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Abstract The operation of gas pipeline flow with high pressure and small
Mach numbers allows to model the flow by a semilinear hyperbolic system of
partial differential equations. In this paper we present a number of transient
and stationary analytical solutions of this model. They are used to discuss and
clarify why a pde model is necessary to handle certain dynamic situations in
the operation of gas transportation networks. We show that adequate numer-
ical discretizations can capture the dynamical behavior sufficiently accurate.
We also present examples that show that in certain cases an optimization ap-
proach that is based upon multi-period optimization of steady states does not
lead to approximations that converge to the optimal state.

1 Introduction

The isothermal Euler equations are a well-known model for gas flow in pipelines.
They form a quasilinear system of hyperbolic partial differential equations. For
the range of flows that occurs in the operation of gas networks, often a simpler
model is sufficient. In this paper we study a semilinear model that is derived
from the isothermal Euler equations and generates reasonable states for suffi-
ciently small Mach numbers and sufficiently high gas pressures without abrupt
changes. We present some analytical solutions of the semilinear model. The
analytical example solutions help to improve the understanding of the model.
For example, the semilinear model has some ghost-solutions that are outside
of the range where the model is physically valid. These are traveling waves
that travel with the speed of sound. For all subsonic velocities, there exist
exponential traveling waves solutions. Moreover, for certain parameters there
also exist exponential profiles that travel with constant acceleration. These
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new example solutions complement the product solutions already presented in
[10].

As a first step in the optimization of gas networks, it makes sense to con-
sider stationary optimization, see [18]. However, since supply and demand are
functions of time, the dynamic control for gas pipeline systems allows a more
efficient operation. In [7], instationary flows are considered as a sequence of
stationary gas flows. In our paper, the stationary flows for the semilinear model
are given in Section 4.

A comparison between transient optimal control and multi-period opti-
mization of steady states is presented in Section 5 using a simplified example.
The discussion clarifies the differences between optimal states that are ob-
tained as solutions of the dynamic optimal control problem and optimal states
that are generated with the steady state approach. If the problem data have
only small variability as a function of time, the quasi-static approach is very
useful. However, for problem data with large variations the dynamic model
has some advantages.

In [6] a multilevel model of the European entry-exit gas market is studied
where the transmission system operator (TSO) sets maximal technical capac-
ities at the first level. At the fourth level, the TSO minimizes transport cost.
Both levels require to take into consideration the transient dynamics of the
gas flow in the networks as soon as the consumer demand varies with time.

Questions about the robustness of the gas transmission system including
effects on the power grid are studied in [2]. The simulation of gas networks
coupled to power grids is studied in [5]. State and parameter estimation for
gas pipeline networks is considered in [19].

This paper has the following structure. In Section 2 we present the isother-
mal Euler equations. In Section 3 we derive the semilinear model and present
some analytical solutions. In Section 4 we consider the stationary solutions of
the semilinear model. In Section 5, we show how in a dynamic optimal control
problem non-monotone pressure profiles can occur, whereas for a quasi-static
control, the pressure profiles along a horizontal pipe are always monotone.

In Section 6 we present an illustration of the errors caused by a finite
differences discretization of the partial differential equation. Moreover, we show
that optimal steady states generated with the quasi-static approach in general
do not converge to the optimal state for the PDE-constrained optimal control
problem. This is a contribution to the discussion of the limits of the multi-
period steady state approach. The quasi-static model is not suitable if the
problem data change rapidly over time.

2 The isothermal Euler equations

Let an interval [0, L] that represents a pipe e of length L. Let D > 0 denote
the diameter of the pipe, λfric(x) ≥ 0 the space-dependent Lipschitz contin-
uous friction coefficient and ϕ(x) ∈ (−∞, ∞) the space-dependent Lipschitz
continuous slope. Define
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slope(x) = sin(ϕ(x) ) and θ(x) =
λfric(x)

D . Let g denote the gravitational con-
stant. Let ρ > 0 denote the gas density, p > 0 the pressure and q the mass flow
rate. We assume that we have an ideal gas that satisfies the state equation

p = Res T
e ρ, (1)

where Res is the gas constant and T e is the temperature. We study the well–
known isothermal Euler equations{

ρt + qx = 0,

qt +
(
p+ (q)2

ρ

)
x

= − 1
2θ

q |q|
ρ − ρ g slope

(2)

that govern the flow through a single pipe (see for example [3]). In our analysis
also the velocity

v =
q

ρ

and the speed of sound c that is given by(
1

c

)2

=
∂ρ

∂p
=

1

Res T
e

(3)

appear. Thus we have
c =

√
Res T

e.

For the Mach number M this yields

M =
v

c
= c

q

p
. (4)

We consider the case of subsonic flow where the absolute value of the
velocity of the gas is strictly less than the speed of sound in the gas, that is
for the Mach number we have

|M | < 1.

This is the case that is relevant for gas transportation networks where upper
bounds for the velocity of the gas are prescribed in the operation of the gas
pipelines. In order to state (2) in terms of the dimensionless Mach-number M
and the pressure p, we observe that

ρ =
1

c2
p,

q =
1

c
M p.

Hence if M 6= 0 the first equation of (2) yields

ln(p)t + (cM) ln(|M | p)x = 0. (5)

Moreover, the second equation of (2) yields

1

p
(pM)t + c

(
1− (M)2

) px
p

+ 2 c
M

p
(pM)x

= −1

2
θ c M |M | − g slope

1

c
.
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3 The semilinear model for slow subsonic flow

Note that since ln(p)t = pt
p , if the pressure p is sufficiently high and pt is

bounded, ln(p)t is small. Equation (5) implies that if if ln(p)t is small (for
example, close to a stationary state), (cM) ln(|M | p)x is small. For Mach num-
bers with small absolute value,

(
1− (M)2

)
is close to 1. Hence if the pressure

p is sufficiently large, pt is bounded and for Mach numbers with small absolute
value we can approximate the solution of the second equation of (2) by the
solution of the equation

ln(p |M |)t +
c

M
ln(p)x = −1

2
θ c |M | − g slope

1

c

1

M
. (6)

Define the left-hand side of (6) as L1 = ln(p |M |)t + c
M ln(p)x. Define L2 =

ln(p |M |)t+ c
M

(
1− (M)2

)
ln(p)x+2 cM ln(p |M |)x. Let a solution of (2) with

M 6= 0 be given. Then we have

L2 = −1

2
θ c |M | − g slope

1

c

1

M
(7)

and (5) is also satisfied. Note that the right-hand sides of (6) and (7) are equal.
For the difference E := L1 − L2 of the left-hand sides of (6) and (7) we have

E = cM ln(p)x + 2 ln(p)t

which is small if the time derivative and the Mach number are sufficiently
small and the pressure is sufficiently large. For M 6= 0, define the matrix

A(M) = c

(
0 M
1
M 0

)
.

In matrix notation we obtain from (5) and (6) the model(
ln(p)

ln(|M | p)

)
t

+A(M)

(
ln(p)

ln(|M | p)

)
x

=

(
0

− θ2 c |M | −
g slope
cM

)
. (8)

Note that the eigenvalues of the system matrix A(M) are −c and c. In partic-
ular, they are constant.

Remark 1 The eigenvalues of the quasilinear system (2) are v + c and v − c.
This implies that the error in the eigenvalues can only be small as long as |v|
(the absolute value of the Mach number M respectively) is sufficiently small.

Since the first equation in (2) has not been modified, also (8) guarantees
the conservation of mass. In terms of the physical variables p and q, the model
(8) can be stated as the well–known semilinear model (see for example [12],
[9]) {

1
c2 pt + qx = 0,

qt + px = − 1
2θ c

2 q |q|
p − g slope

p
c2 .

(9)

Note that (9) is semilinear since the system matrix is constant whereas (8) is
stated in quasilinear form.
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3.1 Analytical solutions of the semilinear model

Now we present several transient analytical solutions of (9).

Example 1 Similarly as in (18) in the previous case, assume that c > 0 and

θ c2 − 2 g slope = 0. (10)

For a function αe ∈ L∞(−∞, ∞) with αe < 0 consider the Cauchy problem
with (9) and the initial conditions

p(0, x) = −c αe(x), q(0, x) = αe(x).

Then for t ≥ 0 the solution of the Cauchy problem is given by the traveling
waves solution

p(t, x) = −c αe(x+ c t), q(t, x) = αe(x+ c t). (11)

This can be seen as follows. We have 1
c2 pt = −α′e(x+ c t) = −qx(t, x), hence

the first equation in (9) holds. Moreover, we have

qt + px = c α′e(x+ c t)− c α′e(x+ c t) = 0.

Since q |q|
p = 1

c αe(x+ c t), due to assumption (10) we have

1

2
θ c2

q |q|
p

+ g slope
p

c2

=
1

2
θ c αe(x+ c t)− g slope

1

c
αe(x+ c t) = 0.

Hence also the second equation of (9) holds. In Example 1, the solution is
traveling to the right-hand side. In the next Example 2, we present a solution
that is traveling to the left-hand side.

Example 2 Now we present a parametric family of traveling waves solution
where the velocity v ∈ (−|c|, |c|) is a real parameter. Note however, in contrast
to Example 6 and Example 1, traveling waves with these subsonic velocities
only exists with a special shape given by the exponential function.

Let a number ρ0 > 0 be given and define

ν =
1

2
θ v |v|+ g slope. (12)

Consider the Cauchy problem with (9) and the initial conditions

p(0, x) = c2 ρ0 exp

(
ν

1

c2 − v2
(−x)

)
,

q(0, x) = v ρ0 exp

(
ν

1

c2 − v2
(−x)

)
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Then for t ≥ 0 the solution of the Cauchy problem is given by the traveling
waves solution

p(t, x) = c2 ρ0 exp

(
ν

1

c2 − v2
(vt− x)

)
, (13)

q(t, x) = v ρ0 exp

(
ν

1

c2 − v2
(vt− x)

)
, (14)

This can be seen as follows. We have

1

c2
pt = ρ0

ν v

c2 − v2
exp

(
ν

1

c2 − v2
(vt− x)

)
,

= −qx(t, x), hence the first equation in (9) holds. Moreover, we have

qt + px = ρ0

(
ν v2

c2 − v2
− ν c2

c2 − v2

)
exp

(
ν

1

c2 − v2
(vt− x)

)

= −ρ0 ν exp

(
ν

1

c2 − v2
(vt− x)

)
.

and
1

2
θ c2

q |q|
p

+ g slope
p

c2

=
1

2
θ v |v| ρ0 exp

(
ν

1

c2 − v2
(vt− x)

)
+ g slope ρ0 exp

(
ν

1

c2 − v2
(vt− x)

)
= ρ0

(
1

2
θ v |v| + g slope

)
exp

(
ν

1

c2 − v2
(vt− x)

)
= ρ0 ν exp

(
ν

1

c2 − v2
(vt− x)

)
.

Hence also the second equation of (9) holds.

Example 3 For certain parameters, system (9) also has exponential wave so-
lutions that travel with increasing speed with constant acceleration. This can
happen for sufficiently small values of θ if the gas flows downwards with con-
stant slope.

Let β = − θ2 . Assume that

g slope + c2 β ≥ 0.

Let real numbers C2 ≤ 0 and C3 be given. Define

λ = −c2 β − g slope ≤ 0

and

V (t) =
1

2
λ t2 + C2 t+ C3.
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Let v(t) = V ′(t). Then the Cauchy problem for (9) with the initial conditions

q(0, x) = C2 exp(β (x− C3)), p(0, x) = c2 exp(β (x− C3))

has the solution
p(t, x) = c2 exp(β(x− V (t)),

q(t, x) = v(t) exp(β(x− V (t)).

This can be seen as follows. It is easy to check that the initial conditions for
t = 0 hold. For t ≥ 0 we have

1

c2
pt + qx = −V ′(t)β ρ+ v(t)β ρ = 0

hence the first equation in (9) holds. Moreover,

qt + px = v(t)ρt + v′(t)ρ+ c2 β ρ

= −v(t)2 β ρ+ c2 β ρ+ λ ρ

= [(c2 − v(t)2)β + λ]ρ.

On the other hand, since v(t) ≤ 0, we have

−1

2
θ v(t) |v(t)| ρ− g slopeρ = [

1

2
θ v(t)2 − g slope] ρ

Thus the second equation in (9) holds if

(c2 − v(t)2)β + λ =
1

2
θ v(t)2 − g slope.

Since 1
2θ = −β, this equation holds if

c2 β + λ = −g slope.

But this is equivalent to the definition of λ.
Note that the velocity is decreasing and if λ < 0 or C2 < 0 it is strictly

decreasing and the solution becomes supersonic after finite time. On the other
hand, if |λ| and |C2| are sufficiently small, the velocity remains arbitrarily
small for an arbitrarily long given finite time interval.

Example 4 There are also solutions with constant pressure where the flow rate
is increasing. Assume that

slope < 0. (15)

Let a constant pressure value p > 0 be given. Let a real number α ≥ 0 be
given. Define the parameters

A =
√

2
p

c2

√
g |slope|

θ
, (16)

β =

√
2

2

√
θ g |slope|. (17)



8 M. Gugat, R. Krug, A. Martin

Then Aβ = p
c2 g |slope| =

θ c2

2 p A
2.

Consider the Cauchy problem with (9) and the initial conditions

p(0, x) = p, q(0, x) = A tanh(α).

Then the solution of the Cauchy problem is the constant pressure p and the
increasing flow rate

q(t) = A tanh(α+ β t).

This can be seen as follows. We have

1

c2
pt + qx = 0

hence the first equation in (9) holds. Moreover,

qt + px =
Aβ

cosh2(α+ β t)
= Aβ −Aβ tanh2(α+ β t).

Moreover, since α+ β t ≥ 0 we have

−1

2
θ c2

q |q|
p
− g slope

p

c2

= − 1

2 p
θ c2A2 tanh2(α+ β t) + g |slope|

p

c2

= Aβ −Aβ tanh2(α+ β t) = qt + px.

Thus the second equation in (9) holds.
For the Mach number we obtain

M(t) =
cA

p
tanh(α+ β t) =

√
2

c

√
g |slope|

θ
tanh(α+ β t).

In particular, the Mach number is uniformly bounded and since it is increasing
as an upper bound we have the limit

lim
t→∞

M(t) =

√
2

c

√
g |slope|

θ
.

Hence if this limit is less than 1, the flow remains subsonic all the time. In
particular, for suitable data it remains within the range where the model is
valid.

This solution can occur if for a sloped pipe the gas input is at the end with
a higher location that the output node and the gas flows through the pipe to
the output not. Then without additional compressor action, the flow is driven
by gravity and in the limit approaches a constant stationary state.

Note that in this solution the flow rate q changes permanently with time.
So the behavior is completely different form stationary states, where the value
of q is fixed all the time.
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Example 5 Now we present a solution where the velocity blows up in finite
time. If α + β t ∈ (−π/2, 0) the constant pressure p with the increasing flow
rate

q(t) = A tan(α+ β t)

solve (9). This can be seen as follows. We have

1

c2
pt + qx = 0

hence the first equation in (9) holds. Moreover,

qt + px =
Aβ

cos2(α+ β t)
= Aβ +Aβ tanh2(α+ β t).

Moreover, if α+ β t ∈ (−π/2, 0) we have

−1

2
θ c2

q |q|
p
− g slope

p

c2
=

1

2 p
θ c2A2 tan2(α+ β t) + g |slope|

p

c2

= Aβ +Aβ tan2(α+ β t) = qt + px.

Thus the second equation in (9) holds.
Note that at the time where α + β t = 0, the sign of q(t) changes. This

means that the direction of the gas flow changes.

Product solutions of (9) are given in Lemma 3 in [10].

Example 6 For certain parameter values, the semilinear model (9) has a trav-
eling waves solution that travels with the speed of sound c. Note that this
analytical solution is not within the range of parameters where the model is
physically valid. We discuss this example since it shows that nonphysical so-
lutions exist. Unwanted solutions of this type can be avoided by additional
constraints on the range of the pressure values and the gas velocities/Mach
numbers in the optimal control problems. With appropriate bounds these ad-
ditional constraints reduce the size of the feasible set in such a way that only
states within the physical range of the model are admitted.

Assume that

θ c |c|+ 2 g slope = 0. (18)

For a function αe ∈ L∞(−∞, ∞) with αe > 0 consider the Cauchy problem
with (9) and the initial conditions

p(0, x) = c2 αe(x), q(0, x) = c αe(x).

Then for t ≥ 0 the solution of the Cauchy problem is given by the traveling
waves solution

p(t, x) = c2 αe(x− c t), q(t, x) = c αe(x− c t). (19)
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This can be seen as follows. We have 1
c2 pt = −c α′e(x− c t) = −qx(t, x), hence

the first equation in (9) holds. Moreover, we have

qt + px = −c2 α′e(x− c t) + c2 α′e(x− c t) = 0.

Since q |q|
p = sign(c)αe(x− c t), due to assumption (18) we have

1

2
θ c2

q |q|
p

+ g slope
p

c2

=
1

2
θ c |c|αe(x− c t) + g slope αe(x− c t) = 0.

Hence also the second equation of (9) holds.

4 The stationary states

In this section, we consider the stationary states for (8). The stationary so-
lutions of the quasilinear system (2) have been studied in [8]. Note that we
present the stationary states for the semilinear model not only for horizontal
pipes, but also for pipes with non-zero slopes. This case is usually excluded in
the literature.

Due to (5), for the stationary states, there exists a constant Cs such that

|M | p = Cs.

Moreover,

ln(p)x = −1

2
θM |M | − g slope

1

c2
(20)

= −1

2
θ (Cs)

2 1

(p)2
sign(M)− g slope

1

c2
. (21)

Thus we obtain

px = −1

2
θ (Cs)

2 1

p
sign(M)− g slope

1

c2
p.

For a horizontal pipe (that is slope = 0), this yields(
(p)2

2

)
x

= p px = −1

2
sign(M) θ (Cs)

2.

Thus
(p)2

2
(x)− (p)2

2
(0) = −1

2
sign(M) θ (Cs)

2 x.

This is the well-known Weymouth equation (see for example [12], equation
(6)). Note that if M > 0 the equation has real solutions only as long as x is
sufficiently small. This implies that the model is well–defined only as long as
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the length L of the pipe is sufficiently small. Also for the original model (2) for
the stationary states a blow up of the derivative occurs after a finite length.

Now we consider the case that slope < 0. For a stationary state we again
have M p = Cs. We only obtain a constant stationary state if the right-hand
side of (20) vanishes, that is if M is such that

M |M | = − 2

θ c
g slope

1

c
.

If slope < 0 this yields

M =

√
2

θ c
g |slope|

1

c
=: M̂

and p > 0 is a constant real value. In terms of physical variables, the constant
stationary solution corresponds to a flow rate q̄ > 0 and the constant pressure
p̄ > 0 with

p̄2 =
c4 θ(q̄)2

2 g |slope|
. (22)

More generally we have the stationary solutions with the flow rate q̄ > 0
and

p(x) = p̄

√
1 + Ĉ exp

(
2 g
|slope|
c2

x

)
. (23)

with Ĉ chosen such that p(0) > 0 has the appropriate value.

This can be verified by inserting the solution (q̄, p(x)) in (9). More precisely,
the definition of p implies

(p(x))2 − p̄2

p̄2
= Ĉ exp

(
2 g
|slope|
c2

x

)
.

Hence due to the definition of p̄ we have

(p)′(x) =
p̄2

2

1

p(x)
Ĉ exp

(
2 g
|slope|
c2

x

)
2 g
|slope|
c2

=
p̄2

2

1

p(x)

(
(p(x))2

p̄2
− 1

)
2 g
|slope|
c2

= − 2 g
|slope|
c2

p̄2

2

1

p(x)
+

1

2
2 g
|slope|
c2

p(x)

= −1

2
θ c2

q̄ |q̄|
p(x)

− g slope
p(x)

c2
.
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5 A comparison between transient optimal control and
multi-period optimization of steady states

While for demand functions that change very slowly in time, it makes sense to
consider a quasi-static model, since at each moment the system state is very
close to a steady state, for demand functions that move more rapidly with
time, in general the state cannot be represented by a sequence of stationary
states,

An overview over the range of gas demand, for example the daily demand
range, can be found in [11]. Note that the domestic demand is strongly weather
related, it depends for example on the temperature, see also [13].

As in [11], as an approximation of the shape of the demand profiles (in
m3/h) for 22 hours (from 0:00 to 22:00) we use the sum of three Gaussian
kernels

qdesi(t) =

3∑
k=1

ak exp

(
−
(
t− bk
ck

)2
)
.

Suitable values of (ak, bk, ck)3k=1 are given in Table IV in [11]. Figure IV in
[11] shows peak demands at 12:00 and 18:00. After the last peak, the demand
decreases rapidly. Details for the testbed setup used for [11] are given in [16].
Of course the total gas consumption on the time interval can easily be obtained
by integrating qdesi.

In order to compare the transient optimal control approach and the quasi-
static optimization of steady states, let us first derive a PDE that is further
simplified. From (9), we obtain under the assumptions that the second partial
derivatives exist and slope=0

qxx = − 1

c2
ptx =

1

c2
qtt +

1

2
θ

(
q |q|
p

)
t

.

Hence by omitting the lower order terms we arrive at the wave equation

qtt = c2 qxx.

In order to determine a corresponding pressure, we use the first equation in
(9), that is pt = −c2 qx. For x ∈ [0, L] this yields

p(t, x) = p(0, x) +

∫ t

0

pt(s, x) ds = p(0, x)− c2
∫ t

0

qx(s, x) ds. (24)

In order to come to a clear comparison of transient versus multi-period
steady-state modeling we consider the problem to satisfy the consumer demand
at the end x = L of a single pipe with inflow at the end x = 0. We consider
the time interval [0, T ]. Let a desired pressure value pd > 0 be given. With
given continuous initial flow q0 and the corresponding time derivative q1 and
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given initial pressure p0 with p0(0) = pd, we state this problem in the form of
the optimal control problem

(OCP(T))


minu∈L2(0, T )

∫ T
0
|u(t)− pd|2 dt

q(0, x) = q0(x), qt(0, x) = q1(x), p(0, x) = p0(x),
qtt = c2 qxx,

p(t, x) = p0(x)− c2
∫ t
0
qx(s, x) ds,

p(t, 0) = u(t), q(t, L) = qdesi(t).

(25)

The correspondingN -step steady-state model for a time grid {t(N)
1 , t

(N)
2 , ..., t

(N)
N } ⊂

[0, T ] is

(SSM(N))


minu∈RN

∑N
k=1 |uk − pd|2

q(t
(N)
k ) = qdesi(t

(N)
k ), p(t

(N)
k , 0) = uk,

px(t
(N)
k , x) = − 1

2θ c
2 q(t

(N)
k ) |q(t(N)

k )|
p(t

(N)
k ,x)

.

(26)

For the solution of (SSM(N)) we obtain optimal the values uk = pd =

p(t
(N)
k , 0). The corresponding steady pressures along the pipe are determined

by the ordinary differential equation for the steady state that can be solved
explicitly, see Section 4 and also [12]. Note that for the steady states that are
used in (SSM(N)), the pressure is always decreasing along the pipe.

Now we look at the optimal state for (OCP(T)). The flow can be repre-
sented as the sum of traveling waves, q(t, x) = α(t− x

c ) +α(t+ x
c ). Similar as

in D’Alembert’s solution, for t ∈ [0, Lc ] we define

α(t) =
1

2c

∫ ct

0

q1(x) dx+
1

2
(q0(ct)− q0(0)) .

For t ∈ [−Lc , 0) we define α(t) = − 1
2c

∫ −ct
0

q1(x) dx + 1
2 (q0(−ct)− q0(0)).

Then the initial conditions hold. For t > L
c we define

α(t) = qdesi(t− L

c
)− α(t− 2

L

c
).

Then the boundary condition q(t, L) = qdesi(t) is satisfied.
For the pressure at x = 0, we have

p(t, 0) = p(0, 0)− c2
∫ t

0

qx(s, 0) ds = p0(0)− c
∫ t

0

−α′(s) + α′(s) ds = pd.

For the pressure along the pipe, we have

p(t, x) = p0(x)− c
∫ t

0

−α′(s− x

c
) + α′(s+

x

c
) ds

= p0(x)− c
[
−α(s− x

c
) + α(s+

x

c
)
]
|ts=0

= p0(x) + c
[
α(t− x

c
)− α(t+

x

c
)− α(−x

c
) + α(

x

c
)
]
.
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For the spatial derivative this yields

px(t, x) = p′0(x)− α′(t− x

c
)− α′(t+

x

c
) + α′(−x

c
) + α(

x

c
). (27)

Let us assume that p′0(x) = 0, that is initially the pressure is constant. This
makes sense since, as stated in [11], from 12:00 h to 03:00 h, there is no
significant flow inside the pipelines. Thus we can also assume q0 = 0 and
q1 = 0. Then the variation of the spatial derivative along the pipe depends
on the variations of the derivative of qdesi with time. Since these can be quite
large, in particular close to the peaks, for the dynamic PDE model the pressure
can be both in increasing and decreasing along the pipe. This is in contrast to
the quasi-static model.

The example also shows that for slow variability in the demand (that is
if (qdesi)′(t) is small) the dynamic model and the quasi-static model lead to
similar results. If the friction terms are taken into account in the model, the
corresponding optimal control problem has to be solved numerically, but these
effects still occur. In addition, discretization errors appear (see Section 6).

It is important to emphasize that the PDE model is particularly relevant for
dynamic situations, for example if a gas power plant is started. For long-term
planning problems (say for 12 months, see for example [1]) the quasi-static
approach can be justified.

6 Comparison between discretized transient optimal control and
multi-period optimization of steady states

In 6.1 we compare numerical results obtained by discretized models with the
solutions obtained by the PDE model. In 6.2 we compare results that are
obtained from a quasi-static approach with the solutions obtained by the PDE
model and show that refinement of the time grid in the quasi-static approach
does not lead to convergence to the optimal state.

6.1 Comparison of the solutions of the PDE with the solutions for discretized
models

As in Section 5 we consider a problem of optimal nodal profile control, where
the profile desired by the consumer at the output node is given. We look for
boundary controls such that for the generated flow the distance of the values
at the output node to the desired profile is as small as possible.

Problems of optimal dynamic control for gas pipeline systems are studied
in [17] with the linear heat equation as a model for the system dynamics.
In [15], the time-domain decomposition for a general class of optimal control
problems governed by semilinear hyperbolic systems is presented which could
also be applied to gas network problems.
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Fig. 1 The analytical solution for the flow q for Example 4.

Let us start with the transient solution with constant pressure in Example
4 where the hyperbolic tangent appears. We consider a sloped pipe that goes
slightly downwards, that is, (15) holds.

Let α ≥ 0 be given. Define the desired pressure as pd and the desired
outflow rate at the output node x = L as

qd(t) = A tanh(α+ β t)

with A as in (16) and β as in (17).
The control problem is to find an input pressure p(t, 0) that minimizes∫ T

0

(p(t, 0)− pd)2 dt

subject to

p(0, x) = pd, q(0, x) = A tanh(α)

q(t, L) = qd(t)

for all t ∈ [0, T ] and (9). So the problem is to control the input pressure in
such a way that the generated output pressure is as close as possible to the
given desired value. From Example 4 we know that the optimal value of this
problem is zero, that is the desired pressure value can be reached exactly. The
analytical solution for the flow q for Example 4 is shown in Figure 1.
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Fig. 2 The numerical solution for the flow q for Example 4.

For our computations we discretize the time horizon [0, T ] and the spatial
domain [0, L] equidistantly by

tk = k∆t, ∆t =
T

K
for k = 0, . . . ,K,

xn = n∆x, ∆x =
L

N
for n = 0, . . . , N

with K,N ∈ N. We introduce the notation pk,n = p(tk, xn).

Now we fully discretize the equations in (9) by using the implicit Euler
method for the time and the explicit and implicit finite difference method
respectively for the space:

1

c2
pk+1,n − pk,n

∆t
+
qk+1,n+1 − qk+1,n

∆x
= 0,

qk+1,n+1 − qk,n+1

∆t
+
pk+1,n+1 − pk+1,n

∆x
= − 1

2
θ c2

qk+1,n+1 |qk+1,n+1|
pk+1,n+1

− g slope
pk+1,n+1

c2
.

(28)

This discretization reminds of a first-order upwind scheme where we consider
the location of the boundary data instead of the sign of the characteristic
speeds.
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Fig. 3 The numerical solution for the pressure for Example 4.

To approximate the objective function we simply use the right Riemann
sum

K∑
k=1

(pk,0 − pd)2 (29)

since pk,0 = p(0, x) = pd is given data.
The optimization problem now reads

min

K∑
k=1

(pk,0 − pd)2

subject to p0,n = pd, n = 1, . . . , N,

q0,n = A tanh(α), n = 1, . . . , N,

qk,N = qd(tk), k = 1, . . . ,K,

(28), k = 0, . . . ,K − 1, n = 0, . . . , N − 1.

(30)

For the computations we have chosen the parameters α = 0, c = 340ms ,
g = 9.81ms2 , L = 2 × 104m, p = 5 × 106Pa, slope ≈ −0.0017, T = 300s,

and θ ≈ 0.0117 1
m which yields A ≈ 73.9026 kg

m2s and β ≈ 0.01 1
s . For the

discretization K = 10 time and N = 10 spatial steps were used.
We used MATLAB and its function “fmincon” to solve (30) and then plot

the results. For the flow Figure 1 shows the analytical solution q(t, x) =
A tanh(α + β t) and Figure 2 shows its numerical counterpart. In the case
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of the pressure the numerical solution shows a small but noticeable difference
to the constant analytical solution p(t, x) = p, as can be seen in Figure 3. This
is due to the errors that are made by discretizing the problem. The objective
function value of the solution is 0.1165, so note that it is quite small compared
to the value of p.

6.2 The quasi-static approach

For the corresponding N -periodic quasi-static we need a time grid

{t(N)
1 , t

(N)
2 , ..., t

(N)
N } ⊂ [0, T ]

with t
(N)
1 < t

(N)
2 < · · · t(N)

N . In the quasi-static approach, the flow rate is
constant along the pipe. Hence the optimization problem is to minimize

min
u∈RN

N∑
k=1

|uk − pd|2

subject to p(t
(N)
k , 0) = uk, q(t

(N)
k ) = A tanh(α+ β t

(N)
k ),

px(t
(N)
k , x) = −1

2
θ c2

q(t
(N)
k ) |q(t(N)

k )|
p(t

(N)
k , x)

− g slope
p(t

(N)
k , x)

c2
. (31)

It is easy to see that for the solution we have the pressure values

p(t
(N)
k , 0) = pd

at x = 0. In the quasi-static model the generated pressure along the pipe
is given by the steady state that is determined by the ordinary differential
equation (31). As described in Section 4, we can only have a constant steady

state if (22) holds with p = pd and q = A tanh(α+β t
(N)
k ). Due to the definition

of A in (16), this yields the equation p2d = p2d tanh(α+ β t
(N)
k ). Since we have

tanh(α+ β t
(N)
k ) < 1, such a solution cannot exist.

In other words, for the stationary states the pressure is never constant

along the pipe in the time grid. To be precise, the pressure p(t
(N)
k∗ , x) is given

by (23). Define

p̃(t) =
c2
√
θ A tanh(α+ β t)√

2 g |slope|
.

Due to the definition of A in (16) we have p̃(t) = pd tanh(α+ β t).

Define Ĉ(t) such that pd = p̃(t)

√
1 + Ĉ(t). Then we have

Ĉ(t) =
p2d
p̃(t)2

− 1 =
1

tanh2(α+ β t)
− 1 > 0
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and

p(t, x) = p̃(t)

√
1 + Ĉ(t) exp

(
2 g
|slope|
c2

x

)
.

Hence we have for x ∈ (0, L]

p(t
(N)
k , x)−pd = p̃(t

(N)
k )

[√
1 + Ĉ(t

(N)
k ) exp

(
2 g
|slope|
c2

x

)
−
√

1 + Ĉ(t
(N)
k )

]
> 0.

Therefore, for N → ∞, the error in the approximation of the constant
optimal pressure pd will not converge to zero with refinement of the grid, that
is for all x ∈ (0, L] we have

lim
N→∞

min
k∈{1,...,N}

∣∣∣p(t(N)
k , x)− pd

∣∣∣ > 0.

Hence the quasi-static model does not lead to approximations that converge
to the correct optimal state, for which the pressure is constant along the pipe.

7 Conclusions

We have presented examples that illustrate the dynamic behavior of the gas
flow in pipes. In the examples, instationary analytical solutions are presented.
Numerical examples illustrate that a reasonable discretization can approxi-
mate the dynamical behavior with a small numerical error. We have shown
that in general, the multi-period steady state approach is unable to capture
this dynamic behavior. We have presented an example where the optimal states
generated with the multi-period steady state approach do not converge to the
optimal transient state. Moreover, we have illustrated that in a situation with
rapidly varying demand, pressure profiles can occur that are non-monotone
along the pipe.
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