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ABSTRACT
This work studies robust gas network optimization under uncertain-
ties in demand and in the physical parameters. The corresponding
optimization problems are nonconvex in node pressures and flows
along the pipes. They are thus very difficult to solve for realistic
instance sizes. In recent approaches, an adaptive bundle method
has been developed, where one solves the occurring adversarial
problems via iteratively refined piecewise linear relaxations. These
subproblems need to be solved always from scratch using mixed-
integer linear programming (MIP). As alternative to the MIP solver,
we employ here a nonsmooth optimization approach that allows a
warm start strategy such that it can profit from the results obtained
for coarser relaxations. We evaluate the approach for realistic gas
network topologies and outline possibilities for future research.

1 INTRODUCTION
Resource-efficient distribution of energy is one of the grand chal-
lenges of modern times. In the current transformation of the energy
system, natural gas is considered as a transition technology that
is used to ensure stable and resilient energy supply. Furthermore,
in the future current energy sources may be combined or even
replaced by hydrogen. Optimization of the respective energy net-
works is of major importance [5].

In addition, optimization of gas network operation should be
hedged against uncertainties that are inherent in the energy de-
mands and in the physical parameters of gas transport. In particular
when demand distributions are unknown (e. g. if they are market-
driven) or when uncertainties cannot be measured easily (which for
example is true for the roughness in the pipes), protection is sought
in the sense of robust optimization. A particular mathematical chal-
lenge consists in the fact that the relation between gas pressure
at the network nodes and gas flow along the pipes is nonconvex
quadratic. Thus, in order to determine a best possible operation of
the active elements in the network such as compressors and valves,
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a robust nonconvex optimization problem needs to be solved. To
this end, several robust optimization approaches have been estab-
lished, see, e.g., [1, 12]. An efficient solution approach is given by an
adaptive bundle method [7] that can cope with the nonconvexities.
It is integrated within an outer-approximation scheme that is able
to decide on discrete as well as continuous decisions for operating
the active elements [8]. To solve the adversarial problems that arise
within the bundle method, the nonconvex expressions are replaced
by iteratively refined piecewise linear relaxations. The latter are
modeled via a mixed-integer linear optimization problem (MIP). In
each iteration, the MIP is refined until a predefined error guarantee
on the quality of the relaxation is given. Typically, after applying
small changes in a MIP, the corresponding simplex based branched-
and-bound approaches do not allow any warm start strategy as they
usually cannot profit from earlier iterations. Therefore, in [7], the
MIPs are always solved from scratch using available MIP solvers.

In this work, we advance this method by replacing theMIP solver
by an approach called CASM for Constrained Active Signature
Method. CASM is tailored to solve optimization problems where
the objective function as well as the constraints are continuous and
piecewise linear. In contrast to the MIP solvers that always need
to solve the problems from scratch, the CASM approach allows a
warm start based on the optimization results obtained for a coarser
approximation of the nonconvex expressions. The goal of this work
is to apply CASM to the problem of robust operation of gas network
operation in order to evaluate its applicability.

The structure of this paper is as follows. In the next section,
the considered problem stemming from gas transport is introduced.
Section 3 presents CASM in more detail including also a description
of the warm start option. Numerical results are discussed in Sec. 4.
Section 5 contains a conclusion and an outlook.

2 THE GAS TRANSPORT PROBLEM
We consider a problem that arises in the context of gas networks,
namely the stationary robust gas transport problem. For a profound
explanation of models and solution approaches for gas transport
problems, we refer to [5].
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Here, we consider the problem of finding an optimal control that
is robustly protected against the perturbation of physical param-
eters. We aim for a minimum-cost control of compressors. Con-
straints are thereby that all demands should be satisfied and no
physical constraints should be violated. The control of active ele-
ments can be modeled as here-and-now variables at the first stage
and the realization of physical states as wait-and-see variables at
the second stage. The realization of physical states takes place after
uncertain parameters realize themselves. As uncertain parameters,
we consider demands and pressure loss coefficients, where the lat-
ter is due to uncertain frictions of the pipes. For every possible
realization of the pressure loss coefficients, physical feasibility of
the gas transport has to be maintained by the network operator. In
the following, we model the arising robust gas transport problem
from the point of view of the network operator.

We describe a gas network by a directed graph G = (V,A),
where the arcs model pipes and compressors (A = A𝑝𝑖 ∪ A𝑐 )
and an incidence matrix 𝐴 ∈ {−1, 0, 1} |V |×|A | . We denote the gas
flow by 𝑞 ∈ R |A | , where its sign indicates the flow’s direction.
Further, squared pressure values are denoted by 𝜋 ∈ R |V | . To
ensure uniqueness of the physical states, we fix the pressure value
at one so-called root node. By𝑤 (Δ), we denote the costs of a control
Δ of compressors. We use a linear compressor model, so that a value
Δ𝑎 induces a pressure increase of Δ𝑎 at compressor 𝑎. In total, we
consider the following robust optimization problem:

min
Δ∈[Δ,Δ]

max
(𝑑,_) ∈U,𝜋,𝑞

𝑤 (Δ) +
∑
𝑣∈𝑉

max{0, 𝜋𝑣 − 𝜋𝑣, 𝜋𝑣 − 𝜋𝑣} (1a)

s.t. 𝐴𝑞 = 𝑑 (1b)

(𝐴𝑇 𝜋)𝑎 = Δ𝑎 ∀𝑎 ∈ A𝑐 (1c)

(𝐴𝑇 𝜋)𝑎 = −_𝑎𝑞𝑎 |𝑞𝑎 | ∀𝑎 ∈ A𝑝𝑖 (1d)

(𝑞, 𝜋) ∈ R |A | × R |V | . (1e)

Thereby, the uncertainty setU is defined as follows:

U := {(𝑑, _) | _ ∈ [_, _], 𝑑𝑖 ∈ [𝑑, 𝑑],
𝑛∑
𝑖=1

𝑑𝑖 = 0}.

Fixing the uncertain parameters to some values, there is a unique
physical state, i.e., unique flow and pressure variables, that fulfills
the physical constraints [1, 2]. Due to this fact, we can reformulate
(1) as a box-constrained optimization problem writing the pressure
as a function of the other parameters (see [7]):

min
Δ∈[Δ,Δ]

max
(𝑑,_) ∈U

𝑤 (Δ) +∑
𝑣∈𝑉

max{0, 𝜋𝑣 − 𝜋𝑣 (Δ;𝑑, _), 𝜋𝑣 (Δ;𝑑, _) − 𝜋𝑣}.

In [7], an adaptive bundle method is developed to solve problems of
this kind. For this purpose, the bundle method is applied to the outer
minimization problem with the optimal value function of the inner
maximization problem as objective function. As in every iteration of
the bundle method, an approximate function evaluation is required,
the inner maximization problem has to be approximately solved
in every iteration. This inner adversarial problem is the following

nonconvexly constrained optimization problem:

max
(𝑑,_) ∈U,𝜋,𝑞

∑
𝑣∈V

max{0, 𝜋𝑣 − 𝜋𝑣, 𝜋𝑣 − 𝜋𝑣} (2a)

s.t. 𝐴𝑞 = 𝑑 (2b)

(𝐴𝑇 𝜋)𝑎 = Δ𝑎 ∀𝑎 ∈ A𝑐 (2c)

(𝐴𝑇 𝜋)𝑎 = −_𝑎𝑞𝑎 |𝑞𝑎 | ∀𝑎 ∈ A𝑝𝑖 (2d)

(𝑞, 𝜋) ∈ R |A | × R |V | . (2e)

In [7] this adversarial problem is approximately solved via piece-
wise linear relaxation. The adaptive bundle method only allows
for a certain error in the optimal objective value. As a relaxation
that fulfills a requested error bound, for each of the pressure loss
constraints, piecewise linear relaxation via the delta method [1, 3, 9]
is used. In the adaptive bundle method [7], an error bound on the
optimal objective value of the adversarial problem is requested and
a consequent bound for the error in the pressure loss constraints is
provided. As this theoretical bound turned out to be not very tight,
the strategy in [7] is to allow for large errors in the constraints and
to refine in case of a too large a posteriori error in the objective
(cf. [7, Section 5.1.1, 5.1.2]). In [7], it is noted that the run time of
the bundle method is largely determined by the solution of the
adversarial problem up to the requested error, where the piecewise
linearly relaxed adversarial problems are solved via MIP solvers.
This motivates the development and analysis of an alternative so-
lution strategy for these piecewise linear problems in the present
paper. In particular, as by the use of the refinement strategy, se-
quences of refined relaxations are solved, a method that allows for
warm start strategies has the potential to speed up computations.

3 THE OPTIMIZATION APPROACH CASM
In [6] the so-called Constrained Active Signature Method (CASM)
for solving constrained piecewise linear optimization problems was
introduced and analyzed in detail. Therefore, here we just introduce
its main aspects briefly. Based on results contained, e.g., in [11], it
follows that any continuous piecewise linear function 𝑓 : R𝑛 ↦→ R,
𝑦 = 𝑓 (𝑥), can be represented by a system of equations of the form

𝑧 = 𝑐 + 𝑍𝑥 +𝑀𝑧 + 𝐿 |𝑧 | ,
𝑦 = 𝑑 + 𝑎⊤𝑥 + 𝑏⊤𝑧 ,

where 𝑧 ∈ R𝑠 is the vector of so-called switching variables, 𝑐 ∈ R𝑠 ,
𝑍 ∈ R𝑠×𝑛 , strictly lower triangular matrices 𝑀, 𝐿 ∈ R𝑠×𝑠 , 𝑑 ∈
R, 𝑎 ∈ R𝑛, 𝑏 ∈ R𝑠 . Here and throughout, |𝑧 | denotes the componen-
twise absolute value of the vector 𝑧. Using a similar representation
also for piecewise linear constraints and ignoring a possible con-
stant shift in the objective, the piecewise linearly relaxed adversarial
problems to bemaximized for the function evaluations in the bundle
method can be described by

max
𝑥 ∈R𝑛,𝑧∈R𝑠

𝑎⊤𝑥 + 𝑏⊤𝑧

s.t. 0 = 𝑔 +𝐴𝑥 + 𝐵𝑧 +𝐶 |𝑧 |
0 ≥ ℎ + 𝐷𝑥 + 𝐸𝑧 + 𝐹 |𝑧 |
𝑧 = 𝑐 + 𝑍𝑥 +𝑀𝑧 + 𝐿 |𝑧 | ,

(3)

with additional constants 𝑔 ∈ R𝑚, ℎ ∈ R𝑝 , 𝐴 ∈ R𝑚×𝑛, 𝐵,𝐶 ∈
R𝑚×𝑠 , 𝐷 ∈ R𝑝×𝑛 and 𝐸, 𝐹 ∈ R𝑝×𝑠 to describe the 𝑚 piecewise
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linear equality and 𝑝 piecewise linear inequality constraints. For
each 𝑥 , we define the signature vector

𝜎 (𝑥) = (sign(𝑧𝑖 (𝑥)))𝑖=1...𝑠 ∈ {−1, 0, 1}𝑠 .

The signature vectors yield the inverse images

𝑃𝜎 ≡ {𝑥 ∈ R𝑛 : sign(𝑧 (𝑥)) = 𝜎} for 𝜎 ∈ {−1, 0, 1}𝑠 ,

which are relatively open polyhedra that form collectively a disjoint
decomposition ofR𝑛 . The signatures 𝜎 ∈ {−1, 1}𝑠 are called definite
and the associated 𝑃𝜎 are by continuity open.

Any uniformly convex continuous objective function must attain
a unique minimizer 𝑥𝜎 on each one of the closed sets 𝑃𝜎 . Further-
more, for a given definite 𝜎 , the optimization problem (3) restricted
to the corresponding 𝑃𝜎 is smooth. These observations motivated
the optimization strategy of CASM. To obtain a strictly convex
continuous objective function, a quadratic regularization term is
added to the target function in Eq. (3). Subsequently, standard KKT
theory for the resulting smooth constrained quadratic optimization
problem on 𝑃𝜎 can be applied yielding a system of 𝑛 + 2𝑠 +𝑚 + 𝑝

linear equations and 𝑛 + 2𝑠 +𝑚 +𝑝 unknowns as necessary optimal-
ity conditions. It can then be verified by checking the signs of the
corresponding Lagrange multipliers if the solution of this system
of equations is indeed a minimizer of the original problem. If this
is not the case, the computed solution can be used to determine a
descent direction and also a new polyhedron 𝑃�̃� to be considered.
When changing from 𝑃𝜎 to 𝑃�̃� one component 𝜎𝑖 of 𝜎 changes
its sign such that at a point 𝑥 ∈ 𝑃𝜎 ∩ 𝑃�̃� one must have for the
signature vector that 𝜎𝑖 (𝑥) = 0 and 𝑧𝑖 (𝑥) = 0. Such a switching
variable 𝑧𝑖 (𝑥) is called active and the corresponding absolute value
evaluation yields a nonsmooth contribution.

Hence, the nonsmooth optimization algorithm CASM solves a
sequence of quadratic optimization problems where in each itera-
tion of CASM, a linear system𝑀𝑣 = 𝑤 has to be solved where𝑀 is
a usually very sparse (𝑛 + 2𝑠 +𝑚 + 𝑝) × (𝑛 + 2𝑠 +𝑚 + 𝑝) matrix with
real-valued entries. Due to the guaranteed existence of a minimizer
there always exists a solution 𝑣 of the linear system but it must not
be unique. Note, that 𝑣 is related to a Newton step. All remaining
steps in the algorithm are rather cheap linear algebra operations.

The convergence properties of the nonsmooth optimizer CASM
are analyzed in [6] including also the derivation of optimality condi-
tions for piecewise linear constrained optimization problems. These
results extend the work on the unconstrained case presented in [4].
Since the convergence analysis in both papers is based on KKT the-
ory, both algorithms terminate at local optimizers. In the nonconvex
case it is not ensured that a global solution is found.

CASM expects a feasible starting point and feasibility is main-
tained throughout. In the example from the gas market considered
here, a feasible starting point can be constructed in various ways.
We consider cascades of up to three successive relaxed adversarial
problems that result from the application of the bundle method to
problem (1). Hence, we need a feasible starting point for each of the
three different relaxations. We have no special previous knowledge
for the starting point of an optimization cascade, i.e., the coarsest
relaxation. Therefore, we determine a starting point by using the
nominal values for 𝑑 and _. If these two variables are fixed, the
physical states, i.e., the pressure 𝜋 and the flow 𝑞, are uniquely
determined as described in Section 2. Hence, they can be evaluated.

For the finer discretizations, i.e., the next two optimization tasks
in the provided cascade, a warm start strategy will be used, which
is an essential aspect of this paper. In the bundle method (cf. Sec. 2),
the MIP is solved anew after each refinement, without the old
solution having any influence since so far no warm start strategy is
known for MIP solvers. In contrast to that, we perform a warm start
when using CASM for the inner loop. That is, if the inner problem
is solved for a given discretization, a new starting point for the
next model with a finer discretization is calculated with the help of
the previous solution. For this purpose, the calculated values for
demand𝑑 and pressure loss coefficient _ are taken from the solution
and new starting values for pressure and flow are determined for
the refined model. This step coincides with the one for the starting
point, i.e., the coarsest discretization.

4 NUMERICAL RESULTS
In this section, we present numerical results for the application
of CASM to the adversarial problem of the robust gas transport
problem. We hence determine the worst-case values of uncertain
parameters for a given compressor control.

GasLib-Instances. We use data from a library of realistic gas net-
work instances [10]. In detail, we conduct numerical experiments
on the instances GasLib-11, GasLib-40 and GasLib-134, whichmodel
gas networks with 11, 40 and 134 nodes, respectively. For the net-
work with 40 nodes, we distinguish between a non robust feasible
and a robust feasible control. GasLib-134 thereby models the Greek
gas network. For all test cases, we consider in the end a piecewise
linear relaxation of the adversarial problem (2).

We investigate different choices of the compressor control Δ.
First, we use arbitrarily chosen controls, which are not robust feasi-
ble. Second, we consider a robust feasible control implying that the
optimal value of the adversarial problem is equal to 0. Furthermore,
we use different choices of the piecewise linear relaxation. That is,
we impose different allowed errors up to which the relaxed problem
deviates from the original one in terms of the nonconvex pressure
loss constraints leading to different discretizations in the piece-
wise linear approximation of the nonconvex term. As described in
Sec. 2, the error bounds are possibly refined during one iteration
of the applied bundle method. Therefore, we investigate here the
applicability of CASM for such a cascade of refinements.

In detail, we solve the adversarial problem for GasLib-11 with
an initial compressor control for two typical sizes of given error
bounds. The adversarial problems for GasLib-40 are taken from
runs of the adaptive bundle method. First, we applied the adaptive
bundle method with an uncertainty set for demand 𝑑 and pressure
loss coefficients _ that is [0.95𝑑, 1.05𝑑] × [_, 1.1_]. For this case,
multiple refinements of the relaxation of the adversarial problem
are requested in the bundle method’s last iteration, when a robust
feasible compressor control is investigated. To this series of ad-
versarial problems, we applied CASM. Second, we enlarged the
uncertainty set to [0.9𝑑, 1.1𝑑] × [_, 1.5_]. In this case, multiple re-
finements are requested in an earlier iteration of the bundle method
in which the compressor control is not robust feasible. We used
these data for another series of adversarial problems to which we
applied CASM. The adversarial problems for GasLib-134 are also
taken from a run of the adaptive bundle method, namely for the
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Figure 1: Topology of GasLib-11

Figure 2: Topology of GasLib-40

uncertainty set [0.8𝑑, 1.2𝑑] × [_, 2_]. Again, we applied CASM to
multiple refinements that are requested for a compressor control
that is not robust feasible. Sketches of the topologies of GasLib-11
and GasLib-40 can be seen in Figs. 1 and 2, respectively. There,
sources where gas can be injected are depicted in blue, sinks where
gas can be extracted in red, inner nodes, pipes and short pipes in
black and compressor stations in red.

Complexity & results. As described in Sec. 3, for CASM the num-
bers 𝑛 of variables,𝑚 of equality constraints, 𝑝 of inequality con-
straints and 𝑠 of absolute value evaluations are of primary impor-
tance for the complexity of the optimization problem. As explained
briefly in Sec. 3 the size of the system of equations that must be
solved in each iteration depends linearly on each of these numbers.
For the different GasLib instances and their respective refinements,
the corresponding numbers are given in Tab. 1, where the first
column states the GasLib instance and the third one the relaxations.
Note that the number of constraints is linear in the number of edges
and nodes of the underlying model. As can be seen from this table,
the improved approximations of the nonconvex term, i.e., the finer
discretizations, only influence the number 𝑠 of switching variables.
The growth in the size of the system matrix fits perfectly to the
number (𝑛+2𝑠+𝑚+𝑝)×(𝑛+2𝑠+𝑚+𝑝) stated in Sec. 3. The numbers
of iterations needed by CASM are stated in the last column.

For the GasLib-11 instance, Fig. 3 shows the development of the
function values during the optimization runs using CASM for the
two discretizations of the nonconvex function. The red line with the

GasLib-11 GasLib-40 GasLib-40
non robust feasible robust feasible

relaxation 1. 2. 1. 2. 3. 1. 2. 3.
variables 𝑛 44 170

equal. const.𝑚 19 54
inequal. const. 𝑝 70 314

switching variables 𝑠 175 183 331 341 573 315 315 319
rows/columns 484 500 1206 1226 1690 1174 1174 1182of eq. system
iterations 65 23 939 556 731 472 193 204

Table 1: Complexity of different GasLib instances for their
respective optimizations and iterations needed by CASM.
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Figure 3: Optimization history of CASM for the GasLib-11
instance. Left: Coarse discretization. Right: Fine discretiza-
tion.

label f_val1 depicts the function values for the coarse discretiza-
tion and the purple line (label f_val2) the function values for the
fine discretization. The blue line labeled with f_opt illustrates the
globally optimal function value, which is reached in both cases and
changes from the first optimization to the second one by less than
0.5. The values of the respective optimal variables vary also. During
the last iterations, there is a very small increase in the quadratic
regularization term that is added to the piecewise linear objective
in the CASM, see Sec. 3. However, the value of the nonregularized
objective function remains constant, a fact that could be used for
an improved termination criterion in the future.

The optimal values of the variables obtained from the optimiza-
tion for the coarse discretization do not provide a feasible starting
point for the fine optimization. Therefore, it is necessary to de-
termine a new feasible starting point for CASM. A corresponding
approach exploiting the results from the optimization for the coarse
discretization was described at the end of Sec. 3. Figure 3 shows
that this warm start strategy yields a larger initial function value
for the finer discretization.

For the GasLib-40 instance, we proceed in a similar way. As be-
fore, we consider one of the adversarial problems from the bundle
method, where subsequently refinements are made yielding a cas-
cade of two refinements, i.e., three optimization runs are performed.
From Tab. 1 we see, especially for the instance GasLib-40 with a
non robust feasible compressor control, that the refinements induce
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Figure 4: Optimization history of CASM for the non robust
feasible GasLib-40 instance

a significant increase in the dimension of the system of equations
and lead also to a noticeable effect on the run times. Despite the
fact that the models become more complex with each refinement,
the number of iterations does not increase in the same way.

Figure 4 illustrates the development of function values for the
three optimization runs in red, purple and blue, respectively (cf.
f_val). The constant lines depict the globally optimal function
values that can be achieved for the respective discretization (cf.
f_opt). Once more, the objective value at the starting point for the
next level of discretization is larger than the initial value for the
previous one.

To emphasize the effect of the warm start strategy, a comparison
with an optimization not using the warm start is shown in Fig. 5
for the finest discretization from the non robust feasible GasLib-40
instance. The blue graph (f_val3) shows again the development of
the function values using the warm start option. The dark red graph
(f_val4) shows the optimization history of the function values for
the case that an initial point is determined without exploiting the
previously performed optimization such that the function value at
the initial point is much smaller. In this case, 1118 iterations are
necessary and hence less than for the three individual optimizations
in total. However, the size of the system of equations is larger such
that one iteration is much more expensive. In addition, from a
technical point of view, the considered model with the adapted
finer discretization can only be generated if the solution of the
previous one is known. Otherwise, a refinement that leads to the
same a posteriori error would be even more complex to solve (cf.
Sec. 2) supporting also the warm start strategy proposed here.

Next, we consider the GasLib-40 instance with a robust feasible
compressor control yielding for the first two relaxations of the three-
part cascade the optimal function value 0.6965 and for the finest
one the optimal function value 0 corresponding to a robust feasible
compressor control. Here, CASM needs 472 iterations to solve the
first model with the coarsest discretization to reach a local optimum
that is not globally optimal. However, since CASM determines only
locally optimal points this fits to the theoretical analysis of CASM
as described in Sec. 3. The same behavior is observed also for the
second relaxation, where the number of iterations is clearly reduced

0 300 600 900 1200
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Figure 5: Comparison of the third optimization for non ro-
bust feasible GasLib-40 with and without warm start

GasLib-134
relaxation 1. 2. 3.
variables 𝑛 534

equal. const.𝑚 230
inequal. const. 𝑝 784

switching variables 𝑠 737 1107 1985
rows/columns 3022 3762 5518of eq. system
iterations 869 327 328
solves 902 327 328

Table 2: Overview
of the complexity
of the GasLib-134
instances for their
respective optimiza-
tions and number of
iterations and solves
needed by CASM.

by the warm start (cf. Tab. 1). In the third optimization, however,
the global optimum is found again.

As last test case, we consider the much larger GasLib-134 in-
stance. Tab. 2 states the problem size and the numbers of iteration
needed by CASM. The last line gives the number of equation solves
required. In contrast to the previous instances, in some iterations
the system of equations was not solved accurately enough resulting
in an increase of the parameter in front of the quadratic regular-
ization term to improve the conditioning of the system matrix𝑀 .
This causes the difference between the number of iterations and
the number of equation solves.

For this instance, the development of the function values is
shown in Fig. 6. It is particularly noticeable that after the warm
start in the second and third optimization, again the iterates just in-
crease the value of the quadratic penalty term and keep the value of
the nonregularized objective function constant. That is we observe
the same behavior as for the GasLib-11 instance. Solving the finest
discretization without a warm start, analogous to the GasLib-40
instance, the function value would be 361 at the initial iterate and
6339 iterations and 7727 equation solves are needed to reach the
global optimum.

Finally, we discuss the sparsity structure of the matrix𝑀 of the
linear system 𝑀𝑣 = 𝑤 in more detail. Fig. 7 shows the nonzero
entries of the matrix𝑀 in the first iteration of the first optimization
of the GasLib-11 instance, where nz indicates the total number of
nonzero entries of 𝑀 . Almost all rows have between two and four
nonzero entries. However, there are also some rows with up to 44
nonzero entries. These rows are directly related to the relaxation
of Eq. (2d) since for the relaxation more evaluation of the absolute
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value function are needed. Hence,𝑀 is denser in these areas. This
sparsity of the matrix 𝑀 is currently not exploited in the imple-
mentation. Therefore, we do not compare computation times with
other solvers here but just state that the state-of-the-art MIP solver
Gurobi, which is implemented in C, is in the range of seconds when
solving the optimization problems, whereas a Matlab implementa-
tion of CASM is in the range of seconds for the GasLib-11. For the
GasLib-40 instances, the current implementation of CASM needed
a few minutes. For the optimizations of the GasLib-134 instance the
solution was obtained after a bit less than 2 hours. Since solving
the system of equations currently accounts for about 95% of the
computing time exploiting sparsity could reduce these run times
considerably.

5 CONCLUSION AND OUTLOOK
In this work, we have shown that adversarial problems in robust
gas transport optimization can be solved with a warm start strategy
obtained from nonsmooth optimization. This is a major advantage,
as typically MIP solvers cannot profit from earlier iterations, if
only a small part of the model is changed. The warm start ability is
very advantageous if the piecewise linear relaxation of a nonconvex
adversarial problem is required to have high quality, i.e., whenmany
iterative refinements are necessary in order to approximate well
the nonconvex functions via piecewise linear functions. Whereas

currently the corresponding series of mixed-integer linear problems
is always solved from scratch, CASM promises the ability of a warm
start strategy such that a subsequent iteration profits from earlier
ones, without the necessity to always start from scratch. This will
be very helpful for large robust gas network instances.

However, it is necessary to improve the run times needed by
CASM via algorithmical engineering in order to allow meaningful
comparisons with other solvers. An essential aspect is to speed
up the solution of the system of equations that is required in each
iteration of CASM. The system matrix is usually very sparse such
that sparse solvers would reduce the run time consierably. As can
be seen from the numerical results, CASM reached the global opti-
mum in three out of four test cases. Further studies are required to
analyse this behaviour in more detail and also the impact on the
outer optimization performed by the bundle method. Especially in
the scenario considered here, where one solves a cascade of opti-
mization problems with moderate refinements when going from
one level to the next one, it should be possible to develop a globali-
sation strategy to ensure that a global optimum is reached which
is required by the adaptive bundle method. Another goal will be
to integrate CASM directly into the bundle method. This will also
allow a more rigorous comparison to the MIP based approach.
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