TIME-DOMAIN DECOMPOSITION FOR
MIXED-INTEGER OPTIMAL CONTROL PROBLEMS

FarLk M. HANTE, RICHARD KRUG, MARTIN SCHMIDT

ABsTrRACT. We consider mixed-integer optimal control problems, whose op-
timality conditions involve global combinatorial optimization aspects for the
corresponding Hamiltonian pointwise in time. We propose a time-domain
decomposition, which makes this problem class accessible for mixed-integer
programming using parallel-in-time direct discretizations. The approach is
based on a decomposition of the optimality system and the interpretation of
the resulting subproblems as suitably chosen mixed-integer optimal control
problems on subintervals in time. An iterative procedure then ensures continu-
ity of the states at the boundaries of the subintervals via co-state information
encoded in virtual controls. We prove convergence of this iterative scheme for
discrete-continuous linear-quadratic problems and present numerical results
both for linear-quadratic as well as nonlinear problems.

1. PROBLEM STATEMENT AND OPTIMALITY CONDITIONS

We consider optimal control problems of the form

min - @o(z(to)) + e (2(tr)) (1a)
st. &= f(x,u) a.e. in (to,1s), (1b)
X;(z(to)) =0, j=1,...,p, (1c)
ei(z(te) =0, j=1,...,q (1d)
u(t) e U a.e.in [to, tf], (1e)

where ¢y and ¢ define a fixed and finite time horizon, x : [tg, ts] — R™ is a state
function, w : [tg, tf] — R™ is a control function, and U is an arbitrary subset of R™.
The functions x;,1; : R" — R impose constraints on the initial and terminal state,
respectively, and the functions ¢g, ¢ : R™ — R model initial and terminal costs.
The minimum is taken over all absolutely continuous functions z(-) as well as over
all measurable and essentially bounded functions ().

Such problems are numerically solved predominantly by gradient-based opti-
mization methods. Firstly, because of their close relation to classic problems from
the calculus of variations leading to multiplier-based optimality conditions such
as Pontryagin’s principle, which then in turn can be solved using Newton-type
shooting approaches. Secondly, because of the difficulty that their discretization
naturally leads to large-scale finite-dimensional problems being typically solved
locally based on finite-dimensional optimality conditions. Hence, these problems
are mostly studied for compact and convex constraints on the control values.

In this work, it is important to observe that we do not impose any connectivity
or convexity assumptions on the control constraint set U. Thus, (1) includes
integrality constraints for, e.g., modeling discrete decisions on some components
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of u. Such optimal control problems exhibit combinatorial aspects and received a
lot of attention in recent years. Indeed, many applications require to include integer
restrictions on the control value as to model, e.g., decisions such as opening or
closing valves in gas network operation [21]. Similar logical restrictions occur, e.g.,
in autonomous driving in case of vehicles with gear shifting [14], in contact problems
such as robotic multi-arm transport [6], or in the control of chemical reactors in
process engineering [53].

Due to the discrete nature of U, these problems cannot be solved directly with
gradient-based methods from optimal control. Therefore, several approaches have
been proposed in the literature to overcome this limitation such as partial outer con-
vexification and combinatorial integral approximation [26, 46|, alternating direction
methods [16], extended multi-interval Legendre-Gaufi—-Radau pseudospectral meth-
ods [38], multiple shooting [47], bilevel approaches [7], adaptive wavelet methods
[11], model reduction [25], genetic algorithms [54], mixed-integer linear program-
ming techniques [19], instantaneous control [18], time-transformation methods [13,
32, 44], hybrid extensions of the maximum principle [15, 51, 52|, the competing
Hamiltonian approach [4], or outer-approximation, Benders-type decomposition,
ete. for linear-quadratic problems [43]. Available analytical results concern, e.g.,
turnpike properties [10] and value-function regularity [17].

Similar to solution approaches based on hybrid extensions of the maximum
principle, we consider in this work the infinite-dimensional optimality conditions
of (1) for discrete U. To this end, our goal will be to find a Pontryagin-minimum
of (1), i.e., an admissible state-control point (z*,u*), such that for any constant N
there exists an € = (V) > 0 with the properties that for any admissible point (z,w)
satisfying

2" = zllco(to teirn) <& llu" —ullrieg term) <& [[u" — ullgoo (b temm) < N,
it holds
po(”(to)) + pr(x”(tr)) < wolz(to)) + pr(x(ts));
see, e.g., [8, 42]. Note that global minima are Pontryagin-minima.

We suppose that f: Q — R"™ is continuous with a continuous partial derivative f,
on a set @ C R™™ and the functions x;,¥;, 0, ¢r : P — R are continuously
differentiable on a set P C R™. Here, ) and P are open super-sets of the admissible

state-control set and its projection onto the states, respectively.
For A e R™", z € R”, and u € R™ we let

H(\ z,u) =\, f(z,u)gn

denote the Hamiltonian associated with Problem (1). If (z*,u*) is a Pontryagin-
minimum of Problem (1), Pontryagin’s maximum principle yields that there exists
a collection n = (a, B, \) with a > 0, 8 = (B1,...,Bp+q) € RPT9, and X being a
Lipschitz-function A : [tg,tf] — R™ such that the following conditions hold:

(i) (o, B) #0,
(i) At) = —Hz(A®#), z*(t),u*(t)) = —fo(z*(t),u*(t)) TA(t) a.e. in (to,ts),
(ifi) A(to) = (2™ (to)) + 225 Bix; (@™ (to)),

(iv) Alte) = —app(z*(tr)) — D271 Bprytl (2 (tr)),

(v) maxyey HA(E), 2*(t),u) = H(A(t), z*(t),u*(t)) a.e. in (to, t);
see, e.g., [8, Theorem 1]. Note that these conditions are stated in a non-qualified
form, i.e., @ = 0 is possible. However, it is well-known that these conditions hold
with « # 0 if the initial- and end-point constraints are regular in the sense that

rank[x}(z),...,xp(x)] =p for all z such that x1(z) = --- = xp(x) =0
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and

rank[yy (), ..., ¢ (x)] = ¢ for all & such that i1 (z) = - - = 1bg(x) = 0;
see, e.g., [1]. Therefore, we assume in the following that the constraints x1,..., X,
and 1, ...,1, are regular.

In particular, under this assumption, the Pontryagin maximum principle to-
gether with the constraints of Problem (1) yield the following necessary optimality
conditions for (z,u) being a Pontryagin-minimum:

= f(z,u) a.e.in (to,tr),
Xj(x<t0>):0a j:17"'7p7
Yi(a(t) =0, j=1,....q
u(t) €U a.e. in [to,tf],

A=—fo(z,u)" X a.e in (to,t),

Mto) = ¢h(a(to) + D B} a(to)),

A(te) = =g (z(tr)) — Zﬁp-i-jw;‘(x(tf))v

max HA(),z(t),u) = HA(t),z(t),u(t)) a.e. in (to,Ls).

So far, this is well-known and, indeed, does not require any assumption on U
in the original proof in [42] using needle-variations, the terminal cone, and the
separating hyperplane theorem as, for instance, also being exploited for the so-called
hybrid maximum principle [8]. It is also well-known that Problem (1) being in
so-called Mayer form is not restrictive. One can, for instance, include running costs

/ " Ll uydt

to
in Problem (1) by defining a new state variable y with
y = L(xz,u) a.e. in (to,ts), 3)
y(to) =0

and adding y(t¢) to the objective function. Nevertheless, we note that our conver-
gence result in Section 4 applies to problems in Mayer form with linear dynamics
and a quadratic objective function. Hence, nonlinear terms in L(z,u) that depend
on x are not covered. For running costs L that are independent of x, however, (3) is
equivalent to considering H(t,z,u) := (A, f(z,u))g. — L(u). Besides this, we choose
the Mayer form to keep the optimality system as simple as possible. Moreover, a
free terminal time can be transformed into a fixed terminal time, etc.; see, e.g., [33].
We also note that the regularity assumptions on f and on the constraint functions
can be relaxed [2].

As already indicated above, most approaches in the literature yet focused on
solving (2) using further necessary optimality conditions for the pointwise maxi-
mization of the Hamiltonian. Additional properties on U are then needed. Most
prominently, e.g., for convex sets U, the pointwise maximization of the Hamiltonian
can be replaced using Karush-Kuhn—Tucker type optimality conditions and the
two-point boundary value problem (2) can then be solved using Newton’s method
in the fashion of single or multiple shooting. If U is a discrete-continuous set,
switching-time re-parameterization can be used. This, however, leaves a gap on
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efficient treatments concerning the combinatorial aspects. For an overview of shoot-
ing techniques we refer to [5]. In any case, all of these approaches solve (2) to
some form of local optimality with respect to the maximization of the Hamiltonian.
However, the conditions in (2) hold with global optimality even for (locally optimal)
Pontryagin-minima.

This motivates us to consider a solution approach for (2) based on (global)
mixed-integer nonlinear programming (MINLP) techniques. This, of course, needs
to overcome the difficulty that (2) is an MINLP subject to differential equations
with no direct advantage over the original problem (1). Instead, (2) has even more
variables for the adjoint equation. In particular, a direct discretization of (2) as, e.g.,
considered in [20] yields a large-scale MINLP that in many applications becomes
computationally intractable.

We overcome this limitation by using time-domain decomposition methods origi-
nally developed for partial differential equations (PDEs); see, e.g., [23, 24, 27-31,
34, 35, 37]. The main idea of these methods is to split the time domain [to, t]
into non-overlapping subintervals and then to iteratively decouple the optimality
system (2) such that on each subinterval, subproblems are solved together with
conditions at the breakpoints that couple the states over two subsequent iterations.
For PDEs, this decomposition approach goes back to the so-called parareal-scheme
introduced in [36]. In the following, we show that this approach can also be used to
decompose (2) for arbitrary sets U. As in [29-31], we exploit that the decomposition
yields subproblems that correspond to so-called virtual control problems on the
subintervals. For discrete-continuous U, this yields an iterative scheme of mixed-
integer optimal control problems on smaller time horizons. For sufficiently fine
decompositions, these can eventually be solved using direct transcription methods
such as collocation [22] or Runge—Kutta discretizations [49], both resulting in reason-
ably sized finite-dimensional mixed-integer nonlinear problems. The limit behavior
of such approximations are discussed in [20]. The method can be interpreted as an
alternating approach [12] or as a structure-exploiting decomposition for MINLPs
rather than a generic one [41].

Our main contribution is that we prove convergence of this iterative scheme
for the important case of linear-quadratic problems. We support our theoretical
result with encouraging numerical results and also include experiments for nonlinear
problems. In particular, we demonstrate that the iterative method can provide
solutions for problems where the same solver applied to full direct discretization
fails to reach an optimal solution within amply time limits.

The remainder of the paper is structured as follows. In Section 2, we introduce
the time-domain decomposition of the optimality system and discuss the iterative
idea to recover the transmission conditions at the boundaries of the subintervals.
Afterward, we re-interpret the decomposed (primal-dual) optimality conditions as
so-called (primal) virtual control problems in Section 3 and state the overall iterative
procedure. For the case of linear-quadratic problems, we prove convergence of the
method in Section 4. We present some case studies for linear as well as nonlinear
problems in Section 5 to give a numerical proof of concept. Finally, we conclude in
Section 6.

2. TIME-DOMAIN DECOMPOSITION OF THE OPTIMALITY SYSTEM

We now consider the time-domain decomposition
K

[to, ts] = | [te, trra]  with  tx < try1, trpr =te
k=0
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FIGURE 1. Schematic illustration of the time-domain decomposition

of the entire time horizon of Problem (1). Accordingly, we define
/\k = )\|[

for k=0,..., K; see Figure 1. The optimality conditions (2) then are equivalent to
the following sets of conditions.

Ty = $|[tk7tk+1]7 te,tet1]s and uy, := u‘[tkatk+l]

(i) For k = 0:

Zo = f(xo,u0) a.e.in (to,t1), (4a)
Xj(xo(to)) =0, j=1,...,p, (4b)
uo(t) € U a.e. in [tg,t1], (4c)
Mo = —folmo,u0) " Xo  a.e. in (to,t1), (4d)

P
Ao(to) = wp(zo(to)) + ZﬂjX}(xo(to))v (4e)

j=1
max H(Mo(t),z0(t),u) = H(Ao(t), xo(t), up(t)) a.e.in (to,t1). (4f)

(i) For k=1,...,K — 1:
& = f(zr,ur) ace.in (tk, thy1), (5a)
up(t) €U a.e.in [tg, tgy1], (5b)
Me = —folp,ue) " Ak ace.in (tg, togr), (5¢)
max H(M\(t), 2 (t),u) = HAk(t), 2k (), ux(t)) a.e.in (tx, try1). (5d)
(iii) For k = K:

ik = f(rr,uk) a.e.in (tg,t), (6a)
Yi(eg(te) =0, j=1,...,q, (6b)
ug(t) €U a.e. in [tg,ts), (6¢)
Ak = —fw(a:K,uK)T/\K a.e. in (tg,ts), (6d)
Ak (t) = =@t (i (tr) = Y Bp b (kc (b)), (6e)

j=1
max H(Ag(@),zx(t),u) = HAx(t),xx(t),ux(t)) a.e.in (tx,ts). (61)

These conditions are completed with the conditions
Tk (k1) = Tht1 (trt1)s k=0,....,K —1, (7a)
Me(te) = Ap—1(tr), k=1,...,K, (7b)

which ensure the continuity of the state z and of the adjoint A at the boundaries of
the sub-intervals.

The main idea of the time-domain decomposition method is to decouple the
transmission conditions (7) and to construct an iterative procedure that converges
to points that satisfy the decomposed optimality system above. To this end, we
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consider an iteration index ¢, iterates acf;, )\i, and uk for xx, Ak, and uy, respectively,
and a scalar parameter v > 0, to decouple the transmission conditions (7) as

T (ter) + YN (trg1) = ¢k ki1 k=0, K -1, (8a)
wi(te) = YA (t) = Sy, k=1, K, (8b)
with the update rules
¢k 1 = (1= &) (23 (Begn) + N (Ben))

+e (2 M) NG T(teyr)), k=0,...,K -1, (%)

o1 = (L= ) (2325 (k) =y 25 ()
+e (et (te) =\ t), k=1,....K (9Db)

for € € (0,1); see, e.g., [29-31, 34, 35, 37].

Let us make a first observation. To this end, assume that the iterates :z:i_l )\i_l
for k=0,..., K converge for { — oo to zj and A, respectively. Then, substituting
Ok k+1 and ¢ p—1 and dividing by (1 — ¢) yields

T (tet1) + YAk (ter1) = g1 (Eer1) + Y Akt1 (tet1), (10a)
l'k(tk) — '7)\Ic(tk> = xk,l(tk) - ’)/)\k,l(tk). (].Ob)
Next, we shift the k-index in Equation (10b) by 1 and obtain
Tt (Cer1) = YAkt (ter1) = Tr (1) — YAk (Les1)-
Adding this to (10a) yields
YAk (1) = VA1 (1) = YAg1 (Eor1) — VAR (tes1),
which is, for v > 0, equivalent to
A1 (te+1) = Ak (tetr)-
Finally, (10a) implies
Tk (tht1) = Tr1 (Tht1)-
Hence, we have shown that if the state 2% and the adjoint A} converge, then the iter-
atively decoupled transmission conditions (8) tend to the continuity conditions (7)

If we combine the decomposed optimality conditions (4)—(6) for all k =0,..., K
with the iterative transmission conditions (8), we get

it = flah,ub) ace.in (tg,trg1), (11a)

x;(@h(to)) =0 if k=0, (11b)

V() =0 if k= K, (11c)

ub(t) €U ace. in [ty try1], (11d)

M= —folzb,ul) "X ace.in (b, try1), (11e)

o (to) = ¢ (o(to)) + ZB]X] 6(to)) if k=0, (11f)
j=1

q
Nic (tr) = = (@ (t)) Z B (xc(te)) if k=K, (llg)
=1

max H(X(8), @i (1), u) = HOL(1), 23, (1), up (1)) ae.in (tg, trra), (11h)
h (i) + YN () = Sk, Tk # K, (11i)
2 (tk) = YN (tk) = dj iy iR #0 (11j)

together with the update rules (9).
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3. VIRTUAL CONTROL PROBLEMS AND THE ITERATIVE PROCEDURE

We will now observe that the iteratively decomposed optimality systems (11)
have a primal interpretation as other optimal control problems with additional
and so-called virtual controls h; see, e.g., [29-31, 34, 35, 37|. For the inner time
sub-intervals k, the respective primal problem reads

1 1
in  —|hel? 4+ ek (tien) — o i I 12
min ol 5 o (te) = 6L (12)
st. & = fleg,uk) a.e.in (tk,trt1), (12b)
wi(tr) = Gy + I (12¢)
hyr € R™ (12d)
up(t) € U a.e.in [tg, tgt]- (12e)

The ODE constraint (12b) and the control constraint (12e) carry over from Prob-
lem (1) but are now restricted to the time interval [ty, tx11]. The virtual controls
enter in the initial conditions (12c¢). These controls allow the state to be bounded
away from the current transmission conditions at t5. The violation of the current
transmission conditions at tx and ¢y is penalized in the objective function. Since
this virtual control problem is defined for the inner time sub-intervals, there are no
initial or final conditions as in Problem (1) in the constraints or in the objective
function. In order to bring (12) into the form of Problem (1), one can remove (12d)
and model the virtual control hj as a trivial state variable, i.e.,

hk(tk) = hy, hk =0 a.e.in (tk7tk+1)'

Technically speaking, hy is not a control but a constant state. We will, however,
keep referring to it as a virtual control to be in line with the pertinent literature;
see, e.g., [29, 35]. We use the Hamiltonian

H(M\g, zp,up) = A fg, ug),

in which we omit the adjoint state corresponding to hj; because it vanishes. The
corresponding optimality conditions are given by

ip = f(og,ur) a.e in (tg,tri), (
hy =0 a.e. in (te, tht1), (

i (te) = Op oy + h(t), (13c
up(t) €U a.e.in [tg, tg1), (
(

Mo = —fo(@r,up) " A ace.in (b, tosr), 13e

(b)) = %hk(tk)7 (13¢

(1) = —% (a?k(tkH) - ¢ifk1+1) ; (13g)

max H(\(8), 2u(t), 1) = HOw(t), 2x(8), un(t)) a.e.in (tr,ters).  (13h)

uelU
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If we substitute hg(tx) in (13c) with (13f) and rewrite (13g), we obtain
k= f(zr,ur) a.e.in (tg,tgt1),
ugp(t) €U a.e.in [tg, tgy1],
M —fz(xk,uk)—r)\k a.e. in (g, ter1),
oy (te) = YAk(tk) = Sy
2k (thr1) + YAk (trr1) = G s
max H(M(t), (), u) = HAp(t), zp(t), ur(t)) a.e.in (tx, trt1)-

This exactly corresponds to the iteratively decomposed optimality system (11) for
k=1,...,K — 1. Note that we scaled the objective function (12a) with the factor
1/(27) to be in line with with the notation of System (11). However, any other
positive factor would be valid as well.

For the first time sub-interval, i.e., k = 0, the respective primal problem reads

. 1 _
min <P0($0(t0))+5||$0(t1) — do1II? (14a)
s.t. @ = f(zo,up) a.e.in (to,t1), (14b)
Xj(zo(to)) =0, (14c)
Uo(t) €U a.e.in [to,tl}, (14d)

in which we have no transmission conditions at ¢y but the original initial conditions
instead. For the last time sub-interval, i.e., k = K, we get

min ol (o) (154)
st. ix = f(zr,ux) a.e. in (tx,trxi1), (15b)

v (t) = S k1 + hic, (15¢)
¥i(zK(te)) =0, (15d)

hi € R, (15¢)

ug(t) €U a.e.in [tg,txi1], (15f)

in which we have no transmission conditions at tx 11 but the original final conditions
instead.

Now we can state the iterative time-domain decomposition method; see Algo-
rithm 1. In Step 3 the virtual control problems (12), (14), and (15) are solved.
This is equivalent to solving the iteratively decomposed optimality systems (11)
for all k = 0,...,K. One can compute the values of the adjoint variables )\f; at
the transmission points t; and ¢4 by using (11i) and (11j) in Step 4. In Step 6,
the update rules in (9) are used to obtain the transmission conditions for the next
iteration.

To conclude this section, also note that the solution of the K + 1 problems in
Step 3 of Algorithm 1 can be done in parallel.

4. CONVERGENCE ANALYSIS FOR LINEAR-QUADRATIC PROBLEMS

In this section, we will prove the convergence of Algorithm 1 in the sense of
continuity at the boundaries of the sub-intervals, i.e., we show that

Th(ths1) — Thgr (bes1) = 0,

Ae(tes1) = Negq (Fegr) = 0
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Algorithm 1 Iterative Time-Domain Decomposition Method

Require: Problem (1), a time-domain decomposition tg < t; < -+ < txy1 = g,
weights v > 0, ¢ € (0,1), and the transmission conditions ¢27k_1 € R™ for
k=1,...,K aswell as ¢, ,, € R" for k=0,..., K — 1.

1: for £=1,2,3,... do

22 fork=0,...,K do
3: Solve Problem (12), (14) if k =0, or (15) if k = K.
4: Set
1
¢ _ ¢ -1
Mltr1) = = (o) = 034
1
¢ _ (. =1
Mtt) = = (ki) o3l
5. end for
6: Set
Goerr = (1= ) (@1 (ter1) + YA r1 (Be11)
+e (@h(tren) 7N (ter)) . k=0, K -1,
¢£,k—1 =(1-¢) (xi—l(tk) - 7)‘2—1(%»
+e(zh(te) — A (te), k=1,... K.
7. end for
holds for all kK =0,..., K — 1 as £ — oco. To this end, we restrict ourselves to the

case of linear dynamics with objective functions being quadratic with respect to the
state and include control costs, i.e., we consider

min

s.t.

te
5(to) Qualto) +af 2(to) + 5a(te) Quate) + ol (t0) + [ Liwdt (160)
to
& =Ax+ Bu+c a.e.in (to,t), (16b)
Roz(to) = co, (16c)
fo(tf) = Ct, (16d)
u(t) e U a.e. in [to, t] (16e)

with U C R™ arbitrary, x : [to,ts] = R™, u : [to,t] = R™, A € R™*" Qo, Qs €
R™*" being positive semi-definite, B € R"*™ ¢, qq, qr € R™, Ry € RP*"™ Ry € R1*™,
co € RP, ¢s € RY, and L(u) being continuous on an open super-set of the admissible
controls in R™. Note, that we are still dealing with an arbitrary control set U. The
Hamiltonian is given by

H(}\,LL‘,U) - <)‘7f($7u)> - L(’U,),

cf. (3) and the subsequent remark.
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The decomposed optimality conditions (4)—(6) of Problem (16) for £k =0,..., K
read

= Az + Bup + ¢ a.e. in (tg, tg11), (17a)
Roxo(to) =cy ifk=0, (17Db)
Rixg(ts) =c¢ ifk=K (17¢)
ug(t) €U a.e.in [tk,tk+1] (17d)
Me=—ATN ace.in (b, tpst), (17e)
Mo(to) = Qowo(to) + qo + Ry (Bi)j—, k=0, (17f)
A (te) = —Qrrw(te) —ar — R (8510, ifk=K, (17g)
max H(A(t), 2 (t),u) = HA(t), 2k (t), ur(t)) a.e.in (¢, tht1), (17h)
oh(t) = 2x 1 (1) i £ 0, (173)
Ak(tes1) = )\k+1(t1«+1) ifk#K. (17))
The iterative version (11) is now given by
it = Azt 4+ Bul 4+ ¢ a.e.in (tg,tri1), (18a)
Rozo(to) =¢y ifk=0, (18b)
Reahe(ts) = ¢ if k= K, (18c¢)
ul(t) € a.e. in [tg, tpt], (18d)
MNo=—ATX ace in (b, tryr), (18e)
M(to) = Qozh(to) + g0 + Ry (B)i—, k=0, (18f)
N (te) = —Qeale(tr) —aqr — RY (8;)"20,, ifk=K, (18g)
max HOG (1,2 (0),0) = HOGW, b (0, () aeoin (ftin),  (18)
2 (trgr) + AL () = ﬁ k1+1 itk # K, (181)
@i (tr) =P (te) = 9p5, ik #0 (18j)

for ¢ € N with the update rules (9).

We assume that (17) and (18) have a solution. In general, it is not to be
expected that this solution is unique, which is one of the main differences to the
assumptions made for similar time-domain decompositions of PDEs in, e.g., [29-
31]. Let (z,uk, A\i) be a solution of (17) and let (z%,u%, \%) be a solution of the
iteratively decomposed optimality conditions (18) for £k =0,..., K and ¢ € N. We
introduce the errors

~0 . V4 ~0 J4 AR J4
Ty = T, — Tk, Uy, = U, — Uk, >\k' = )‘k — Ak
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These errors satisfy the conditions

Iy = AZL 4+ Bil  a.e.in (tg, tpi1), (19a)
Rozi(to) =0 if k=0, (19b)
Rei%e(ts) =0 ifk=K, (19¢)
aL(t) e U a.e.in [tg, tpi1], (19d)
f; =—ATX a.e. in (b, tryr), (19e)
( o) = Quib(ty) if k=0, (19f)
Nic (tg) = —QfJJK(tf) if k=K, (19g)
Htee) + 15 (i) = B, k£ K, (19h)
Fo(te) = YN (t) = 6131, ik #0 (191)
together with the update rules

Gy = (1—¢) (i”f;lll(tkﬂ) + 7X£111(tk+1))

e (B ) + 93 (1)) (202)
bep1 = (1—¢) (ﬁi (tr) — 75\2111(751@))

+e (:zfjl(tk) - ﬂfjl(tk)) . (20b)

Moreover, we set
U=U-U={u—-v:uvecU}.
To derive System (19) we use that both (17) and (18) are linear. This is the
case, because Problem (16) has linear dynamics and in the objective function, the
only quadratic terms in x are initial and terminal costs. There are approaches to
extend this method to more general nonlinear right-hand sides f(x,u) by applying
Lipschitz-type conditions on the nonlinearities and their derivatives; see, e.g., [27]
where this was done for hyperbolic semilinear PDEs. This, however, exceeds the
scope of this work.
First, we prove the following result.

Lemma 1. Forallk=0,...,K and ¢ € N, it holds

<X£,Baf;> >0, a e in(tyti) (21)
Proof. From (17h) we have
H(Ag, w, up) > H(A, ox, u)
= (A, Az + Buy + ¢) — L(ug) > (Mg, Az, + Bu+¢) — L(u)
= (A, Buk) — L(ug) = (A, Bu) — L(u)
= (A, B(ug —u)) = Lug) — L(u)

for all w € U a.e. in (tx,tr+1). Analogously, using (18h) we get
<)\f;, B(ui — u)> > L(ui) — L(u) (22)
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for all u € U a.e. in (tg,tg+1). If we set u = uy in the last inequality, we can write

(A Blug, — ur)) > L(ug) — L(ux)
— (Xg — Ak + Ak, B(uj, — ug)) > L(uy,) — L(uy,)
= (MBuf—ue)) = (v Bl — uf)) > L(uf) = L(w)
— (M. Biif ) — (Lug) — L(uf) = L(uf) — L(wy)
— <Z\§;,Baf;> >0
.. in (b, typ). 0

Definition 1. We define the state of all updates in iteration £ as

xo= (), ()L
= ((ii(tkﬂ) + ’Y;\i(tkﬂ)) 2:01 ’ (ii(tk) B in(tk)) :il) )

Moreover, we define the mapping

- K-1 /., K
(<¢k’k+1) k=0 (qﬁk’k’l) k—1>
=0 30 K=ty 3¢ K
(st + viattnnn), o (#a(0) -9 ), )
With this notation at hand and I denoting the identity, the update in Step 6 of
Algorithm 1 is given by the relaxed mapping 7. := (1 — )T + €1, i.e.,
T.X'=(1—e)TX" +eX*.
Consequently, we consider the fixed point iteration
X =T x° (23)

Clearly, X is a fixed point of T" and T if and only if the transmission conditions for
the errors

TX*:

Tr(tht1) = Thr1(tht1), k=0,...,K -1,
Me(tr) = A1 (tr), k=1,...,K,
are satisfied. The errors fulfill these transmission conditions if and only if mi and )\ﬁ
from the iteratively decomposed optimality conditions (18) do, too. This is only the

case in a solution of (17). Since we assume that (17) has at least one solution, T
and T, have a fixed point.

Remark 1. For any
X = ((ng,kJrl)f:_ol , (ng,kq)kK:l) € R?¥,
the corresponding right-hand sides of the transmission conditions (181) and (18j)
are given by
Prkt1 = Ok ger1 + Tr(trr1) + YAk(trr1),
Bre k-1 = Prk—1 + Tk (te) — YAk (tr),
where (zy,uk, \i) is the chosen solution of (17). If System (18) has a solu-

tion (T, Uk, \i), then the errors (Ty, g, \i) = (T, Uk, \i) — (Tk, Uk, A\x) are well-
defined and, thus, the mapping T : R?5 — R2K s well-defined, too.
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Definition 2. We define the energies

Lol + 3ol

)

Il
M” e

gt glg(tkﬂ) + iy (tregr),

b
|

=0
K o1 ,
ooy 3 ([ (RBar) ar) + 2y (8500 Quib o) + (1) Quiela0)
k=0 \1tk

Lemma 2. For all £ € N, the energies E¢ and F¢ are non-negative, i.e.,
E>0, F>o0
holds.

Proof. It is clear that £ is non-negative because it is a sum of norms. The
non-negativity of F¢ follows from Lemma 1 and of Qo and Q¢ being positive semi-
definite. O

Next, we show that we can use the energies to describe the state of all updates.
Lemma 3. It holds )
| x4|" =&+ F-.

Proof. We multiply the state equation (19a) by S\i and integrate to obtain

tet1
0:/ Qm% Azt — B%>m

tr

=[] - [ Gty ae- [ (ast) + (3 pa) o
[OLa)] - [ ety a [ (3 as) + (3 i) a
k t t

k k

= (Mt b)) = (Mt 00)) = [ ) at

It follows

(Mt o ta)) = (i) ) + [ (3, Bt ) a

ty
and

(M0 3800 = (Mt #we)) ~ [ (3B o

123
Now, we can write

K-1 _ 9 K 3 )
X417 = 37 ||k ) + A ttsn)|| + D |30 — 22w
k=0 k=1

K-1
= (H:Z?k tk+1 H +’Y H)\k tk+1 H +2’Y< tk+1 l‘k tk+1)>)
k=0

+Z (ka (tx) H —l—’y H)\Z (tx) ’ 27< mk (tx) >>

= (gﬁ(tkﬂ) + 2y <5‘i(tk+1 B (tes) >)

=

>
Il
o
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] =

+ 3 (&) — 27 (Attn). 3 (0)))
K— lk:1
= > (Etrs) + Efr (tern))
= K-1 K
+ 37 2 (Alltn). Ehltrn) ) = Y 2 (Mt (1))
k=0 k=1
:guzle< (thn), P () ) — zviﬁf;(tmf;(tk)}
k=0 k=1
=&42 S (1) . A, BaL ) dt
= +’ykz_0(< a:kk +/tk, <k, uk> )
’YEK:< ), &, (t >
k=1
K-1 tht1
_8/+2’y< (to), 7 (to >+27Z (/t <Z\i,Baﬁ> dt)
—0 k
27< xK (tx >
K—-1 tht1
—5f+27< (to), (to >+272 (/t <X£,Ba£> dt)
k

t
27< Clties), % tK+1)> /tK+1 <:\§(,Bﬂ§(> dt)
K
gty 272 (/tk+1 <Z\‘,;, Ba§;> dt)

+ 2y ((Qoafo to), &g (to)) + (Qe&k (tr), T (1))
=&+ Ft
We get a similar result if we apply the mapping T first.

Lemma 4. It holds )
|Tx*)|" =& - F-.
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Proof. Similarly to the proof of Lemma 3 we can write
, Kol ) ., K } 9
17X = 37 ([ i) + AA s tern)|| + D [ (t0) = A )|
k=1

x>
Il
o

S

- 2 < 2 < -
= (Hxiﬂ(tkﬂ)u +7° H)‘;;H(tkH)H + 2y <)‘i+1(tk+1)7 x£+1(tk+1)>>
k=0

+Z(|ka (]| +97 |3 1m)Hz—2v<if;_1<tk>,f£_1<tk>>)

K-—1
= (gl€+1(tk+1) + 2y <5\£+1(tk+1)afi+1(tk+1)>)
k=0
K
+ 37 (&) = 29 (M (1), 5 (1))
k=
K—1 ' K B
= 3 il + 3029 (At 74 (1) )
k=0 k=1
K-—1 B
+ 3 (Ehtren) = 20 (Mltnsn), B tis)))
= K-1
= +272<>\k B, 3 (1)) — 29 Z (Mt 7hthi))
k=1 =0
=& - Fh O

Remark 2. A direct consequence of Lemma 3 and 4 is
2 2
7 =[x
Since F¢ is non-negative, it follows
x| < [l x)- (24)

Hence, it is sufficient for Algorithm 1 to be well-defined that (18) has a solution for
X € {z e R?E: ||z|| < || XY} instead of for all vectors in R?K.

Next, we observe that T is a non-expansive mapping.
Lemma 5. The mapping T : R?X — R2K satisfies
ITX' - TX?| < [ X' - X7
for all X', X? € R?K,

Proof. Let (z},up, A\}) and (z3,u}, A7) be the the solutions of (18) corresponding
to X! and X?2. The errors that solve (19) are given by
(Fhs s M) = (ks oy AL) = (s iy Ak
(&R, 3, AR) = (23, 4k A7) — (2, ey An).
We define the differences
1

(ykavknu'k) = (i'llwﬂiaj‘llc) (l'k7ukv)‘2) (xkvullw)‘llc) - (x%,ui,)\i)
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for all k = 0,..., K. Because of the linear nature of (19), these differences fulfill

the system
Ur = Ayr + Bu,  a.e.in (tg, thr1),
Royo(to) =0 ifk= 0,
)

Reyk (te k=K
fr = —ATp, ace in (tg, thir),
po(tc Qoyo(te) if k=0,

k
) =
pr(ts) = —Qryx (te) ifk=K
Yk (tk+1)+wk(tk+1) Prpr — Oopps ifk# K,

Uk (te) — ypx(tr) = ¢kk 1 @gi,k—l if k#£0.

Now, we have

ITx' - Tx?|

K-1

= (@tatwen +93ae), ) (a0 - 25tw), )

- ((f%+1(tk+1) + 75\i+1(tk+1)) kK:_Ol ) (fi—ﬂtk) - 'Yj‘il(tk))fj

(yk+1 trrr) + Ytk () eco s (n—1 (1) — Yi—1 (t)) e 1)“
—1

S

(Yrr1 (trrr) + Yk (trsn)) +Z Y1 (tk) = v (t))

I
M T T

K-1
(e (t) + () + D W (trsr) — vin(trg))?
k=0

(ete) = rau(ta))? + 4 () e (t0)) )

b
Il

1
K—

+ 3 (eltir) + 9 (t1)” = 4 (g lts) v (trs)))
k=0

H

K—1
= || X' - X2|| +4Z Yk (tr), Yoo (tr)) 42 Uk (ter1)s Yoo (trr1)) -
k=0

k=1

2

Next, we investigate the relation between (yg (tx), pr(tx)) and (yg(trr1), ok (Exr1))-

To this end, we multiply (25a) with u; and integrate to get

tht1
0= / Uk, pre) — (Ay, pr) — (Bog, p) dt

s, et} — (e(te)s i (80))

tr41
- / Yk, frre) + (Ayr, ) + (Bog, p) dt

ty

= (k1) e (bt 1)) — (i), e ()

tht1
- / (yks —AT i) + (Ayk, i) + (Bog, i) dt

173

= (i), ik (tre)) — (it ie(t)) — / " Bo ) dt.

tr
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From (22), we have

a.e. in (tg,tg+1). Therefore, it holds

Yk (rr1)s e (Eet1)) = (e (i) i (te)) -
Finally, we can conclude that

|Tx" - TX2|?

K K-—1
= || x* —X2||2+4Z (yr(tr), Yir(tr)) — 4 Z Yr (trer1)s Yok (trs1))
k=1 k=0

< X0 = X et s () = 4 oltr), o)
< X = X2+ 4 (s (te) v (1)) = 4 (o (t0). o ()
= [1X7 = X2[* + 4 e (40), (= Qryie (1)) — 4 (yo(t0), ¥Qoyo(to))
< flxt = x|
holds because Q¢ and Qg are positive semi-definite. O

We can now apply Schaefer’s theorem to T

Theorem 1 (Schaefer [48]). Let Z be a convex, closed, and bounded set in a
uniformly convexr Banach space X and let T : T — T be a non-erpansive mapping
with at least one fixed point. Then, for any e € (0,1) the mapping T. = (1—e)T +el
1s asymptotically regular, i.e.,

T X —T!X ||lx — 0 for all X € T.

This theorem allows us to prove convergence for Algorithm 1 applied to the
linear-quadratic problem (16).

Theorem 2. If Algorithm 1 is applied to Problem (16), the iterates (xt, ;) for
k=0,...,K converge in the sense

i (tes1) = g (tra) = 0,
No(th41) = Aigr (Bi1) = 0
forallk=0,..., K —1 as { — .
Proof. By setting T = {z € R?X: Hx|| < || XY}, Schaefer’s theorem yields

ITX" — X*|| = ITEX =T X =0 (26)

(1—5)
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as ¢ — co. We rewrite the scalar product of T7X¢ and X* as
K-1

(TX5 X% = > <5£+1(fk+1) Y1 (B ), B (Brgn) + Vj\i(tk+1)>
k=0
K ~ ~
+ Z <95i71(tk) — YN (t), B (k) — %i(tk)>
K-1
= 37 (e (tirn) + VA (b)) + M () (2D)
k=0

K-1
+> <fﬁ(tk+1) — YN (1), g (Br1) — 7>\£+1(tk+1)>
k=0

K-—1
=23 (#hpr (b)), T (trg)) +9° <>\£+1(tk+1)7 A’;i(tk+1)> :
k=0

Using Lemma 3, Lemma 4, and (27) we get
ITx¢ — X4 = | TX)2 + | X2 - 2(TX", X*)
=2(&' = (TX", X"))

K-1 2
=2 Z (HCE’;;(tHl)HQ +7° Hj\i(tkH)H

k=0

~ 2
)| +0? [N )|

= 2@ (1), B 1)) = 29% (Mg (trn)s M (tr1) ) )
K—

Z <|5L’k the1) = Fpop (tre) || +9° H)‘k thi1) — Mg (trr1) H >
k=0

Because of (26), it follows
F(ter1) = T (te1) = 0,
N (tra1) = N (Beg1) = 0
forall k=0,...,K —1 as £ — oco. Since this holds for the errors, it is also true for
the iterates, i.e.,
T4 (ter1) = Ty (bea) = 0,
Nio(th41) = Mg (tig1) = 0
forall k=0,...,K —1as { — co. O
Remark 3. Note that Theorem 2 states convergence of Algorithm 1 with respect to
the error. In order to conclude for convergence of the iterates, further assumptions
are needed. To this end, we recall that if we have continuity at the boundaries of the
sub-intervals, i.e.,
2 (th1) = T (b)),
No(ti1) = N (Be1)

forallk=0,..., K — 1, then the optimality conditions (17) are fulfilled as well.
Therefore we can conclude that the iterates (zf,\) converge to (z1,\g) in
L3(to,t¢) for allk =0,...,K if (17) has a unique solution (zy, \y).
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Moreover, we can conclude that there is a subsequence of (acf;, )\f;) that converges
to a solution (xy, \i) of (17) if the boundary points x(tys1), oy (ter1), Ag(trs1),
Moyp1(teg1) are contained in a compact set. This is the case if (17) has more than
one but still finitely many solutions.

If System (17) has infinitely many solutions, a similar conclusion can, in general,
not be made. However, Algorithm 1 can still be applied in practice, where we have
to impose a reasonable stopping criterion anyway such as, e.g.,

||£E£(tk+1) - $£+1(tk+1)Hoo < g, H)‘i(thrl) - )‘£+1(tk+1)’|oo < dx (28)

for all k =0,..., K — 1 with given tolerances 6,,05 > 0. This way, we can still
compute an approximate solution that is arbitrarily close to a solution of (17) by
choosing 6, and 6y sufficiently small.

5. CASE STUDIES

In this section, we apply Algorithm 1 to test its practical performance on some
exemplary problems. We implemented the algorithm in Julia 1.5.3 [3]." All com-
putations were done on a machine with an Intel(R) Core(TM) i7-8550U CPU with
4 physical cores (and 8 logical cores), 1.8 GHz to 4.0 GHz, and 16 GB RAM. To solve
the virtual control problems in Step 3, we apply a first-discretize-then-optimize
approach using a Runge-Kutta method [20, 49]. To this end, we equidistantly
partition each time domain [tx,tx4+1], £ =0,..., K, using N + 1 € N time points

(tr+1 — tr)
N )
Runge—Kutta methods approximate the solution of the ODE

tri ==t +1 1=0,...,N.

T = [k, ur)
of the virtual control problems (12), (14), and (15) as

xk(tk(iﬂ)) = (ki) +Athjlj, i1=0,...,N,
j=1

with the step size At = (tx4+1 — tx)/N, the intermediate steps

li=f (mk(tki) + At Z Ajmlm, Uk(tki)> )

m=1

given coefficients a;,, € R and b; > 0 for j,m € {1,...,s}, and the number of
stages s € N. In what follows, we are using the classic fourth-order Runge-Kutta
method with coefficients

0 0 0O -

1

s 0 0 0 1111

= |2 e

0 01 0

Moreover, we use the initial condition (12c) to solve for the virtual control

hi = ap(te) — Gy

IThe implementation of the algorithm is publicly available under https://github.com/
m-schmidt-math-opt/miocp-time-domain-decomposition.
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We can then substitute hy in the objective function and remove the constraint (12c).
The discretized virtual control problem (12) is thus given by

zrinﬁ ﬂ”xk(tk) - ¢k;)k;1—lH2 + Z”Ik(tlﬁl) - ¢k,k1+1||2 (30a)

st ap(tren) = 2(tes) + ALY bl i=0,...,N, (30b)
j=1

up(tyi) €U, i=0,...,N. (30¢)

The problems (14), (15) can be discretized analogously. Problem (30) is a finite-
dimensional optimization problem, which we model using GAMS 25.1.2 [39]. The
resulting instances are solved using ANTIGONE 1.1 [40]. All virtual control problems
are solved in parallel using Julia’s build-in multi-threading capabilities.

In our implementation, the iteration is started with the zero transmission condi-
tions ¢, =0€R"fork=1,...,K and ¢} , ., =0 € R" for k=0,..., K — 1.
We initialize the algorithm with all variables set to 0 and after the first iteration,
we warmstart all virtual control problems with their solution from the previous
iteration. As a stopping criterion for Algorithm 1, we use (28) forallk =0,..., K —1
with tolerances 6, = 6y = 10~2. In addition, we use the time limit of 1000s for all
subproblems unless stated otherwise.

After termination of the algorithm, we fix the resulting control v and compute
the corresponding state x on the entire time horizon (to, %) to obtain an accurate
objective value.

5.1. A Mixed-Integer Linear-Quadratic Problem. We consider the mixed-
integer linear-quadratic problem

min  x1(1)2 + 22(1) + /1 0.005u* dt (31a)
s.t. 41 =2x9 a.e. in (8, 1), (31b)
Zo=—x1+x2—u a.e. in (0,1), (31c)
21(0) = =2, x2(0) =1, (31d)
ue{0,1,2,3,4} a.e. in [0,1]. (31e)
Note that this problem is of the form (16).
We use the time-domain decomposition with t; = /4 for i = 0,...,4 as well as

parameters ¥ = 1, € = 0.5, and At = 1/100.

Figure 2 shows the solution of Problem (31) using the direct discretization and
solution approach from above on a single interval [0, 1] (left) and the one computed
using the proposed algorithm with 4 time domains (right). Although the controls
differ, the resulting states are almost the same. Additionally, the first part of Table 1
lists the number of iterations, the running time, and the objective value for different
decompositions of the time domain. Even though the algorithm does not outperform
the solution of the original problem (first row of the table), one can see that they
are rather comparable w.r.t. the objective value for 2 and 4 domains. This can
be explained by the fact that Problem (31) is quite simple to solve. Thus, solving
the fully discretized original problem directly using ANTIGONE (on the entire time
horizon) is already rather efficient. The worse objective values in the case of 8 and
16 domains can be attributed to the errors we make at the interfaces of the domains
because of the tolerances §, and dy. To show this effect we re-ran the cases of 2, 4, 8,
and 16 domains with the smaller tolerances d; = 6y = 5 x 1072 and §, = §, = 1073.
The corresponding results are shown in the second and third part of Table 1. While
these smaller tolerances obviously increase the running time of the algorithm, they
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FIGURE 2. Solutions of Problem (31) solved with (right) and with-
out (left) Algorithm 1.

have a positive impact on the objective value. This impact increases if more domains
are used. Since (31) is a mixed-integer linear-quadratic problem, it is also possible
to solve it with the solver Gurobi 9.1.2. However, our preliminary numerical results
showed that for almost all cases, ANTIGONE performs better w.r.t. the running
time. For comparison, we include these results in the fourth part of Table 1.

To make sure that our discretization step size At is small enough, we used
the resulting controls from the first part of Table 1 to compute the corre-
sponding state & with the halved step size At/2. The subsequent errors
max;—o, . n+1 |z(t;) — &(¢;)]| ., are all smaller than 1.4 x 10~ which is significantly
smaller than the tolerances ¢, and 0, at the interfaces.

Next, we study the impact of the parameter «. It functions as a weighing factor
of the state x compared to the adjoint A in Step 4 of the algorithm. It is thus an
important parameter regarding the errors that are made w.r.t. the continuity of the
states and adjoints at the interfaces of the time domains. Figure 3 displays these
errors for v € {0.2,1,5} and the case of 4 domains. One can clearly see that the
smallest value v = 0.2 leads to larger errors for the adjoint A compared to the errors
for the state z. For the larger value v = 5 it is the other way around. For v = 1, both
errors have roughly the same size. Since in our case, the tolerances d, and d are the
same, it takes less iterations for the algorithm to reach the stopping criterion (28)
for v = 1 than for the other values. More precisely, we need 35 iterations instead of
45 for v = 0.2 or 44 for v = 5. Figure 3 also shows the typical convergence behavior
of Algorithm 1, i.e., the errors are reduced quickly during the first iterations but
only decrease slowly when they are already closer to zero. This suggest that the
method has an asymptotically sublinear convergence rate. However, estimates on
these rates are beyond the scope of this paper.

Lastly for this example, we investigate the role of the parameter e, which weighs
the boundary data of the domain k against the boundary data of its neighboring
domain k — 1 or k4 1. Table 2 shows the effect of different parameters ¢ on the
number of iterations, the running time, and the objective value of Problem (31)
when solved using 4 time domains. One can see that € does not have a significant
impact on the objective value but on the number of iterations and, thus, the running
time. We see that we obtain a roughly monotonically increasing relation between ¢
and the running times of the algorithm. For this example, the fastest algorithm is
obtained with £ = 0.1. We also additional sampling points for £ between 0 and 0.2,
which confirm that £ = 0.1 is the best choice for this problem.

5.2. Mixed-Integer Nonlinear Problems. The convergence theory from Sec-
tion 4 does not apply to problems with nonlinearities in the differential equation.
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TABLE 1. Results for Problem (31) for different numbers of time
domains (first column). The overall time (“Time”) includes the time
spent in the algorithm (“Alg. time”) and the time to a posteriori
compute the objective value for fixed controls.

Domains Iterations Alg. time (s) Time (s) Objective value

ANTIGONE, 6, = 6, = 102

1 1 0.337 0.337 0.043909
2 22 3.065 3.107 0.045849
4 35 3.063 3.112 0.044415
8 70 9.203 9.250 0.050030
16 129 26.389 26.437 0.049699
ANTIGONE, 6, = 6, — 5 x 10~3
2 37 7.003 7.046 0.044221
4 38 3.165 3.282 0.044415
8 85 11.501 11.548 0.045379
16 166 35.047 35.093 0.045608
ANTIGONE, 4, = 6y = 10-3
2 57 12.119 12.160 0.044289
4 82 6.898 7.000 0.044259
8 157 21.255 21.307 0.044999
16 258 54.724 54.774 0.044042
Gurobi, §, = 6 = 1072
1 1 0.263 0.263 0.043909
2 11 1.866 2.018 0.044153
4 37 9.838 10.010 0.044478
8 68 15.590 15.793 0.045625
16 126 50.760 50.968 0.047377

TABLE 2. Results for Problem (31) for different parameters e.

¢ Iterations Alg. time (s) Time (s) Objective value

0 20 3.157 3.238 0.045483
0.025 56 5.753 5.801 0.045185
0.05 50 4.956 5.039 0.044774
0.075 47 4.454 4.507 0.045496
0.1 23 1.926 2.000 0.044690
0.125 25 2.488 2.535 0.044758
0.15 23 2.481 2.526 0.045772
0.175 35 3.283 3.332 0.045013
0.2 26 2.190 2.238 0.045415
0.3 27 2.982 3.027 0.046206
0.4 34 3.088 3.138 0.044874
0.5 35 2.964 3.009 0.044415
0.6 41 3.663 3.746 0.046568
0.7 65 6.622 6.670 0.045552
0.8 85 7.673 7.725 0.044602

0.9 170 16.075 16.126 0.046249
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TABLE 3. Results for Problem (32) for different numbers of domains.

Domains Iterations Alg. time (s) Time (s) Objective value

4 117 56.112 56.197 0.001054
8 483 178.834  178.886 0.000139
16 1665 650.574  650.628 0.000051

Nevertheless, we can conclude from considering Algorithm 1 as the fixed-point itera-
tion (23) that upon convergence, the error in the transmission conditions vanishes
and a candidate for a Pontryagin minimum is found. We demonstrate this for two
nonlinear examples.

As a first nonlinear example we consider Fuller’s initial value problem from the
benchmark library mintOC of mixed-integer optimal control problems (see [45] and
https://mintoc.de):

min  (21(1) — 0.01)% + 29(1)* + z3(1) (32a)
st. 41 =2 a.e. in (0,1), (32b)
#2=1—2u a.e. in (0,1), (32¢)

i3 =27 a.e in (0,1), (32d)

)

)

21(0) = 0.01, 22(0) =0, 3(0) =0, (32¢
ue {0,1} a.e. in[0,1]. (32f

Again, we choose the parameters v = 1 and € = 0.5 for our computations. For
this example the step size for the discretization is At = 1/50. We solve Problem (32)
with Algorithm 1 using 1, 2, 4, 8, and 16 domains. For a single domain, i.e., without
using the presented time-domain decomposition approach, ANTIGONE reaches the
time limit and cannot solve the problem. For two domains, our algorithm also
reaches the time limit in the first iteration. The remaining results are shown in
Table 3. For 4 domains, the algorithm finds a solution in 56 s. Figure 4 shows the
solution for 4 domains. For more domains, the number of iterations and the running
time increases. The objective values for the last three cases are all close to zero. This
shows the potential of Algorithm 1 when applied to nonlinear problems since it can
outperform applying a global MINLP solver to the discretized problem directly, i.e.,
on the entire time horizon. However, let us comment on that this comparison needs
to be interpreted carefully since the goal of ANTIGONE as a global MINLP solver is
different to the one of our method that aims to compute a Pontryagin minimum of
the problem. Thus, we additionally applied ANTIGONE with a time limit of 56's,
which is the solution time of our method, and compared the feasible point found by
ANTIGONE within this time limit with the point that our method computed. For
the considered instance, ANTIGONE found a feasible point of comparable quality in
26s. Note, however, that this point comes with no quality guarantee whereas we
can guarantee that we computed a Pontryagin minimum.

Again, we used the resulting controls from Table 3 to compute the corresponding
state & with the halved step size At/2. The errors max;—o,... n+1 [|z(t:) — Z(t:)]
are all smaller than 1.9 x 107° which is, again, significantly smaller than the
tolerances d, and J, at the interfaces.

As for the example in the linear-quadratic case we again test, which values of ¢
lead to the best results. Table 4 contains the results for the case of 4 domains. We
skip the case of € = 0 since we reached the time limit for this case. The algorithm
also takes rather long for ¢ = 0.1. For € between 0.2 and 0.7, one achieves the
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shortest running times. Again, if the value of ¢ is too large, the number of iterations

and the running time increase considerably.

TABLE 4. Results for problem (32) for different parameters e.

¢ Iterations Alg. time (s) Time (s) Objective value
0.1 321 588.903  588.984 0.000761
0.2 181 91.456 91.503 0.000383
0.3 139 108.863  108.912 0.000092
0.4 122 67.793 67.873 0.000243
0.5 117 56.112 56.197 0.001054
0.6 123 64.458 64.504 0.000267
0.7 147 74.871 74.925 0.001054
0.8 193 145.817  145.867 0.001824
0.9 341 186.941  186.990 0.001824

As a second example, we consider a variation of Problem (32), namely Fuller’s ini-
tial value multimode problem from mintOC (see again [45] and https://mintoc.de):

min  (21(1) — 0.01)% 4+ 29(1)* + z3(1)

s.t.

4
1= Zul a.e. in [0, 1],
i=1

u e {0,1}* a.e. in [0,1].

&1 =z2 a.e. in (0,1),

9 =1—2u; —0.5us — 3uz a.e.in (0,1),
i3 =27 a.e in (0,1),

21(0) = 0.01, 22(0) =0, ,z3(0) =0,

(33f)

(33g)

Here, we have three more binary controls and an SOS-1 constraint w.r.t. the binary
controls. This makes the problem harder to solve, which is why we increased the
maximal running time for this example to 2000s. Note that us does not occur in
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TABLE 5. Results for Problem (33) for different numbers of domains.

Domains Iterations Alg. time (s) Time (s) Objective value

2 33 1580.499 1580.587 0.002083
4 117 1580.026 1580.081 0.000027
8 483 208.538  208.641 0.000018
r T T T T
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FIGURE 5. Solutions of Problem (33) solved with Algorithm 1 using
8 domains. Because of the SOS-1 condition (33f) exactly one wu;
(i =1,2,3,4) is 1 at the same time, thus, we use the aggregated
control u = u1/3 + 2us/3 + ug + Ouy to simplify the plot.

the ODE system (33b)—(33d). Therefore, u4(t) = 1 corresponds to not controlling
the system at time t.

The parameters v = 1, € = 0.5, and At = 1/50 stay unchanged and we, again,
solve the problem using 1, 2, 4, 8, and 16 domains. The results are displayed in
Table 5 except for a single domain and the case of 16 domains. For a single domain,
we again reach the time limit—which is also the case for our algorithm applied
to 16 domains, where the time limit is reached in iteration 737. For this example,
we achieved the fastest running time (of 209s) for 8 domains. One can see that
the number of iterations for 2 and 4 domains is lower than for 8 domains but the
running times are higher. This is the case because, in a few iterations, the solution
time of a virtual control problem is much higher than usual. Thus, we can see the
trade-off between (i) a usually higher coordination effort of the method to obtain
continuity at the interfaces of the time domains for a larger number of domains and
(ii) a usually larger running time for less domains since the virtual control problems
then are larger. The solution is shown in Figure 5. We again compared the solution
that we obtain with the best feasible point computed by ANTIGONE within the time
limit given by the best running time of our method, i.e., within 209s. In this case,
the feasible point found by ANTIGONE is slightly worse than the one we computed.
The first feasible point found by ANTIGONE that is better than our solution needs
899 s to be computed by ANTIGONE.

For this example, we also used the resulting controls from Table 5 to compute
the corresponding state & with the halved step size At¢/2. This time, the errors
_____ N1 |lz(t;) — 2(t;)]|, are all smaller than 3.1 x 10~° which is, again,
significantly smaller than the tolerances §, and §, at the interfaces.
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An example for which convergence of our implementation of Algorithm 1 was not
observed is a reformulation of the highly nonlinear problem “F-8 aircraft” from the
mintOC library (see [45] and https://mintoc.de) to a fixed-time horizon problem,
where either the time limit of 2000s was reached or at some point one of the
virtual control problems reported infeasibility. This happened for all combinations
of parameters ¢ € {0,0.1,...,0.9}, At € {1/50,1/100}, 6,,5x € {107,102} and
all numbers of domains in {1,2,4,8,16} and could be caused by the presence of
multiple local minima. See [15] for a successful application of a global maximum
principle to the aircraft problem with numerical results.

Remark 4. Another instructive exemplary problem is

min T (34a)
st. E=u a.e in(0,7), (34b)
x(0) = -7, z(0)=2, (34c)
z(T)=0, (T)=0, (34d)
ue{-1,0,1} a.e. in[0,T]. (34e)

The state x(t) € R represents the position of a car with bounded acceleration wu.
The car starts at —7 and has an initial speed of 2. The goal is to park the car in
the origin in the shortest possible time T. The optimal bang-bang solution to this
problem is to accelerate (u(t) = 1) until t* = 1 and to break (u(t) = —1) after this
until T = 4. To fit this in our setting we use a time transformation to reformulate
the problem as

min 23 (35a)
s.t. @1 =moxg a.e. in (0,1), (35b)
o =uxs a.e in (0,1), (35¢)
21(0) = =7, x2(0) =2, (35d)
z1(1) =0, z2(1) =0, (35€)
ue{-1,0,1} a.e. in]0,1], (35f)

where x1 1s the position, xo the speed, and x3 the time T. This is a nonlinear problem
with initial and terminal conditions. The optimal solution stays unchanged but the
switching point between acceleration and breaking is now t* = 1/4. If we try to solve
this problem with At = 1/100 using ANTIGONE, no feasible point is found. For 2
domains of equal length, the algorithm reaches the time limit of 1000 s in iteration 19.
However, for 4 domains of equal length and the 2 domains [0,1/4],[1/4,1] the
global optimal solution is found in 60.886s and 182.550s, respectively. This can
be explained by both decompositions containing the switching point t* = 1/4 in an
interface between two subdomains, which decreases the difficulty of the virtual control
problems. Therefore, it could be an interesting topic for future research to compute
the switching points of a bang-bang solution before applying Algorithm 1. This could
be combined with considering constant control decisions for each subdomain, which
could further decrease the difficulty of solving the virtual control problems.

6. CONCLUSION

Our results show that linear-quadratic mixed-integer optimal control problems
can be solved iteratively by computing solutions to suitably chosen virtual mixed-
integer optimal control problems on smaller time-horizons. In order to reach a
certain accuracy of the solution, these subproblems then require less discretization
variables and they can be solved in parallel. Both aspects can provide significant
computational advantages compared to direct discretization of the original problem
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on the entire time horizon. We exemplarily demonstrate this with our numerical
results, where we also discuss the choice of additional parameters of the proposed
algorithm. Our computational experiments show that this advantage also pays off
for the case of nonlinear problems if the iterative procedure converges. However,
a more detailed numerical study that might also include a comparison with other
methods are out of scope of this paper and part of our future work. In particu-
lar, the iterative method may even yield solutions where full direct discretization
fails. Guarantees for nonlinear problems, however, requires further algorithmic and
theoretical investigations.

The presented study is primarily motivated by the need to incorporate integer
restrictions on the control values into optimal control problems as to model logical
constraints. However, the findings are also interesting for classic optimal control
problems with other nonconvex control constraints, because the proposed iterative
procedure provides an alternative to shooting-type methods as a solution approach
with its well-known limitations such as proper initialization or achieving global
optimality in the Hamiltonian maximization condition.

Future work will therefore concern extensions of this approach to more general
problem classes including further nonlinearities, state constraints, and also partial
differential equations. Moreover, the general type of methods discussed in this paper
is known to have slow convergence rates although approximate solutions of acceptable
quality might be obtained rather quickly. It is thus another future research topic
to consider possible crossover-approaches in which an acceptable solution found
with the proposed method is handed over to another method that has favorable
local convergence properties. Additionally, investigations on the convergence rates
and on accelerating mechanisms would be of great interest. Finally, the method
presented in this paper could be combined with techniques that try to compute the
time points at which the optimal control switches, see, e.g., [9, 50|, and to use this
information to set up the time blocks of the domain decomposition.
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