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Abstract
For an infeasible network flow system with supplies and demands, we con-
sider the problem of finding a minimum irreducible infeasible subsystem
cover, i.e., a smallest set of constraints that must be dropped to obtain
a feasible system. The special cases of covers which only contain flow
balance constraints (node cover) or only flow bounds (arc cover) are in-
vestigated as well. We show strong NP-hardness of all three variants.
Furthermore, we show that finding minimum arc covers for assignment
problems is still hard and as hard to approximate as the set covering
problem. However, the minimum arc cover problem is polynomially solv-
able for networks on cactus graphs. This leads to the development of
two different fixed parameter algorithms with respect to the number of
elementary cycles connected at arcs and the treewidth, respectively. The
latter can be adapted for node covers and the general case.

1 Introduction
Analyzing infeasibility of linear programs (LPs) is an important topic, since it
can help to find disrupted data or locate modeling errors. One tool for this
purpose are small sets of constraints whose removal renders the LP feasible.
This requires to remove at least one constraint from every irreducible infeasible
subsystem (IIS), i.e., an infeasible subsystem such that each proper subsystem
is feasible. Thus, we are interested in minimum IIS covers (minIISCs).

In this paper, we are concerned with the special case of network flow systems

x(δ+(v))− x(δ−(v)) = b(v) ∀ v ∈ V, (1a)
` ≤ x ≤ u, (1b)

for a simple, directed graph G = (V,A) with upper bounds u ∈ RA, lower
bounds ` ∈ RA, and a supply vector b ∈ RV . For S ⊆ V and S̄ := V \ S, we
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use the following standard notation: δ+(S) := {(v, w) ∈ A | v ∈ S, w ∈ S̄},
δ−(S) := {(v, w) ∈ A | v ∈ S̄, w ∈ S}, and δ(S) := δ+(S) ∪ δ−(S). Moreover,
for a finite index set I, a vector y ∈ RI , and I ′ ⊆ I, we write y(I ′) :=

∑
i∈I′ yi

and use y(i) := y({i}) = yi. The number of nodes and arcs of G are n := |V |
and m := |A|, respectively.

In order to avoid trivial infeasibilities, we assume that ` ≤ u. Furthermore,
w.l.o.g. u ≥ 0 throughout the article. In later parts, we will also assume that
the supply/demand is balanced, i.e., b(V ) = 0.

The analysis of IISs and IIS covers for LPs has been treated extensively in
the literature (see Sect. 1.1 below for a survey). However, to the best of our
knowledge, the special case of IIS covers for flow networks has not been treated
so far. In this article we investigate three kinds of such IIS covers: An IIS node
cover (INC) covers all IISs of the network problem by node constraints alone,
i.e., flow conservation equations (1a). Similarly, an IIS arc cover (IAC) contains
only arc constraints, i.e., lower or upper bounds (1b). The combination of both
yields general IIS covers. The corresponding minimization problems are then
called MINC, MIAC, and MIC, respectively.

The goal of this article is to extend the knowledge on finding minimum IIS
covers by considering the base case of flow networks. We investigate the struc-
tural properties of the three types of IIS covers and, in particular, investigate
their computational complexity and (non-)approximability properties.

To this end, we first establish NP-hardness of the three problems MIC,
MIAC, and MINC in Sect. 2. In Sect. 3, we study characteristics of IIS covers
and MIAC, in particular. For instance, we show that MIAC is approximable
within c (n− 1) for every constant c > 0. We demonstrate that MIC can be for-
mulated as a MIAC instance; hence, MIC can also be approximated within c n.
Furthermore, we introduce the concept of redundancy with respect to covering
of IISs. This leads to two preprocessing rules that allow to simplify the net-
work. We also examine the relation between MIAC and MINC. We then show in
Sect. 4 that MIAC is NP-hard to approximate within c lnn, even on assignment
problems. Moreover, we develop polynomial time algorithms on trees, cycles,
and more generally on cactus graphs. Furthermore, we give two fixed parameter
algorithms with respect to the number of elementary cycles connected at arcs
(MIAC) and with respect to the treewidth (all three variants).

Thus, on the one hand it turns out that minimum IIS covers are already hard
to compute for flow networks. In fact, MIAC is as hard to approximate as the
minimum IIS cover problem for general LPs. On the other hand, one can use
the underlying graph structure to derive tractable special cases. Consequently,
this article complements the existing knowledge on computing IIS covers for
infeasible LPs to a certain extent, which we review in the next subsection.

1.1 Literature Overview
The analysis of general infeasible linear systems has been extensively investi-
gated. For a broad overview, we refer to the book by Chinneck [12] (and refer-
ences therein). Moreover, we also mention the article of Greenberg [22], which
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gives a unified presentation of infeasibility and redundancy. In [20] and [21],
he also studied infeasible networks and gave heuristics to “localize” the cause of
infeasibility. In the following, we concentrate on minIISC results.

For general LPs, minIISC is equivalent to its complementary problem, the
maximum feasible subsystem (maxFS) problem. Chakravarti [9] showed that
maxFS is strongly NP-hard (thus, minIISC is also strongly NP-hard). While
minIISC and maxFS are equivalent with respect to optimality, this does not
hold for approximability, see Amaldi and Kann [4, 5].

MinIISC can be formulated as a hitting set (or as a set covering) problem,
where the sets are all IISs I of a linear system with p constraints. We can hence
solve minIISC optimally via the following integer program (IP):

min 1>y

s.t.
∑
i∈I

yi ≥ 1 ∀ I ∈ I (2)

y ∈ {0, 1}p,

where we identify the constraints by their indices 1, . . . , p, and 1 denotes the
all-ones vector of appropriate dimension.

Parker and Ryan [31] present an iterative process to solve (2), in which IISs
are generated dynamically. Here, (2) is solved for a partial set of IISs. An
integral solution can be used to efficiently find uncovered IISs by using a result
of Gleeson and Ryan [17]: The index sets of IISs of an infeasible linear system
are exactly the supports of the vertices of the associated alternative polyhedron.
If an uncovered IIS is found, it is added to the set, and the process is iterated.
A branch-and-cut approach to solve (2) is given in [32], which generates IISs on
the fly. Chinneck presented heuristics to solve minIISC [10] and maxFS [11].

Sankaran [33] proved NP-hardness of minIISC for Dy ≤ d with a transposed
node-arc-incidence matrix D. Hence, his result does not carry over to our case.
He also presented an easy special case: If the concatenated matrix [Dd] is totally
unimodular, minIISC can be solved in polynomial time for the general linear
system Dy ≤ d.

Furthermore, Amaldi and Kann [5] use the name “unsatisfied linear relations”
(MIN ULR) for MinIISC. They discussed the (non-)approximability properties
of DyRd for R ∈ {6=,=,≥, >} and arbitrary D and d. These results can be
extended to the constrained C MIN ULR, where some constraints are mandatory
and have to be satisfied. For R ∈ {=,≥, >}, they showed that MIN ULR can be
approximated withinm+1, wherem is the number of variables, by the following
observation: In the approach by Parker and Ryan mentioned above, including
every constraint of a newly found IIS in the IIS cover would increase the cover by
at most m+ 1 instead of 1, since each IIS can have at most m+ 1 constraints,
see Motzkin [30]. Amaldi and Kann [5] also claimed (non-) approximability
results for different versions of MIN ULR on node-arc-incidence matrices using
Sankaran’s results. However, these results are incorrect, since Sankaran [33]
used arc-node-matrices.
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In the following, we write (1) as Mx = b, ` ≤ x ≤ u, where the ma-
trix M is the totally unimodular node-arc-incidence matrix of G. In this con-
text, McCormick [28] considered the following slack-formulation for an infeasible
network flow:

min ‖s‖ (3)
Mx = b+ s1

`− s2 ≤ x ≤ u+ s3

s2, s3 ≥ 0,

where s is the concatenation of s1, s2, and s3. He developed efficient network
flow methods for the cases in which ‖s‖ is the `1-, `2-, or `∞-norm, respectively.
He also distinguished between the cases where only node or arc constraints
might be violated, by setting the respective part of s to zero. The problems
MIC, MIAC, and MINC can be formulated using (3) with an `0-“norm”, i.e.,
‖s‖0 := {i | si 6= 0}.

Moreover, note that (3) is an “elastic reformulation” as used by Chinneck [10]
to derive the heuristics for MinIISC mentioned above.

Finally note that MIAC shares a certain structure with the min edge cost flow
(MECF) problem, see [16, problem ND32]. MECF is a network flow problem
with objective function

min
∑

a∈A: xa>0

ca (4)

for costs c ∈ RA, flow x ∈ RA, and lower bounds ` = 0. For unitary costs,
this can also be formulated using the `0-“norm” of x. We will come back to this
relation in Remark 31.

1.2 Preparational Observations
A complete characterization of infeasibility in network flows is of course well
known:

Theorem 1 (Gale [15] and Hoffman [23]). The balanced network flow system (1)
is infeasible if and only if there exists S ⊆ V such that

b(S) > u(δ+(S))− `(δ−(S)). (5)

The characterization for balanced networks could as well be given with the
inequality

−b(S) > u(δ−(S))− `(δ+(S)), (6)

since whenever S fulfills one inequality, S̄ satisfies the other. For networks with
b(V ) 6= 0, the system is infeasible if and only if there exists S which fulfills (5)
or (6), since there might a node set that only satisfies one of them.

We will call (6) the demand form, since it belongs to a subset with an
unsatisfied demand, and (5) the supply form. Furthermore, we will refer to
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both inequalities as GH-inequalities and to the corresponding sets S ⊆ V as
GH-sets.

In [25] (see also Theorem 2 below), we used this characterization to show
that the IISs of network flow problems correspond to exactly those violated
GH-inequalities for which the induced subgraph G[S] is weakly connected, i.e.,
it is connected in the underlying undirected graph. For a formal description,
and for the following sections, we will need some more notation: Let σv refer to
the flow conservation constraint for a node v ∈ V , µa to the constraint xa ≤ ua,
and λa to the constraint xa ≥ `a for a ∈ A. For a GH-set S, we denote the
GH-subsystem by

I(S) := {σv | v ∈ S} ∪ {µa | a ∈ δ+(S)} ∪ {λa | a ∈ δ−(S)}

for the supply form, and

I(S) := {σv | v ∈ S} ∪ {µa | a ∈ δ−(S)} ∪ {λa | a ∈ δ+(S)}

for the demand form. Note that at most one case for a given S can apply.
Whenever necessary, we will specify which one is meant.

Theorem 2 ([25]). A subsystem I of the network flow system (1) is an IIS if
and only if there exists a GH-set S ⊆ V for which I = I(S) (in either demand
or supply form) and the induced subgraph G[S] is weakly connected.

Note that this is a complete characterization of IISs (for either balanced or
unbalanced networks), i.e., every IIS must have the specific form of a connected
GH-set, which will be fundamental at different points throughout the present
paper.

Network flow problems have exactly two types of linear constraints: the flow
conservation constraints (1a) (node constraints) and the flow bounds (1b) (arc
constraints). Especially in an application, where we want to offer guidance as
to how infeasibility might be repaired, it can be useful to differentiate between
node and arc constraints. While the flow bounds represent capacity constraints,
e.g., corresponding to a pipeline diameter, flow conservation constraints deter-
mine the total flow amount that must be transported1, e.g., corresponding to
transportation contracts. It might be possible that the infrastructure of the net-
work is fixed, while the requested flow amount can be changed, and vice versa.
An example for this would be gas transportation networks; see [26]. Thus, it
can be beneficial to only suggest either node or arc constraints for removal or
repair. Hence, we also investigate the settings where only one kind of constraint
can be violated, while the other must be fulfilled; note that this fits into the
framework of C MIN ULR (see [5]).

An instance for MIC, MIAC, and MINC will be denoted by (G = (V,A); b, u, `)
in the following, and we always regard directed graphs. For an arc constraint,

1in the absence of non-trivial lower flow bounds, otherwise flow conservation determines
the flow amount that must be at least transported.
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Figure 1: Sketch of the construction for the reduction; ` ≡ 0, u = 1 for solid,
u = ε for dashed arcs; minimum vertex cover marked gray.

the covering can be expressed by setting u :=∞ and ` := −∞, respectively, to
obtain the feasible instance corresponding to the deletion of the IAC. If there are
negative lower bounds, an arc can also be used in the reverse direction. Hence,
by including the lower bound in a cover, we can “make” an arc undirected (ex-
cept for MINC). Because of this, the underlying undirected graph of G will play
a major role, and statements about the structure of G will always refer to the
underlying undirected graph, i.e., connected refers to weakly connected, and
tree and cycle describe the respective undirected version.

2 Complexity of Minimum IIS Cover in Flow Net-
works

We begin by settling the hardness of MIC. In the following, let F describe the
set of all constraints.

Theorem 3. Given a network flow problem (1) and a positive integer k, it
is NP-complete in the strong sense to decide whether an IIS cover of size at
most k exists.

Proof. Obviously, the problem is in NP: Given a potential cover C, we simply
remove the indicated constraints and check the remaining system F \ C for
feasibility.

We reduce the strongly NP-complete minimum vertex cover problem on
cubic graphs (see [GT1] in [16]): Given an undirected graph G′ = (V ′, E′),
|V ′| = n, which is cubic, i.e., |δ(v)| = 3 for all v ∈ V ′, does there exist a vertex
cover V ∗ ⊆ V ′, i.e., at least one of the endpoints of each edge is contained in V ∗,
such that |V ∗| ≤ k?

We construct a network problem on a directed graph G = (V,A), which
has an IIS cover of size k iff |V ∗| = k. Starting with G′, each node gets a
supply of 3. The edges E′ are replaced by pairs of oppositely directed arcs,
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each with an upper flow bound of 1. Additionally, we introduce a sink node t
with a demand of 3n and arcs from every node to t with an upper bound
of a small ε (e.g., ε = 1/n), see also Fig. 1. To summarize, V := V ′ ∪ {t},
A := {(v, w), (w, v) | {v, w} ∈ E′} ∪ {(v, t) | v ∈ V ′},

bv :=

{
3, v ∈ V ′,

−3n, v = t,
ua :=

{
ε, a = (v, t),

1, otherwise,
and `a = 0 ∀a ∈ A.

Let us first examine the IISs I(S) of this network problem. Note that in the
original undirected graph, it holds that |δ(S)| ≤ 3|S| − 2(|S| − 1) = |S|+ 2
for every connected S ⊆ V ′ since the graph is cubic. Now recall that by Theo-
rem 2, IISs correspond to connected GH-sets. We start with the supply-form,
so S ⊆ V ′. Obviously, for S = {v}, v ∈ V ′, 3 = b(v) ≤ 3 + ε = u(δ+(v)), so
I(S) is not infeasible in this case. For |S| ≥ 2 and S connected, b(S) = 3|S| >
(1+ε)|S|+2 ≥ u(δ+(S)); therefore, every combination of at least two connected
nodes yields an IIS. Every disconnected subset is of no concern since it cannot
be an IIS. For the demand-form, t ∈ S must hold. Furthermore, S = {t} ob-
viously yields an IIS. Note that there are more IISs, but these are all that we
need.

Let V ∗ be a vertex cover in G′ with |V ∗| = k. Then C := {µa | a = (v, t),
v ∈ V ∗} is an IIS cover of size k, since for every connected S ⊆ V \ {t}, there
exists a ∈ δ+(S) such that µa ∈ C and for every S 3 t, there exists a ∈ δ−(S)
such that µa ∈ C.

Now let C be an IIS cover with |C| = k. First, suppose that C is an IIS node
cover. We know that every pair of two connected nodes yields an IIS and that
C must contain at least one of them – which is exactly the requirement of a
vertex cover. Next, let C be an IIS arc cover, AC := {a | µa ∈ C} ∪ {(w, v) |
λa ∈ C, a = (v, w)}, and V (AC) := {v | (v, w) ∈ AC}. Then |V (AC)| ≤ |AC |.
Suppose V (AC) is not a vertex cover: Then there exists (v1, v2) ∈ A such that
(v1, w) /∈ AC and (v2, w) /∈ AC for all w ∈ V . Hence, the IIS I({v1, v2}) is
not covered and C is no IIS cover. Finally, let C be a mixture of node and arc
constraints with VC := {v | σv ∈ C} and AC as above. With the same reasoning
as before, VC ∪ V (AC) must be a vertex cover.

Note that the size of the constructed instance and all occurring numbers are
polynomially bounded in |A′|+ |V ′|.

Corollary 4. Solving maxFS for network flows is strongly NP-hard.

Although we will achieve stronger results in the course of the paper, it follows
immediately from the above proof that MIAC is also NP-hard, since the IIS
cover constructed from a vertex cover only contains arc constraints.

Corollary 5. Given a network flow problem (1) and a positive integer k, it is
NP-complete in the strong sense to decide whether an IIS arc cover of size at
most k exists.

Furthermore, with a slight modification, the proof also shows hardness of
MINC.
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Proposition 6. Given a network flow problem (1) and a positive integer k, it
is NP-complete in the strong sense to decide whether an IIS node cover of size
at most k exists.

Proof. We use the same construction as for Theorem 3. There exists a vertex
cover V ∗ of size k for G′ iff the network problem on G has an IIS node cover C
of size k + 1: The set of IISs as discussed in the proof of Theorem 3 does not
change. Since S = {t} yields an IIS, t must be in every INC. With the same
argumentation as above, for an IIS node cover C, {v | σv ∈ C} \ {t} must be a
vertex cover.

On the other hand, for a vertex cover V ∗, C := {σv | v ∈ V ∗ ∪ {t}} is
obviously an INC, since for every pair of connected nodes, there is a constraint
in C.

Solving minimum vertex cover on cubic graphs is APX-complete (see [3]),
i.e., the problem can be approximated in polynomial time within some con-
stant factor, but not within every constant. Since the above proofs constitute
L-reductions for MIC, MIAC, and MINC, all three problems are APX-hard.
Unfortunately, there are no known constant approximation algorithms for the
IIS cover problems. In fact, we are about to show that at least for MIAC, there
cannot exist one unless P = NP.

Proposition 7. MIAC is not approximable within c lnn for any constant 0 <
c < 1 (unless P = NP).

Proof. We provide an L-reduction from the strongly NP-complete set cover
problem: Given a set R and a collection D of subsets d ⊆ R, we are looking for
a coverD′ ⊆ D of R. Moshkovitz [29] recently showed that the set cover problem
is not approximable within c ln|D| for any constant 0 < c < 1 if P 6= NP. We
construct an infeasible flow problem (G; b, u, `) on a graph G = (V,A) that has
an IIS arc cover of size k iff there is a set cover D′ with |D′| ≤ k.

First, we use the known formulation for set cover problems as a bipartite,
directed graph, where we have a node vr in a set VR for every element r ∈ R
and a node vd in a set VD for every subset d ∈ D. If r ∈ d, there is an arc from
vr ∈ VR to vd ∈ VD. We add a sink node t and connect every vd ∈ VD to t.
Hence,

VR := {vr | r ∈ R}, VD := {vd | d ∈ D}, V := VR ∪ VD ∪ {t},
A1 := {(vr, vd) | vr ∈ VR, vd ∈ VD, r ∈ d},
A2 := {(vd, t) | vd ∈ VD}, A := A1 ∪A2,

bv :=


1, v ∈ VR,
0, v ∈ VD,

−|R|, v = t,

ua :=

{
1, a ∈ A1,

0, a ∈ A2,
` := 0;

see also Fig. 2.
Let D∗ be a set cover with |D∗| = k, and let VD∗ := {vd ∈ VD | d ∈ D∗}. It

holds that |D∗| = |VD∗ | = |δ+(VD∗)| = k. Furthermore, the flow problem with
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Figure 2: Sketch of the construction for the reduction from set cover to IAC,
with ground set R = {1, 2, 3, 4} and subset collectionD = {{1, 2}, {2, 3, 4}, {4}};
node labels b, arc labels [`, u].

ua :=∞ for a ∈ δ+(VD∗) is feasible: Since D∗ is a set cover, all supply from VR
can be transported to VD∗ , and via the infinite-capacitated arcs to t. Hence,
{µa | a ∈ δ+(VD∗)} is an IAC with the claimed size.

Now suppose there is an IAC C with cardinality k̃ < k, but no set cover with
cardinality smaller than k. Let x be the corresponding feasible flow for F \ C
and let V̂D := {vd ∈ VD | µa ∈ C, a ∈ δ+(vd)}. It holds that |V̂D| ≤ k̃ < k.
Since x is feasible, the flow b(v) from every node v ∈ VR must be transported to
V̂D over undirected paths Pv with respect to {a ∈ A1 | xa 6= 0}. Since |V̂D| < k,
V̂D is not a set cover, and there is at least one v ∈ VR with Pv∩δ(v)∩δ(V̂D) = ∅,
i.e., the path does not contain an arc from v to V̂D. Moreover, (VR ∪ VD, A1)
is bipartite, so, to reach V̂D from v, |Pv| ≥ 3 and the path must traverse some
arc a ∈ A1 in backward direction. For a feasible flow, we must therefore have
λa ∈ C. Now observe that V ′ := {v ∈ VD | λ(w,v) ∈ C} ∪ V̂D yields a set cover,
i.e., k ≤ |V ′|. Since |C| ≥ |V ′| ≥ k, this is a contradiction.

In Sect. 4, we will further strengthen this proposition, but it is beneficial for
the presentation to first capture the proof in its basic version.

Remark 8. The given construction is inspired by a non-approximability result
of Di Gaspero et al. [13], who reduced set cover to the infinite capacity min
edge cost flow problem (ICF) on directed acyclic graphs with unitary edge costs.
However, for our problem, a simpler construction suffices.

Note that the stronger non-approximability result for set cover, proven in
the meantime by Moshkovitz [29], also carries over to the ICF and the min shift
design problem in the paper of Di Gaspero et al. [13].

3 Characteristics of IIS covers
In the previous section, we have seen that the computation of minimum IIS
covers in each version is hard. To obtain positive (approximation) results, we will
now explore characteristics of the IIS covers, which will help in understanding
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the underlying structures. The results are ordered by type of the IIS covers,
although the first basic observation holds not only for flow systems, but even for
general mixed-integer linear programs (MILPs). The statement is nearly trivial,
however, we could not find a proof in the literature.

Lemma 9. A minimal IIS cover for an arbitrary (mixed-integer) linear system
cannot contain lower and upper bounds of the same variable simultaneously if
the bounds are consistent.

Proof. Let C be an IIS cover for an infeasible linear constraint system F such
that {yi ≥ `i}, {yi ≤ ui} ∈ C for some variable yi. By definition, there exists a
solution ŷ for F \ C. The value of ŷi cannot violate both the consistent upper
and lower bound at the same time, so let w.l.o.g. ŷi ≤ ui. Then ŷ is still feasible
for F \ (C \ {yi ≤ ui}), and C is not minimal.

3.1 IIS Arc Covers
We start with an existence result for IACs, which will dictate our preconditions
for the following sections.

Lemma 10. There exists an IIS arc cover iff every connected component of G
is balanced.

Proof. Let G decompose into connected components (V1, A1), . . . , (Vk, Ak), each
of them balanced, i.e., b(Vi) = 0 for all i = 1, . . . , k. First, suppose k = 1, i.e.,
G is connected. Hence, there is a spanning tree T ⊆ A for G. The set {µa, λa |
a ∈ T} covers every possible IIS: For any S ⊂ V , there exists a ∈ δ(S) ∩ T .
Suppose the GH-inequality for S in supply-form is violated. Then µa is covered
for a ∈ δ+(S) and λa is covered for a ∈ δ−(S); this holds vice versa for the
demand-form. If S = V , the GH-inequality for S is not violated, since b(V ) = 0.

Now let k > 1. By Theorem 2, there are no IISs I(S) with v ∈ S ∩ Vi,
w ∈ S ∩ Vj , i 6= j; the above argumentation therefore holds componentwise if
b(Vi) = 0 for all i ∈ [k], where [k] := {1, . . . k}.

For the opposite direction, suppose there exists i ∈ [k] with b(Vi) 6= 0. Then
I(Vi) is an IIS and cannot be covered by arc constraints since δ(Vi) = ∅.

For the remainder of the paper, we will therefore assume that every con-
nected component of the given graph is balanced, so that an IAC always exists.
Furthermore, we can actually assume w.l.o.g. that the graph is connected, since
under these preconditions every connected component can be handled indepen-
dently.

The following lemma shows that enumerating minimal IACs is not a promis-
ing strategy in general.

Lemma 11. There can be exponentially many minimal IACs and MIACs.

Proof. Consider the example in Fig. 3. For every IAC C, either both upper
bounds in the top half of each rhombus or both bounds in the bottom part have
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Figure 3: Network problem (node labels b, arc labels [`, u]), with an exponential
number of minimal IACs.

to be in C. This proceeds throughout the graph, and at each intersection, we
can freely choose if we take the lower or upper path. Hence, there are 2

(n − 1)/3

minimal IACs.
The described IACs are actually of minimal cardinality in this case; therefore,

we can even have exponentially many MIACs.

Since we can assume the graph to be connected, we can pursue the idea of
regarding spanning trees to obtain bounds on the size of a MIAC.

Lemma 12. Let C be a minimum IAC. Then 1 ≤ |C| ≤ n− 1 and these bounds
are tight.

Proof. Let T be a spanning tree, so, in particular, |T | = n− 1. We have shown
in the proof of Lemma 10 that C := {µa, λa | a ∈ T} is an IAC, regardless of
the data. Hence, there exists a solution x for F \ C. Let C′ := C \ {µa | xa ≤ ua,
a ∈ A} \ {λa | xa ≥ `a, a ∈ A}. Due to Lemma 9, it holds that |C′| ≤ n− 1.

The instance V = [n], A = {(i, i+ 1) | i ∈ [n− 1]}, b1 = 2, bn = −2, bi = 0
for i = 2, . . . , n− 1 and u ≡ 1, ` ≡ 0 attains the upper bound. Examples for a
tight lower bound are easily constructed as well.

In the following, we will use the notation A(C) := {a ∈ A | µa ∈ C} ∪
{a ∈ A | λa ∈ C} to denote the affected network elements of an arc cover C, and
correspondingly V (C) := {v ∈ V | σv ∈ C} for a node cover C.

The tree structure also has a special meaning for minimal IACs:

Lemma 13. For every minimal IAC C, A(C) is a forest. Hence, Lemma 12
also holds for minimal IACs.

Proof. Suppose C is a minimal IAC of the constraint system F such that A(C)
contains an (undirected) cycle Z ⊆ A, and let x be a solution for F \C. Now we
augment flow along the cycle with the amount of the smallest bound violation:
For all a ∈ Z, if λa ∈ C, then ca := `a − xa, and if µa ∈ C, then ca := xa − ua
(by Lemma 9, C would not be minimal if both of them were in C). Note that
ca > 0 due to the minimality of C. Let â ∈ arg min{|ca| | a ∈ Z}, and define
the orientation of the cycle in the direction of â. Let x′a = xa for all a /∈ Z, set
x′a = xa − câ for all arcs in forward direction and x′a = xa + câ for backward
arcs. Then x′ is feasible for F \ (C \ {λâ, µâ}), which contradicts the minimality
of C.

11



Algorithm 1 MIAC: (n− 1)-approximation algorithm.

Input: Infeasible flow network problem (G; b, u, `) for a connected graph G =
(V,A) and balanced supply vector b.

Output: An IIS arc cover C.
1: Compute an (undirected) spanning tree T for G
2: C ← {µa, λa | a ∈ T}
3: Set ũa =∞, ˜̀

a = −∞ for all a ∈ T
4: Compute a feasible solution x̃ for (G; b, ũ, ˜̀)
5: C ← C \ {µa | x̃a ≤ ua} \ {λa | x̃a ≥ `a}
6: return C

The idea in Lemma 12 actually gives us an approximation algorithm for
MIAC in n. This factor is non-trivial since we have 2m coverable constraints and
m variables, which can be much larger than n. The best known approximation
factor for the general LP case due to [5] is m+ 1.

Theorem 14. MIAC is approximable within a factor of c (n − 1) for every
constant c > 0 in polynomial time.

Proof. Consider Algorithm 1. The proof of Lemma 12 shows that Algorithm 1
always returns an IAC C with |C| ≤ n − 1. The running time of the algorithm
is dominated by the computation of a feasible solution in Step 4, which can be
done with one max-flow computation, and is therefore polynomial.

Regarding the additional factor c, note that for every constant k ∈ [m], we
can check in polynomial time whether an IAC of size k exists. Before invoking
Algorithm 1, we can therefore rule out a minimum IAC of size k for every
1 ≤ k ≤ min {d1/ce, n− 2} (or stop should we find one). Hence, either a MIAC
has size at most d1/ce and the approximation algorithm provides an optimal
solution, or the size of a MIAC C∗ is larger than d1/ce and the approximated
solution has size at most n− 1. Thus, c (n− 1)|C∗| ≥ n− 1 ≥ |C|.

The following example has an optimal solution Copt with |Copt| = 1, while
for the approximated solution C, |C| = n − 1: V = [n], A = {(i, i + 1) | i ∈
[n− 1]} ∪ {(1, n)}, b1 = 2, bn = −2, bi = 0, i = 2, . . . , n− 1, and u ≡ 1, ` ≡ 0.
If the tree chosen in Step 1 is {(i, i+ 1) | i ∈ [n− 1]}, the approximation factor
is n− 1, which shows tightness of the bound for Algorithm 1.

Remark 15. To obtain at least a minimal IIS arc cover, we can extend Algo-
rithm 1 after Step 5 and check greedily whether some bounds may be removed
from the cover.

Another idea to obtain approximation results might be the primal-dual ap-
proximation approach (see [1]), which was successfully used by Goemans and
Williamson [19] on a hitting set formulation for different network design prob-
lems. For a graphG = (V,E) and a suitable function f : 2V → R the generalized

12



set covering formulation

min c>y

s.t.
∑
e∈δ(S)

ye ≥ f(S) ∀S ⊆ V (7)

y ∈ {0, 1}E

can describe, e.g., Steiner trees or minimum weight perfect matchings. Depend-
ing on the properties of f , rather good approximation results can be achieved.
For instance, every proper function leads to a 2-approximation, as do downwards
monotone functions. Goemans et al. [18] extended the algorithm for weakly su-
permodular functions. Comparing (7) with (2) shows that MIAC (and MINC
and MIC, after slight modifications) can be modeled in this way, with f(S) = 1
if I(S) is an IIS and f(S) = 0 otherwise. Unfortunately, this function is nei-
ther proper, nor downwards monotone or weakly supermodular, since I(S1) and
I(S2) might be IISs, while I(S1 ∪ S2) is not, and vice versa.

As Theorem 1 states, the feasibility of a flow network can be fully described
by the system b(S) ≤ u(δ+(S)) − `(δ−(S)) for all S ⊂ V . However, not all of
these inequalities are actually necessary.

Theorem 16 (Wallace and Wets [35]). Let b(V ) = 0 and G be connected. For
all ∅ 6= S ⊂ V , the inequality b(S) ≤ u(δ+(S)) − `(δ−(S)) is redundant if and
only if at least one of S and S̄ is not connected.

Note that Wallace and Wets state their result only for ` ≡ 0, but the proof
for a network with lower bounds ` 6= 0 runs completely analogously. From
Theorem 16, we can conclude that certain IISs are irrelevant for the covering
problem.

Definition 17. An IIS I(S) is called redundant (with respect to covering) if
an arbitrary cover for all other IISs also covers I(S).

For IISs I(S), we know that S must always be connected (see Theorem 2),
but S̄ does not need to be. The additional connectivity requirement for S̄ carries
over to redundancy of IISs in IACs.

Lemma 18. Let b(V ) = 0 and G be connected. For IACs, an IIS I(S) is
redundant if S̄ is not connected.

Proof. Suppose we have an IAC C covering all IISs I(S) for which S̄ is con-
nected. An IIS arc cover is equivalent to setting the corresponding bounds to
±∞, so the GH-inequalities become satisfied. Since every GH-inequality with
a disconnected side S̄ is redundant by Theorem 16, removing the covered IISs
already shows feasibility of the complete network problem, and C is an IIS arc
cover for all IISs.

Note that the condition is not necessary: A redundant IIS can correspond
to a nonredundant GH-inequality. This is obvious for I(S) and I(S̄), since one
of them is always redundant for IACs, even if both S and S̄ are connected.
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Remark 19. For IIS node covers, Lemma 18 does not hold. A counterexample
is given by V = {1, 2, 3}, A = {(1, 2), (1, 3)}, b1 = 5, b2 = −2, b3 = −3,
u(1,2) = 2, u(1,3) = 2. The IISs are I({1}), I({3}), I({1, 2}). Since nodes 2
and 3 are disconnected, I({1}) would be a candidate for being redundant, but
{σ2, σ3} is not a cover. Consequently, the lemma does not hold for IIS covers
either.

In the cases of MIC and MINC, Theorem 16 cannot be used as in the proof
of Lemma 18 for MIAC, since setting the supply value to ±∞ would lead to
b(V ) 6= 0, a crucial condition for the theorem to hold.

Redundancy shows us which IISs can be ignored in an any solution process,
and we can use this statement for algorithmic purposes. Connectivity of subsets
is fast to recognize in the case of leaves of the graph. Algorithm 2 removes all
leaves and decides if the connecting arcs are in a cover.

Algorithm 2 MIAC: Leaf Shrinking

Input: An infeasible network flow problem (G; b, u, `), G = (V,A)
Output: A subset C of every minimal IAC and a possibly smaller network

problem
1: C ← ∅
2: V̂ ← {v ∈ V | |δ(v)| = 1} . Leaves
3: while V̂ 6= ∅ do
4: Choose v ∈ V̂ arbitrarily
5: Let a = (v, w) ∈ δ+(v) or a = (w, v) ∈ δ−(v) be the unique arc incident

to v
6: if b(v) > u(δ+(v))− `(δ−(v)) then . IIS in supply form
7: if a ∈ δ+(v) then C ← C ∪ µa
8: else C ← C ∪ λa
9: else if −b(v) > u(δ−(v))− `(δ+(v)) then . IIS in demand form

10: if a ∈ δ+(v) then C ← C ∪ λa
11: else C ← C ∪ µa
12: b(w)← b(w) + b(v), V ← V \ {v}, A← A \ {a} . Shrink a
13: if |δ(w)| = 1 then V̂ ← V̂ ∪ {w} . New leaf
14: V̂ ← V̂ \ {v}
15: return C, (G; b, u, `)

The following lemma shows correctness of Algorithm 2. To this end, let
Opt(G; b, u, `) be the set of optimal IIS arc covers for the network problem
(G; b, u, `). For a set C of arc covers, we denote the elementwise concatenation
with an arc cover C by

C ⊕ C :=
{
C ∪ C′ | C′ ∈ C

}
.

Lemma 20. Let (G; b, u, `) be the input to Algorithm 2 and C, (G̃; b̃, ũ, ˜̀) be the
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output. Then

Opt(G; b, u, `) = C ⊕Opt(G̃; b̃, ũ, ˜̀).

Proof. The algorithm only includes bounds λa or µa in Steps 7 or 8 and 10 or
11 if a ∈ δ(v) and I({v}) is an IIS, checked in Steps 6 and 9, respectively. Since
|δ(v)| = 1, either λa or µa must be contained in every cover in Opt(G; b, u, `).

On the other hand, the only bounds λa, µa which might be in Opt(G; b, u, `),
but not in Opt(G̃; b̃, ũ, ˜̀), are on arcs a removed in Step 12. Let v be chosen in
Step 4 and a, w as in Step 5. If λa, µa /∈ C, then I(v) is not an IIS, otherwise
the bound would have been added to C. But besides S = {v}, there can be
no nonredundant IIS I(S) with a ∈ δ(S): If v ∈ S, then either w ∈ S (and
a /∈ δ(S)), or S is not connected. Hence, I(S) is not an IIS, but I(S̄) might
be. However, because of Lemma 18, I(S̄) would be redundant. Therefore,
λa, µa /∈ Opt(G; b, u, `).

In a way, bridges generalize the concept of leaves, and we can use the concept
of redundant IISs to decompose the graph at them. Algorithm 3 checks for every
bridge a if the connected components on either side of a yield an IIS, in which
case bounds on a are the only possibility to cover them. After that, we can
safely remove a:

Algorithm 3 MIAC: Bridge Deletion

Input: An infeasible network flow problem P = (G; b, u, `), G = (V,A)
Output: Infeasible network flow problems P = {(G̃; b̃, u, `)}, where G̃ ⊆ G,

and a subset C of every minimal IAC
1: C ← ∅, P ← {P}
2: for all (v, w) = a ∈ A do
3: Let P̃ = ((Ṽ , Ã); b̃, u, `) ∈ P such that a ∈ Ã
4: if (Ṽ , Ã \ {a}) is disconnected then . a is a bridge
5: Let Gv = (Vv, Av), Gw = (Vw, Aw) be the components with v ∈ Vv,
w ∈ Vw

6: if b(Vv) > ua − `a then C ← C ∪ {µa} . IIS in supply form
7: else if b(Vv) < `a − ua then C ← C ∪ {λa} . IIS in demand form
8: bv(ṽ)← b̃(ṽ) ∀ṽ ∈ Vv \ {v}, bv(v)← b̃(v) + b(Vw) . Decompose Vv
9: bw(w̃)← b̃(w̃) ∀w̃ ∈ Vw \ {w}, bw(w)← b̃(w) + b(Vv) . Decompose
Vw

10: P \ {P̃} ∪ {(Gv; bv, u, `), (Gw; bw, u, `)}
11: return C, P

Lemma 21. Let (G; b, u, `) be the input to Algorithm 3 and C, P be the output.
Then

Opt(G; b, u, `) = C ⊕
⋃

(G̃;b̃,u,`)∈P

Opt(G̃; b̃, u, `).
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Proof. The proof is an extension of the one for Lemma 20. If a bound is added
to C in Steps 6 or 7, this bound must also be in Opt(G; b, u, `), since the IIS
I(Vv) can only be covered by precisely this bound. Note that I(Vv) is indeed
an IIS, otherwise (Vv, Av) would be disconnected, which would imply that G is
also disconnected since a is a bridge.

On the other hand, assume that I(Vv) is feasible and hence, λa, µa /∈ C. Then
I(Vw) is feasible as well. Now suppose there is an IIS I(S) (i.e., S 6= Vv,Vw)
with v ∈ S, w /∈ S (or vice versa). Comparing S with Vv, S must either contain
some nodes from Vw or be a proper subset of Vv. Since (v, w) is a bridge, S or
S̄ must then be disconnected and hence, I(S) is a redundant IIS. It follows that
for every IIS I(S) either v, w ∈ S or v, w /∈ S. Therefore, the decomposition in
Steps 8–9 does not exclude (or add) any potential covers, since by construction
any later feasibility test takes this requirement into account.

Note that Algorithm 3 generalizes Algorithm 2; nevertheless, we will need
Algorithm 2 in Sect. 4 in the stated form.

3.2 IIS Node Covers
We will now turn to some fundamental statements about IIS node covers. Dif-
ferent to IAC, it turns out that we do not need the requirement of balanced
connected components in this case.

Lemma 22. There always exists an IIS node cover.

Proof. Obviously, {σv | v ∈ V } is a cover for every network problem with
consistent bounds.

Similarly to IAC, the enumeration of minimal INCs might not be effective.

Lemma 23. There can be exponentially many minimal INCs and MINCs.

Proof. Compare the example in Fig. 4. There are IISs I({1, 2}), I({3, 4}), . . . ,
I({n− 1, n}). Furthermore, every IIS of the network must contain at least one
i ∈ V with i ≡ 0 mod 2 and at least one j ∈ V with j ≡ 1 mod 2, otherwise
the supply can be met by the ±2 bounds. Therefore, it holds that every minimal
INC contains exactly one of σi−1, σi for i ∈ V with i ≡ 0 mod 2. Hence, there
are 2

n/2 minimal INCs. The minimal INCs are also minimum in this case.

The following lemma about the number of IISs will translate to the size of
IIS covers.

Lemma 24. For an infeasible flow problem with b(V ) = 0, there are at least
two IISs without a common node.

Proof. For an infeasible flow problem, there are at least two violated GH-
inequalities for some sets S and S̄. Suppose S is disconnected. Since an infeasi-
ble system must have at least one IIS, S̄ must be connected. Let S decompose
into the connected components Si, i = 1, . . . k. We have shown in [25] that then
at least one of I(Si) is an IIS.
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Figure 4: Network problem (node labels b, arc labels [`, u]) with an exponential
number of minimal INCs.

We can now give bounds for the size of IIS node covers. Unlike in the IAC
case, these hold for all INCs, not just minimal ones.

Lemma 25. Let C be an INC. Then 2 ≤ |C| ≤ n and these bounds are tight,
even for minimum INCs.

Proof. Since there always exists an INC by Lemma 22, |C| ≤ n. Lemma 24
already implies that |C| ≥ 2. An example with min |C| = n is the problem
V = [n], A = {(i, i + 1) | i ∈ [n − 1]}, bi = 2 for i ∈ [n − 1], bn = −2(n − 1),
u ≡ 1, and ` ≡ 0.

As mentioned in Remark 19, we cannot express the covering of node con-
straints by setting bv to ±∞. However, to every INC C, there is a corresponding
feasible flow in F \ C, which leads to a feasible supply vector (b + d). This is
also known as the excess of a node in the context of max-flow algorithms, see,
e.g., [2].

Lemma 26. Let b ∈ RV with b(V ) = 0. For every INC C, there exists d ∈ RV
with dv = 0 for v /∈ V (C) and 1>d = 0 such that Mx = b + d, ` ≤ x ≤ u is
feasible.

Proof. Since C is an INC, there exists a x̂ feasible for F \C. Let dv be the excess
of v ∈ V with respect to x̂, i.e., dv := x̂(δ+(v))− x̂(δ−(v))− bv. Then dv = 0 for
all v ∈ V \ V (C) and 1>d = 1>(Mx̂− b) = (1>M)x̂− 1>b = 0>x̂− 0 = 0.

Unfortunately, unlike the infinite bounds for IAC, we cannot use this at
intermediate steps of an INC calculation, since the values for d can only be
determined efficiently after the complete node cover is known.

In Lemma 20 we have seen that the redundancy concept allows to prune
leaves of the graph for MIAC. Unfortunately, the characterization of redundant
IISs does not hold for INC (see Remark 19), whence Algorithm 2 is not applica-
ble; shrinking can lead to missing IISs, as the example in Fig. 5 demonstrates:
Starting with node 1, we would include σ1 in a cover and then shrink 1 and 3.
The system I({2}) is feasible, so we would not include σ2 and shrink. We ob-
tain a node (1, 2, 3), which is again feasible. Hence, the IIS I({2, 3}) was not
detected.
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Figure 5: Network problem (node labels b, arc labels u), in which shrinking of
(1, 3) leads to a missed IIS.

Algorithm 4 MINC on Paths

Input: Infeasible flow network problem P = (G; b, u, `), where G = (V,A) is a
path graph.

Output: A MINC C.
1: S ← all GH-sets of P
2: C ← ∅
3: for v ∈ V in the order along G (in an arbitrary direction) do
4: if v ∈

⋃
S∈S S then

5: Sv ← {S ∈ S | v ∈ S}
6: if |S| > 1 for all S ∈ Sv then
7: for S ∈ Sv do S ← S \ {v}
8: else
9: C ← C ∪ {σv}

10: S ← S \ Sv
11: return C

This suggests that we have to check all other possible IISs before we can
shrink, i.e., the approach works if the parent node of a leaf has no further
children.

Proposition 27. If G is a path graph, MINC is solvable in time O(n3).

Proof. Consider Algorithm 4. We have to show that the returned C is feasible
and optimal and that the algorithm runs in the claimed time.

First, note that every IIS is covered by at least one constraint: GH-sets are
only removed in Step 10 if they were covered in Step 9 before, and the condition
in Step 6 makes sure that no IIS stays uncovered, whence C is a feasible cover.

For v, w ∈ V , let v ≺ w denote that v precedes w on the path G in the same
order as in Algorithm 4. Then, for a GH-set S with v, w ∈ S and v ≺ z ≺ w,
it holds that z ∈ S, since all GH-sets must be connected. Furthermore, let Sv
be the GH-set that triggered the inclusion of σv in C in Step 9 (Sv need not be
distinct). Note that for σv ∈ C, Sv is exclusively covered by σv; if there was
w ∈ Sv and σw ∈ C, it would hold that w ≺ v, and Sv would have been removed
in Step 10. Hence, C is minimal.
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Figure 6: Network problem (node labels b, arc labels [`, u]), where the size of
MINC is 2 and the size of MIAC is n− 1.

Now suppose there is σv ∈ C, but covering Sv with another constraint σw,
w ∈ Sv, would lead to a smaller cover overall. It holds that w ≺ v, otherwise
w /∈ Sv. Then either all GH-sets covered by σw are also covered by σv, or there
is a GH-set Sz with w ≺ z ≺ v. But then σz ∈ C and z ∈ Sv. Consequently,
because of Step 10, σv /∈ C, a contradiction. Hence, σw covers the same or fewer
IISs than σv and we cannot construct a smaller INC.

Finally, note that for path graphs, there are
(
n
2

)
= n(n − 1)/2 different

connected non-trivial node subsets, whence there are at most O(n2) IISs. In
Algorithm 4, all steps inside the for-loop can therefore be done in O(n2), result-
ing in time O(n3) overall.

We cannot generalize this approach to trees, since they might have an ex-
ponential number of IISs, e.g., a star graph with n nodes has (2n−1 + n − 1)
non-trivial, connected subsets of nodes (the center node must be in every con-
nected set of size ≥ 2, but every further combination leads to a connected
subset).

3.3 Relation between IIS Node and Arc Covers
We are now concerned with the relation between IIS arc and node covers. The
following lemma links the size of IIS arc and node covers to one another.

Lemma 28. Let CA be a minimum IIS arc cover and CV a minimum IIS node
cover for an arbitrary flow problem. It holds that

a. 2 |CA| ≥ |CV | and

b. there is no constant c ∈ R such that c |CV | ≥ |CA| for all problems.

Proof.

a. Clearly, C′ := {σv, σw | µ(v,w) ∈ CA} ∪ {σv, σw | λ(v,w) ∈ CA} is an IIS
node cover and 2 |CA| ≥ |C′| ≥ |CV |.

b. Consider the following network problem with n nodes, source node 1, and
sink n: V = [n], A = {(i, i+ 1) | i ∈ [n− 1]}, b1 = 2, bn = −2, and bi = 0
for i = 2, . . . , n−1 (see also Fig. 6). For u = 1, ` = 0, CV = {σ1, σn} is the
minimum IIS node cover, and the minimum arc cover is CA = {µa | a ∈ A}.
For n→∞, |CA| → ∞, while |CV | = 2.
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Figure 7: Example for the transformation from a network instance where node
and arc violations are allowed to a circulation instance where only arc violations
are permitted; node labels (on the left side) b, arc labels [`, u].

Lemma 28 a could additionally be used for algorithmic purposes: By com-
puting a (minimum) IAC, the construction in the proof gives us an INC, albeit
not necessarily a good one.

Conversely, we can also construct an IAC from an INC, although without
any constant estimation, as Lemma 28 b emphasizes: For a given node cover, let
d denote the corresponding excess, as defined in Lemma 26, so that Mx = b+d
is feasible. We can obtain an IAC by determining shortest undirected paths
between the nodes with positive and negative excess and including all upper
bounds for forward arcs and all lower bounds for backward arcs in the arc
cover. A possibly better heuristic would be to solve a min-cost flow problem
min {1>x | Mx = d}. For a node cover with few nodes and short paths, this
might lead to a small arc cover. In general, though, determining an optimal
assignment of flow is again an instance of MIAC.

3.4 IIS Cover
McCormick [28] gave a reformulation for his slack formulation (3), which trans-
forms the case of both node and arc violations to the case of only arc violations.
This essentially amounts to the classical reformulation as a circulation problem
with additional lower bounds: Add a node s, arcs a = (s, v) with `a = ua = bv
for all v ∈ V with bv > 0, arcs a = (v, s) with `a = ua = −bv for all v ∈ V with
bv ≤ 0, and set all bv = 0 (see also Fig. 7). Hereby, the violation of the bounds
for δ(s) in an “arc” solution is in one-to-one correspondence to the violation of
a node constraint in a “node-arc” solution.

Since this reformulation works independently from the objective function,
we can use it to formulate MIC as a MIAC instance.

For purely algorithmic purposes, we can therefore use methods developed for
MIAC. Nevertheless, the theoretical observations for MIAC do not necessarily
carry over to MIC. Whenever we take advantage of a special graph structure
(as in most of Sect. 4), it is probably lost after the reformulation, e.g., adding
the auxiliary arcs to a tree will inevitably produce cycles. However, the approx-
imability result in Theorem 14 does not use any information about the graph
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(besides connectivity), whence we have the following result for MIC.

Corollary 29. MIC is approximable within c n for every constant c > 0 in
polynomial time.

The best known approximability factor from general linear systems is m+ 1
(see Amaldi and Kann [5]), so for the special case of flow networks, we have a
better result, since m+ 1 ≥ n for connected graphs.

In the next section, we will investigate hardness in more detail, primarily
for MIAC. We have picked MIAC as our base problem for the deeper analysis
of the hardness because of the reducibility of MIC to it and the possibility to
construct a node cover from an arc cover with at most a constant increase in
size.

4 Boundaries of the Hardness of Minimum IIS
Arc Cover

In this section, we will analyze the difficulty of solving MIAC in detail. To this
end, we regard special cases of instances, where we restrict, on the one hand,
the range of the data and on the other hand, graph structures.

First, we require the graph to be bipartite. By tweaking the set cover re-
duction from Proposition 7, we can show non-approximability, even under the
combined restrictions bipartite graph and ternary data for MIAC.

Theorem 30. MIAC is not approximable in polynomial time within c lnn for
any constant 0 < c < 1 for assignment problems, i.e., on bipartite, directed
graphs G = (V ∪̇W,A) with bv = 1 for all v ∈ V , bw = −1 for all w ∈ W ,
u ≡ 1, ` ≡ 0, and all arcs directed from V to W , unless P = NP.

Proof. Let again a set cover problem be given by a set R and a collection D of
subsets d ⊂ R, where we are looking for a cover D′ ⊆ D of R. We start the
construction of the MIAC instance as in Proposition 7 with the graph represen-
tation of the set cover instance and add some more nodes to obtain the claimed
demands (see also Fig. 8): Since the nodes wd representing the subsets D must
have a demand, we need nodes vd for d ∈ D with a supply of 1, connected to
wd. Moreover, instead of t we use a set of nodes wi, i ∈ [|R|] and vt, wt, where
vt replaces t and each wi is connected to vt. Hence,

VR := {vr | r ∈ R}, VD := {vd | d ∈ D},
V := VR ∪ VD ∪ {vt},

WD := {wd | d ∈ D}, WR := {wr | r ∈ R},
W := WD ∪WR ∪ {wt},
A1 := {(vr, wd) | r ∈ R, d ∈ D, r ∈ d}, A2 := {(vd, wd) | d ∈ D},
A3 := {(vt, wd) | d ∈ D}, A4 := {(vt, wr) | r ∈ R},
A := A1 ∪A2 ∪A3 ∪A4 ∪ {(vt, wt)},
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Figure 8: Sketch of the construction for the reduction from set cover to IAC
for assignment problems, where R is the ground set and D is the collection of
subsets of the set cover instance. All arc bounds are [`, u] = [0, 1].

bv := 1 ∀ v ∈ V, bw := −1 ∀w ∈W,
u ≡ 1, ` ≡ 0.

Regarding the cut (VR ∪ VD ∪WD, {vt, wt} ∪WR), we see that every flow
satisfying flow conservation must send |R| units backwards over A3. Hence, at
least one λa, a ∈ A3, must be in the cover. The proof then proceeds as in the
proof of Proposition 7, showing that there can be no smaller cover by using
backward arcs in A1 than the cover consisting of λa, a ∈ {(vt, wd) | d ∈ D′}.
Therefore, the size of the IIS arc cover equals the size of the set cover, and
since the number of nodes in our construction is 2(|R| + |D| + 1), the non-
approximability property carries over.

Remark 31. For the relation between the min edge cost flow (MECF) problem
and MIAC mentioned in the introduction, we regard a special case of MECF:
If the capacities are infinite (the problem is then called ICF), we can transform
(to some extent) ICF to an IIS arc cover problem by setting the upper bound in
the arc cover instance to 0 for every cost ca = 1 in the edge cost flow problem,
see (4). Despite this transformation, some caution is necessary: In a MIAC
instance, we can also use “backward arcs” by relaxing the lower bound. Hereby,
the solution set can be larger than in the MECF instance; in particular, there
might be a different minimum.
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Regarding the special case of bipartite graphs, Benoist and Chauvet [8]
showed that then ICF with costs ca = 1 for every arc is hard, yet the caveat
holds true in this case: We cannot simply transform MIAC from the ICF in-
stance, since we might get a better solution by using backward arcs. On the
other hand, their reduction from 3-Partition can be used almost without change
to show strong NP-completeness of MIAC for bipartite graphs. However, we
obtained a stronger result by the set cover reduction.

This result also separates MIAC and MECF (with unitary costs). The latter
is easy on the above special case of assignment problems: Either a perfect
matching exists – which is the optimal solution for MECF – or there is no
perfect matching, and the instance is infeasible for MECF.

4.1 Polynomially Solvable Special Cases
On the other hand, there are also some polynomially solvable special cases. We
first consider the following case:

Theorem 32 (Sankaran [33]). If the concatenated matrix [M b] is totally uni-
modular, min {‖s‖0 |Mx− s ≤ b} is solvable in polynomial time.

Proof. Consider the LP min {1>s1 | Mx − s1 + s2 = b, s1, s2 ≥ 0}. If [M b]
is totally unimodular, it follows from Cramer’s rule that the values of all basic
variables for the system must be ternary. Then it is obvious that the LP solution
gives an optimal minIISC solution.

Adding the arc bounds, we immediately obtain the following result.

Corollary 33. If the concatenated matrix

M :=

M b
I u
−I −`


is totally unimodular, MINC, MIAC, and MIC are solvable in polynomial time.

A natural question is how restrictive the total unimodularity condition is;
we refer to [24] for a further discussion. Informally summarized, for M to be
totally unimodular, most of the data must be zero. We will therefore turn our
attention to the graph structure, for which we can also identify polynomially
solvable special cases. Recall that tree and cycle are meant in the undirected
sense in the following results.

Proposition 34. If G is a tree, MIAC is solvable in time O(m) = O(n).

Proof. Algorithm 2 applied to a tree starts with the leaves and finishes with
V = ∅ and, by Lemma 20, an optimal cover. In order to turn this into a linear
time algorithm, we proceed as follows.

We first perform a breadth first search (BFS) starting with an arbitrary
node as root. Using bucket sort, we order the nodes according to their depth in
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the tree. We now perform Algorithm 2 from bottom to top, picking the nodes
layer by layer. This way, we make sure that the shrinking operations in Step 12
do not interfere. In Step 5 and Step 12, we use the unique parent arc, which
can be obtained during BFS. This procedure runs in linear time, since BFS,
bucket sort (the elements in one bucket need not be sorted any further), and
this implementation of Algorithm 2 all run in linear time.

With a different approach, we can also solve cycle graphs. For this, we will
use the following definitions: A cycle, sometimes also called a closed walk, is
a sequence of nodes starting and ending at the same node, where each node is
adjacent to the node following in the sequence. A cycle is simple if no edge
appears more than once in this cycle; a cycle is elementary if no node, besides
the start and end node, appears more than once.

Proposition 35. For cycle graphs, MIAC is solvable in time O(m logm) =
O(n log n).

Proof. Let G = (V,A) be a cycle graph and C∗ an optimal IAC. We first show
that there is a feasible flow x∗ of F \ C∗ that satisfies at least one flow bound
with equality. Suppose otherwise, i.e., `a < x∗a < ua for all a ∈ A \ A(C∗). Let
r = min{|`a − x∗a|, |ua − x∗a| | a ∈ A} and augment x∗ by r units of flow (in the
respective direction). The resulting flow is feasible for F \ C∗ and satisfies at
least one bound with equality.

Since G is a cycle, the solution space {x |Mx = b} is 1-dimensional. Thus,
fixing the flow value on one arc uniquely determines a solution, which can be
computed in O(m) time. Consequently, to find x∗ (and hence C∗) it suffices
to enumerate the solutions obtained by fixing the flow to the lower and upper
bound for each arc. This can be efficiently done as follows.

Consider an arbitrary solution x̃ of the equation system. Moreover, fix an
arbitrary orientation of G and let χ ∈ {−1, 1}A with χa = +1 if a ∈ A cor-
responds to the forward direction and χa = −1 otherwise. We then have:
{x | Mx = b} = {x̃ + λχ | λ ∈ R}. Now for every arc a ∈ A compute two
values of λ such that x̃a +λχa equals `a and ua, respectively. Sorting these 2m
points gives a partition of the real line into 2m+ 1 intervals. We then traverse
these points from smallest to largest, i.e., the intervals from left to right. Each
time we reach a lower bound, the number of satisfied bounds of the interval
starting at this point is increased; each time we reach an upper bound, the
number of satisfied bounds for the next interval is decreased. We then take the
minimal number of violated bounds. This yields a O(m logm) time algorithm,
dominated by the time to sort the intervals.

In fact, we can combine Proposition 34 and Proposition 35. To this end, and
for Theorem 38 below, we will need to enumerate elementary, undirected cycles.

Remark 36. There are a several known algorithms that enumerate all elemen-
tary cycles of a directed graph. One of the best running times is obtained by
an algorithm of Szwarcfiter and Lauer [34], which runs in O(n + m(α + 1)),
where α denotes the number of found cycles. Mateti and Deo [27] showed how
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(b) Cycles connected via copies of v.

Figure 9: Transformation from simple cycles sharing a single node to elementary
cycles; node labels b, arc labels [`, u].

enumeration algorithms for directed graphs can be modified to work on undi-
rected graphs by doubling the edges. The resulting algorithm then finds 2α+m,
instead of α, cycles. Hence, we can enumerate all elementary, undirected cycles
in time O(n+m2 +m(α+ 1)).

Theorem 37. MIAC is solvable in time O(n + m2) if G is a (simple) cactus
graph, i.e., every cycle in G is simple or equivalently, G does not have the
diamond graph (the complete graph on four nodes minus one edge) as a minor.

Proof. First, we transform a cactus graph G to a graph G̃ in which every cycle
is elementary (see also Fig. 9): Consider each node v that is contained in k > 1
elementary cycles C1, . . . , Ck. Introduce k new nodes v1, . . . , vk and replace
v in cycle Ci by vi, i = 1, . . . , k. Connect these nodes by arcs ai = (v, vi) with
uai =∞, `ai = −∞. The supply resides at v and bvi = 0, i = 1, . . . , k.

By Remark 36, all elementary cycles in G can be enumerated in O(n+m2 +
m(α + 1)) time. Since every cycle is simple and must have at least three arcs,
there can be at most m/3 elementary cycles. We can then check whether a node
is contained in more than one cycle and perform the above transformation in
time O(m2).

Afterwards, we use the Bridge-Preprocessing (Algorithm 3) to decide opti-
mally about all bounds on bridges in G̃; one can show that this can be done in
O(m2) time. Since all cycles in G̃ are elementary, we end up with a collection of
disconnected cycles, which can be handled independently. By Proposition 35,
this step takes O(m logm) time. In total, we obtain an O(n + m2) time algo-
rithm.

With the previous results, we try to pinpoint what causes the hardness
of the problem. As Theorem 30 shows, the problem is still hard for “easy”
data. All polynomially solvable special cases considered here share a certain
characteristic: The number of paths – or routing possibilities – between sources
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Figure 10: Graph with α = 6 elementary cycles.

and sinks is polynomially bounded. This marks the boundary between easy and
hard problems, as the next result emphasizes.

We need the maximal number α of elementary cycles, such that each cy-
cle shares an arc with at least one other cycle (see Fig. 10 for an example).
The following proposition then essentially states that we could solve MIAC by
enumerating the possible cycle-flows.

Theorem 38. MIAC is fixed-parameter tractable (FPT) with respect to the
maximal number α of elementary cycles connected at arcs.

Proof. For the MIAC instance (G; b, u, `), we first apply the transformation as
in the proof of Theorem 37 (Fig. 9) and apply Algorithm 3 in O(m2) time. The
result is a set of k components that do not contain bridges or articulation nodes.
We can then handle these components independently.

Consider the ith component with ni nodes,mi arcs, and ci elementary cycles.
The decomposition implies that each elementary cycle in the ith component has
an arc in common with some other elementary cycle (if it exists). It follows that
ci ≤ α. Using Remark 36, we can enumerate these elementary cycles in time
O(ni +m2

i +mi(ci + 1)).
Now there exists a flow x∗ for the optimal cover which satisfies at least one

remaining bound in each of the elementary cycles with equality: For each cycle
for which no bound is satisfied with equality by x∗, we augment as in the proof
of Proposition 35; this does not affect the flow that meets the bounds on any of
the other elementary cycles.

Let mij , j ∈ [ci], be the number of arcs of the j-th elementary cycle. To
find an optimal IAC, we now fix the flow to either the lower or upper bound
on one arc for each elementary cycle, yielding 2mi,1 2mi,2 · · · 2mi,ci possibilities.
The remaining part of the graph forms a forest, and the corresponding flow (if
it exists) can be computed in O(mi) time, see Proposition 34. We then count
the number of violated bounds for this flow. Because mij ≤ mi for all j ∈ [ci],
we can solve MIAC on this component in time O(mci+1

i ) time.
Since the components are disjoint, n1 + · · · + nk ≤ n, m1 + · · · + mk ≤ m,

and ci ≤ α, we obtain a total running time of O(n+m2+m(α+1)+mα+1).

Remark 39. We use the notion “fixed parameter tractable” somewhat loosely
to refer to problems that are solvable in polynomial time in the input size |I|
for a fixed parameter α. In parameterized complexity (see [14] for an introduc-
tion), the class FPT is actually defined as problems that can be solved in time
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O(cf(α)|I|O(1)) for a constant c and a polynomial f , i.e., the parameter must
not appear in the exponent of the input size. In contrast, the class XP allows
running times O(|I|f(α)). Hence, the proof of Theorem 38 shows that MIAC
is in the class XP-uniform, which additionally demands that the employed so-
lution algorithm is independent of the parameter value. However, Theorem 42
below is indeed about the class FPT.

4.1.1 Fixed Parameter Tractability with Respect to the Treewidth

We can also show a more “classical” fixed-parameter result for MIAC using the
treewidth. To this end, we will first need the following observation, which is
used in the proof of Theorem 42 below.

In Algorithm 1, we have seen how a cover containing two oppositely directed
bounds can be transformed to a cover with only one bound per variable. Pur-
suing this principle, we define the following (theoretical) variant of an IIS arc
cover.

Definition 40. A subset of arcs K such that C(K) := {µa, λa | a ∈ K} is an
IAC is called open arc cover.

One could say that the difference between open arc covers and IIS arc covers
is the way of determining their size: For IACs we count the number of bounds,
for open arc covers the number of affected arcs.

Lemma 41. Minimum open arc cover and MIAC are equivalent w.r.t. their
optimal solutions.

Proof. Let C∗ be a MIAC and K∗ be a minimum open arc cover. Clearly, for
K := A(C∗), F\C(K) is feasible. Hence,K is an open arc cover. By Lemma 9, C∗
does not contain both upper and lower bounds for any arc. Therefore, |C∗| = |K|
and thus |C∗| = |K| ≥ |K∗|.

On the other hand, as in Step 4 and 5 of Algorithm 1, compute a feasible
solution x for F \ C(K∗). Then C = C(K∗) \ {µa | xa ≤ ua} \ {λa | xa ≥ `a}
is an IAC, so |C| ≥ |C∗|, and by construction, |C| ≤ |K∗|. Hence, |C∗| ≤ |C| ≤
|K∗| ≤ |C∗| and equality must hold throughout.

In particular, this means that in a solution algorithm for MIAC, we can
iteratively decide to include “arcs” in a cover without committing to a specific
bound yet and still get an optimal solution. Regarding the running time of
potential algorithms, it might still be better to forgo this possibility, since it
adds one max-flow computation at the end of the algorithm. Nevertheless,
since max-flow is polynomially solvable, if we show that minimum open arc
cover is solvable in polynomial time (for a special case), it follows that MIAC
is polynomially solvable. Furthermore, the result carries over to MIC without
change.

As a further step towards an FPT result w.r.t. treewidth, we will make an
excursion into propositional logic and use common notation from this area in the
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next paragraph. We will give a very brief description of the employed concepts
and refer to [7] for a detailed introduction.

Arnborg et al. [6] showed that all graph properties definable in extended
monadic second-order logic (EMS) can be decided in linear time for graphs of
fixed treewidth. Following the definitions in [6], monadic second-order logic
provides individual variables (denoted in lower case letters), the connectives
¬, ∧, ∨, →, ↔, as well as quantifiers ∃ and ∀. In distinction to first-order
logic, there are also set variables (denoted in capital letters), membership ∈ and
quantifiers over set variables. Extended monadic second-order logic additionally
allows to formulate certain sums of evaluations and certain objective functions.
For more detailed explanations, we refer the reader to Arnborg et al. [6].

Theorem 42. MIAC is FPT with respect to the treewidth of the underlying
graph.

Proof. With the result of Arnborg et al. [6], it suffices to give an EMS formu-
lation for MIAC. In fact, we will work with the equivalent min open arc cover
(see Lemma 41).

Let Head and Tail be binary predicates, such that Head(v, a) holds if and
only if v is the head of arc a and Tail(v, a) holds if and only v is the tail of a. We
regard the vectors b, u, and ` as functions of both nodes and arcs by extending
their definitions with zero in the obvious way, e.g., b(v) = bv for all v ∈ V and
b(a) = 0 for all a ∈ A. Then we can define the formulas

Compl(S, v) ≡ v ∈ V ∧ ¬(v ∈ S),

∆+(S, a) ≡ ∃v∃w(v ∈ S ∧ Compl(S,w) ∧ Tail(v, a) ∧Head(w, a)),

∆−(S, a) ≡ ∃v∃w(v ∈ S ∧ Compl(S,w) ∧Head(v, a) ∧ Tail(w, a)),

∆(S,D1, D2) ≡ ∀a(∆+(S, a)↔ a ∈ D1) ∧ ∀a(∆−(S, a)↔ a ∈ D2),

SubsetV (S) ≡ ∀v(v ∈ S → v ∈ V ),

SubsetA(D) ≡ ∀a(a ∈ D → a ∈ A),

ψ(|X1|b, |X2|u, |X3|`) ≡
∑
x∈X1

b(x)−
∑
x∈X2

u(x) +
∑
x∈X3

`(x) ≤ 0,

GHSet(S) ≡ ∀D1∀D2(SubsetA(D1) ∧ SubsetA(D2) ∧∆(S,D1, D2)

→ ¬ψ(|S|b, |D1|u, |D2|`)),
IAC (C) ≡ SubsetA(C) ∧ ∀S((SubsetV (S) ∧GHSet(S))

→ ∃a(a ∈ C ∧ (∆+(S, a) ∨∆−(S, a)))),

F (|X1|−1) =
∑
x∈X1

−1.

Then MIAC can be formulated as

max
IAC (C)

F (C),

where the objective function conforms to EMS and expresses that C should be
a minimum IAC. Note that a feasible / optimal cover of GH-sets will obviously
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also be a feasible / optimal IIS cover, whence we do not need to formulate the
connectedness requirement for a (hypothetical) IIS function, but can use the
weaker GHSet function.

With some additional formulas, this result also holds for MINC and MIC.

Proposition 43. MINC and MIC are FPT with respect to the treewidth of the
underlying graph.

Proof. Supplementing the formulas in the proof of Theorem 42, we define

INC (C) ≡ SubsetV (C) ∧ ∀S((SubsetV (S) ∧GHSet(S))→ ∃v(v ∈ C ∧ v ∈ S)),

SubsetVA(H) ≡ ∀h(h ∈ H → (h ∈ V ∨ h ∈ A)),

IC (C) ≡ SubsetVA(C) ∧ ∀S((SubsetV (S) ∧GHSet(S))

→ (∃v(v ∈ C ∧ v ∈ S) ∨ ∃a(a ∈ C ∧ (∆+(S, a) ∨∆−(S, a)))))

Then MINC and MIC are given by

max
INC (C)

F (C) and max
IC (C)

F (C),

respectively.

5 Outlook
This paper has investigated the special characteristics of minimum IIS covers
in flow networks. On the one hand, these problems are already hard to solve
and hard to approximate. On the other hand, we have obtained exact and fixed
parameter algorithms for graphs with a special structure.

Our next step will be to utilize these findings for algorithmic purposes, both
optimally and heuristically (some results regarding heuristics can already be
found in [24]). One of our motivations for this paper was the analysis of infeasible
systems arising in stationary gas transportation, see, e.g., [26]; we hope to
generalize the insight gained from pure flow networks to such broader network
structures.

In Sect. 4, we have analyzed the complexity of MIAC in greater detail.
Although we could show negative and positive approximation results, there is
still a gap, which we leave for future research. Furthermore, finding more easy
special cases for MINC would be interesting, as would be predictions about
when the covering of a node constraint in an IIS results in a smaller cover than
the covering of an arc constraint for MIC instances.

To establish a closer relationship to network design problems, one can extend
the given graph to a complete one by adding artificial arcs with 0 bounds. Then
the characteristics of MIAC in this new graph can be investigated. Here, the
occurrence of an artificial arc in the cover would dictate the construction of a
new arc, e.g., a pipeline in an application.
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