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Abstract. Currently, few approaches are available for mixed-integer nonlinear robust

optimization. Those that do exist typically either require restrictive assumptions on the
problem structure or do not guarantee robust protection. In this work, we develop an

algorithm for convex mixed-integer nonlinear robust optimization problems where a key

feature is that the method does not rely on a specific structure of the inner worst-case
(adversarial) problem and allows the latter to be non-convex. A major challenge of

such a general nonlinear setting is ensuring robust protection, as this calls for a global

solution of the non-convex adversarial problem. Our method is able to achieve this up to a
tolerance, by requiring worst-case evaluations only up to a certain precision. For example,

the necessary assumptions can be met by approximating a non-convex adversarial via

piecewise relaxations and solving the resulting problem up to any requested error as a
mixed-integer linear problem.

In our approach, we model a robust optimization problem as a nonsmooth mixed-

integer nonlinear problem and tackle it by an outer approximation method that requires
only inexact function values and subgradients. To deal with the arising nonlinear sub-

problems, we render an adaptive bundle method applicable to this setting and extend it

to generate cutting planes, which are valid up to a known precision. Relying on its con-
vergence to approximate critical points, we prove, as a consequence, finite convergence

of the outer approximation algorithm.
As an application, we study the gas transport problem under uncertainties in de-

mand and physical parameters on realistic instances and provide computational results

demonstrating the efficiency of our method.

1. Introduction

In recent years, tremendous progress has been made in developing algorithms for mixed-
integer nonlinear optimization problems (MINLP). Nevertheless, they remain one of the
most challenging optimization problems studied to date, and in particular the global so-
lution of even reasonably-sized instances can be out of reach. In addition, optimization
problems are typically prone to uncertainties in the input data due to measurement er-
rors, fluctuations or insufficient knowledge of the underlying applications’ characteristics.
Ignoring these uncertainties might lead to decisions that are not only suboptimal but even
infeasible.
In robust optimization, we typically first define uncertainty sets containing the realizations
we wish to protect against. Decisions that are feasible for all realizations within the uncer-
tainty sets are termed robust feasible and from these, the ones with the best objective value
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are called robust optimal. This results in an optimization problem of the form

min
x,y

C(x, y)

s. t. Vi(x, y, u) ≤ 0 ∀u ∈ U , i ∈ {1, . . . , n}
x ∈ X, y ∈ Y ∩ Zny ,

(1)

with decision variables x, y and an uncertain parameter u. The task to determine the worst-
case realization of the uncertainty for a candidate solution is called adversarial problem.
For (1), this reads maxu∈U,i∈[n] Vi(x, y, u). Although robust optimization problems are
not tractable in general, practically efficient solution approaches have been developed for
broad classes of problems, for example for robust combinatorial and for mixed-integer linear
optimization. However, robust mixed-integer nonlinear problems are still very challenging
both in theory and in practice, where the development of general approaches is still in
its infancy. For a recent review on the current state-of-the-art, we refer to Leyffer et al.
[Ley+20].
Reformulations of the robust counterparts to an algorithmically tractable problem rely on
strong assumptions on the problem structure. In particular, it is usually necessary for such
exact reformulation approaches to assume that the problem is convex in the decisions (x, y in
(1)) and fulfills properties such as (hidden) concavity in the uncertainty (u in (1)) [BHV15].
In the non-convex case, one may use a reformulation of a robust MINLP as polynomial
optimization problem, which works if the contributing functions are polynomials and the
uncertain parameters are contained in a semialgebraic set, see, e.g., [Las06; Las11]. In this
paper we pursue a different direction. Rather than an exact reformulation approach or
constraining functions to be polynomials, we choose a direct outer approximation approach.
For this, we consider problems that are of convex type with respect to the decision variables
(cf. Assumption 3.1). On the other hand we allow for nonsmoothness, a general non-
concave dependence on uncertainties and inexact worst case evaluations. Moreover, our
only assumption for the uncertainty set is compactness.
Our approach then yields solutions that are robust feasible up to a tolerance. We thereby
consider both discrete and continuous decisions to be taken in the robust problem. The
considered class of problems for example occurs in robust gas transport problems with
discrete-continuous control decisions, nonlinear physical constraints and uncertainties in
physics and demand.
In order to develop the algorithm, robust MINLPs are rewritten as nonsmooth MINLPs us-
ing an optimal value function of the adversarial problem. For an overview of state-of-the-art
methods for nonsmooth MINLPs we refer to [EWM20], where, among others, outer approxi-
mation approaches, extended level bundle methods and extended cutting plane methods are
discussed. Our approach relies on the outer approximation concept to treat the nonsmooth
MINLP. Outer approximation (OA) is an algorithm that is used for solving MINLPs in
wide contexts. For an introduction and references, we refer to [Gro09]. In the algorithm, a
mixed-integer and typically linear master problem is solved to global optimality, as originally
proposed by Duran and Grossmann [DG86] and Fletcher and Leyffer [FL94]. Iteratively,
for fixed integral decisions, continuous subproblems are solved. Outer approximation for
nonsmooth MINLP was first discussed in [EMW14; WA15; Wei+19]. For the practical ap-
plication of such a method, a concept for the solution of the arising nonsmooth subproblems
is required. Delfino and Oliveira [DO18] suggest to use a proximal bundle method for the
latter and demonstrate how appropriate cutting planes can be extracted at a solution.
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Our contribution. Our approach follows the same lines, but we face an additional chal-
lenge: for a general non-convex adversarial problem, the determination of the worst case,
which is required for the evaluation of the optimal value function, is itself not tractable in
general. Thus, to achieve algorithmic tractability, we allow for inexact worst-case evalua-
tions. In order to cope with this inexactness on the level of the subproblems, we modify
an adaptive bundle method by [KLS22], which was recently developed for the solution of
nonlinear robust optimization problems with continuous variables. Due to the inexactness,
in contrast to [DO18], we only have access to an outer approximation of the exact subdif-
ferential. Nevertheless we are able to show that cutting planes for the outer approximation
can be extracted, which are valid up to a quantifiable error. With this, we are able to
prove correctness and finite convergence of the OA method in the presence of inexactness.
In detail, we are able to guarantee that the approximate solution determined by our OA
algorithm is optimal up to a given tolerance. Moreover the robust constraints are satisfied
up to a tolerance, which is determined by the inexactness in the worst-case evaluation. The
OA algorithm with the adaptive bundle method is outlined as a general algorithm indepen-
dent from algorithmic details on the approximate solution of the adversarial problem. Here,
we use piecewise linear relaxations of non-convexities and solve them via a mixed-integer
linear optimizer. However, we point out that our approach can also be used with alternative
methods that find an approximate worst case. To evaluate the performance of the novel
algorithm, we specify it for the robust gas transport problem with discrete-continuous de-
cisions. We demonstrate its efficiency by showing that our approach efficiently solves large
realistic instances that could not be solved before.
We note that another avenue to treat inexactness in MINLP problems is described in
[AFO16], where an inexact version of a Benders’ decomposition is used. The combina-
torial setting considered there allows for binary decisions and continuous subproblems are
allowed to be solved inexactly by an oracle. In contrast to our method, finite convergence
is ensured via no-good cuts. The oracle’s response then only has to result in valid inequali-
ties that do not necessarily cut off the current iterate. Also for smooth MINLP alternative
concepts exist, which can handle inexactness. Among them is the one in [LV13], where
approximately fulfilled optimality conditions for the subproblems are required.
Structure. This work is structured as follows. Although the presented algorithm is fully
general, we prefer to start with an example application that falls into the considered class
of problems in order to ease understanding of the subsequently introduced technical con-
siderations. Thus, in Section 2, we briefly introduce the robust gas transport problem. In
Section 3, we then derive the general setting of a nonsmooth MINLP that models a robust
MINLP and present the framework of an OA method for this. The adaptive bundle method
for continuous subproblems and resulting optimality conditions are presented in Section 4.
In Section 5, we derive an OA algorithm that can deal with inexactness in function val-
ues, subgradients, and cutting planes obtained from subproblem solutions. The type of
inexactness thereby matches our results for the bundle method’s output. We also prove
convergence of the OA algorithm. Finally, we present and discuss computational results for
the gas transport problem in Section 6.

2. An Example Application

We consider the stationary discrete-continuous gas transport problem, see [Koc+15] under
uncertainties. A decomposition approach for the continuous robust two-stage gas trans-
port problem is presented in [ALS19] and a set containment approach for deciding robust
feasibility of this problem is proposed in [Aßm+18].
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In this context, we aim to find a control of active elements, such as compressors, valves or
control valves, that minimizes the costs while ensuring that all demands are satisfied and
that no technical or physical constraints are violated. Feasibility needs to be maintained
even in case of uncertainties in demand and pressure loss coefficients.
A gas network is modeled by a directed graph G = (V,A) with |V| = n, |A| = m and an
incidence matrix A ∈ {−1, 0, 1}n×m. The arcs model pipes, compressors or valves. The
state variable q ∈ Rm denotes the gas flow, d ∈ Rn denotes the given balanced demand and
flow conservation must hold: Aq = d. Squared pressure values at the nodes are denoted by
π ∈ Rn and must fulfill bounds. For one root node r ∈ V, the pressure value is assumed to
be fixed. The pressure change at compressors is associated with a convex and differentiable
cost function w(·), which is to be minimized.
The pressure loss on an arc a ∈ A, i.e., the difference between squared pressures at connected
nodes depends on the type of arc, whereby we distinguish between pipes and compressors.
We use a linear compressor model where a pressure loss is assigned to every compressor
a ∈ A and depends on continuous and binary decision variables, x and y, respectively.
The binary variables y determine if a compressor is active and the continuous variables x
determine the pressure increase at active compressors. The pressure loss at every active
compressor a = (u, v) is then evaluated as

πv − πu = x · y, (2)

which leads to a non-convex cost function w(x · y). The pressure losses on pipes depend on
the flow values and directions as well as on pressure loss coefficients λa > 0. Thus, we have
for every pipe a = (u, v) the non-convex behavior [Koc+15]

πv − πu = −λaqa|qa|. (3)

Further, we have binary decisions y on the activation of compressors and the opening of
valves. Compressors in bypass mode and open valves both behave like pipes with no pressure
loss. We robustly protect against uncertainties in demand and pressure loss coefficients that
are contained in a compact uncertainty set, i.e., (d, λ) ∈ U . After uncertainties d and λ
realize, the second-stage state variables q and π uniquely adjust themselves by fulfilling flow
conservation and the pressure loss constraints (2)-(3). We require that the pressure values
are bounded both from above and from below by π ∈ [π, π]. Further, we can write the
pressure values, due to their uniqueness, as a function of the decision variables (x, y) and
the uncertain parameters (d, λ). This results in the following discrete-continuous robust gas
transport problem.

min
x,y

w(x · y)

s. t. πv − πv(x, y; d, λ) ≤ 0 ∀(d, λ) ∈ U , v ∈ V
πv(x, y; d, λ)− πv ≤ 0 ∀(d, λ) ∈ U , v ∈ V
x ∈ [x, x], y ∈ {0, 1}ny .

(ROgas)

The mapping πv(·) can be evaluated by solving a system of nonlinear and non-convex equa-
tions that involve, e.g., (3). This formulation relies on reformulation results in [ALS19;
Got+16]. With

Vv(x, y; d, λ) := max
{
πv − πv(x, y; d, λ), πv(x, y; d, λ)− πv

}
, (4)
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we can rewrite the robust constraints via one constraint by

G(x, y) = max
(d,λ)∈U

∑
v∈V

V +
v (x, y; d, λ) ≤ 0, (5)

where the superscript ’+’ denotes the positive part. With this, we write the discrete-
continuous robust gas transport problem as

min
x,y

w(x · y)

s. t. G(x, y) ≤ 0

x ∈ [x, x], y ∈ {0, 1}ny .

(Pgas)

For the case that no compressor is part of a cycle, it turns out that the constraint function
G is convex with respect to the continuous variable x. We refer to [Aßm19] for a discussion
of the appropriateness of this assumption.

Lemma 2.1. Under the assumption that no compressor is part of a cycle, the function
G(x, y) is convex in x.

This lemma follows from the analysis in [ALS19] and we omit the proof here.
This example application is outlined already here in order to ease understanding of the
subsequent sections where the general class of discrete-continuous robust nonlinear problems
is defined and where we present the novel OA that is able to solve them.

3. Outer Approximation for Mixed-Integer Nonlinear Robust Optimization

We write the robust optimization problem with a compact uncertainty set U ⊆ Rnu as

min
x,y

C(x, y)

s. t. Vi(x, y, u) ≤ 0 ∀u ∈ U , i ∈ {1, . . . , n}
x ∈ X, y ∈ Y ∩ Zny .

(6)

The variables have dimensions nx and ny, respectively. We have that X is a full-dimensional
box of form X = [x, x] ⊆ Rnx and that Y is compact. Moreover, the objective function
C : Rnx×ny → R and the constraint functions Vi : Rnx×ny×nu → R are locally Lipschitz
continuous and satisfy the following convexity-type assumption.

Assumption 3.1. The functions C(·, ·) and Vi(·, ·, u), for every u ∈ U , i ∈ [n], fulfill the
following generalized convexity assumption. A function f : X × Y ∩ Zny → R is convex
with respect to x and it is true that for any pair (x, y) ∈ X × Y ∩ Zny , there exists a joint
subgradient ((sx)T , (sy)T ) such that the following subgradient inequality is satisfied:

f(x, y) +

(
sx

sy

)T (
x̄− x
ȳ − y

)
≤ f(x̄, ȳ) ∀(x̄, ȳ) ∈ X × Y ∩ Zny . (7)

A sufficient condition for this assumption is joint convexity of the function f on X × Y .
The other way round, our assumption only implies convexity in the continuous variable x.
It is worth mentioning that, when we rely on Assumption 3.1, we have to make sure that all
subgradients we use indeed satisfy inequality (7), while this is automatically true if convexity
is assumed. More generally, it also suffices to specify how to derive subgradients that fulfill
(7). This covers the setting of the gas transport, in which the functions are convex in the
continuous decisions (cf. Lemma 2.1) and, despite a lack of convexity (cf. (2)), one can
derive subgradients with respect to the binary decisions that fulfill (7). Further, here, we
do not require convexity or concavity in the uncertain parameter u. This hence covers the
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gas transport setting with the non-convex dependence of pressure values on the uncertain
parameters. Now, we reformulate the robust optimization problem (6) as a nonsmooth
MINLP with finitely many constraints using the nonsmooth function

G(x, y) := max
u∈U

V (x, y, u) := max
u∈U

n∑
i=1

V +
i (x, y, u)

as a constraint function. We obtain

min
x,y

C(x, y)

s. t. G(x, y) ≤ 0

x ∈ X, y ∈ Y ∩ Zny .

(P )

We note that the assumed generalized convexity of the functions Vi(x, y, u) directly carries
over to G. To evaluate G, it is necessary to solve an adversarial problem that determines a
worst-case parameter maximizing the constraint violation. To make this concept clear, we
mention that in the robust gas transport problem, the adversarial problem, i.e., to evaluate
the function G in (4)-(5), is to find for fixed control decisions a realization of demand and
physical parameters that maximizes the violation of pressure bounds.
The goal is to solve the MINLP (P ) via an outer approximation approach. We sketch the
general framework of an OA method for (P ) here by closely following [FL94; Wei+19]. In an
OA method, a master problem and a subproblem are solved in every iteration. The master
problem is a mixed-integer linear problem (MIP) that is a relaxation of the original problem
(P ). Solving an MIP is in general NP-hard. However, many algorithmic enhancements were
developed so that MIPs can typically be solved to global optimality by modern available
solvers, even for large instances, see, e.g., [Bix+04]. The linear relaxation of the original
problem (P ) in iteration K is the master problem:

min
x,y,θ

θ

s. t. θ ≤ ΘK − εoa
[linearized objective function] ≤ θ
[linearized constraint function] ≤ 0

x ∈ X, y ∈ Y ∩ Zny ,

(MPK)

where ΘK ∈ R denotes the objective value of the current best known solution and εoa > 0 is
a previously fixed optimality tolerance as typically used in an OA method (e.g., by Fletcher
and Leyffer [FL94]). We detail below the linearized constraints, which are generated via
function values and subgradients. After termination, one has detected infeasibility or has
found a feasible εoa-optimal solution. By εoa-optimality, we mean that the objective value
deviates from the optimal objective value by at most εoa.
Every OA iteration involves the solution of a subproblem where all integer variables are fixed
and one determines best values only for the continuous variables. However, the subproblems
are nonlinear. The solution of a subproblem, i.e., the resulting mixed-integer candidate
solution, is then used to generate linearized constraints valid for all feasible solutions of the
original problem (P ). These constraints act as cutting planes that are added to the master
problem (MPK) and strengthen the relaxation of (P ). One further ensures that every
feasible integer assignment is visited only once, so that the OA method converges finitely
with a global εoa-optimal solution to the original MINLP.
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In each iteration, one candidate integer solution from the feasible set Y is fixed. For this
fixed integer assignment, we solve a subproblem. This is either the continuous relaxation
of (P ) or, in the case of its infeasibility, a so-called feasibility problem that minimizes the
violation of constraints. For a fixed integer assignment yK , the continuous relaxation of (P )
is the continuous subproblem

min
x∈X

C(x, yK)

s. t. G(x, yK) = max
u∈U

V (x, yK , u) ≤ 0.
(NLP (yK))

If the continuous subproblem is infeasible, we solve the feasibility problem, which minimizes
the violation of the constraint G(x, y) ≤ 0 and is written as

min
x∈X

G(x, yK) = min
x∈X

max
u∈U

V (x, yK , u). (F (yK))

Next, we detail the linearized constraints, i.e., the cutting planes in the master problem
(MPK). We first split the set of integer points in Y into two sets, depending on whether
the corresponding continuous subproblem is feasible or not:

T = {y ∈ Y ∩ Zny | (NLP (yK)) is feasible}, S = {y ∈ Y ∩ Zny | (NLP (yK)) is infeasible}.
In the course of an OA algorithm, we collect the investigated integer points in subsets
TK ⊆ T , SK ⊆ S. For fixed yK , we denote by xK a continuous solution to (NLP (yK))
or (F (yK)). To strengthen the relaxation of the master problem, we collect linearizations
at the mixed-integer candidate solutions (xK , yK). In detail, we approximate the functions
C and G (or only G in the case of infeasibility) by linearizations generated by function
values and subgradients, (αK , βK), (ξK , ηK), evaluated at (xK , yK). In an iteration K, the
linearized constraints (i.e., the constraints in (MPK)) are of the form

C(xJ , yJ) + (αTJ , β
T
J )

(
x− xJ
y − yJ

)
≤ θ ∀yJ ∈ TK

G(xJ , yJ) + (ξTJ , η
T
J )

(
x− xJ
y − yJ

)
≤ 0 ∀yJ ∈ TK

G(xL, yL) + (ξTL , η
T
L )

(
x− xL
y − yL

)
≤ 0 ∀yL ∈ SK .

(8)

These cutting planes are then added to the master problem. To avoid cutting off an optimal
solution to the original problem (P ), the cutting planes must be valid in the following sense:
they cut off a point only if it is infeasible or does not improve the current best objective
value by more than εoa. Further, to ensure finite convergence of the algorithm, the cutting
planes must cut off the current assignment of integer variables. To ensure this and hence
correctness of an OA method, one usually requires in a nonsmooth setting that the function
values and subgradients fulfill KKT conditions of the subproblem and therefore assumes
that Slater’s condition holds (see, e.g., [DO18; Wei+19]). We proceed similarly and also
assume that Slater’s condition holds in the following form.

Assumption 3.2. If (NLP (yK)) is feasible, then there is an x ∈ int(X) with Vi(x, yK , u) <
0 ∀u ∈ U , i ∈ [n].

To illustrate this assumption, we concretize it for the gas transport problem from the preced-
ing section: there, we require that for every possible realization of the uncertain parameters,
i.e., demand and pressure loss coefficients, there is a control of the active elements such that
all pressure bounds are strictly fulfilled, i.e., π ∈ (π, π).
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In the presented setting, the solution of the subproblems (NLP (yK)) and (F (yK)) is a
challenging task that is not accessible by standard methods. In particular, we face noncon-
cavities in the uncertain parameters so that the constraint function G, i.e., the adversarial
problem G(x, y) = maxu∈U V (x, y, u) for given x, y, may be only approximately evaluable.
In the next section, we investigate which properties can be ensured for solutions to the
subproblems in the presence of such inexact worst-case evaluations.

4. An Adaptive Bundle Method for the Continuous Subproblems

To solve continuous nonsmooth optimization problems, bundle methods are a practically
efficient approach. As the latter are usually applied in an unconstrained setting, we write the
subproblems as unconstrained problems and penalize constraint violation in the objective:
instead of (NLP (yK)), we aim to solve the following unconstrained problem with an l1-
penalty term PX(x) =

∑nx

i=1 max{0, xi−x, x−xi} and sufficiently large penalty parameters
ψ,ψX > 0:

min
x∈Rnx

(
C(x, yK) + ψmax

u∈U
V (x, yK , u) + ψXPX(x)

)
. (NLPψ(yK))

The existence of finite penalty parameters is ensured by Assumption 3.2. In particular, it
ensures the existence of finite penalty parameters such that a point xK solves (NLPψ(yK))
if and only if it solves (NLP (yK)). This can be seen by using, e.g., [Rus06, Theroem 7.21]
and we omit the details here. To treat (F (yK)), we also use a penalty formulation with a
sufficiently large penalty parameter ψX as follows:

min
x∈Rnx

max
u∈U

V (x, yK , u) + ψXPX(x). (Fψ(yK))

In practice, we simply choose a certain penalty parameters ψ,ψX at the beginning, which is
then increased if required (see end of this section). We present in this section an algorithm
for the approximate solution of the penalized subproblems. We first write the objective
functions in the abstract form

min
x∈Rnx

f(x) = min
x∈Rnx

max
u∈U

v(x, u), (9)

where

f(x) = C(x, yK) + ψG(x, yK) + ψXPX(x), v(x, u) = C(x, yK) + ψV (x, yK , u) + ψXPX(x).

For the feasibility problem (Fψ(yK)), we set C ≡ 0 and ψ = 1, so that no separate discussion
is required. We further note that the integer variable yK is fixed during the solution of a
subproblem, so that it is largely omitted in the remainder of this section.
Due to the unconstrained and nonsmooth character of (9), in principal a proximal bundle
type method can be applied for its solution. However, as (9) is solved in the context of an
outer approximation scheme, not only an (approximate) solution xK of (9) is required, but
also cutting planes in the sense of (8) have to be extracted. While in a continuously dif-
ferentiable setting, appropriate cutting planes can be determined a posteriori by computing
the gradients of the objective and constraints at the solution xK , in a nonsmooth setting,
the situation is more involved. Roughly speaking, the reason is that the subgradients at
the solution xK are not unique and one has to chose them such that they fulfill first-order
optimality conditions. To overcome this, suitable sequences of subgradients have to be con-
structed while the bundle algorithm is carried out. This is demonstrated in [DO18] using
an exact penalization proximal bundle algorithm. While in principle the same idea can be
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applied to our setting, we are facing the additional difficulty that every evaluation of the
function f requires the solution of the adversarial problem

max
u∈U

V (x, y, u). (10)

This is in general a hard problem, if the constraint functions Vi are non-concave in the
uncertain parameter u as in the robust gas transport problem from Section 2. Thus, we
follow [KLS22] and use in the following the relaxed assumption that problem (10) can only
be solved with a prescribed finite precision εf > 0. This means that there is an oracle,
which provides for every given x and εf an approximate worst case

ux ∈ {u ∈ U | v(x, ux) ≥ max
u∈U

v(x, u)− εf}, (11)

so that v(x, ux) ≥ f(x)− εf . Using this, we can define an overestimator for f as

fa(x) := v(x, ux) + εf . (12)

Furthermore, as a consequence of the inexactness, instead of an element from the exact
Clarke subdifferential of f at x, the best we can hope for is the following approximate
subgradient of f (see [KLS22]).

gx ∈ ∂xv(x, ux).

This is an element of the Clarke subdifferential of v(·, ux) with ux defined by the choice
in (11). This approximate subgradient lies in the following set, which is the convex hull
that contains ∂xv(x, ux) and the subdifferentials for all uncertain parameters that better
approximate the worst case.

∂̃af(x) := conv{g | g ∈ ∂xv(x, u), u ∈ U , v(x, u) ≥ v(x, ux)}. (13)

This set can be interpreted as an outer approximation of the exact Clarke subdifferential at
x. Kuchlbauer et al. [KLS22] suggested an adaptive proximal bundle method for this setting.
This algorithm – as most proximal bundle methods – generates a sequence of serious and
trial iterates. The serious iterates form a sequence, which approach an approximate solution
of (9). For each serious iterate, one generates a sequence of trial iterates that improve the
local approximation of f around the serious iterate by information about function values
and subgradients. The algorithm is able to work with elements from the approximate
subdifferential (13), if the error in (12) is chosen as follows: given a current trial iterate xk

(with inner loop counter k) and current serious iterate x, the error bound εkf for fa(xk) is
given by

εkf = ε′′‖x− xk‖2. (14)

Here, ε′′ is a previously chosen algorithmic parameter. For this, Kuchlbauer et al. [KLS22]
derived the following convergence result.

Corollary 4.1. [KLS22, Corollaries 2, 3, 4] Let x1 be such that Ω := {x ∈ Rnx : f(x) ≤
fa(x1)} is bounded and let f be lower C1. Let us further use the stopping tolerance ε̃ = 0
in line 3 of [KLS22, Algorithm 1]. Then, two different situations can occur:

(1) The algorithm stops with a serious iterate xj after finitely many iterations. Then
we set x̄ := xj.

(2) All inner loops terminate finitely, but the outer loop does not terminate finitely. In
this case, the sequence of serious iterates xj has at least one accumulation point; we
denote this by x̄.

In either of the cases it holds that 0 ∈ ∂̃af(x̄).
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Now, applying the adaptive bundle method to problem (9) for an approximate solution xK ,

we obtain 0 ∈ ∂̃af(xK) or – exploiting the structure of f – 0 ∈ ∂̃a(C + ψG+ ψXPX)(xK).
Given that we have access to the exact subdifferentials of C and PX and exploiting the
convexity of C,G and PX with respect to x, this can be rewritten as

0 ∈ ∂C(xK) + ψ∂̃aG(xK) + ψX∂PX(xK). (15)

The challenge for the remainder of this section is now to construct elements α ∈ ∂C(xK),

ξ̃ ∈ ∂̃aG(xK) and ζ ∈ ∂PX(xK), such that

α+ ψξ̃ + ψXζ = 0, (16)

i.e., to construct suitable (approximate) subgradients of C, G and PX that realize the

optimality condition (15). It will turn out later that α and ξ̃ can then be used to construct
cutting planes in the sense of (8). As already outlined above, such realizations can not be
computed solely on the basis of the knowledge of xK . Rather than this, a deeper insight into
the algorithm from [KLS22] and a couple of modifications, which we outline in the sequel,
are required. The full modified algorithm is detailed in Algorithm 2 in Appendix A. We
first require that whenever in Algorithm 2 an approximate subgradient of f at a point x is
evaluated, it is computed as

gx = sxC + ψsxG + ψXs
x
X , (17)

where sxC ∈ ∂xC(x), sxG ∈ ∂xV (x, ux), sxX ∈ ∂PX(x), and ux is an approximate worst case in
the sense of (11). This is realized in lines 20-21 of Algorithm 2.
Next, we make use of the so called aggregate subgradient, which - together with (17) - will

be the key for deriving α and ξ̃ in (16) and played already a crucial role in the convergence
proof in [KLS22]. To introduce this, we repeat the definition of the convex working model
used in [KLS22]. This is, at a serious iterate x, the piecewise linear function

φk(·, x) := max{ml(·, x) | 0 ≤ l ≤ k − 1}.
Thereby, ml(·, x) are cutting planes that are generated using approximate function values
and subgradients. More precisely,

m0(·, x) := fa(x) + gx
T (· − x),

with gx ∈ ∂xv(x, ux), is a so-called exactness plane at the serious iterate x, and

ml(·, x) := tl(·)− rl, l = 1, . . . , k − 1

are cutting planes at trial iterates xl, where tl(·) is the tangent plane at xl and rl a downshift
with respect to the serious iterate x. Then, in every iteration the following convex problem
is solved in order to generate a new trial iterate xk.

min
z∈Rnx

φk(z, x) + (z − x)>Qx(z − x) +
τk
2
‖z − x‖2. (18)

Here, τk > 0 is a proximity control parameter and Qx a symmetric matrix, which can be
used to model second order information. Now the aggregate subgradient g∗k is defined as

g∗k = (Qx + τkI)(x− xk).

As xk is the unique minimizer of (18), g∗k is a subgradient of the current working model,
i.e., g∗k ∈ ∂φk(xk, x).
Now, we carry out the following three steps: First, we see that g∗k tends to 0 along a
suitable subsequence. The claim is detailed in Lemma 4.1. We omit its proof as the latter
is a straight-forward combination of arguments from the convergence analysis in [KLS22].
Based on this, we introduce a stopping criterion for the bundle method. Second, we show
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that every g∗k can be split according to the partition in (17) and construct the output of the
bundle method. Third, we prove in Theorem 4.1 that the limits of the individual parts of g∗k
satisfy the optimality condition (16). This implies that the modified bundle method, with
the proposed stopping criterion and output, generates subgradients that fulfill the optimality
condition (16).

Lemma 4.1. [KLS22, proofs of Lemma 6, Theorem 1, Corollaries 3, 4]; [Nol13, proofs of
Lemma 4, 7] We use the same assumptions as in Corollary 4.1 and use [KLS22, Algorithm
1] without any stopping criterion. Then one of the following situations will occur:

(1) The inner loop at a serious iterate x does not terminate finitely. Then, xk → x,
and there is a subsequence of the inner loop indices k such that φk(xk, x)→ fa(x),

and g∗k → 0 ∈ ∂̃af(x).
(2) All inner loops terminate finitely, but the outer loop does not terminate finitely. The

sequence of all trial and serious iterates is bounded and there is a choice of pairs of
outer and inner loop indices (j, k(j)) and a subsequence of the outer loop indices j

such that xj → x̄, xk(j) → x̄, φk(j)(x
k(j), xj)→ fa(x̄) and g∗k(j) → 0 ∈ ∂̃af(x̄).

Now, in order to make sure that we stop the proximal bundle algorithm at a point, where
the aggregate subgradient is small, we apply the following modification: rather than using
the abstract convergence criterion 0 ∈ ∂̃af(x), we apply the criterion ‖g∗k‖ ≤ ε∗ with a
tolerance ε∗ = 0 (see Algorithm 2, line 8). Hence, in the cases in which the bundle algorithm
does not terminate finitely, we have a sequence of aggregate subgradients that converges to
g∗ = 0 ∈ ∂̃af(x̄). In the case of finite termination, we find g∗k = 0 for a finite k.
Next we derive a partition of the aggregate subgradient g∗k, which is analogous to the par-
tition by which subgradients were derived in (17). In order to do so, we first denote the

subgradients at former trial iterates xl by gl, so that gl ∈ ∂̃af(xl), and elements of the
exactness plane via the index l = 0. As φk(·, x) is convex and piecewise affine linear with
slopes gl, the aggregate subgradient g∗k ∈ ∂φk(xk, x) is a convex combination of subgradients
gl with l < k:

g∗k =

k−1∑
l=0

λkl gl,

k−1∑
l=0

λkl = 1. (19)

Further, λkl > 0 for an l ∈ {0, . . . , k − 1} only if ml(x
k, x) = φk(xk, x). As in the course of

the former bundle iterations, gl ∈ ∂̃af(xl) with l < k has been computed via (17), we have
the following partitions.

gl = slC + ψslG + ψXs
l
X , slC ∈ ∂xC(xl), slG ∈ ∂̃aG(xl), slX ∈ ∂PX(xl). (20)

Accordingly, we define, denoting by j the outer loop counter of the current serious iterate
x,

αkj =

k−1∑
l=0

λkl s
l
C , ξ̃kj =

k−1∑
l=0

λkl s
l
G, ζkj =

k−1∑
l=0

λkl s
l
G.

We note that the weights λkl , l ∈ {0, . . . , k− 1} can be computed by solving a linear system
of equations in line 11 of Algorithm 2.
In practice, we choose a ε∗ > 0 and stop the bundle method as soon as ‖g∗k‖ is sufficiently
small at an iteration k with a solution xK := xk. As subgradients for the current iteration
K of the outer approximation algorithm, we then choose

αK = αkj , ξ̃K = ξ̃kj . (21)
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We finally formalize and justify, in Theorem 4.1, this choice from a theoretical perspective,
i.e., for ε∗ = 0. In detail, we show that the choice (21) is correct in the sense of the op-
timality condition (16), if we have ‖g∗k‖ = 0 for a finite k. Moreover we prove that in all
cases where the algorithm does not finitely converge, we can define a suitable limit of (21)
instead. We distinguish the following three cases of output of the bundle method.

(1) In the case that the algorithm converges finitely within an inner loop at a serious iterate
xj with ‖g∗k‖ = 0, we choose

xK = xj , ε
K
G = ε

xj

f , G̃(xK , yK) = V (xj , yK , uxj
), αK = αkj , ξ̃K = ξ̃kj , ζK = ζkj . (22)

(2) In the case that the algorithm converges with infinitely many iterations in an inner loop
at a serious iterate xj , we choose a subsequence of iterates k as in Lemma 4.1, (1), and set

xK = xj , εKG = ε
xj

f , G̃(xK , yK) = V (xj , yK , uxj
),

αK = lim
k→∞

αkj , ξ̃K = lim
k→∞

ξ̃kj , ζK = lim
k→∞

ζkj .
(23)

(3) In the case that the algorithm does not converge in an inner loop, we choose a cluster
point of the serious iterates as a solution. We choose a cluster point x̄ and a sequence of
indices k(j) as in Lemma 4.1, (2):

xK = x̄, εKG = 0, G̃(xK , yK) = lim
j→∞

V (xj , yK , uxj
),

αK = lim
j→∞

α
k(j)
j , ξ̃K = lim

j→∞
ξ̃
k(j)
j , ζK = lim

j→∞
ζ
k(j)
j .

(24)

It is noted that in (1) and (2) above, ε
xj

f denotes the error, which was required to compute

the serious iterate xj (compare formula (14)). The choices in (22), (23) and (24) are justified
by the following result.

Theorem 4.1. The adaptive bundle method with subgradient generation in Algorithm 2
with ε∗ = 0, with (22), (23) and (24) as output, and under the assumptions as in Corollary

4.1, generates subgradients αK ∈ ∂xC(xK), ξ̃K ∈ ∂̃aG(xK) and ζK ∈ ∂PX(xK) with αK +

ψξ̃K + ψXζK = 0.

One of the key tools for the proof of this theorem is a suitable choice of a convex overestima-
tor of the working model φk(·, x) at a serious iterate x. In detail, we use as an overestimator
the point-wise supremum of all cutting planes that could be generated at potential trial iter-
ates z. These take the form mz(·, x) = fa(z)+gz

T (·−z)−rz, where fa(z) and gz ∈ ∂xv(z, uz)
are approximate function values and approximate subgradients at z, and rz a downshift.
With these, the overestimator is defined as

φ(·, x) := sup
{{
mz(·, x)|uz ∈ U , v(z, uz) ≥ f(z)− ε′′‖x− z‖, z ∈ B(0,M) \ {x}

}
∪
{
m0(·, x)|ux′ ∈ U , v(x, ux

′) = v(x, ux)
}}
,

(25)

where M is chosen such that x and all possible trial iterates lie in B(0,M) (see [KLS22]).
In an analogous way we define an overestimator for G only:

φG(·, x) := sup
{{
mG
z (·, x)|uz ∈ U , v(z, uz) ≥ f(z)− ε′′‖x− z‖, z ∈ B(0,M) \ {x}

}
∪
{
mG

0 (·, x)|ux′ ∈ U , v(x, ux
′) = v(x, ux)

}}
,

(26)
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with cutting planes mG
z (·, x) = Ga(z)+szG

T (·−z)−rz at z with approximate function value
Ga(z) and approximate subgradient szG ∈ ∂x

(∑n
i=1 V (z, uz)

)
. Before we move on to the

proof of Theorem 4.1, we import an auxiliary result from [KLS22].

Lemma 4.2. [KLS22, Lemma 3] For the first-order model φ(·, x), as defined in (25), the
following properties hold:

(1) φ(x, x) = fa(x),

(2) ∂φ(x, x) ⊆ ∂̃af(x),
(3) φk(·, x) ≤ φ(·, x) for the working model φk(·, x).

The same holds if we replace φ by the first-order model φG defined in (26) and f by G.

Proof of Theorem 4.1. We divide the proof into two claims concerning convergence in the
inner or the outer loop, respectively.

Claim 4.1. If the inner loop at a serious iterate x = xj does not terminate finitely, then
there is a subsequence of the indices k such that the limits of subsequences α := limk→∞ αkj ,

ξ̃ := limk→∞ ξ̃kj and ζ := limk→∞ ζkj exist and fulfill

α ∈ ∂xC(x, yK), ξ̃ ∈ ∂̃aG(x, yK), ζ ∈ ∂PX(x), 0 = α+ ψξ̃ + ψXζ. (27)

Proof. We recall that the aggregate subgradients at the trial iterates xk are given by (19)-
(20). From Lemma 4.1, (1), we have xk → x, so that, with local boundedness of the
Clarke subdifferential [Cla90] and compactness of U , we obtain boundedness of the se-

quences (skC)k, (s
k
G)k, (s

k
X)k. The sequences (αkj )k, (ξ̃kj )k, (ζkj )k as their respective convex

combinations thus are bounded as well. For the aggregate subgradient g∗k, it holds that

g∗k = αkj + ψξ̃kj + ψXζ
k
j . (28)

By Lemma 4.1, (1), g∗k converges, passing to a subsequence, to 0. We pass to a suitable

subsequence of this such that the limits α, ξ̃ and ζ are well-defined. Further, it follows from
(28) that 0 = α+ ψξ̃ + ψXζ.
It remains to prove the first part of (27). We use the definition of the first-order models
in (25) and (26). As the functions C and the l1-penalty function PX are convex and not
affected by inexactness, we have

φ(·, x) = C(·) + ψφG(·, x) + ψXPX(·). (29)

This first-order model φ is approximated by the working model φk(·, x), which is refined
in every iteration. At the iterate xk, we have φk(xk, x) = mxl(·, x) for l with λlk > 0, so

that the working model’s value can be written as φk(xk, x) =
∑k−1
l=0 λ

k
lmxl(·, x). We now

partition the cutting planes mxl(·, x) analogously to (17). First, we recall that every cutting
plane is generated by a tangent plane and a downshift term: mxl(·, x) = tl(·) − rl. The
slope of the tangent plane tl(·) is gl, derived via gl = slC + ψslG + ψXs

l
X . As we have this

partition at hand, we can partition the cutting plane mxl(·, x) into

mxl(·, x) = mC
xl(·, x) + ψmG

xl(·, x) + ψXm
X
xl(·, x),

with mC
xl(·, x) = tCl (·), mG

xl(·, x) = tGl (·) − rl and mX
xl(·, x) = tXl (·). The slopes of these

cutting planes are slC , s
l
G and slX , respectively. Further, they underestimate C(·), φG(·, x)

and PX(·), respectively, so that the following subgradient inequalities hold for every l < k
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and any z:

mC
xl(x

k, x) + slC(z − xk) ≤ C(z), (30a)

mG
xl(x

k, x) + slG(z − xk) ≤ φG(z, x), (30b)

mX
xl(x

k, x) + slX(z − xk) ≤ PX(z). (30c)

From this, we derive subgradient inequalities for the functions C(·), φG(·, x) and PX(·) as
follows: we multiply the inequalities by the corresponding factors λkl , sum over l < k and
add a zero-term to the left hand side. It follows for any z that

C(xk)− C(xk) +

k−1∑
l=0

λklm
C
xl(x

k, x) +

k−1∑
l=0

λkl s
l
C(z − xk) ≤ C(z), (31a)

φG(xk, x)− φG(xk, x) +

k−1∑
l=0

λklm
G
xl(x

k, x) +

k−1∑
l=0

λkl s
l
G(z − xk) ≤ φG(z, x), (31b)

PX(xk)− PX(xk) +

k−1∑
l=0

λklm
X
xl(x

k, x) +

k−1∑
l=0

λkl s
l
X(z − xk) ≤ PX(z). (31c)

Using the convex ε-subdifferential (see, e.g., [BKM14]) and (21), we get

αkj ∈ ∂[εC ]C(xk), εC = C(xk)−
k−1∑
l=0

λklm
C
xl(x

k, x), (32a)

ξ̃kj ∈ ∂[εG]φG(xk, x), εG = φG(xk, x)−
k−1∑
l=0

λklm
G
xl(x

k, x), (32b)

ζkj ∈ ∂[εX ]PX(xk), εX = PX(xk)−
k−1∑
l=0

λklm
X
xl(x

k, x). (32c)

Further, we have for every l < k with λkl > 0 that φk(xk, x) = mC
xl(x

k) + ψmG
xl(x

k) +

ψXm
X
xl(x

k). By (29), it thus holds that

φ(xk, x)− φk(xk, x) = εC + ψεG + ψXεX . (33)

From Lemma 4.1, (1), we have that xk → x. Further, from Lemma 4.1, (1), and Lemma
4.2, (1), it follows that φk(xk, x)→ fa(x) = φ(x, x). Thus, φ(xk, x)−φk(xk, x)→ 0. As the
summands on the right side of (33) are non-negative, they also converge to 0.
We thus have convergence of εC , εG and εX to 0, convergence of xk → x, and convergence
of αkj , ξ̃kj and ζkj to α, ξ̃ and ζ, respectively. With (32), it thus follows that α ∈ ∂C(x), ξ̃ ∈
∂φG(x, x) and ζ ∈ ∂PX(x) (see, e.g., [HL93, Proposition 4.1.1]). The claim ξ̃ ∈ ∂̃aG(x, yK)

follows by the result φ(x, x) ⊆ ∂̃af(x) from Lemma 4.2, (2), which holds analogously for
φG. �

We note that the proof for the case of finite termination (i.e., (22)) follows as a special case
of the proof of Claim 4.1. From the definition of the aggregate subgradient g∗k, we see that
g∗k = 0 implies that the trial iterate xk and the serious iterate x coincide. With this, we
can follow the proof of Claim 4.1 until we arrive at formula (32). Now, using xk = x, it is
straight-forward to show that εC = εG = εX = 0 without passing to the limit.
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Claim 4.2. If the outer loop does not terminate finitely with serious iterates xj and a
cluster point x̄, then there is a choice of a subsequence of inner loop indices k(j) such that

the limits of subsequences α := limj→∞ α
k(j)
j , ξ̃ := limj→∞ ξ̃

k(j)
j and ζ := limj→∞ ζ

k(j)
j exist

and fulfill

α ∈ ∂xC(x̄, yK), ξ̃ ∈ ∂̃aG(x̄, yK), ζ ∈ ∂PX(x̄), 0 = α+ ψξ̃ + ψXζ.

Proof. The proof can be conducted by following the proof of Claim 4.1. Minor changes have
to be made as follows: We do not consider a fixed serious iterate but rather a sequence (xj) of
serious iterates with a cluster point x̄. As a sequence of trial iterates, we consider a sequence
(xk(j))j that has the properties as ensured by Lemma 4.1, (2). This sequence has x̄ as a

cluster point and it holds by Lemma 4.1, (2), and Lemma 4.2, (1), that φk(j)(x
k(j), xj) →

fa(x̄) = φ(x̄, x̄). Finally, the claim follows analogously to the proof of Claim 4.1 �

With this, we have handled all cases in Theorem 4.1. �

Remark 4.1. From convexity of C and Vi (i ∈ [n]) in x, we infer that the approximate

subdifferential ∂̃af(·) is contained in a convex ε-subdifferential (cf., e.g., [OS14]): with
gx ∈ ∂xv(x, ux) and denoting the error in the evaluation of G(x, yK) by εpG = f(x)−v(x, ux),
we have

v(x, ux) + gTx (z − x) ≤ v(z, ux) ∀z ∈ Rnx ⇒ v(x, ux) + gTx (z − x) ≤ f(z) ∀z ∈ Rnx

⇒ f(x) + gTx (z − x) ≤ f(z) + εpG ∀z ∈ Rnx ⇒ gx ∈ ∂[εpG]f(x).

This shows ∂̃af(x) ⊂ ∂[εpG]f(x). Thus, the approximate optimality condition 0 ∈ ∂̃af(x)
already implies f(x) ≤ minx f(x) + εpG, i.e., that the point x is εpG-optimal. We further note
that in practice, we may not have access to εpG, but we have the required precision of the
corresponding function evaluation εKG , determined by (14) and specified in (22)-(24) for the
three different termination scenarios, which is an upper bound for the exact error εpG.

Subgradients w.r.t. integer variables. We now provide formulas for subgradients with respect
to integer variables. Having generated ξ̃K via the adaptive bundle method as described

above, we have ξ̃K =
∑k−1
l=0 λ

kslG with k the bundle iteration index at which we stopped
and slG ∈ ∂xV (xl, yK , uxl). Now, we compute in every bundle iteration a subgradient slG,y
such that (slG, s

l
G,y) fulfills the subgradient inequality (7) for V (·, ·, uxl) at (xl, yK) and

choose

η̃K =

k−1∑
l=0

λkl s
l
G,y,

with weights λkl from (19) as an integer subgradient. Analogously, we compute

βK =

k−1∑
l=0

λkl s
l
C,y.

These subgradients, βK and η̃K , fulfill the subgradient inequality (7) for C(·, ·) at (xK , yK)

and for G(·, ·) at (xK , yK) up to the error εpG in G̃(xK , yK). For a theoretical justification,
the proof of Theorem 4.1 can be extended in a straight-forward way. In particular, the
required subgradient inequalities can be derived from an appropriate extension of (30) and
(31).
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Inexactness in solution output. We finally comment on the inexactness in the solution output
(22)-(24) and possibilities to enhance its quality. In particular, it is in an OA approach of
interest to decide on the feasibility of the continuous subproblem (NLP (yK)).
If we solve the feasibility problem (F (yK)) with the adaptive bundle method and receive an

output G̃(xK , yK) > 0, then we know that (NLP (yK)) is indeed infeasible. Otherwise, if we

solve (F (yK)) with output G̃(xK , yK) = 0, or (NLP (yK)) with any value for G̃(xK , yK), we
do not know if (NLP (yK)) is feasible or not. For the latter case, we have the following three

options. As preferred option, we can always simply increase εKG by G̃(xK , yK), then set, in

(22)-(24), G̃(xK , yK) to 0 and correctly label the problem as feasible with tolerance εKG . If
this leads to a larger feasibility error εKG than desired, we can re-run the bundle method with
increased penalty parameter and we can use a refinement strategy in the bundle method
that has been proposed in [KLS22, Corollary 5]. This strategy involves re-evaluations of
function values at serious iterates and leads to an exact convergent result, i.e., to 0 ∈ ∂f(x̄)
in Corollary 4.1. This option can however be rather expensive. We note that Assumption 3.2
ensures that, if (NLP (yK)) is feasible, then this strategy of exactly solving the penalized
problem (NLPψ(yK)) leads to a feasible and optimal solution to (NLP (yK)).
In contrast to inexactness in the feasibility with respect to G(xK , yK), we require exact
feasibility with respect to the constraint x ∈ X. To achieve this, we can rely on the options
above and hence can assume that xK ∈ X for the solution output. We note that in our
computational experiments, we never needed to employ the options to achieve feasibility
with respect to X.

For xK ∈ X, the subdifferential of the penalty term PX(xK) is contained in the normal
cone of X at xK , which we use in the following and which we denote by

N(X,xK) = {z ∈ Rn : zT (x− xK) ≤ 0 ∀x ∈ X}.

As we assume xK ∈ X, our results thus hold for ∂PX(xK) replaced by N(X,xK).

5. Inexactness in Function Values and Subgradients

In the previous section we have seen that inexact worst-case evaluations lead to the following
situation: for every iterate (xK , yK), an εKG -optimal solution to the adversarial problem
with a known tolerance εKG is available. Denoting the approximation of the function value

G(xK , yK) by G̃(xK , yK), we thus have

G̃(xK , yK) = V (xK , yK , ũ) ≥ max
u∈U

V (xK , yK , u)− εKG .

Having access to the approximate worst case ũ, one has natural access to a subgradient
ξ ∈ ∂xV (xK , yK , ũ), which fulfills

G̃(xK , yK) + ξT (z − xK) ≤ G(z, yK) ∀z ∈ X.

Such an approximate subgradient then lies in the convex εpG-subdifferential ofG at xK , where
εpG denotes the exact error in the evaluation of G. It will be shown later in this section that
any such subgradient can be used to generate a cutting plane, which cuts off a point only if
it is infeasible or if it does not improve the current best objective value. However, in order
to guarantee that our OA algorithm converges in a finite number of iterations, it is also
required that every integer assignment should be visited only once. For this, we need the
following stronger assumption.
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Assumption 5.1. At an arbitrary iteration K, the problems (NLP (yK)) and (F (yK)) can

be solved with output
(
xK , C(xK , yK), εKG , G̃(xK , yK), αK , ξ̃K , ζK

)
, such that xK ∈ X,

∃0 ≤ εpG ≤ ε
K
G : G̃(xK , yK) = G(xK , yK)− εpG, (34a)

αK ∈ ∂xC(xK , yK), ξ̃K ∈ ∂
[εpG]
x G(xK , yK), ζK ∈ N(X,xK), (34b)

∃ψ,ψX : 0 = αK + ψξ̃K + ψXζK . (34c)

For the feasibility problem (Fψ(yK)), we simply set C ≡ 0 in (34b) and ψ = 1 in (34c).

Further, if (NLP (yK)) is feasible, then it can be solved with G̃(xK , yK) = 0.

In Section 4, we have shown that Assumption 5.1 is satisfied when applying the adaptive
bundle method by Kuchlbauer et al. [KLS22] with the modifications outlined in Algorithm
2 to the subproblems (NLP (yK)) and (F (yK)). In this case, Assumption 5.1 does not need
to be checked. Nevertheless, the OA method we develop also allows the integration of any
other method, as long as it fulfills Assumption 5.1.
To generate the linearized constraints of the master problem, we also need suitable sub-
gradients with respect to the integer variables. More precisely, when we have subgradients

αK ∈ ∂xC(xK , yK), ξ̃K ∈ ∂
[εpG]
x G(xK , yK) at hand, we use subgradients βK and η̃K with

respect to the integer variables, such that

C(xK , yK) +

(
αK
βK

)T (
x̄− xK
ȳ − yK

)
≤ C(x̄, ȳ) ∀(x̄, ȳ) ∈ X × Y ∩ Zny , (35)

G(xK , yK) +

(
ξ̃K
η̃K

)T (
x̄− xK
ȳ − yK

)
≤ G(x̄, ȳ) + εpG ∀(x̄, ȳ) ∈ X × Y ∩ Zny . (36)

We have detailed in Section 4, how such subgradients βK and η̃K can also be generated in
the course of the adaptive bundle method.
As we evaluate G only inexactly, we need an according notion of inexactness for the sets
SK and TK , which are in an exact setting subsets of S and T , respectively (cf. Section 3).
At an integer point that we label as infeasible, we underestimate the minimum value of G
(see Assumption 5.1). These integer points are hence indeed infeasible and we collect them

in a set S̃K ⊆ S with

S̃K := {yK | Assumption 5.1 is fulfilled for (F (yK)) with G̃(xK , yK) > 0}.

In contrast, integer points we label as feasible may in reality be infeasible. We collect them
in the following set that is an inexact version of visited feasible integer assignments.

T̃K := {yK | Assumption 5.1 is fulfilled for (NLP (yK)) with G̃(xK , yK) = 0}.

If G̃(xK , yK) = 0 for the obtained solution to (NLP (yK)), then we set yK ∈ T̃K . In this

case, it holds that G̃(xK , yK) = 0 with G̃(xK , yK) ≥ G(xK , yK) − εKG and we say that
(yK , xK) is εKG -feasible.
In an iteration K, we obtain as inexact master problem (i.e., an inexact version of (MPK)),

with approximate function values G̃(·, ·) and subgradients ξ̃, η̃,
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min
x,y,θ

θ

s. t. θ ≤ ΘK − εoa

C(xJ , yJ) + (αTJ , β
T
J )

(
x− xJ
y − yJ

)
≤ θ ∀yJ ∈ T̃K

G̃(xJ , yJ) + (ξ̃TJ , η
T
J )

(
x− xJ
y − yJ

)
≤ 0 ∀yJ ∈ T̃K

G̃(xL, yL) + (ξ̃TL , η
T
L )

(
x− xL
y − yL

)
≤ 0 ∀yL ∈ S̃K

x ∈ X, y ∈ Y ∩ ZnI .

(M̃PK)

5.1. Algorithm. With these algorithmic concepts at hand, we now state the OA method
for mixed-integer nonlinear robust optimization with the notion of inexactness formalized in
Assumption 5.1. We use the adaptive bundle method from Section 4 for the solution of the
continuous subproblems. The corresponding steps in the outer approximation algorithm
outlined below are marked by ”bundle”. Moreover, if the bundle method is used, the
computations in line 6 and line 12 can be realized as detailed in the paragraph on subgradients
w.r.t. integer variables and the condition in line 16 can be realized by the strategies in the
paragraph on inexactness in the solution output, both at the end of Section 4. However,
we note that the OA method does not rely on a specific bundle method and is thus not
restricted to the one suggested here. Any method leading to solutions fulfilling Assumption
5.1 can be used instead.

5.2. Inexact Cutting Planes. We now prove correctness and finite convergence of the
proposed OA method. Therefore, we closer examine the cutting planes generated by the
two types of continuous problems.

Cutting planes generated by the continuous subproblem. Now, we show that the linear con-

straints with respect to T̃K in (M̃PK) are valid and cut off the current integer solution. In
an iteration K, let xK be an approximate solution to the continuous subproblem (NLP (yK))
that fulfills Assumption 5.1. We consider the following inexact cutting planes:

G̃(xK , yK) + ξ̃TK(x− xK) + η̃TK(y − yK) ≤ 0 (37a)

C(xK , yK) + αTk (x− xK) + βTk (y − yK) ≤ θ (37b)

θ ≤ ΘK − εoa (37c)

ΘK = min{Θk−1, C(xK , yK)}. (37d)

The constraints are valid in the sense that they cut off infeasible solutions, and feasible
solutions only if they do not improve the current best objective value by more than εoa. We
prove this and further show that (37) cuts off the current integer solution:

Lemma 5.1. If (x̄, ȳ) ∈ Rnx×Rny is feasible for (P ) and infeasible for (37), then C(x̄, ȳ) >
ΘK − εoa. Furthermore, for any x̄ ∈ X, (x̄, yK) is infeasible for (37).

Proof. We prove the first claim: let (x̄, ȳ) ∈ Rnx × Rny be feasible for (P ) and infeasible

for (37). We show feasibility of (x̄, ȳ) for (37a). There exists an εpG > 0 with G̃(xK , yK) =
G(xK , yK)− εpG and with (36), we have

G̃(xK , yK) + ξ̃TK(x̄− xK) + η̃TK(ȳ − yK) ≤ G(x̄, ȳ).
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Algorithm 1 OA for mixed-integer nonlinear robust optimization with inexactness

1: Fix parameter εoa > 0.
2: Choose initial values: y1 ∈ Y, S̃0 = T̃ 0 = ∅,Θ0 =∞,K = 1.

3: while M̃PK−1 feasible do
4: Solve (NLP (yK)), fulfilling Assumption 5.1, with output

denoted by
(
xK , C(xK , yK), εKG , G̃(xK , yK), αK , ξ̃K , ζK

)
. . bundle

5: if G̃(xK , yK) = 0 then
6: Compute βK , η̃K fulfilling (35)-(36).

7: T̃K = T̃K−1 ∪ {yK}, S̃K = S̃K−1.
8: ΘK = min{ΘK−1, C(xK , yK)}.
9: else

10: Solve (F (yK)) fulfilling Assumption 5.1, with output

denoted by
(
xK , C(xK , yK), εKG , G̃(xK , yK), αK , ξ̃K , ζK

)
. . bundle

11: if G̃(xK , yK) > 0 then
12: Compute η̃K fulfilling (36).

13: T̃K = T̃K−1, S̃K = S̃K−1 ∪ {yK}.
14: ΘK = ΘK−1.
15: else
16: Go to Step 4 and enforce G̃(xK , yK) = 0.
17: end if
18: end if
19: Solve (M̃PK) and denote the solution’s integer part by yK+1.
20: Increase K by 1.
21: end while
22: Set K∗ ∈ {J | J ≤ K,ΘK = C(xK , yK)}.
23: Return (xK∗ , yK∗).

As G(x̄, ȳ) ≤ 0 due to feasibility of (x̄, ȳ) for (P ), it follows that (x̄, ȳ) fulfills (37a). It hence
violates (37b)-(37c). This implies that C(x̄, ȳ) > ΘK − εoa.
We prove the second claim by contradiction: assume that there exists an x̄ ∈ X such that
(x̄, yK) is feasible for (37). Then,

G̃(xK , yK) + ξ̃TK(x̄− xK) ≤ 0 (38a)

C(xK , yK) + αTK(x̄− xK) ≤ θ (38b)

θ ≤ ΘK − εoa (38c)

ΘK = min{ΘK−1, C(xK , yK)}. (38d)

As G̃(xK , yK) = 0, we have ξ̃TK(x̄ − xK) ≤ 0. It follows from Assumption 5.1, (34b),
(34c), that αTK(x̄ − xK) ≥ 0. Hence, due to (38b), C(xK , yK) ≤ θ, which contradicts
(38c),(38d). �

Cutting planes generated by the feasibility problem. Let xK be an approximate solution to
the feasibility problem (F (yK)) fulfilling Assumption 5.1. We consider the cutting plane

G̃(xK , yK) + ξ̃TK(x− xK) + η̃TK(y − yK) ≤ 0. (39)

We note that we have no inexactness with respect to the claim that the nonlinear subprob-
lem is infeasible: if the underestimated optimal value of the feasibility problem indicates
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infeasibility, the subproblem is indeed infeasible. We now prove that the cutting plane (39)
cuts off the current integer solution without cutting off any feasible solution.

Lemma 5.2. If (x̄, ȳ) ∈ Rnx × Rny is feasible for (P ), then it is feasible for (39).
Furthermore, for any x̄ ∈ X, (x̄, yK) is infeasible for (39).

Proof. From feasibility of (x̄, ȳ) for (P ), it follows that G(x̄, ȳ) ≤ 0. As there is an εpG > 0

such that G̃(xK , yK) = G(xK , yK)− εpG and by (36), it holds that

G̃(xK , yK) + ξ̃TK(x̄− xK) + η̃TK(ȳ − yK) ≤ G(x̄, ȳ),

so that (x̄, ȳ) fulfills the constraint (39).
We prove the second claim by contradiction: assume that there exists an x̄ ∈ X with

G̃(xK , yK) + ξ̃TK(x̄− xK) + η̃TK(yK − yK) ≤ 0.

From Assumption 5.1, (34b), (34c), it follows that ξ̃TK(x̄ − xK) ≥ 0. As η̃TK(yK − yK) = 0,

this is is a contradiction to G̃(xK , yK) > 0. �

5.3. Finite Convergence of the Outer Approximation Method. We now combine
the results from the preceding section to show that Algorithm 1 terminates after finitely
many steps and that a solution (xK∗ , yK∗) found by the algorithm is εK

∗

G -feasible and εoa-
optimal. The proof uses similar arguments as, e.g., Wei et al. [Wei+19] and Fletcher and
Leyffer [FL94].

Theorem 5.1. If (P ) is feasible, then Algorithm 1 terminates after finitely many iterations
with a solution (x, y) that is εK

∗

G -feasible and εoa-optimal for (P ). If (P ) is infeasible,

Algorithm 1 either outputs a solution (x, y) that is εK
∗

G -feasible and εoa-optimal for (P ) or
detects infeasibility, after finitely many iterations.

Proof. It follows from Lemma 5.1 and Lemma 5.2 that, if (M̃PK) is infeasible, then Al-
gorithm 1 either correctly detects infeasibility of (P ) or outputs an εoa-optimal solution.
Further, any candidate solution (xK , yK) with feasibility tolerance εKG is εKG -feasible. Finite
convergence follows from the fact that, by Lemma 5.1 and Lemma 5.2, each integer point
in Y is visited only once. �

The OA method thus is applicable to mixed-integer nonlinear robust optimization with the
notion of inexactness specified in Assumption 5.1. We use inexact worst-case evaluations
with precision εKG and therefore may accept solutions that are only εKG -feasible. Conse-
quently, we cannot achieve a better result than the approximate feasibility in Theorem
5.1.
In an iteration K of the OA method, the feasibility tolerance εKG is not specified before
the subproblem is solved. Whether or not this can be specified in advance depends on the
method used for the subproblem. In any case, if the subproblem’s solution happens to be the
final solution of the OA method, the algorithm outputs this solution, which is εKG -feasible.

6. Numerical Results for the Gas Transport Problem

We implemented the OA approach with the adaptive bundle method in MATLAB and
Python with Gurobi 8.1 [Gur19]. We approximated the adversarial maximization problem
via piecewise linear relaxation, for which we used the delta method [Gei+12]. This was
implemented in Python with Gurobi 8.1.
We used instances from the GasLib library, which contains realistic gas network instances
[Pfe+15], whereby we slightly modified the instances such that they fulfill our assumptions.
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The modified instances are publicly available as online supplement to this paper. We eval-
uated our methods for networks with up to 103 nodes. The two smallest GasLib instances
are defined on networks with 11 and 24 nodes, respectively, and the robust gas transport
problem is solved by our method within only a few seconds. The experiments were done
on a machine with an Intel Core i7-8550U (4 cores) and 16GB of RAM. The computational
results get more interesting for the larger GasLib instances with 40 and with 103 nodes, on
which we focus next. These networks are of the sizes of real networks.
In the adaptive bundle method, we used the stopping criterion g∗k ≤ 10−7 along with heuristic
stopping criteria from [KLS22, Section 4.3]. Nevertheless, as it can be seen from the following
tables, the required precision for the aggregate subgradient is met in almost all cases. In the
tables, we list the computational times spent within the bundle method as ’runtime bundle’.
The main part of the OA method’s running time is spent for the subproblems. For the OA
iterations in which no approximate feasible solution could be found, we list the accumulated
running times for the runs of the bundle method working on (F (yK)) and (NLP (yK)),
whereby we did not need to resolve (NLP (yK)) (line 16 in Algorithm 1) in our experiments.
The bundle method’s running time is mainly spent for solving the adversarial problems up
to the required precisions. In order to reach a solution within reasonable running time, we
bounded the required precision by 10−3 for the 40-node instance, i.e., εkf ≥ 10−3, and by

10−1 for the 103-node instance, i.e., εkf ≥ 10−1. As it can be seen from the tables, where ε̄pG
denotes an upper bound on the exact a posteriori error, this did not prevent this error from
becoming small. As cost function w in problem (Pgas) we used compressor costs, determined
by the achieved difference of squared pressures. We internally scaled these costs by a factor
of 10−2. We did not charge any costs for the use of valves.

Θ penalty ε̄pG
runtime
bundle

‖g∗‖ active
compressors

open
valves

0 inf 4821.1 2.41e+01 - - 2, 3, 4 1, 2
1 inf 4821.1 8.48e-04 42.56 0 1, 2, 3, 4, 5 1, 2
2 2064.0 0 0 22.79 6.34e-08 5
3 1664.0 0 0 1.36 1.81e-08

Table 1. GasLib-40 with uncertainty sets [0.975·d, 1.025·d] and [λ, 1.05·λ]
and 7 binary decision variables.

In Tables 1 and 2, results are presented for a slightly modified version of GasLib-40 with
40 nodes, 5 compressors and 2 valves. In detail, we removed a compressor on a cycle in the
original instance in order to fulfill the assumption of Lemma 2.1. We replaced it by a valve
and added another valve on a cycle. As a benchmark result, we first applied our method
to the nominal problem, for which we obtained - within a few seconds - optimal compressor
costs of 1148. Then, we solved the robust problems with different uncertainty sets, namely
once with 5% and once with 10% deviation from the nominal value : [0.975 · d, 1.025 · d],
[λ, 1.05 · λ] and [0.95 · d, 1.05 · d], [λ, 1.1 · λ]. These sets yield a robust protection against
a reasonable amount of parameter deviation. The corresponding results are presented in
Table 1 and 2, respectively. From these results, we compute the price of robustness, which
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is the relative increase of compressor costs caused by the robust treatment of uncertainties.
For the first uncertainty set, it amounts to 45% and for the second to 93%. The larger
uncertainty set thus leads to almost twice the nominal compressor costs.

Θ penalty ε̄pG
runtime
bundle

‖g∗‖ active
compressors

open
valves

0 inf 6450.4 1.03e+02 - - 2, 3, 4 1, 2
1 inf 6450.4 9.40e-04 343.68 0 1, 2, 3, 4, 5 1, 2
2 2615.7 0 0 7.81 1.35e-08 5
3 2615.7 327.4 5.02e-03 537.29 1.60e-07 5 2
4 2215.4 0 0 4.45 2.53e-08

Table 2. GasLib-40 with uncertainty sets [0.95 · d, 1.05 · d] and [λ, 1.1 · λ]
and 7 binary decision variables.

In Table 3, we present results for a modified version of GasLib-135 that has 103 nodes, 21
compressors, which are not on cycles, and 3 valves. As uncertainty sets for the demand and
for pressure loss coefficients d and λ, we used the sets [0.975 · d, 1.025 · d] and [λ, 1.05 · λ],
respectively. Typically, the running time for the adversarial problem’s solution, and thus
for the whole method, increases when we enlarge the uncertainty set. In order to keep
the adversarial problems solvable within a reasonable amount of time, for this network we
restricted ourselves to an uncertainty set of 5% deviation.
For the nominal problem, we encountered - within less than one minute - an optimal objective
value of 704.2, so that the price of robustness amounted to 30% for the chosen uncertainty
sets, which is in the same order of magnitude as in the case of the smaller instance.
We care to mention that the considered robust setting that allows for discrete-continuous
decisions has not been solved in the literature so far. The case of only continuous deci-
sions is roughly comparable to one iteration within our OA method. This simpler case has
been treated by a decomposition approach specifically designed for robust gas networks in
[ALS19]. There, the instance GasLib-40 could be solved within a few seconds or a few
minutes - depending on an error in the relaxation of non-convex constraints. We observed
that the discrete-continuous robust gas transport problem on instances of size 40-nodes and
103-nodes are solvable within a few minutes by our method where we obtained - up to a
small tolerance in the last case - robust feasible solutions. Thus, as a consequence, although
our method is a general approach for mixed-integer robust optimization that is applicable
in wider contexts as [ALS19], it solves a challenging and more complex robust optimization
task within a similar order of running time as could be obtained in [ALS19].
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Θ penalty ε̄pG
runtime
bundle

‖g∗‖ active
compressors

open
valves

0 inf 635.8 8.40e-07 - - 1-21 1, 2
1 inf 128.7 3.94e-07 90.95 1.25e-07

2 inf 21404.4 8.81e+01 0.00 0
2, 3, 6-8, 11-15,

17, 20, 21
1, 3

3 1917.4 0 4.90e-04 63.68 9.77e-08 4 1, 3
4 1917.4 608.0 1.36e-09 22.87 9.82e-12 4, 14 1, 3
5 917.4 0 0 10.50 1.56e-14 6 1, 3
6 917.4 0 0 12.52 7.02e-08 2, 14 1, 3
7 917.4 0 0 18.02 7.38e-08 14 1, 3
8 917.4 0 0 7.64 2.07e-09 6, 14 1, 3
9 917.4 0 0 8.35 1.33e-07 4, 6 1, 3

10 917.4 0 0 9.02 9.52e-08 2, 6 1, 3
11 917.4 0 6.87e-05 4.16 9.07e-11 2, 4, 14 1, 3
12 917.4 0 0 11.11 2.65e-08 2, 4, 6 1, 3
13 917.4 0 0 12.08 2.33e-08 4, 6, 14 1, 3
14 917.4 0 0 1.64 1.26e-10 2, 4, 6, 14 1, 3
15 917.4 0 0 10.62 8.99e-08 2, 6, 14 1, 3
16 917.4 0 5.57e-05 5.09 1.07e-08

Table 3. 103-nodes instance with uncertainty sets [0.975 · d, 1.025 · d] and
[λ, 1.05 · λ] and 24 binary decision variables..

7. Conclusion

We proposed an outer approximation approach for nonlinear robust optimization with
mixed-integer decisions and inexact worst-case evaluations. In the core of this, an adap-
tive bundle method was used to solve the continuous subproblems. In general, the method
can be applied to robust problems, in which uncertain parameters enter the problem in a
non-concave way and in which only approximate worst cases are computationally accessible.
This setting is extremely challenging, and no general solution approach exists. According
to our numerical results, it performs very well on an example application in robust gas
transport and can solve relevant real-world problems.
There are possibilities to improve the performance of the method. As proposed in [DO18],
the bundle method in an iteration of the OA method could be initialized by the use of cutting
planes from earlier runs. One could thereby think of an appropriate downshift mechanism
of recycled cutting planes, as used in bundle methods to recycle cutting planes from former
outer loops. Another idea would be to exchange cutting planes between the bundle method’s
cutting plane model and the master problem in the OA approach. To accelerate the master
problems’ solution, one could employ a so called single-tree approach, as proposed in [QG92],
where the branch-and-bound tree for the MIP’s solution is not re-built in every iteration.
Further, one could employ regularization strategies in order to avoid large step-sizes between
the master problems’ solutions [DO18; KBG20; Oli16; AFO16].
Apart from accelerating the proposed approach, there are possibilities of extending the scope
of applicability of our method. Probably the most interesting case would be a relaxation
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of the convexity assumption. One possible avenue here would be to resort to concepts
of pseudo- and quasi-convexity, as has been done for the related extended cutting plane
methods [EMW15] and extended supporting hyperplane methods [WEM18]. As pointed
out in [EWM20], a suitable framework for the OA method could be the one by Hamzeei
and Luedtke [HL14], which requires only quasi-convexity. Such an integration could be a
challenging subject of future research and requires a substantial extension of our results.
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Appendix A. Algorithm: The Adaptive Bundle Method

Algorithm 2 Adaptive bundle method with subgradient generation

1: Fix parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q < T < ∞, ε′′ > 0, εx1

f > 0, ν > 0,
ε∗ ≥ 0.

2: Choose initial values: Starting point x1, Q1 = QT1 s.t. −qI � Q1 � qI, τ#
1 s.t.

Q1 + τ#
1 I � 0. Set j = 1.

3: while True do . removed stopping test ”dist(0, ∂̃af(xj)) ≤ ε̃”
4: Initialize inner loop with serious iterate xj : τ1 = τ#

j . Set k = 1.
5: Solve the program . Trial step generation

min
xk∈Rn

Φk(xk, xj) +
τk
2
‖xk − xj‖2.

6: Compute fa(xk) with εkf = ε′′‖xj − xk‖2. . Adaptive function value approximation

7: Set g∗k = (Qj + τkI)(xj − xk).
8: if ‖g∗k‖ ≤ ε∗ then
9: Stop. . Stopping test

10: end if
11: Compute λkl s.t.

∑
l<k λ

k
l gl = g∗k and λkl > 0⇒ ml(x

k, xj) = φk(xk, xj).

12: Set αjk =
∑
l<k λ

k
l s
l
C , ξ̃

j
k =

∑
l<k λ

k
l s
l
G. . Subgradient generation

13: if ρk =
fa(xj)−fa(xk)

fa(xj)−Φk(xk,xj)
≥ γ then . Acceptance test

14: xj+1 ← xk.

15: τ#
j+1 =

{
τk ρk < Γ,
1/2τk ρk ≥ Γ.

. Update τ#

16: Update Qj → Qj+1 with Qj+1 = QTj+1, −qI � Qj+1 � qI. . Update Qj

17: If Qj+1 + τ#
j+1I 6� νI: Increase τ#

j+1 s.t. Qj+1 + τ#
j+1I � νI.

18: τ#
j+1 = min{τ#

j+1, T}.
19: else
20: Compute skC , s

k
G and skX

skC ∈ ∂xC(xk), skG ∈ ∂̃aG(xk), skX ∈ ∂PX(xk).

21: Set gk = skC + ψskG + ψXs
k
X .

22: Generate a cutting plane mk(·, xj) with gk ∈ ∂̃af(xk).

23: if ρ̃k =
fa(xj)−Mk(xk,xj)
fa(xj)−Φk(xk,xj)

≥ γ̃ then . Update τk
24: τk+1 ← 2τk.
25: end if
26: Build new working model φk+1: add mk(·, xj) to φk. . Update φk
27: Increase k and go to Step 5: Trial step generation.
28: end if
29: Increase j.
30: end while
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