimal, it is necessary and sufficient that the inclusion

0 ∈ ∂(fi(·, û−i) + δĈi(û−i)
)(ūi) (26)

holds, where δĈi(û−i)
is the indicator function of the set Ĉi(û−i). As ri is C1 and ∂ĝi has full

domain, by applying the sum rule for convex subdifferentials we obtain

∂(fi(·, û−i) + δĈi(û−i)
)(ûi) = d1(ûi, û−i) + d2(ûi)− e+ ∂ĝi(ûi) + ∂(δĈi(û−i)

)(ûi).

Using the chain rule for convex subdifferentials we get that for any ûi ∈ Ûad
i with Ŝ(ûi, û−i) ∈ K,

the inclusion
∂δĈi(û−i)

(ûi) ⊇ NÛad
i

(ûi) + ∂(δK(Ŝ(ûi, û−i))) (27)
holds. Hence, any solution to the generalized equation

0 ∈ d1(ûi, û−i) + d2(ûi)− e+ ∂ĝi(ûi) +NÛad
i

(ûi) + ∂(δK(Ŝ(ûi, û−i))) (28)

satisfies (26) and therefore is optimal for player i. Recall from (20) that ûi 7→ Ŝ(ûi, û−i) is an
affine mapping. Invoking again the chain rule for convex subdifferentials, we have

∂(δK(Ŝ(ûi, û−i))) ⊇ Ŝ∗iNK(Ŝ(ûi, û−i)). (29)

With µi ∈ NK(Ŝ(ûi, û−i)), from (28) we get the generalized equation

e ∈ d1(ûi, û−i) + d2(ûi) + ∂ĝi(ûi) +NÛad
i

(ûi) + Ŝ∗i µi.

Any û ∈ Û that satisfies the above inclusion for all i ∈ {1, . . . ,M} is a solution of the GNEP.
Note that if an appropriate constraint qualification, like Slater’s CQ, were to hold for Ĉi(û−i)
as given in (21), then both (27) and (29) would hold with equality. Since the state variable
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y = Ŝ(ûi, û−i) is the same for all players, we can restrict all µi to be equal. This leads us to
the following operator equations:

e ∈ d1(ûi, û−i) + d2(ûi) + ∂ĝi(ûi) +NÛad
i

(ûi) + Ŝ∗i µ, i ∈ {1, . . . ,M}, (30)

µ ∈ NK(Ŝ(û)). (31)

Any û ∈ Û that satisfies the above relations is a variational equilibrium of the GNEP. To conclude
the first step and streamline the remainder of the proof, let us provide an equivalent system of
inclusions that characterize a solution to the jointly convex GNEP. Let d̃1 : Q̂× Q̂M−1 → Q̂

∗

and d̃2 : Q̂→ Q̂
∗
be such that〈

d̃1(q̂i, q−i), wi

〉
Q̂
∗
,Q̂

=

(
α

M∑
k=1

q̂out
k , wout

i

)
L2(0,T )

,

〈
d̃2(q̂i), wi

〉
Q̂
∗
,Q̂

=
(
α q̂out

i , wout
i

)
L2(0,T )

,

〈ẽ, wi〉Q̂∗,Q̂ =
(
β − α̂q0(L), wout

i

)
L2(0,T )

,

for any wi = (win
i , w

out
i ) ∈ Q̂. Remembering that Z ' Û

∗
, we conclude that the solution set of

the system (30)–(31) coincides with the one of

0 ∈ ∂ĝp(p̂i) +NP̂ ad(p̂i) +M−1ηp, i ∈ {1, . . . ,M}, (32a)

ẽ ∈ d̃1(q̂i, q̂−i) + d̃2(q̂i) + ∂ĝqi (q̂i) +NQ̂ad
i

(q̂i) + ηq, i ∈ {1, . . . ,M}, (32b)

µ ∈ NK(Ŝ(û)), (32c)(
ηp

ηq

)
= Ŝ∗0µ. (32d)

Step #2: We are interested in the existence of a solution for which the endpoint pressure
is the same for all players. For this purpose, we consider the operator equation in the space
Ũ := P̂ × Q̂M . Let L̃ : P̂ × Q̂M be given by L̃(p̃, q̂) = (p̃,

∑M
i=1 q̂i). The relation between the

state variable y and the controls (p̃, q̂) ∈ Ũ is now given by S̃(p̃, q̂) := SPDE(y0, û
y0)+Ŝ0(L̃(p̃, q̂)).

The constraint set is C̃ := {(p̃, q̂) ∈ P̂ ad× Q̂ad | S̃(p̃, q̂) ∈ K} with Q̂ad :=
∏M
i=1 Q̂

ad
i . Thanks to

the convexity of P̂ ad, Condition (25) ensures the non-emptiness of C̃. With Z̃ := P̂
∗
× (Q̂

∗
)M ,

we associate the operators Ã : Ũ → Z̃ and B̃ : Ũ ⇒ Z̃ with

Ã(p̃, q̂) =


0

d̃1(q̂1, q̂−1) + d̃2(q̂1)
...

d̃1(q̂M , q̂−M ) + d̃2(q̂M )

 and B̃(p̃, q̂) =


∂Mĝp(p̃)
∂ĝq1(q̂1)

...
∂ĝqM (q̂M )

 . (33)

Our goal is to show existence of a solution to the generalized equation

ẽ ∈ Ã′(p̃, q̂) + B̃′(p̃, q̂) +NC̃(p̃, q̂), (34)

where ẽ := (0, ẽ, . . . , ẽ) and Ã′ as well as B̃′ are defined by identifying the sets Ã(p̃, q̂) and
B̃(p̃, q̂) with the corresponding subsets of Ũ∗. Conversely, the operator C̃ : Ũ ⇒ Z̃ is defined
by setting C̃(p̃, q̂) to the corresponding subset of NC̃(p̃, q̂). We show that the sum Ã+ B̃ + C̃
is maximally monotone and start by establishing that Ã is monotone and demicontinuous.
The latter property is true whenever for any sequence {vn} ⊂ dom Ã converging strongly to
v in Ũ , we have that Ã(vn) converges weakly to Ã(v) in Z̃; see Barbu and Precupanu (2012,
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Definition 1.137). With zp ∈ P̂ , zqi ∈ Q̂, zqi =: (zin
i , z

out
i ), and zq collecting all the zqi , we have〈

Ã(p̃, q̂), (zp, zq)
〉
Z̃,Ũ

=

M∑
i=1

(α M∑
k=1

q̂out
k , zout

i

)
L2(0,T )

+
(
αq̂out

i , zout
i

)
L2(0,T )


=

(
M∑
k=1

q̂out
k ,

M∑
i=1

αzout
i

)
L2(0,T )

+

M∑
i=1

(
q̂out
i , αzout

i

)
L2(0,T )

.

As α ∈ L∞(0, T ), we have αzout
i ∈ L2(0, T ). Then, for any sequence {(p̃n, q̂n)} ⊂ dom Ã

strongly converging to (p̃, q̂), we have weak convergence of all the terms in the sum above and
Ã(p̃n, q̂n) converges weakly to Ã(p̃, q̂). For the monotonicity, as q̂ 7→ d̃1(q̂i, q̂−i) is linear, the
operator Ã is a linear. Taking zp = p̃ and zq = q̂ in the previous relation yields〈

Ã(p̃, q̂), (p̃, q̂)
〉
Z̃,Ũ

=

M∑
i=1

(α M∑
k=1

q̂out
k , q̂out

i

)
L2(0,T )

+
(
αq̂out

i , q̂out
i

)
L2(0,T )

 .
=

(
α

M∑
k=1

q̂out
k ,

M∑
i=1

q̂out
i

)
L2(0,T )

+

M∑
i=1

(
αq̂out

i , q̂out
i

)
L2(0,T )

.

Since α(t) ≥ αmin > 0 for almost all t ∈ (0, T ), we infer that〈
Ã(p̃, q̂), (p̃, q̂)

〉
Z̃,Ũ
≥ αmin‖

M∑
i=1

q̂out
i ‖2L2(0,T ) + αmin

M∑
i=1

‖q̂out
i ‖2L2(0,T ).

As Ã has full domain, is monotone and demicontinuous, it is maximally monotone; see Barbu
and Precupanu (2012, Corollary 1.142). The maximal monotonicity of the sum Ã + B̃ + C̃
follows from the fact that both Ã and B̃ have full domain.

For the existence of a solution to (34), we rely on the coercivity of the maximally monotone
sum Ã+ B̃ + C̃; see Barbu and Precupanu (2012, Definition 1.138). By the assumption on the
subdifferential of Mgp(p) +

∑M
i=1 g

q
i (qi), namely B̃, we have the coercivity of the sum B̃ + C̃.

As Ã has full domain and is maximally monotone, the sum Ã+ B̃ + C̃ is coercive. Now under
the isomorphism between Z̃ and Ũ∗, the operator Ã′ + B̃′ +NC̃ is also coercive and maximally
monotone. It is well-known that a coercive and maximally monotone operator from a reflexive
Banach space to its dual is surjective; see, e.g., Barbu and Precupanu (2012, Theorem 1.143).
Therefore, there is a solution of the operator equation

e ∈ (Ã′ + B̃′ +NC̃)(u). (35)

Step #3: Finally, we construct from any solution (p?, q?) of this generalized equation a
solution u? of the system (30)–(31) and, thus, of the GNEP. First, since (25) holds at ū = (p̄, q̄),
we infer that with p′ := ( 1

M

∑M
i=1 p̄i)− p̂0 and q′ ∈ Q̂M defined as q′i := q̄i − q̂0, the inclusion

S̃(p′, q′) ∈ intK

holds and (p′, q′) ∈ C̃. Invoking the chain rule for convex subdifferentials, we get that for any
(p̃, q̂) ∈ C̃, we have

NC̃(p̃, q̂) = NP̂ ad×Q̂ad(p̃, q̂) + L̃∗Ŝ∗0NK(S̃(p̃, q̂)).

Let µ? ∈ NK(S̃(p?, q?)) be such that the inclusion (35) holds. With η? := Ŝ∗0µ
?, we get

(ηp)? ∈ P̂
∗
and (ηq)? ∈ Q̂

∗
from η?. Then, from (35) we obtain that

0 ∈ ∂Mĝp(p?) +NP̂ ad(p?) + (ηp)?

holds. Since ∂Mĝp(p?) = M∂ĝp(p?), the following inclusion is satisfied:

0 ∈ ∂ĝp(p?) +NP̂ ad(p?) +M−1(ηp)?. (36)
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We define u? ∈ Ûad by setting u?i := (p?, q?i ) and since S̃(p?, q?) = S(u?) by construction,
we have µ? ∈ NK(S(u?)). Using the definition of the operators in (33) and of L̃, for all
i ∈ {1, . . . ,M} we get

0 ∈ d̃1(q?i , q
?
−i) + d̃2(q?i ) + ∂ĝqi (q

?
i ) +NQ̂ad

i
(q?i ) + (ηq)?. (37)

Since µ? ∈ NK(S(u?)), η? = Ŝ∗0µ
?, and (36)–(37) hold for all u?i , we infer that u? satisfies (32).

�

Corollary 4.2. Given an initial state (p0, q0) ∈ Y ad
0 , consider the GNEP formed by the

collection of problems of the form (4). Suppose that for each firm i, the functional Ri(pi, qi) =
Rqi (qi) +Rp(pi) with both Rqi : Q→ R and Rp : P → R being lower semicontinuous, proper and
convex with subdifferentials defined everywhere. We set

Qad
i = {(qin, qout) ∈ Q | q0(0) = Mqin(0), q0(L) = Mqout(0),

∫ T

0

qout(t)− qin(t) dt ≤ 0,

0 ≤ qin ≤ q̄in
i , 0 ≤ qout ≤ q̄ a.e. in (0, T )}.

With P ad = {(pin, pout) ∈ P |
¯
p ≤ pin, pout ≤ p̄, p0(0) = pin(0) and p0(L) = pout(0)}, assume

there exists ū ∈
∏M
i=1(P ad ×Qad

i ) such that S(ū) ∈ intK holds. Suppose that the subdifferential
of the sum MRp(p) +

∑M
i=1R

q
i (qi), when restricted to P ad×

∏M
i=1Q

ad
i , is coercive. Then, there

exists a variational equilibrium to the GNEP with all pressures pi being identical.

Proof. To fit into the format of (22), we let

gi(ui) =

∫ T

0

ci(t) q
in
i (t) dt+Ri(ui).

and note that all the hypothesis are satisfied. �

Remark 4.3. The existence of feasible controls satisfying (25) is automatically given whenever
the initial state y0 is a stationary solution satisfying the bound constraints and there exists
feasible controls to satisfy the injection requirements given in (24). The coercivity condition is
satisfied whenever the feasible set of each agent is bounded. Otherwise, like in our test instance,
this condition is satisfied whenever each feasible set is bounded in the L2 sense and each R is
the square of the L2 norm of the weak time derivative; see (46).

Remark 4.4. For the existence of a variational equilibrium, the mild Slater condition (25),
involving all players’ decisions, needs to hold. If one seeks a stronger characterization of the
solution set of the GNEP, so that any variational equilibrium is a solution of System (30)–(31),
the, we need both (27) and (29) to hold with equality. For this, a sufficient condition is that for
all i, and any feasible û−i, there exists ûi ∈ Ûad

i such that

Ŝ(ûi, û−i) ∈ intK,

which is much more stringent.

Furthermore, if the producers have the same feasible sets and cost functionals, then a solution
to the GNEP can be constructed from the solution to an optimization problem. We refer to
this case as the symmetric case.

Proposition 4.5. Consider the GNEP of Theorem 4.1 with a given initial state y0 and assume
that the players’ problems are identical. Suppose that all the assumptions of Theorem 4.1 hold,
except for the boundedness of the P ad and Qad. Let Qad

opt := MQad and suppose that there exists
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ū ∈ P ad ×Qad
opt such that S(ū) ∈ intK holds. Then, a variational equilibrium of the GNEP can

be constructed from any solution of the optimization problem

min
u∈U

∫ T

0

(
M + 1

2M
α(t)qout(t)− β(t)

)
qout(t) dt+ g(u)

s.t. u ∈ P ad ×Qad
opt, S(u) ∈ K,

(38)

where g(p, q) = Mgp(p) +Mgqi (M
−1q).

Proof. We use the same functional analytic setting as in the proof of Theorem 4.1 and we also
perform the change of variables p̂ := p − p̂0 and q̂ := q − q̂0 with p̂0(t) := (p0(0), p0(L)) and
q̂0(t) := (q0(0), q0(L)) for all t ∈ [0, T ]. We also use the same functional analytic setting as in
the previous proof. The space Q̂ad

opt is defined as {q̂ ∈ Q̂ | q̂ + q̂0 ∈ Qad
opt}. We show that any

(p̂, q̂) satisfying the first-order optimality condition of this problem can be used to construct
an element û ∈ P̂ × Q̂ satisfying the first-order optimality condition (34). From basic results
of convex analysis, we have ∂q̂ ĝ(p̂, q̂) = ∂gqi (M

−1(q̂ + q̂0)). Recall that α̂ = (1 +M−1)α. The
revenue part r̂opt : L2(0, T )→ R of the objective functional with the shifted variables reads

r̂opt(q̂
out) =

∫ T

0

[
1
2 α̂(t)q̂out(t)− β(t) + 1

2 α̂(t)q0(L)
] [
q̂out(t) + q0(L)

]
dt.

It is Fréchet differentiable and its gradient is given by

∇r̂opt(q̂
out) = α̂q̂out + α̂q0(L)− β.

With the assumptions on the cost function and the fact that Slater’s CQ holds, any solution of
the optimization problem satisfies

0 = M∂gp(p?) + ζp + ηp,

ẽ =

(
0

α (1 +M−1)(qout)?

)
+ ∂gqi (M

−1(q? + q̂0)) + ζq + ηq,

where ζp ∈ NP̂ ad(p?), ζq ∈ NQ̂ad
opt

(q?), µ ∈ NK(Ŝ(u?)), (ηp, ηq) are obtained from Ŝ∗0µ and ẽ

satisfies 〈ẽ, wi〉Q̂∗,Q̂ = (β − α̂q0(L), wout
i )L2(0,T ) for any wi = (win

i , w
out
i ) ∈ Q̂. Note that

ζ̃p := M−1ζp also belongs to NP̂ ad(p?). Now let q̂i = M−1q? and q̂ collects all q̂i. Then, after
some algebraic manipulations, we get that the following holds:

0 = ∂gp(p?) + ζ̃p +M−1ηp,

ẽ =

(
0

α
∑
k q̂

out
k + αq̂out

i

)
+ ∂gqi (q̂i +M−1q̂0) + ζq + ηq.

Note that gqi (q̂i + M−1q0(L)) = ĝqi (q̂i) holds by the definition of the latter function. Since
Ŝ(u?) = S̃(p?, q̂), we have µ ∈ NK(S̃(p?, q̂)). Then, one can see that for all i, the generalized
equation (32) holds with ui = (p?, q̂i). Therefore, the strategy profile u = (u1, . . . , uM ) is a
variational equilibrium of the GNEP. �

Existence of a solution of the optimization problem (38) is easily obtained using classic
arguments. The feasible set is a non-empty, convex, and closed subset of a reflexive Banach
space. In addition to the hypotheses of Proposition 4.5, assume that

lim
‖u‖→+∞

g(u) + δP ad×Qad
opt

(u) = +∞.

This ensures that the level sets of the objective functional are bounded over the feasible set.
The latter is also proper lower semicontinuous and convex with full domain. Then, there exists
a minimizer; see, e.g., Barbu and Precupanu (2012, Theorem 2.11).
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5. Test Cases: The Influence of Linepacking on Market Outcomes

The dynamics of transport in networks as formalized in our analysis allows to capture
important intertemporal aspects, which are highly relevant in real-world market interaction.
An important example is given in the context of gas markets, where transport dynamics of the
network are such that the network can be used as a temporal storage device. In the context of
gas transport this is referred to as linepacking. The importance of linepacking in the operation
of real-world gas transport is documented in, e.g., Koch et al. (2015, Page 212). It has been
estimated that for, e.g., the Great Britain national gas transmission system, the average hourly
linepack stores energy of about 3743 GW h, but that the available linepack flexibility varies
widely over the year (G. Wilson and Rowley 2019). In that study, the available within-day
flexibility of the transmission system ranged from 13 GW h to 427 GW h.

In what follows, based on a stylized numerical test example, we use our framework to illustrate
how the ability of linepacking can influences market outcomes in gas markets. Specifically, we
investigate how linepacking is used for storage by market participants and who benefits to
which degree.

To this end, we consider M identical and strategically acting firms that trade natural gas,
which is transported over a single pipe. The time horizon of 4 h is split into two periods of 2 h
each. Purchase cost c(t) and inverse demand P (t, q(t)) = β(t) + α(t)q(t) do not change within
each period. With i ∈ {1, 2}, we use ci, αi, and βi to denote their values, which are given by

c(t) =

{
388.8, t ∈ [0, 2 h),

432.0, t ∈ [2 h, 4 h].

α(t) =

{
−16.6, t ∈ [0, 2 h),

−20.7, t ∈ [2 h, 4 h],

β(t) =

{
1500.8, t ∈ [0, 2 h),

2000.3, t ∈ [2 h, 4 h],

The purchase cost of gas is 10 % cheaper in the first period and the inverse demand function
P (t, q(t)) reflects higher demand in the second period. This choice of parameters thus incentivizes
producers to use the pipe as a temporal storage for the gas acquired in the first period for
its use in the second one to reduce the overall costs. Taking piecewise constant data allows
us, moreover, to easily formulate a “static” counterpart of the considered scenario. For this
counterpart, we associate a mass flow qi and boundary pressures (pin

i , p
out
i ) for each period. We

consider the flow to be stationary and that each triple (qi, p
in
i , p

out
i ) satisfies the Weymouth

equation as a stationary approximation of gas flow in a pipe. Our choice of parameters ensures
that no congestion occurs for the stationary flow. In the stationary case, this implies that
the bounds on pressure and mass flow do not influence the market outcomes. As we will see,
however, these bounds play an important role in the instationary model.

The physical parameters of the instance, inspired by Schmidt et al. (2017), are as follows:
L = 50 km, D = 0.5 m, ϕ = 0, k = 1× 10−4 m, Temp = 15 °C, R = 8.3145 J mol−1 K−1,
and m = 0.016 043 kg mol−1. The latter two values are those for methane, which usually
dominates the composition of natural gas. The specific gas constant Rs := R/m has value
518.26 J kg K−1 and the friction coefficient is modeled using the formula by Nikuradse, i.e.,
λ = (2 log10(Dk ) + 1.138)−2; see Page 25 in Koch et al. (2015) for a discussion of this model.

The initial state is assumed to be stationary and is given by q0 = 48.289 kg s−1 and the
pressure at the entry node being 50 bar. Remember that the pressure and mass flow admit,
in a pointwise sense, upper (p̄, q̄) and lower (

¯
p,

¯
q) bounds in the pipe. The values for the last

three bounds are fixed to

¯
p = 40 bar,

¯
q = 10.9 kg s−1, q̄ = 163 kg s−1.
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Figure 1. Mass flow boundary controls for different values of the upper
pressure bound p̄. The crosses indicate the optimal flow given by the static
model. The circles indicate the optimal mass flow during the second period
with the cost of gas being c1 rather than c2 also for the static model.

The value of p̄ directly influences the maximal linepack capability in our setup and, thus, we
will vary it in our test cases. By using the ideal gas law p = c2sρ, the total amount of gas in the
pipe linearly depends on the integral of the pressure profile over the pipe. Thus, pressure is the
variable we monitor when studying linepack effects. In our setup, we vary p̄ in the range of
[50.1, 70] bar.

With this calibration, we solve the model described in (4). More precisely, we are in the
setting of Proposition 4.5. The specific discretization of the PDE system (1) is described in
Appendix B. To keep the presentation focused on the actual results, we moved the detailed
problem formulations for this test case to Appendix C. There, we also present the modeling
environments and solvers used for the computations.

Let us first present the time evolution of the physical quantities in the case of 3 firms. We
start with the evolution of the mass flows at the endpoints of the pipe as shown in Figure 1.
For most parts of the time horizon, the output qout is constant but has rather different values in
each period. Each value is very close to the one obtained by the static model, which is indicated
by the crosses in the figure. Two transitions are present: (i) at the beginning from the initial
state to the desired output value and (ii) at the interface of the two time periods at t = 2 h.
The latter has a drop in the outflow, which we will discuss later. The evolution of qin is distinct
for each value of p̄. The general trend is that when p̄ increases, more gas is injected during the
first period and less during the second one. This leads to the situation that only the minimum
amount

¯
q is injected during or towards the end of the second period. The exception to this

behavior is for p̄ = 50.1 bar, where the ability to steer the system from one operational point to
another one is difficult due to the small gap between the initial pressure and its upper bound.

In Figure 2, the evolution of the linepack relative to its initial value is displayed. Except for
p̄ = 50.1 bar, the curves are similar with an increase in the first period, leading to a maximum
around the switching time of 2 h, which is finally followed by an almost linear decrease. A
higher value of p̄ leads to a higher linepack peak. Any value p̄ greater than 64 bar yields the
same result for this instance. As mentioned before, the linepack is related to the pressure
profile in the pipe. Figure 4 displays the values of pin and pout over the time horizon. For a
given p̄, these pressures evolve similarly except for the period just before t = 2 h. Except for
p̄ = 64 bar, pin reaches a plateau close to its upper bound. Note that this is not the case for
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Figure 2. Evolution of the
linepack (total mass of gas in
the pipe). The instance is the
same as in Figure 1.

Figure 3. Evolution of the
“static” and actual price at the
output node. The instance is
the same as in Figure 1.

Figure 4. Evolution of the pressure at the endpoints. The instance is the
same as in Figure 1.

pout or the linepack, which is due to the drop in qout for this short time interval, leading to a
higher linepack. This drop disappears when the upper pressure constraint is not active; see,
e.g., the plot for p̄ = 64 bar.

We now move on to the economical interpretation of these results. First, note that the cost
and demand structure indeed incentivizes linepacking. The case p̄ = 50.1 bar is an exception
since the physical constraints appear to be too tight—remember that pin(0) = 50 bar—so
that linepacking is not observed to a significant degree. There, the transition between the
different desired output values drives the decisions. With p̄ large enough, the quantity of gas
stored during the first period covers the amount sold during the second one with qin(t) =

¯
q

for t ∈ [2 h, 4 h]. If more gas can be stored, this leads to an increased value of qout. This lasts
until qout reaches the solution of the static problem with purchase cost c1 rather than c2; see
the results for p̄ = 64 bar. Then, a further increase in the linepack ability does not yield any
change.
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Next, we look at the price of gas at the output node as shown in Figure 3. There, as a
reference, we display the purchase cost c(t) and static strategic prices given by c(t)+βM−1qout(t).
These would occur if firms choose standard strategic markups for a given qout(t). Again, the
two transitions induce price variations. Furthermore, the discontinuity of P at t = 2 h leads
to a jump in prices. For low and moderate linepack capability, i.e., p̄ ∈ {50.1, 55.0, 60.0}bar,
pricing apparently takes place based on the current purchase cost c. Firms, rather than
consumers, benefit from savings due to linepacking. When the storage capacity is large, i.e.,
p̄ ∈ {62.8, 64}bar, we observe a significant decrease of consumer prices. In these cases, the
firms can purchase all the gas that they plan to sell minus the minimum amount induced by

¯
q. The static price prediction, as the relevant marginal purchase cost, is not only determined
by the purchase cost c2 but also takes into account c1. If the upper pressure bound is never
active, then c1 is the only relevant purchase cost for the entire time horizon. Market prices in
hours 2–4 are then also based on c1 only.

To further understand how the market participants benefit from additional linepack ability,
we look at the evolution of the aggregated firms’ profits, the consumer surplus, and the overall
welfare over time if p̄ varies in [51, 70]bar. In addition to the case of 3 firms, we solved the
same instance in the case of perfect competition. To better see the different occurring effects,
we split the overall firms profit into three components:∫ 4 h

0

(
P (t, qout(t))qout(t)− c(t)qin(t)

)
dt

=

∫ 4 h

0

(
qout(t)− qin(t)

)
c(t) dt

+

∫ 4 h

0

(
αM−1qout(t)

)
qout(t) dt

+

∫ 4 h

0

(
P (t, qout(t))−

(
αM−1qout(t) + c(t)

))
qout(t) dt

=: linepack savings + static strategic profits + network rent

(39)

The first term captures the reduction in total purchase cost thanks to linepacking that allows
them to separate purchase and selling time. Next, we have profits obtained by the exercise of
static market power. Last, the network rent captures the impact of the network on market
prices. These are defined as the earnings obtained from the difference between the observed
market price and the static price. In Figure 5, the welfare and its two components are displayed.
We can observe that there are two different regimes with different solution structures: Low
linepacking ability and high linepacking ability. As seen in Figure 5 (left), if the linepacking
ability is low, the consumer surplus remains constant, while the welfare increases with p̄. This
implies that firms’ profits become larger, which is confirmed in Figure 5 (right), where we
see that the linepack savings are increasing. This structure of the solution stays the same for
linepack abilities below a threshold of around p̄ = 62 bar for 3 firms and p̄ = 67 bar for the case
of perfect competition. With p̄ above these values, the structure of the solution changes. In
those cases additional linepack capability increases the availability of cheaper gas. As discussed
previously, the market price in the second period is then based on both c1 and c2. From this,
the consumers benefit and their surplus increases, leading to higher welfare values. Finally, for
very high linepack capability, purchase cost c2 does no longer influence the market price at all,
but it is exclusively determined based on the lower purchase cost c1, inducing lower market
prices in the second period. This beneficial effect of linepacking, inducing lower market prices
is observed for a larger range of linepack capabilities in case of strategically acting firms rather
than for the perfectly competitive case. This is due to the fact that strategically behaved firms
in general tend to sell less gas and smaller linepack capabilities allow to fully cover all sales by
period 1 purchases. As a consequence of the drop in market prices for large linepack capabilities
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Figure 5. Aggregated consumer surplus and welfare (left) and firms’ profits
partitioned in components (right) for the test instance in the case of 3 producers
and under perfect competition.

we observe a drop of firms profits in those cases, which is caused by network rents becoming
negative in those cases; see Figure 5 (right). By looking at its definition in (39), it is clear that
as soon as the market price drops during the second period, this quantity becomes negative. As
firms are forced to purchase a minimum amount of gas for all points in time t (qin(t) ≥

¯
q) in

the case of perfect competition, the firms’ overall profit even becomes negative for large p̄.
We have thus seen that our setup is perfectly suitable to analyze dynamic network transport

in a market environment and thus contributes to the understanding of phenomena such as
linepack, which is highly important in the context of gas markets. We are able to analyze how
the ability of linepacking can influence market outcomes in gas markets and which market
participant benefits to which degree. Interestingly, for low linepacking capabilities mainly firms
can increase their profits due to an improved purchase cost structure. This reverts in case of
high linepack capabilities where reduced market prices induce a significant increase of consumer
surplus.

6. Conclusion

We investigated a stylized intraday gas market under Cournot competition by modeling it as
a GNEP in which the evolution equations for the gas flow are shared constraints. We showed the
well-posedness of this system of PDEs with a solution regular enough to ensure the existence of
Lagrangian multipliers. Then, we proved the existence of a variational equilibrium of the GNEP,
which is consistent with the continuity of pressures at the nodes. When producers are identical,
we identified an equivalent optimization problem in the sense that a variational equilibrium can
be constructed from any solution to the latter. We illustrated the insights gained via such a
PDE model compared to a static one. In particular, we highlighted how linepacking impacts
the market outcomes and determined who benefits from additional linepacking ability. For this
purpose, we considered a simple instance in which the time horizon is split into two periods
and gas is cheaper during the first one. While the quantity of gas sold is most of the time
close to the solution of the static problem, the inflow is rather different and changes with the
linepacking ability. Indeed, the producers seek to reduce their overall cost by storing cheap gas
as much as possible in the pipe. There, linepacking only benefits the producers and this lasts
until it is possible to store enough gas to cover the sale of the second period while fulfilling the
flow constraints. Then, the amount sold during that time interval increases until it reaches the
value given by the solution of the static problem for the second period, but with the cost of the
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first one. This indicates a decoupling between injection and withdrawal of gas from the pipe
and induces an increase of the consumer surplus as well as a decrease of the firms’ profit, while
the overall welfare is still increasing.

These results encourage further investigation of such models. On the one hand, other models
for the evolution of the gas flow can be considered; see, e.g., Domschke et al. (2021). In this
case, the shared constraint consists of a semilinear system of hyperbolic PDEs. On the other
hand, one can depart from the deterministic setting and investigate the market outcomes when
uncertainties are present. These could originate either from the physical model, where, e.g., the
friction coefficient is unknown, or from the economical data such as demand or supply.
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Appendix A. Fundamental results

In this section, we review some fundamental results from convex optimization and the theory
of PDEs. For our work, we need to prove that our problems have solutions of high regularity
(see Section 3) to ensure the existence of multipliers of the state constraints. For this, we need
to review some results from PDE theory, starting with the Aubin–Lions lemma.

Lemma A.1 (Aubin–Lions lemma; Simon (1986, Corollary 4)). Let X0, X, and X1 be three
Banach spaces with X0 ⊆ X ⊆ X1. Suppose that X0 is compactly embedded in X and that X is
continuously embedded in X1. For 1 ≤ p, q ≤ +∞, let

W := {u ∈ Lp(0, T ;X0) | ut ∈ Lq(0, T ;X1)}.
(i) If p < +∞, then the embedding of W into Lp(0, T ;X) is compact.
(ii) If p = +∞ and q > 1, then the embedding of W into C([0, T ];X) is compact.

We use this lemma with X0 = H1
0 (Ω)2, X = C(Ω̄)2, and X1 = H−1(Ω)2. The proof of

additional regularity of the solution to the PDE system uses the Ladyzhenskaya–Sobolevski
inequality for the Laplacian. For convenience, we provide a proof of this result and also state
its main ingredient: the interpolation inequalities of Gagliardo–Nirenberg.

Lemma A.2 (Interpolation inequalities of Gagliardo–Nirenberg; Brezis (2010, p. 234)). Let I be
an open and bounded interval. Then, there exists a constant C > 0 such that for any v ∈ H2(I),
we have

‖∇v‖L2(I) ≤ C‖v‖
1/2
H2(I)‖v‖

1/2
L2(I), (40)

and for a given κ > 0, there exists Cκ such that

‖∇v‖L2(I) ≤ ‖v‖H1(I) ≤ κ‖v‖H2(I) + Cκ‖v‖L2(I). (41)

We can now state and prove the Ladyzhenskaya–Sobolevski inequality for the Laplacian.

Lemma A.3 (Ladyzhenskaya–Sobolevski inequality for ∆). Let I be an open and bounded
interval. Then, there exists a constant C > 0 such that for all v ∈ H2(I), we have

(∆v,∆v)L2(I) ≥
1

2
‖v‖2H2(I) − C‖v‖

2
L2(I).
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Proof. From Inequality (40) in Lemma A.2, we have

‖∇v‖2L2(I) ≤ C
′‖v‖H2(I)‖v‖L2(I).

Using Cauchy’s inequality, there exists C ′′ > 0 such that

‖∇v‖2L2(I) ≤
1

2
‖v‖2H2(I) + C ′′‖v‖2L2(I)

holds and by further using the definition of the H2-norm as well as by rearranging terms, we
obtain

‖∆v‖2L2(I) ≥ ‖∇v‖
2
L2(I) + ‖v‖2L2(I) − 2(C ′′ + 1)‖v‖2L2(I),

2‖∆v‖2L2(I) ≥ ‖v‖
2
H2(I) − 2(C ′′ + 1)‖v‖2L2(I).

Finally, we get

(∆v,∆v)L2(I) ≥
1

2
‖v‖2H2(I) − (C ′′ + 1)‖v‖2L2(I). �

Appendix B. Discretization scheme

Coming back to Problem (45), as a first step towards solving such instances, we pursue a
discretize-then-optimize approach. For the discretization of the system in (45b)–(45f), rather
than using a generic scheme for parabolic PDEs, we retain a numerical scheme that can be
related to the linearized version of the ISO2 system. Indeed, the relations in (45b)–(45c) are
obtained from the semilinear Euler equations

pt +
c2s
A
qx = 0,

qt +Apx = −1

2
σA

q|q|
p
− gA sinϕ

p

c2s
by linearizing the right-hand side and adding a viscosity term. Using the Riemann invariants
R± := csA

−1q ± p, we obtain the diagonal system
(R+)t + cs(R+)x = F (R+, R−),

(R−)t − cs(R−)x = F (R+, R−),
(42)

in which the coupling between R+ and R− is through the right-hand side

F (R+, R−) := −λcs
4D

(R+ +R−)
|R+ +R−|
R+ −R−

− g sinϕ
R+ −R−

2c
.

This diagonal form is useful to investigate theoretical properties of the system as well as
for developing numerical schemes; see Gugat, Habermann, et al. (2021). For the relations
in (45b)–(45c), the same change of variables results in

(R+)t − ε(R+)xx + cs(R+)x = Faff(R+, R−),

(R−)t − ε(R−)xx − cs(R−)x = Faff(R+, R−),
(43)

where Faff is the affine approximation of F around the operational points p̌ > 0 and q̌ > 0.
Let us first discretize the linearized version of the hyperbolic system (42), where F has

been substituted by Faff . Specifically, we integrate R± along the characteristic lines using a
triangular grid as illustrated on Figure 6. There, the solid line from node i to node k (resp.
from j to k) represents the characteristic line for R+ (resp. R−). The characteristics passing
through a given pair (x̄, t̄) are the images of the mappings ξ+(s, x̄, t̄) := (x̄+ cs(s− t̄), s) and
ξ−(s, x̄, t̄) := (x̄− cs(s− t̄), s), respectively. Along the characteristics, System (42) is compactly
given by

d

ds
(R± ◦ ξ±) = (R±)t ◦ ξ± + cs(R±)x ◦ ξ± = F (R+, R−) ◦ ξ±. (44)
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tn tn+1

ixl−1

jxl+1

kxl

Figure 6. Triangular grid used for integration

Let us denote by Ri±, R
j
±, and Rk± the values of the Riemann invariants at the nodes i, j,

and k. We have ∆x = xl − xl−1 = xl+1 − xl, ∆t = tn+1 − tn, and ∆x = cs∆t as well as
Rk+ = R+(ξ+(tn + ∆t, xl−1, tn)) and Rk− = R−(ξ−(tn + ∆t, xl+1, tn)). Integrating System (44)
along the characteristics starting from node i (node j) for R+ (R−) and using the midpoint
rule for approximating the right-hand side yields

Rk+ −Ri+ =
∆t

2
[Faff(Ri+, R

i
−) + Faff(Rk+, R

k
−)],

Rk− −R
j
− =

∆t

2
[Faff(Rj+, R

j
−) + Faff(Rk+, R

k
−)].

Next, we relate this discretized system with one obtained by discretizing the viscosity regularized
system. We proceed just with R+ as the reasoning is similar with R−. We discretize the left-
hand side of the first relation in (43) using a finite difference scheme with ∆x = cs∆t and
ε = cs∆x. Using a central difference formula for the second-order term, one obtains

Rk+ −R+(xl, tn)

∆t
− cs∆x

Rj+ +Ri+ − 2R+(xl, tn)

(∆x)2
+ cs

Rj+ −R+(xl, tn)

∆x

=
Rk+ −R+(xl, tn)

∆t
−
Rj+ +Ri+ − 2R+(xl, tn)

∆t
+
Rj+ −R+(xl, tn)

∆t

=
Rk+ −Ri+

∆t
.

With our choice of the right-hand side, the values of the Riemann invariants at (xl, tn) do not
appear in any relation. This gives the grid its triangular shape.

Appendix C. Optimization Models Used for the Test Instance

In Section 5, all producers are identical. In this case, we can solve the optimization problem
given in Proposition 4.5. Remember that the price functional in the symmetric case is given by

P̃ (t, q(t)) = β(t)− M + 1

2M
α(t) q(t).

With u = (qin, qout, pin, pout), the optimization problem associated with the symmetric case
reads

max
u∈H1(0,T )4

∫ T

0

(
P̃
(
t, qout(t)

)
qout(t)− c(t)qin(t)

)
dt−R(p, q, qin, qout, pin, pout) (45a)

s.t. pt − εpxx +
c2s
A
qx = 0 in (0, L)× (0, T ), (45b)

qt − εqxx +Apx = −1

2
σA

(
2q̌

p̌
q − q̌2

p̌2
p

)
in (0, L)× (0, T ), (45c)

p(0, ·) = pin, p(L, ·) = pout, in (0, T ), (45d)
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q(0, ·) = qin, q(L, ·) = qout, in (0, T ), (45e)
p(·, 0) = p0, q(·, 0) = q0, in (0, L), (45f)

¯
p ≤ p ≤ p̄,

¯
q ≤ q ≤ q̄, in [0, L]× [0, T ], (45g)

p0(0) = pin(0), p0(L) = pout(0), q0(0) = qin(0), q0(L) = qout(0), (45h)∫ T

0

qout(t)− qin(t) dt ≤ 0. (45i)

Thanks to the regularity of the solution to the system in (45b)–(45f), any feasible (boundary)
controls also satisfy the same bounds as in (45g) pointwise in time. As in our instance the
lower and upper bounds at the nodes are identical to the ones in the pipe, we do not add
explicit bounds at the nodes. The compatibility conditions between the initial state and the
decision variables are given in (45h). Remember that Inequality (45i) ensures that the market
participants do not get gas for free out of the initial state. The regularization functional R has
the structure

R(p, q, u) = γp1‖∇pin‖2L2(0,T )2 + γq1‖∇qin‖2L2(0,T )2 + η1‖∇q(·, T )‖2L2(Ω) (46)

with non-negative coefficients. By the regularity of the solution, we have q ∈ C([0, T ];H1(Ω)),
which ensures that ∇q(·, T ) ∈ L2(Ω). The last term aims at avoiding unrealistic final states. For
any sequence un ∈ H1(0, T )4 such that ‖∇un‖L2(0,T )4 → +∞, we have limR(S(un), un) = +∞.
As any feasible control of Problem (45) is bounded in L2(0, T )4, the level sets of the objective
functional are bounded. The latter is also lower semi-continuous, proper, and subdifferentiable
everywhere. Furthermore, the feasible set is non-empty, closed, and convex. Thus, there exists
a solution of Problem (45). In order to discretize System (45), we use a discretization scheme
that is motivated by analogous schemes for the semilinear Euler equations; for details, see
Appendix B. It better captures the problem structure than a generic discretization scheme for
parabolic PDE.

Problem (45) is parametric in the linearization point (p̌, q̌). Inspired by sequential program-
ming approaches, we seek a tuple (u?, p?, q?) such that (u?, p?, q?) ∈ SOL(p?, q?), where SOL
is the solution mapping of Problem (45). Starting with (p̄0, q̄0) = (p0(0), q0), a sequence of
solutions (ūk, p̄k, q̄k) ∈ SOL(p̄k−1, q̄k−1) is computed. Whenever the relative difference between
(p̄k−1, q̄k−1) and (p̄k, q̄k) falls below a given threshold, the procedure stops and a solution is
returned.

The corresponding stationary model is given as follows. The time interval [0, T ] is parti-
tioned into J subintervals [tk, tk+1). The flow q is constant along the pipe and the pressure
monotonically changes according to the Weymouth equation

p2(x) = p2(0)− σq|q|x;

see Section 2.3.1.2 in Koch et al. (2015) for a derivation of this relation. Hence, for each time
subinterval, the state consists of the scalar flow qk and the endpoint pressures pin

k and pout
k .

With αk, βk, and ck being the constant data of the inverse demand and cost functions on each
subinterval [tk, tk+1), we obtain the problem

max
q,pin,pout

J∑
k=1

(tk+1 − tk)
[
(βk − (M−1 + 1)αkqk)qk − ckqk

]
s.t. (pout

k )2 = (pin
k )2 − Λq2

k, 1 ≤ k ≤ J,

¯
p ≤ pin

k ≤ p̄,
¯
p ≤ pout

k ≤ p̄,
¯
q ≤ qk ≤ q̄, 1 ≤ k ≤ J,

(47)

with Λ := σL. As qk is constant on each time subintervals, Constraint (45i) is automatically
satisfied.

We use two different computational setups for the PDE-constrained and the stationary
problem. The discretized version of Problem (47) is a convex QP. The latter is solved using
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the barrier algorithm of Gurobi 9.5.0; see Gurobi Optimization (2021). We use JuMP as the
modeling environment; see Dunning et al. (2017). The complete instance data as well as the
code to perform the numerical computations and create the figures can be found at Huber
(2023). The nonconvex stationary problem (47) is solved by Ipopt 3.14.1 via the Pyomo modeling
environment; see Wächter and Biegler (2005) and Hart et al. (2017), respectively.
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