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Abstract. Pareto efficiency for robust linear programs was introduced by
Iancu and Trichakis in [9]. We generalize their approach and theoretical results
to robust optimization problems in Euclidean spaces with linear uncertainty.
Additionally, we demonstrate the value of this approach in an exemplary
manner in the area of robust semidefinite programming (SDP). In particular,
we prove that computing a Pareto robustly optimal solution for a robust SDP
is tractable and illustrate the benefit of such solutions at the example of the
maximal eigenvalue problem. Furthermore, we modify the famous algorithm of
Goemans and Williamson [8] in order to compute cuts for the robust max cut
problem that yield an improved approximation guarantee in non-worst-case
scenarios.

1. Introduction

Pareto efficiency is a well-established concept in a variety of fields such as economy,
engineering and biology, see e.g. [18] for a broad overview. In [9], Iancu and Trichakis
adapted this concept to robust optimization (RO) for linear programs. In particular,
they consider the robust linear program

sup
x∈X

min
p∈U

p>x, (1)

where X denotes a polyhedron and the uncertainty set U is assumed to be a polytope.
In this setting they characterize and compute so-called Pareto robustly optimal or
PRO solutions. These are robustly optimal solutions x ∈ X for which there exists
no other x̄ ∈ X such that

∀p ∈ U : p>x̄ ≥ p>x,

∃p̄ ∈ U : p̄>x̄ > p̄>x.

The main purpose of this article is to generalize the definition above and retrieve a
characterization of PRO solutions in this setting that is similar to the one in [9].
Moreover, we show that in the case of robust semidefinite programs, computing
PRO solutions is tractable.

Although the work of Iancu and Trichakis on the linear framework is rather new,
it has triggered further research such as an analysis for adjustable settings, see e.g.
[15] for a rolling horizon approach and [4] for a Fourier-Motzkin Elimination based
approach.

In Section 2, we generalize the approach of Iancu and Trichakis to X being a
subset of a finite dimensional Euclidean vector space and an uncertain parameter
that affects the objective linearly and is contained in a compact, convex uncertainty
set U . In particular, we provide a characterization of Pareto robustly optimal (PRO)
solutions in this broader setting, which is our main result. This result enables us to
prove the tractability of computing a PRO solution in the case of robust semidefinite
programming. In Sections 3 and 4, we illustrate how to compute the robust maximal

Date: September 7, 2021.
2020 Mathematics Subject Classification. 90C17, 90C22 .
Key words and phrases. Semidefinite Programming, Pareto Optimality, Robust Optimization.

1



2 D. ADELHÜTTE, C. BIEFEL, M. KUCHLBAUER, J. ROLFES

eigenvalue of a class of matrices and consider a variant of the SDP that is at the
core of the Goemans-Williamson Algorithm [8]. The PRO solutions of the latter,
are then used as an input for the algorithm and improve the computed cuts for the
robust max-cut problem.

Notation. In the remainder of this article, the feasible set X and the uncertainty
set U are contained in finite dimensional Euclidean vector spaces (V, 〈., .〉V ) and
(W, 〈., .〉W ), respectively. In the present article, we will mostly choose for both spaces
the space of n–dimensional real symmetric matrices Sn equipped with the Frobenius
inner product 〈·, ·〉F , i.e. (Sn, 〈·, ·〉F ). Given a set S ⊆ V , we denote its dual cone
by S∗ = {y ∈ V : 〈y, x〉 ≥ 0 ∀x ∈ S} and its relative interior by relint(S). For a real
matrix A ∈ Rn×n, we denote its trace by Tr(A). For a positive integer n ∈ N, we
use [n] := {1, ..., n} to denote a set of indices and In to denote the n-dimensional
identity matrix.

2. Pareto optimal solutions for linear uncertainty

In contrast to (1), we consider the following more general robust optimization
problem

sup
x∈X

min
p∈U

f(x, p), (2)

where X ⊆ V , U ⊆W and f(·, p) : X → R is a function that is well-defined for all
p ∈ U . The parameter p ∈ U encodes a linear uncertainty, i.e. f(x, ·) : U → R is
linear for all x ∈ X . If X is compact and f is continuous on X , we replace ’sup’
by ’max’ in (2). We denote the set of robustly optimal solutions, i.e. the set of
optimal solutions of (2), by XRO. In robust optimization, one usually focuses on the
worst-case scenario, i.e. it suffices to find any robust solution x ∈ XRO. In contrast
to this approach, we aim for a specific x ∈ XRO that also performs well under all
other scenarios p ∈ U . To this end, we use the definition of Pareto robustness from
[4]:

Definition 1. A robustly optimal solution x ∈ XRO is called a Pareto robustly
optimal solution (PRO) of (2) if there exists no x̄ ∈ X such that

∀p ∈ U : f(x̄, p) ≥ f(x, p), (3)
∃p̄ ∈ U : f(x̄, p̄) > f(x, p̄). (4)

In this case, we also write x ∈ XPRO. If x /∈ XPRO, we say for an x̄, which fulfills
(3) and (4), that it Pareto dominates x.

It is natural to ask whether such solutions exist, if they can be characterized and
whether they can be determined properly. We address the first task in an exemplary
manner in Section 4. The key to characterize and determine PRO solutions is the
following theorem, a generalization of Theorem 1 in [9] and our main result.

Theorem 1. A solution x∗ ∈ XRO of (2) is PRO if and only if for an arbitrary
p̂ ∈ relint(U) the optimization problem

sup
y

f(y, p̂),

s.t. min
p∈U

f(y, p)− f(x∗, p) ≥ 0,

y ∈ X

(5)

has optimal value f(x∗, p̂). Otherwise, its optimal solution y∗ is Pareto robustly
optimal for (2).
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Proof. First, we note that the optimal value of (5) is at least f(x∗, p̂), since x∗ is
feasible for (5). If the optimal value is strictly greater than f(x∗, p̂) with optimal
solution y∗, then y∗ Pareto dominates x∗ and hence x∗ /∈ XPRO. For the opposite
direction, we assume that the optimal value equals f(x∗, p̂) and that x∗ is not Pareto
robustly optimal. Then there exists a solution y ∈ X that Pareto dominates x∗ and
we obtain

0 < max
p∈U

f(y, p)− f(x∗, p). (6)

Since we optimize a linear function over a convex set U , its optimal solution p̄ is
w.l.o.g an extreme point of U . Additionally, the convexity of U implies that for
p̂ ∈ relint(U), there exist p ∈ U and ε > 0, such that p̂ = εp̄ + (1 − ε)p and we
conclude

f(y, p̂)− f(x∗, p̂) = ε(f(y, p̄)− f(x∗, p̄)) + (1− ε)(f(y, p)− f(x∗, p)) > 0,
where the inequality follows from the fact that p̄ was optimal for (6). Hence, we
obtain a contradiction to the optimality of f(x∗, p̂).

If on the other hand x∗ /∈ XPRO, then there exists a solution y∗ that is optimal
for (5). Assume that y∗ /∈ XPRO, then there would exist p̄ ∈ U and z ∈ X with
f(z, p̄) > f(y∗, p̄) and f(z, p) − f(y∗, p) ≥ 0 ∀p ∈ U . But then, y∗ would not be
optimal for (5) – a contradiction. �

We observe that since the function f is linear on the convex set U , if in addition f
is continuously differentiable on X , one could reformulate the minimization problem
with its dual cone, KKT–conditions or reformulations given in [3]. This property
would be beneficial to solve (5). Another way to determine a PRO solution is given
by the following theorem in case one can characterize XRO precisely:

Theorem 2. Let p̂ ∈ relint(U). Then argmaxx∈XROf(x, p) is a subset of Pareto
robustly optimal solutions of (2).

Proof. Assume that x∗ is a maximizer for a given p̂ ∈ relint(U) but x∗ /∈ XPRO.
Then, there exists a robustly optimal y ∈ XRO with f(x∗, p) ≤ f(y, p) for all p ∈ U
and there exists a p̄ ∈ U with f(x∗, p̄) < f(y, p̄). Similar to the previous proof,
p̂ = εp̄+ (1− ε)p for a p ∈ U and ε ∈ (0, 1). Hence,

0 ≥ f(y, p̂)− f(x∗, p̂) = εf(y, p̄)− f(x∗, p̄)) + (1− ε)(f(y, p)− f(x∗, p)) > 0,
where the first inequality holds since x∗ was a maximizer of f(·, p̂). �

In contrast to the two theorems above, which aim to determine PRO solutions,
the following theorem addresses the question whether there exist non-trivial PRO
solutions x for (2), i.e. x ∈ XPRO and XPRO 6= XRO.

Theorem 3. Let p̂ ∈ relint(U) and consider the optimization problem
sup
x,y

f(y, p̂)− f(x, p̂),

s.t. min
p∈U

f(y, p)− f(x, p) ≥ 0,

y ∈ X ,
x ∈ XRO.

(7)

Then XPRO = XRO if and only if the optimal value of (7) is zero.

Proof. Suppose that the objective value of (7) is strictly positive. Then, there exist
feasible x∗, y∗ for (7) with strictly positive objective value. We observe that

min
p∈U

f(y∗, p)− f(x∗, p) ≥ 0 and f(y∗, p̂)− f(x∗, p̂) > 0
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implies that y∗ Pareto dominates x∗ ∈ XRO and thus x∗ ∈ XRO \ XPRO. For the
opposite direction, we consider an arbitrary x̄ ∈ XRO and suppose that the optimal
value of (7) is zero. This implies that 0 ≥ supy f(y, p̂)− f(x, p̂) for every x ∈ XRO
and hence

f(x̄, p̂) ≥ sup
y
f(y, p̂),

s.t. min
p∈U

f(y, p)− f(x̄, p) ≥ 0,

y ∈ X .
Moreover, equality holds since y = x̄ is a feasible and optimal solution and thus we
can apply Theorem 1 to obtain that x̄ ∈ XPRO and conclude XPRO = XRO. �

2.1. A tractable reformulation for SDPs under linear perturbations. We
illustrate the above results by the example of semidefinite programming with
uncertainties that solely affect the cost matrix. In addition, we provide a tractability
result for this class of optimization problems. We consider a spectrahedron

X = {X ∈ Sn : X � 0, 〈Aj , X〉 = bj , ∀j ∈ [k]},
and matrix interval uncertainties:

U =
{
D0 +

N∑
i=1

µiDi : µ ∈ [µ−, µ+]
}

where D0, . . . , DN ∈ Sn, µ−, µ+ ∈ RN are fixed parameters (cf [6]). We observe that
since the Frobenius inner product f(X,P ) = 〈P,X〉 is bilinear, it encodes linearity
in X and in the uncertain parameter P . Hence, it can be used as an objective
function for (2). Together this defines the following case of a robust semidefinite
program with interval uncertainties:

sup
X∈Sn

�0

min
P∈U

〈P,X〉 (8)

s.t. 〈Aj , X〉 = bj , ∀j ∈ [k].
It is worth noting that the above problem formulation differs from the more estab-
lished ones in, e.g. [6] or [2] by considering uncertainties in the objective instead of
uncertainties in the constraints. Although we do not investigate the exact relation
between these two approaches here, we want to point out that the considered prob-
lem is a semidefinite version of the setting investigated by Beck and Ben–Tal in [1].
We recall that we aim to compute a Pareto robustly optimal solution for (8), i.e.
a robustly optimal solution X ∈ XRO, such that there is no other X̄ ∈ XRO that
satisfies

∀P ∈ U : 〈P, X̄〉 ≥ 〈P,X〉,
∃P̄ ∈ U : 〈P̄, X̄〉 > 〈P̄,X〉.

The following proposition shows how Theorem 1 can be used to compute Pareto
robustly optimal solutions to Problem (8).

Proposition 1. A solution X ∈ XRO is Pareto robustly optimal for (8) if and only
if the optimal value of

max
Z
〈P̂, Z〉,

s.t. Z ∈ U∗,
X + Z ∈ X

(9)

is 0. If it is positive with optimal solution Z, then X + Z ∈ XPRO. Moreover, the
above program computes a PRO solution to (8) in polynomial time.
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Proof. Applying Theorem 1, one obtains that X ∈ XRO is Pareto robustly optimal
if and only if

max
Y
〈P̂, Y 〉, (10a)

s.t. min
P∈U
〈Y −X,P 〉 ≥ 0, (10b)

Y ∈ X (10c)

has an optimal value of 〈P̂,X〉. Let Z := Y −X. Then, 〈P̂, Y 〉 ≥ 〈P̂,X〉 is equivalent
to 〈P̂, Z〉 ≥ 0 and the inequality minP∈U 〈Y −X,P 〉 ≥ 0 is equivalent to Z ∈ U∗,
which proves the first part of the claim. In order to prove tractability for matrix
interval uncertainties, we observe

(10b)⇔ 0 ≤ min
µ∈[µ−,µ+]

〈Y −X,D0〉+
N∑
i=1

µi〈Y −X,Di〉

⇔ −〈Y −X,D0〉 ≤ min
µ∈[µ−,µ+]

N∑
i=1

µi〈Y −X,Di〉

⇔ −〈Y −X,D0〉 ≤ max
y∈R2n

≥0

y>
(
−µ+

µ−

)
: y>

(
−In
In

)
=

〈Y −X,D1〉
. . .

〈Y −X,Dn〉


and consequently, Problem (9) can be written as an SDP which is polynomially
solvable in its input length:

max
Y,y
〈P̂, Y 〉,

s.t. y>
(
−µ+

µ−

)
≥ −〈Y −X,D0〉,

y>
(
−In
In

)
=

〈Y −X,D1〉
. . .

〈Y −X,Dn〉

 ,

Y ∈ X , y ∈ R2n
≥0.

�

Thus, we have proven that computing a Pareto robustly optimal solution for
robust semidefinite programs (8) with interval uncertainties is tractable. In the
following section we illustrate its use for a robust eigenvalue problem and the
computation of max-cuts on graphs with uncertain weights.

3. Application I: The Robust Maximum Eigenvalue Problem

In the following paragraphs, we show that computing the maximal eigenvalue
of a set of affine combinations of matrices fits into the setting of (2). The largest
eigenvalue problem of a matrix C can be written as (see, e.g. [14]):

λmax(C) = max
X�0

〈C,X〉 = min
y

y

s.t. Tr(X) = 1 (⇔ 〈In, X〉 = 1) s.t. yIn − C � 0.
(11)

An optimal matrix X for the first optimization problem corresponds to the eigen-
vector x with respect to the largest eigenvalue λmax of C by X = xx>. In the
remainder of this section, we consider the following robust variant of (11) with
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respect to a compact uncertainty set U :
λmax = max

X�0
min

µ∈[µ−,µ+]
〈C(µ), X〉

s.t. Tr(X) = 1,
(12)

where C : [µ−, µ+] → U denotes an affine function. Note that for compact and
convex uncertainty sets U , Sion’s minimax theorem [17] allows us to interchange
the max and min operators. Thus, if the uncertainty set U consists of interval
uncertinties as in (8), the problem boils down to minimize the maximal eigenvalue of
an affine family of symmetric matrices – a problem with a wide range of applications,
e.g. in stability analysis of dynamic systems or the computation of structured
singular values, see [7]. In the following example, we provide an instance with
non-trivial (XPRO 6= XRO) Pareto robustly optimal solutions for this eigenvalue
problem.

Example 1. Let C(µ) ∈ U =
{(

1 0
0 1

)
+ µ

(
1 −1
−1 1

)
: µ ∈ [0, 1]

}
. Then, the

matrix X ′ = 1
2

(
1 −1
−1 1

)
is a robustly optimal solution for (12) since for every

µ ∈ [0, 1] we have:

〈C(µ), X〉 = 〈I2, X〉+ µ

〈(
1 −1
−1 1

)
, X

〉
≥ 〈I2, X〉 = 1.

Thus, for every feasible X, µ = 0 is the worst case realization of uncertainty that
can occur. Consequently, every feasible solution X, such as X ′, is also a robustly
optimal solution. However, X ′ Pareto dominates every other solution X ∈ XRO,
since for every µ > 0 and X 6= X ′, we have

〈C(µ), X〉 = 〈I2, X〉+µ

〈(
1 −1
−1 1

)
, X

〉
< 1 +

〈(
1 −1
−1 1

)
, X ′

〉
= 〈C(µ), X ′〉.

Note that the existence of more than one robustly optimal solution is non-trivial
as for uncorrelated uncertainties, i.e. uncorrelated uncertainty sets for the entries
of C, we often obtain a unique robustly optimal solution. In the above example,

the uncertainties in the entries are linked through the matrix
(

1 −1
−1 1

)
and thus

correlated.

4. Application II: Robust Max Cut

The weighted max cut problem is one of the fundamental combinatorial
problems from Karp’s list of 21 NP-complete problems [10]. Given an undirected
graph G = (V,E) equipped with a weight function w : E → R, the task is to find a
cut δ(V ′) = {e ∈ E : |e ∩ V ′| = 1} defined by V ′ ⊆ V with maximal weight, i.e.,

mc(G,w) := max
V ′⊆V

∑
e∈δ(V ′)

we = max
x∈{−1,1}V

1
4x
>Lwx,

where Lw denotes the weighted Laplacian of the graph, i.e.

Lw =
∑
{i,j}∈E

wijE
′
ij with E′ij = Eii + Ejj − 2Eij .

In combinatorial optimization under uncertainty, it is common to restrict oneself
to uncertainties in the objective in order to keep the structure of the underlying
combinatorial problem, see [11] for a survey. In the remainder of this section,
we consider interval uncertainties in the weights, i.e., we(µ) = we + ge(µ), where
g : RE → R is an affine map of the interval uncertainties µ ∈ [µ−, µ+] ⊆ RE that



PARETO ROBUST OPTIMIZATION ON EUCLIDEAN VECTOR SPACES 7

encodes a potential correlation. Similar to [13], we define the robust counterpart of
the uncertain weigthed max cut problem that corresponds to mc(G,w) by

mc(G,w,U) = max
x∈{−1,1}V

min
µ∈[µ−,µ+]

1
4x
>Lw(µ)x, (13)

where Lw(µ) =
∑
{i,j}∈E wij(µ)E′ij = Lw+

∑
{i,j}∈E gij(µ)E′ij denotes the uncertain

Laplacian. Moreover, since g is an affine map, the set U = {Lw(µ) : µ ∈ [µ−, µ+]}
represents an interval uncertainty as in the previous sections.

Again, we address the question whether for a given graph G, we can improve a
robustly optimal solution to (13) in terms of Pareto dominance. In some instances
such as γ-stable graphs introduced by Bilu and Linial [5], there exist solutions x̂ that
are not only Pareto optimal but moreover ensures that there is no solution x̄ ∈ X
such that ∃p̄ ∈ U : f(x̄, p̄) > f(x̂, p̄). Although our techniques would apply for their
instances there are more efficient ways to compute these solutions. However, in
general, graphs are not γ-stable and hence we first demonstrate the existence of two
optimal solutions to an instance of robust weighted max-cut problem of which one
Pareto dominates the other with the following example:

Example 2. Consider the complete graph with three nodes equipped with the
uncertain weights w12(µ) = w13(µ) = 4+2µ and w23(µ) = 3+µ that affinely depend
on µ with µ ∈ [−1, 1]. We observe that

8 + 4µ = w(δ(v1)) ≥ w(δ(v2)) = w(δ(v3)) = 7 + 3µ,
where equality holds if and only if µ = −1. Since this describes the worst case for
all these three cuts, we have that every cut is a robustly optimal solution. However,
the cut δ(v1) Pareto dominates the other cuts, since w(δ(v1)) > w(δ(v2)) = w(δ(v3))
whenever µ > −1.

We would like to point out that Example 2 is not a classical example since it
is not a classical interval uncertainty set which is more common in combinatorial
optimization under uncertainty [11]. However, in the context of Pareto optimality
of binary programs with a linear objective under interval uncertainty this notion is
not interesting as the following proposition illustrates.

Proposition 2. Consider problem (2) with X ⊆ {0, 1}n, f(x, p) = p>x and
U := [p̄−∆p, p̄] ⊆ Rn+ and let x∗ ∈ XRO. Then, x∗ + z with z ∈ {−1, 0, 1}n Pareto
dominates x∗ if and only if zi = −1 implies ∆pi = 0 for all i ∈ [n], there exists at
least one i ∈ [n] with zi = 1 and ∆pi > 0 and x∗ + z ∈ XRO.

Proof. Theorem 1 states that x∗ ∈ XRO is Pareto robustly optimal if and only if
for p̂ ∈ relint(U) the mixed integer program

max
z

p̂T z,

s.t. z ∈ U∗,
x∗ + z ∈ X

(14)

has optimal value 0. We determine the dual cone:
z ∈ U∗ ⇔ zTu ≥ 0 ∀u ∈ U ,

⇔ min
u∈[p̄−∆p,p̄]

zTu ≥ 0,

⇔ max
(y,s)∈R2n

≥0: y−s=z
(p̄−∆p)T y − p̄T s ≥ 0, (15)

⇔ ∃y ≥ 0 : p̄T z −∆pT y ≥ 0, y ≥ z,
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where we apply strong duality to obtain (15). Since for all i ∈ [n], there exists
λi ∈ (0, 1), such that p̂i = p̄i − λi∆pi, problem (14) is equivalent to

max
y,z

∑
i∈[n]

(p̄i − λi∆pi)zi,

s.t. p̄T z −∆pT y ≥ 0,
x∗ + z ∈ X ,
y ≥ z,
y ≥ 0.

(16)

for λ ∈ (0, 1)n. Now, assume that (y∗, z∗) is optimal for (16) and hence x∗ + z∗ ∈
XPRO. Thus, x∗ + z∗, x∗ ∈ XRO implying

min
p∈U

pT (x∗ + z∗) = min
p∈U

pTx∗.

Since p, x∗, x∗+ z∗ are nonnegative, the worst-case uncertainty is attained at p̄−∆p
and we obtain (p̄−∆p)T (x∗ + z∗) = (p̄−∆p)Tx∗ implying p̄T z∗ = ∆pT z∗. Thus,
the optimal value of (16) equals∑

i∈[n]

(1− λi)∆piz∗i (17)

Since z∗ is feasible for (16), we further obtain
∆pT (z∗ − y∗) ≥ 0

and since y∗ ≥ z∗ and ∆p ≥ 0,
∆pT (z∗ − y∗) ≤ 0,

finally obtaining ∆pT (z∗ − y∗) = 0. Since x∗ + z∗ ∈ X implies z ∈ {−1, 0, 1}n, we
obtain that

z∗i = −1 y∗i≥0⇒ z∗i − y∗i < 0⇒ ∆pi = 0.
Plugging this into (17) implies that∑

i∈[n]

(1− λi)∆piz∗i > 0

is equivalent to the existence of at least one i ∈ [n] with z∗i = 1 and ∆pi > 0. Thus,
we have proven our claim. �

This characterization implies that if a solution x ∈ XRO is Pareto dominated by
another solution x′ ∈ XRO then it contains an entry i with xi = 1 and ∆pi = 0.
Thus, if ∆p > 0, we have that every robustly optimal solution x ∈ XRO is also
Pareto optimal, i.e. XRO = XPRO.

Since max cut can be phrased as a binary program by using the cut polytope,
the statement above holds true for the robust max cut problem for uncorrelated
uncertainties. Although the nominal max-cut problem is widely considered in the
literature, its robust counterpart is to the best of our knowledge not well-investigated.
For the nominal case, the famous algorithm of Goemans andWilliamson [8] enables us
to compute a cut that satisfies an α-approximation ratio with α = 0.878.... Moreover,
if Khot’s unique games conjecture [12] holds, this is the best approximation ratio
we could hope to achieve with a polynomial time algorithm. In the remainder of
this section, we first derive robustly optimal cuts with the same approximation
ratio and then apply our results from Section 2 to compute new cuts with improved
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approximation guarantees if the worst-case uncertainty is not attained. To this end,
we consider the SDP relaxation of (13):

sdp(G,w,U) = max
Y

min
µ∈[µ−,µ+]

〈
1
4Lw(µ), Y

〉
s.t. 〈I{i}, Y 〉 = 1 ∀i ∈ [n],
Y � 0.

(18)

Since the inner problem in (18) is an LP that can be dualized, we can properly
compute a robustly optimal solution to (18) by solving the resulting SDP. This
solution can now be used to compute a cut via Goemans-Williamson’s Algorithm
that guarantees the same approximation ratio for the robust max-cut.
Proposition 3. Let wij(µ) = wji(µ) ≥ 0 for every µ ∈ [µ−, µ+] and Ȳ be a robust
optimal solution to (18). Then,

min
u∈[µ−,µ+]

〈
Lw(u)

4 , Ȳ

〉
= sdp(G,w,U) ≥ mc(G,w,U) ≥ 0.878 . . . sdp(G,w,U).

Proof. The first inequality follows by a simple relaxation argument. For the second
inequality we strictly follow the arguments of Goemans and Williamson [8]:

Let ȳk denote the columns of the Cholesky decomposition of Ȳ . Then, we observe
that x ∈ {−1, 1}V defined by xk = sign(ȳk>r) forms a cut in G. The proof of
Goemans and Williamson then relies on the fact that for vectors r ∈ Sn−1 drawn
from the rotationally invariant probability distribution on the unit sphere and their
corresponding cuts, we have that

E(1− xixj) ≥ 0.878 . . . (1− ȳi>ȳj) = 0.878 . . . sdp(G,w,U).
Finally, we conclude

E
(

min
µ∈[µ−,µ+]

1
4x
>Lw(µ)x

)
= E

 min
µ∈[µ−,µ+]

1
4
∑
{i,j}∈E

wij(µ)(1− xixj)


= min
µ∈[µ−,µ+]

1
4
∑
{i,j}∈E

wij(µ)E ((1− xixj))

≥ 0.878 . . . min
µ∈[µ−,µ+]

1
4
∑
{i,j}∈E

wij(µ)(1− ȳi>ȳj)

= 0.878 . . . sdp(G,w,U).
�

It is worth noting that there are already similar results for certain uncorrelated
uncertainties known, see e.g. [16] for general robust combinatorial problems with
linear interval uncertainties. Thus, the above result on the one hand considers more
general uncertainty sets but on the other hand is restricted to the max-cut problem.
We observe that the quality of a cut in a graph with uncertain edge weights may not
only rely on its performance in a worst case scenario but also on its performance in
every other scenario Lw(µ) ∈ U . Hence, we show that a Pareto optimal solution Y ∗
to (13) outperforms any other robustly optimal solution Ȳ of sdp(G,w,U) in terms
of the approximation ratio of their corresponding cuts:
Proposition 4. Let Y ∗ Pareto dominate Ȳ for (18) and let x and x̄ denote the
corresponding cuts derived from Y ∗ and Ȳ respectively via the Goemans-Williamson
Algorithm. Denote

sdp(G,w, µ, Y ) = 1
4
∑
{i,j}∈E

wij(µ)(1− y>i yj).
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Then, for every Lw(µ) ∈ U we have
mc(G,w, µ) ≥ 0.878...sdp(G,w, µ, Y ∗) ≥ 0.878...sdp(G,w, µ, Ȳ )

and there exists a Lw(µ) ∈ U , for which the last inequality holds strictly.

Proof.

E

1
4
∑
{i,j}∈E

wij(µ)(1− xixj)

 = 1
4
∑
{i,j}∈E

wij(µ)E ((1− xixj))

≥ 0.878 . . . 1
4
∑
{i,j}∈E

wij(µ)(1− (y∗i )>y∗j )

≥ 0.878 . . . 1
4
∑
{i,j}∈E

wij(µ)(1− ȳi>ȳj),

where the last inequality and its strict counterpart for at least one realization of the
uncertain parameter follows from the Pareto dominance of Y ∗. �

5. Conclusion

In this paper, we generalized the methods introduced in [9] to determine Pareto
robustly optimal solutions for linear programs with an uncertain objective to general
optimization problems whose objective function is affected linearly by the uncertainty.
Moreover, we proved the tractability of these methods in the case of semidefinite
programming with matrix box uncertainties and illustrated their use at the examples
of the maximal eigenvalue of an affine set of matrices and the classical max cut
problem.
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