
A two-level iterative scheme for general sparse linear systems

based on approximate skew-symmetrizers∗

Murat Manguoğlu† Volker Mehrmann‡

September 16, 2020

Abstract

We propose a two-level iterative scheme for solving general sparse linear systems. The
proposed scheme consists of a sparse preconditioner that increases the skew-symmetric
part and makes the main diagonal of the coefficient matrix as close to the identity as pos-
sible. The preconditioed system is then solved via a particular Minimal Residual Method
for Shifted Skew-Symmetric Systems (mrs). This leads to a two-level (inner and outer)
iterative scheme where the mrs has short term recurrences and satisfies an optimally con-
dition. A preconditioner for the inner system is designed via a skew-symmetry preserving
deflation strategy based on the skew-Lanczos process. We demonstrate the robustness of
the proposed scheme on sparse matrices from various applications.

Key words. symmetrizer, skew-symmetrizer, Krylov subspace method, shifted skew-
symmetric system, skew-Lanczos method

AMS subject classifications. 65F08, 65F10, 65F50

1 Introduction

We discuss the numerical solution of general linear systems

Ax = b, (1)

where A ∈ Rn×n is a general large sparse invertible matrix. If the coefficient matrix is sym-
metric and positive definite or symmetric and indefinite, one can use the Conjugate Gradient
algorithm or the recently proposed two-level iterative scheme [22], respectively. In this pa-
per, we propose a new robust two-level black-box scheme for solving general systems without
any assumption on the symmetry or definiteness of the coefficient matrix. In contrast to
most other iterative methods, where preconditioning is often used to symmetrize the sys-
tem and to lower the condition number, our new approach consists of an initial step which

∗The first author was supported by Alexander von Humboldt Foundation for a research stay at TU Berlin
and the BAGEP Award of the Science Academy. The second author was supported by Deutsche Forschunge-
meinschaft through collaborative research center SFB TRR 154 Project B03.
†Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany. Present ad-

dress: Department of Computer Engineering, Middle East Technical University, 06800 Ankara, Turkey
(manguoglu@ceng.metu.edu.tr).
‡Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany

(mehrmann@math.tu-berlin.de).

1

ar
X

iv
:2

00
9.

06
95

4v
1

 [
m

at
h.

N
A

]
 1

5
Se

p
20

20

makes the system close to an identity plus skew-symmetric matrix that leads to an effective
shifted skew-symmetric preconditioner. Both the preconditioned system and the application
of the preconditioner is approached by an iterative method so that the method is a two-level
(inner-outer) iterative scheme.

Our main motivation to study identity-plus-skew-symmetric preconditioners are linear
systems arising in the time-discretization of dissipative Hamiltonian differential equations of
the form

Eż = (J −R) z + f(t), z(t0) = z0 (2)

where ż denotes the derivative with respect to time, J is a skew-symmetric matrix, R is
symmetric positive semi-definite and E is the symmetric positive semi-definite Hessian of a
quadratic energy functional (Hamiltonian) H(z) = 1

2z
TEz, see e.g. [2, 10, 14, 19, 25, 28] for

such systems in different physical domains and applications. If one discretizes such systems
in time, e.g. with the implicit Euler method, and setting zk = z(tk) then in each time step tk
one has to solve a linear system of the form

(E − h(J −R))zk+1 = Ezk + hf(tk). (3)

Similar linear systems arise also when other discretization schemes are used.
The matrix A = E+h(R−J) has a positive (semi)-definite symmetric part M = E+hR.

If M is positive definite, then with a two sided preconditioning with the Cholesky factor L
of M = LLT , the matrix L−1AL−T has the form I + J̃ , where J̃ = hL−1AL−T is skew-
symmetric [5, 31]. For such systems in [5, 18, 21, 26, 31] structure exploiting Krylov subspace
methods with three term recurrences were derived and analyzed. Given a general square
matrix A, symmetrizers from right or left, respectively, are symmetric matrices, Sr and Sl,
such that ASr = ST

r A
T and SlA = ATST

l . Existing algorithms to construct dense and exact
symmetrizers are studied and summarized in [8]. In this paper, however, we construct two-
sided preconditioners so that the preconditioned systems has the form D + Ĵ , where D is
diagonal and close to the identity and Ĵ is close to a skew-symmetric matrix (approximate
shifted skew-symmetrizers (ASSS)). To this preconditioned system we then apply a two-level
iterative method, where the inner iteration is a skew-symmetric Krylov subspace method.
We assume that both A and S ∈ {Sr, Sl} are sparse and nonsymmetric, with S having a
user defined sparsity structure. The sparse ASSS preconditioner is obtained by first applying
a nonsymmetric permutation and scaling and then solving a sparse overdetermined linear
least squares (LLS) problem to obtain S. Similar approaches for dense symmetrizers, [8], or
algorithms for improving the structural symmetry in the context of sparse direct solvers, as
proposed in [23, 27], do not have the latter property.

We note that while it is possible to obtain and use either Sr and Sl, in our experience the
numerical results did not differ much as in left and right preconditioning. Therefore, in the
rest of the paper we use the right variant and hereafter S refers to Sr.

The paper is organized as follows. The proposed sparse approximate skew-symmetrizer is
introduced in Section 2, a two-level Kyrlov subspace method based on the skew-symmetrizer
is introduced in Section 3, numerical results are presented in Section 4, and the conclusions
follow in Section 5.

2

2 A sparse approximate shifted skew-symmetrizing precondi-
tioner

Given a sparse invertible matrix A ∈ Rn×n, to achieve our goal of constructing a sparse ap-
proximate shifted skew-symmetrizing (ASSS) preconditioner, we first apply diagonal scalings
(Dr, Dc) and a row permutation (P),

Ā = PDrADc (4)

such that the diagonal entries of Ā have modulus one and the off-diagonal elements are of
modulus less than or equal to one. Such a permutation and scaling procedure is well estab-
lished in the code MC64 of the Harwell Subroutine Library (HSL) [17] and it is called the
maximum product transversal with scaling. It solves a weighted bipartite matching prob-
lem and the resulting matrix Ā is guaranteed to contain a zero-free main diagonal if A is
structurally nonsingular [9]. After this, we look for a sparse matrix S such that

(ĀS)i,j = −(ĀS)j,i, for i 6= j, (5)

and
(ĀS)i,i = 1, for i = 1, 2, ..., n, (6)

where S can have various sparsity structures, such as being diagonal, tri-diagonal, banded,
having the sparsity of Ā, or any structure defined by the user.

The described problem can be formulated as a sparse over-determined LLS problem, where
by (5), each nonzero in the strictly upper triangular part of |ĀS|+ |ĀS|T defines a constraint
of the LLS problem and additional n constraints are obtained via (6). Let nz be the number
of nonzeros in the strictly upper triangular part of |ĀS|+ |ĀS|T and nnz(S) be the number
of nonzeros in S. Then the LLS problem has nnz(S) unknowns and nz + n equations, and if
nz + n > nnz(S) then the problem is overdetermined.

As a first example of a sparsity structure, let us assume S = diag(s1,1, . . . , sn,n), so that
nnz(S) = n. Then, (5) and (6) are given by

āi,jsj,j + āj,isi,i = 0, (7)

and
āi,isi,i = 1, (8)

respectively. With s = [s1,1, s2,2, ..., sn,n]T , then the resulting overdetermined system is given
by [

Bu

Bl

]
s =

[
0
1

]
(9)

where 0 and 1 are vectors of all zeros of size (nz + n) and all ones of size n, respectively. Bu

is a sparse matrix of size (nz + n)× n, where each row has only two nonzeros, āi,j and āj,i in
its i-th and j-th columns, respectively, while Bl is just the diagonal of āi,i. So with

f(s) :=

∥∥∥∥[Bu

Bl

]
s−

[
0
1

]∥∥∥∥2
2

the unique solution of the LLS problem is obtained by computing mins f(s). The unique
solution can be obtained via a direct or iterative sparse LLS solver. In order to obtain

3

more flexibility in the importance of the two constraints, we introduce a weighting parameter
(γ > 0), and solve the weighted problem

f(s, γ) = ‖Bus‖22 + γ ‖Bls− 1‖22 =
∥∥(ĀS) + (ĀS)T

∥∥2
F

+ γ
∥∥D(ĀS)− I

∥∥2
F
, (10)

where D(X) denotes a diagonal matrix whose diagonal entries are those of X.
For a general sparse S, the LLS problem is formulated in a similar way as in the diagonal

case. The set of constraints is defined for each nonzero (i, j) in the strictly upper (or lower)
triangular nonzero pattern of the matrix |ĀS|+|ĀS|T via (5), (using Matlab column notation)
via

Āi,:S:,j + Āj,:S:,i = 0, (11)

and the diagonal constraints are obtained for i = 1, 2, ..., n via (6). Note that one needs to
map the nonzero entries of S to a vector in order to form the LLS problem and map it back
to S after obtaining the solution vector. This can be done using the sparse matrix storage
format. In Appendix A, we present a Matlab implementation which stores the non-zeros of
sparse matrices in column major order, i.e. compressed sparse column format.

3 A bilevel iterative scheme

Given a general sparse linear system
Ax = b (12)

where A ∈ Rn×n is nonsingular. As discussed in the introduction, many preconditioners are
either applied or aim for a symmetric or symmetric positive definite system, since for these
we have short recurrences in Krylov subsapce methods like the conjugate gradient method.
Only very few algorithms focus on skew-symmetric or shifted skew-symmetric structure. In
this section we present the theoretical basis for an algorithm that preprocesses the system
such that the coefficient matrix is as close as possible to a shifted skew-symmetric matrix and
then use the shifted skew-symmetric part of the matrix as preconditioner applying it as an
iterative solver with short recurrences and optimality property that requires only one inner
product per iteration.

Consider the splitting of the coefficient matrix into its symmetric and skew-symmetric
part

A = M + J (13)

where M = MT and J = −JT , (in applications often J is even a matrix of small norm).
If M is positive definite then one can precondition the system by computing the Cholesky
factorization M = LLT and solve the modified system

(I + L−1JL−T)LTx = L−1b (14)

where L−1JL−T is again skew-symmetric. However, in general M is not positive definite, it
may be indefinite or singular. In this case we propose a black-box algorithm that employs
an ASSS preconditioner. This is a two-level procedure, in which we first apply the discussed
nonsymmetric row permutation and scaling to obtain a zero free diagonal with diagonal entries
of modulus one and off-diagonal entries of modulus less than or equal to one. The second

4

step applies a sparse matrix S obtained via the algorithm described in Section 2 by solving a
sparse LLS problem. After ASSS preconditioning, the modified system is has the form

Âx̂ = b̂ (15)

where Â = PDrADcS, x̂ = S−1D−1c x and b̂ = PDrb. Let M̂ = Â+ÂT

2 , and Ĵ = Â−ÂT

2 Note

that due to the ASSS preconditioning, even though M̂ is still not guaranteed to be positive
definite, it has eigenvalues clustered around 1 and typically very few negative eigenvalues.
Furthermore, the skew-symmetric part, Ĵ , is more dominant now. One can now compute a
Bunch-Kaufman-Parlett factorization [4], M̂ = L̂D̂L̂T and modify the factorization to obtain

|M̂ | = L̂|D̂|L̂T (16)

where, as in [30], |D̂| = V |Λ|V T if D̂ has a spectral decomposition V ΛV T . Then, |D̂| has
a Cholesky factorization L|D̂|L

T
|D̂|

, since it is positive definite. Setting L := L̂L|D̂|, and

multiplying (15) from the left with L−1 and inserting I = L−TLT , we obtain the system
Ax = b, where A = L−1ÂL−T , x = LT x̂ and b = L−1b̂. We note that A can be split as

A = (L−1
|D̂|
D̂L−T
|D̂|
− I)︸ ︷︷ ︸

Mr

+(I + L−1ĴL−T︸ ︷︷ ︸
J

) (17)

where the rank of Mr is equal to the number of negative eigenvalues of D̂ which is expected
to be very small and I+J is a shifted skew-symmetric matrix. Furthermore, Mr is symmetric
and block diagonal with only a few nonzero blocks of size either 1× 1 or 2× 2 and is of rank
r � n. The 1 × 1 blocks have the value −2 and the 2 × 2 blocks have eigenvalues {−2, 0}.
Due to the (almost) diagonal and low rank structure of Mr, it is simple to obtain a symmetric
low-rank decomposition

Mr = UrΣrU
T
r , (18)

where Σr = −2Ir, and Ur is a sparse (with either one or two nonzero entries per column) n×r
orthogonal matrix. A pseudocode for computing such low rank decomposition is presented in
Figure 1.

The cost of this last step is O(r) arithmetic operations, since it only needs to work with
a submatrix of Mr corresponding to indices of nonzero entries. Using this factorization, we
obtain A = UrΣrU

T
r +S where S = I+J, so that A is a shifted skew-symmetric matrix with a

low-rank perturbation. Using the Sherman-Morrison-Woodbury formula [13], we theoretically
have the exact inverse

A−1 = S−1 − S−1Ur(Σ
−1
r + UT

r S
−1Ur)

−1UT
r S
−1, (19)

which can be applied to the right hand side vector b to obtain x, by solving only shifted
skew-symmetric linear systems.

In practice, for large scale sparse systems, it is typically too expensive and storage intensive
to compute the full LDLT factorization of M̂ , instead, an incomplete factorization M̃ =
L̃D̃L̃T can be utilized together with the Cholesky factorization of |D̃| = L|D̃|L

T
|D̃| where

L̃ = L̃L|D̃|. This leads to a modified system,

L̃−1ÂL̃−T L̃T x̂ = L̃−1b̂ (20)

5

Input: Mr ∈ Rn×n, r (rank of Mr), Ind (set of indices of nonzeros of Mr)
Σr ← 0, Ur ← 0, U ← 0
i← 1, j ← 1
M′r ←Mr(Ind, Ind)
while (i < r) do
if (M′r(i, i+ 1) = 0) then

Σr(j, j)←M′r(i, i)
U(:, j)← ei
i← i+ 1

else
Compute the eigenpair {λ2, v2} of M′r(i : i+ 1, i : i+ 1)
Σr(j, j)← λ2
U(:, j)← [ei, ei+1]v2
i← i+ 2

end if
j ← j + 1

end while
if (i=r) then

Σr(j, j)←M′r(i, i)
U(:, j)← ei

end if
Ur(Ind, :)← U
Output: Ur ∈ Rn×r,Σr ∈ Rr×r

Figure 1: Sparse low rank decomposition of Mr = UrΣrU
T
r .

which then is solved iteratively using a Krylov subspace method with the preconditioner

P = (L−1|D̃|D̃L
−T
|D̃| − I)︸ ︷︷ ︸

M̃r

+(I + L̃−1ĴL̃−T︸ ︷︷ ︸
J̃

) (21)

or alternatively, if r is zero, with a preconditioner

P = S̃ = I + J̃. (22)

One can, in principle, even apply P−1 exactly as described earlier. However, in a practical
implementation applying S̃−1 via a direct solver is expensive, therefore one can apply it
approximately by solving shifted skew-symmetric systems iteratively, where the coefficient
matrix is S̃. This gives rise to an inner-outer iterative scheme. In addition to solving a shifted
skew-symmetric system (where the coefficient matrix does not have to be formed explicitly)
with a single right hand side vector, applying P−1 requires sparse matrix-vector/vector-vector
operations, solution of a dense r× r system, as well as one time cost of computing a low rank
decomposition of M̃r = ŨrΣ̃rŨ

T
r and solving a shifted skew-symmetric system with multiple

right hand side vectors. The convergence rate of the outer Krylov subspace method depends
on the spectrum of the preconditioned coefficient matrix P−1L̃−1ÂL̃−T . The incomplete
factorization of M̂ is an approximation such that M̂ = L̃D̃L̃T +E, where E is a small norm
error matrix. Assuming we apply P−1 exactly, then the preconditioned coefficient matrix is

6

P−1L̃−1ÂL̃−T = I + P−1L̃−1EL̃−T . Due to the sparse ASSS preconditioning step, M̂ is
already close to identity and Ĵ is dominant. Therefore, the norm of the perturbation of the
preconditioned matrix from identity (||P−1L̃−1EL̃−T ||) is expected to be small.

3.1 Solution of sparse shifted skew-symmetric sytems

Application of the described preconditioners involve the solution of linear systems where the
coefficient matrix, I + J̃, is shifted skew-symmetric. Specifically, we are interested in the
iterative solution of such systems. While general algorithms such as Bi-Conjugate Gradient
Stabilized (bicgstab) [29], Generalized Minimal Residual (gmres) [24], Quasi Minimal Resid-
ual (qmr) [12] and Transpose Free Quasi Minimal Residual (tfqmr) [11] can be used, there are
some iterative solvers available for shifted skew-symmetric systems such as CGW [5, 26, 31] and
the Minimal Residual Method for Shifted Skew-Symmetric Systems (mrs) [18, 21]. We use
mrs, since it has a short recurrence and satisfies an optimality property. Furthermore, mrs
requires only one inner product per iteration [18] which would be a great advantage if the al-
gorithm is implemented in parallel since inner products require all to all reduction operations
which create a synchronization points. In addition to shifted skew-symmetric systems with
one right-hand side vector, we also need to solve such systems with multiple right-hand side
vectors. As far as we know, currently, there is no ”block” mrs available. Even though block
Krylov methods are more amenable to breakdown, there are also ways to avoid the break
down (for example, for block-CG see [20]). We instead implemented a version of the mrs

algorithm based on simultaneous iterations for multiple right-hand side vectors which is given
in Appendix B. In the proposed scheme, the convergence rate of mrs iterations depends on
the spectrum of the shifted skew-symmetric coefficient matrix, I + J̃. In the next subsection,
we propose a technique to improve this spectrum while preserving its shifted skew-symmetry.

3.2 Improving the spectrum of shifted skew-symmetric systems via defla-
tion

One disadvantage of the mrs algorithm is that if a preconditioner is used, then the precon-
ditioned system should be also shifted skew-symmetric which may not be easy to obtain.
Therefore, we propose an alternative deflation strategy to improve the number of iterations
of mrs. For a shifted skew-symmetric system,

(I + J̃)z = y. (23)

we eliminate the extreme eigenvalues of I + J̃, by running k-iterations (k � n) of the skew-
Lanczos process on J̃, see [16, 18, 21]. A pseudocode for this procedure is presented in
Figure 2. Considering the resulting matrices

Sk =

0 α1 0

−α1
. . .

. . .
. . .

. . . αk−1
0 −αk−1 0

 , Qk =
[
q1, q2, . . . , qk,

]
(24)

we deflate the system in (23) by forming

[(I + J̃)−QkSkQ
T
k +QkSkQ

T
k]z = y, (25)

7

Input: J̃ ∈ Rn×n (J̃ = −J̃T) and k.
Let q1 be an arbitrary vector ∈ Rn

q1 ← q1/||q1||2
z ← J̃q1
α1 ← ||z||2
if α1 6= 0 then
q2 ← −z/α1

for i = 2 to k − 1 do
z ← J̃qi − αi−1qi−1
αi ← ||z||2
if αi = 0 then

break
end if
qi+1 ← −z/αi

end for
end if
Output: Qk = [q1, q2, ..., qk] ∈ Rn×k and τ = [α1, α2, ..., αk−1]

T ∈ Rk−1

Figure 2: Skew-Lanczos procedure

such that QT
k J̃Qk = Sk where Qk is n × k with QT

kQk = I and Sk is a tridiagonal skew-

symmetric k× k matrix. Let J̄ = J̃−QkSkQ
T
k which is still skew-symmetric and the largest

(in modulus) eigenvalues have been set to zero. Then the system in (23) can be written as a
low rank perturbation of a shifted skew-symmetric system

[(I + J̄) +QkSkQ
T
k]z = y (26)

which can be handled again by the Sherman-Morrison-Woodbury formula. In fact, this low
rank perturbation can be combined with the low rank perturbation in (21), i.e., the precon-
ditioner P can be rewritten as

P =
[
Qk, Ũr

] [Sk
Σ̃r

] [
QT

k

ŨT
r

]
+ S̄ (27)

where S̄ = I + J̄. Then, the preconditioner can be applied directly as via

P−1 = S̄−1 − S̄−1Ūr+k(Σ̄r+k + ŪT
r+kS̄

−1Ūr+k)−1ŪT
r+kS̄

−1 (28)

where Ūr+k =
[
Qk, Ũr

]
and Σ̄r+k =

[
Sk

Σ̃r

]
. Note that P is the same preconditioner as

in (21), except that the perturbation is of rank r + k now and the shifted skew-symmetric
matrix (S̄) has a better spectrum, see Section 4.4.

4 Numerical results

4.1 Implementation details for the numerical experiments

As a baseline of comparison, we implemented a robust general iterative scheme that was pro-
posed in [3]. It uses the same permutation and scalings given in (4) followed by a symmetric

8

permutation. We use Reverse Cutthill-McKee (RCM) reordering since RCM reordered matri-
ces have better robustness in subsequent applications of ILU type preconditioners [3]. After
the symmetric permutation, we use ILU preconditioners with no fill-in (ilu(0)), with pivoting
and threshold of 10−1 (ilutp(10−1)) and 10−2 (ilutp(10−2)) of Matlab. We call this method
as mps-rcm and it is implemented in Matlab R2018a.

Our new method is also implemented in Matlab R2018a in two stages: preprocessing
and iterative solution. In the preprocessing stage, we obtain the sparse ASSS preconditioner
where we just need the coefficient matrix to obtain the permutation and scalings by calling
HSL-MC64 via its Matlab interface. Followed by solving the LLS problem in (9), which we do
directly via Matlab’s backslash operation. Then, we compute an incomplete Bunch-Kaufman-
Parlett factorization of M̂ via the Matlab interface of sym-ildl software package [15]. We use
its default parameters except we disable any further scalings. Similar to ilutp, we use 10−1

and 10−2 thresholds and allow any fill-in and similar to ilu(0), we allow as many nonzeros as
the original matrix per column with no threshold based dropping. We call these: ildl(10−1),
ildl(10−2) and ∼ ildl(0), respectively. We compute the low rank factorization in (18) and
apply a few steps of the skew-Lanczos process to deflate the shifted skew-symmetric part of
the coefficient matrix. Finally, we iteratively solve the shifted skew-symmetric linear system
of equations that arise in (28) with multiple right hand side vectors via mrs

S̄X = Ūr+k (29)

and form the (r + k)× (r + k) dense matrix

Σ̄r+k + ŪT
r+kS̄

−1Ūr+k (30)

explicitly. All of these preprocessing steps do not require the right hand side vector and they
are done only once if a sequence of linear systems with the same coefficient matrix but with
different right hand side vectors need to be solved.

After preprocessing, the linear system of equation in (15) is solved via a Krylov subspace
method with the preconditioner in (27). At each iteration of the Krylov subspace method,
the inverse of the preconditioner is applied as in (28). This requires the solution of a shifted
skew-symmetric linear system. We use the mrs method for those shifted skew-symmetric
systems.

As the outer Krylov subspace method, some alternatives are bicgstab, gmres, and tfqmr.
Even though they often behave almost the same [3], gmres requires a restart parameter that
defies our objective toward obtaining a black-box solver and bicgstab has erratic convergence.
Alternatively, tfqmr has a smoother convergence and does not require restarting. We observe
that tfqmr can stagnate, which is also noted in [32]. Therefore, as a challenge for our new
approach, we use tfqmr for both our proposed scheme and mps-rcm. The stopping criterion
for tfqmr is set to 10−5 and for the inner mrs iterations of the proposed scheme, we use the
same stopping criterion. The right hand side is determined from the solution vector of all
ones.

We note that even though we use Matlab’s built-in functions as much as possible while
implementing the proposed iterative scheme, mps-rcm is entirely using the built-in functions
of Matlab or efficient external libraries. Therefore, no fair comparison in terms of the run-
ning times in Matlab is currently possible. An efficient and parallel implementation of the
proposed scheme requires a lower level programming language such as C/C++ due to the
low-level algorithmic and data structural details that need to be addressed efficiently. For

9

example, the proposed scheme needs efficiently accessing rows and columns of a sparse ma-
trix. At first glance, one might tend to store the matrix both in Compressed Sparse Row
and Column formats, however this approach is doubling the memory requirements. There-
fore, a new storage scheme without much increase in the memory requirements is needed.
Also, efficient and parallel implementation of sparse matrix-vector multiplications, where the
coefficient matrix is symmetric (and shifted skew-symmetric) and parallel sparse triangular
backward/forward sweeps are challenging problems. These are still active research areas by
themselves [1, 6]. Therefore, we leave these issues as future work and focus on the robustness
of the proposed scheme in Matlab.

4.2 Test problems

In this subsection we give the selection criterion and describe the matrices that we use for
numerical experiments. Mps-rcm makes incomplete LU based preconditioned iterative solvers
very robust. Therefore, to identify the most challenging problems, we use mps-rcm to choose a
highly indefinite and challenging set of 10 problems from the SuiteSparse Matrix Collection [7]
in which at least one instance of mps-rcm fails due to failure of incomplete factorization or
stagnation of the Krylov subspace method. Properties of the test problems and their sparsity
plots are given in Table 1 and Figure 3, respectively. All chosen problems are (numerically)
non-symmetric, and only a few of them are structurally symmetric. Bp 200 and bp 600 are
from a sequence of simplex basis matrices in Linear Programming. West0989 and west1505
arise in a chemical engineering plant model with seven and eleven stage column sections,
respectively. Rajat19 is a circuit simulation problem. Rdb1250l, rdb3200l and rdb5000 arise
in a reaction-diffusion Brusselator model. Chebyshev2 is an integration matrix using the
Chebyshev method for solving fourth-order semilinear initial boundary value problems and
finally, Orani678 arises in the economic modeling of Australia.

4.3 Effectiveness of the shifted skew-symmetrizer

The structure of the approximate skew-symmetrizer (S) can be anything. We experimented
with a simple diagonal (Sd) and tridiagonal (St) structures. In Table 2, the dimensions, and
the number of nonzeros for the LLS problem in (9) are given. After that, we obtain a shifted
skew-symmetrized matrix (Â). To evaluate the effectiveness of the scaling and permutation
followed by the approximate skew-symmetrizer, we use three metrics: the skew-symmetry of
the off-diagonals, the distance of the main diagonal to identity, and the condition number. In
Table 3, we depict these for the original matrix, for matrices after MC64 scaling and permuta-
tion, and followed by applying Sd or St, which we call ”Original”, ”MC64”, ”MC64+Sd” and
”MC64+St”, respectively. As expected, for most cases MC64+St has successfully improved
the skew-symmetry of the off-diagonal part compared to the original matrix. One exception
is chebyshev2, which has a condition number of order 1015 and MC64+St has improved both
the condition number and the main diagonal. For all test problems, MC64+St has improved
the main diagonal and for 8 of 10 cases, it has also improved the condition number compared
to the original matrix. In all cases, St improves the skew-symmetry of the off-diagonal part
and the diagonal compared to Sd except chebyshev2. The condition number becomes worse
for 6 cases out of 10 using St. However, this is not an issue since we further precondition the
system in our proposed method.

Spectra of the original, reordered, and skew-symmetrized matrices are given in Figure 4.

10

St (shown in red) does a better job moving the real part of most eigenvalues positive side of
the real axis and clustering them around one, compared to Sd. Therefore, in the following
numerical experiments we use St.

Table 1: Size (n), number of nonzeros (nnz), structural symmetry (Struct. S.), numerical
symmetry (Num. S.) and the problem domains of the test problems.

Matrix n nnz Struct. S. Num. S. Problem Domain

bp 200 822 3, 802 n n Optimization
bp 600 822 4, 172 n n Optimization
west0989 989 3, 518 n n Chemical Process Simulation
rajat19 1, 157 3, 699 n n Circuit Simulation
rdb1250l 1, 250 3, 802 y n Computational Fluid dynamics
west1505 1, 505 5, 414 n n Chemical Process Simulation
cehbyshev2 2, 053 18, 447 n n Structural
orani678 2, 529 90, 158 n n Economics
rdb3200l 3, 200 18, 880 y n Computational Fluid Dynamics
rdb5000 5, 000 29, 600 y n Computational Fluid Dynamics

Table 2: Dimensions and number of nonzeros of the LLS problems associated with the test
problems.

Sd St
Matrix n m nnz n m nnz

bp 200 3, 722 822 3, 802 8, 131 2, 463 11, 404
bp 600 4, 007 822 4, 172 9, 604 2, 464 12, 514
west0989 3, 491 989 3, 518 7, 529 2, 965 10, 549
rajat19 3, 425 1, 157 3, 699 7, 422 3, 469 11, 095
rdb1250l 4, 275 1, 250 7, 300 8, 570 3, 748 21, 892
west1505 5, 382 1, 505 5, 414 11, 598 4, 513 16, 237
chebyshev2 14, 344 2, 053 18, 447 20, 481 6, 157 55, 331
orani678 87, 358 2, 529 90, 158 112, 852 7, 585 270, 465
rdb3200l 11, 040 3, 200 18, 880 7, 422 3, 469 11, 095
rdb5000 17, 300 5, 000 29, 600 34, 645 14, 998 88, 792

4.4 Effectiveness of the deflation

In Figure 5, we present the spectrum of the original I + J̃ (by using incomplete LDLT

factorization of Ĥ with zero fill in) and of the deflated shifted skew-symmetric I+ J̄ after 10,
20 and 50 iterations of the skew-Lanczos process for all test matrices. We note that the scale
of the real axis is negligible for all cases and the spectrum is purely imaginary. Even though
case by case fine-tuning is possible by looking at the spectra, we observe that deflating with
20 vectors gives a meaningful balance between the number of iterations and the orthogonality
between the Lanczos vectors for the test problems, since for 50 vectors the spectrum is worse
and for 10 vectors it does not improve it as much as for 20 vectors. Therefore, in the following
experiments, we use 20 skew-Lanczos vectors.

11

4.5 Iterative solution of general sparse linear systems

In the following numerical experiments we use the proposed method as described earlier. For
the proposed method the number of Lanczos vectors is set to 20. Compared to the non-
deflated version of the proposed method, the number of mrs iterations are 30.8% better on
average when the inner system is deflated with 20 Lanczos vectors for the test problems.
We have also experimented with the skew-Lanczos method with full reorthogonalization for
20 Lanczos vectors and the improvement in the number of iterations is negligible for the
test problems. Since it is used just as a preconditioner, we believe that in general it may
not be necessary to fully or partially reorthgonalize in the skew-Lanczos process. Therefore,
we only report the proposed method with deflation using 20 Lanczos vectors without any
reorthogonalization.

In Table 4, the ranks of M̃r for various incomplete factorizations, as well as the percentages
of the rank with respect to the matrix dimension are given. For the set of test problems the
largest one is 56, which is only 3.7% of the matrix dimension. They are roughly invariant
for incomplete factorization for all problems except rdbl1250l. For the cases when the rank
is zero, we use the preconditioner in (22), otherwise we use the preconditioner in (21). We
have also experimented with the preconditioner in (22) for problems where the rank is not
zero but relatively small. However, the number of iterations has increased significantly even
for the case where rank is equal to one (rdbl3200l with ildl(10−2)). We have tried to solve
the LLS problem with the regularization parameters (10) γ = 0.1, 1 and 10. Since γ = 0.1
and 10 are worse in terms of the number of iterations, we only report the results with γ = 1.

In Table 5, the number of tfqmr iterations for the proposed method and mps-rcm are
given. For the proposed method, we also give the average number of inner iterations in
parenthesis. As seen in the table, for all test problems and regardless of the choice of the
dropping tolerance, the proposed method succeeds. On the other hand, mps-rcm fails for 80%,
90%, and 20% of problems using ilu(0), ilutp(10−1), and ilutp(10−2), respectively. For ilu(0)
the majority of the failures are due to tfqmr stagnating. While for ilutp(10−1) it happens
because of a zero pivot encountered during factorization. As expected, when the dropping
tolerance decreases to 10−2 the failures also decrease since the incomplete factorization is
more like a direct solver. Hence, mps-rcm becomes more robust. When it does not fail,
the required number of tfqmr iterations for mps-rcm is quite low except for rdb5000. The
proposed method, on the other hand, is robust regardless of the quality of the incomplete
factorization for the test problems. There are no failures during the incomplete factorization
and no failures of the iterative scheme. The required number of tfqmr iterations improve
as a more accurate incomplete factorization is used. The number of iterations if ildl(10−2)
is used are comparable to those obtained by mps-rcm with ilutp(10−2). Except, for two
cases (rdb3200l and rdb5000) for which the proposed method is significantly better and for
two other cases (orani678 and rdb1250l) for which mps-rcm is significantly better. For the
proposed method the number of average inner mrs iterations is not dependent on the choice
of the incomplete factorization for all test problems except for rdb1250l; in this case, it is
almost halved when ildl(10−1) is used compared to ∼ ildl(0) and ildl(10−2). We believe this
is due to the fact that for the same matrix using ildl(10−1), the rank of M̃r is 1 which is
much smaller than those of ∼ ildl(0) and ildl(10−1), 36 and 26, respectively.

12

5 Conclusions

A robust two-level iterative scheme is presented for solving general sparse linear system of
equations. The robustness of the scheme is shown on challenging matrices that arise in
various problems which are obtained from the SuiteSparse Matrix Collection. While it requires
some additional preprocessing steps, the results presented in this paper indicate that the
proposed scheme significantly improves the robustness of iterative methods for general sparse
linear systems compared to existing methods. This result is irrespective of the quality of the
incomplete factorization, even for a challenging set of test problems. The proposed scheme
requires some additional memory, but this is shown to be kept within a small percentage of
the problem size. We believe with the introduction of the proposed scheme, iterative solvers
will become much more viable alternatives for solving problems in chemical engineering,
optimizations, economics, etc. Its efficient parallel implementation requires addressing some
algorithmic challenges which we leave as future work.

References

[1] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager, O. Schenk,
J. Thies, and G. Wellein, A recursive algebraic coloring technique for hardware-
efficient symmetric sparse matrix-vector multiplication, ACM Transactions on Parallel
Computing (TOPC), 7 (2020), pp. 1–37.

[2] C. Beattie, V. Mehrmann, H. Xu, and H. Zwart, Port-Hamiltonian descrip-
tor systems, Math. Control Signals Systems, 30:17 (2018), p. Appeared electronically.
https://doi.org/10.1007/s00498-018-0223-3.

[3] M. Benzi, J. C. Haws, and M. Tuma, Preconditioning highly indefinite and nonsym-
metric matrices, SIAM Journal on Scientific Computing, 22 (2000), pp. 1333–1353.

[4] J. R. Bunch, L. Kaufman, and B. N. Parlett, Decomposition of a symmetric
matrix, Numerische Mathematik, 27 (1976), pp. 95–109.

[5] P. Concus and G. H. Golub, A generalized conjugate gradient method for nonsym-
metric systems of linear equations, in Computing Methods in Applied sciences and En-
gineering, Springer, 1976, pp. 56–65.

[6] İ. Çuğu and M. Manguoğlu, A parallel multithreaded sparse triangular linear system
solver, Computers & Mathematics with Applications, 80 (2020), pp. 371–385.

[7] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM
Transactions on Mathematical Software (TOMS), 38 (2011), pp. 1–25.

[8] F. Dopico and F. Uhlig, Computing matrix symmetrizers, part 2: New methods using
eigendata and linear means; a comparison, Linear Algebra and its Applications, 504
(2016), pp. 590–622.

[9] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of
a sparse matrix, SIAM Journal on Matrix Analysis and Applications, 22 (2001), pp. 973–
996.

13

[10] H. Egger, Structure preserving approximation of dissipative evolution problems, Nu-
merische Mathematik, 143 (2019), pp. 85–106.

[11] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-hermitian
linear systems, SIAM Journal on Scientific Computing, 14 (1993), pp. 470–482.

[12] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for
non-hermitian linear systems, Numerische Mathematik, 60 (1991), pp. 315–339.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins Uni-
versity Press, Baltimore, MD, 3rd ed., 1996.

[14] N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, and U. von Wagner,
Numerical methods for parametric model reduction in the simulation of disc brake squeal,
Z. Angew. Math. Mech., 96 (2016), pp. 1388–1405.

[15] C. Greif, S. He, and P. Liu, Sym-ildl: Incomplete ldlt factorization of symmetric
indefinite and skew-symmetric matrices, ACM Transactions on Mathematical Software
(TOMS), 44 (2017), pp. 1–21.

[16] C. Greif and J. M. Varah, Iterative solution of skew-symmetric linear systems, SIAM
Journal on Matrix Analysis and Applications, 31 (2009), pp. 584–601.

[17] HSL, A collection of fortran codes for large scale scientific computation., See http:

//www.hsl.rl.ac.uk, (2007).

[18] R. Idema and C. Vuik, A minimal residual method for shifted skew-symmetric systems,
Tech. Report REPORT 07-09, Delft University of Technology, 2007.

[19] B. Jacob and H. Zwart, Linear port-Hamiltonian systems on infinite-dimensional
spaces, Operator Theory: Advances and Applications, 223, Birkhäuser/Springer Basel
AG, Basel CH, 2012.

[20] H. Ji and Y. Li, A breakdown-free block conjugate gradient method, BIT Numerical
Mathematics, 57 (2017), pp. 379–403.

[21] E. Jiang, Algorithm for solving shifted skew-symmetric linear system, Frontiers of Math-
ematics in China, 2 (2007), pp. 227–242.

[22] M. Manguoglu and V. Mehrmann, A robust iterative scheme for symmetric indefi-
nite systems, SIAM Journal on Scientific Computing, 41 (2019), pp. A1733–A1752.

[23] R. Portase and B. Uçar, On matrix symmetrization and sparse direct solvers, Re-
search Report RR-8977, Inria - Research Centre Grenoble – Rhône-Alpes, Nov. 2016,
https://hal.inria.fr/hal-01398951.

[24] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Com-
puting, 7 (1986), pp. 856–869.

[25] A. J. v. Schaft, Port-Hamiltonian differential-algebraic systems, in Surveys in
Differential-Algebraic Equations I, Springer, 2013, pp. 173–226.

14

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
https://hal.inria.fr/hal-01398951

[26] D. B. Szyld and O. B. Widlund, Variational analysis of some conjugate gradient
methods, East-West Journal of Numerical Mathematics, 1 (1993), pp. 51–74.

[27] B. Uçar, Heurisstics for a matrix symmetrization problem, in Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski,
eds., Berlin, Heidelberg, 2008, Springer Berlin Heidelberg, p. 718727.

[28] A. J. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An intro-
ductory overview, Foundations and Trends in Systems and Control, 1 (2014), pp. 173–378.

[29] H. A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of bi-cg for
the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, 13 (1992), pp. 631–644.

[30] E. Vecharynski and A. V. Knyazev, Absolute value preconditioning for symmetric
indefinite linear systems, SIAM Journal on Scientific Computing, 35 (2013), pp. A696–
A718.

[31] O. Widlund, A Lanczos method for a class of nonsymmetric systems of linear equations,
SIAM Journal on Numerical Analysis, 15 (1978), pp. 801–812.

[32] J. Zhang, Preconditioned Krylov subspace methods for solving nonsymmetric matrices
from cfd applications, Computer methods in Applied Mechanics and Engineering, 189
(2000), pp. 825–840.

A Shifted skew-symmetrizer matlab code

1 func t i on S = skew symmet r i z e spa r s e r i gh t (A, n , gamma, S)
2 % Find S such tha t o f f−d iaogna l s o f AS are skew−symmetric
3 % and the d iagona l o f AS i s as c l o s e to the i d e n t i t y as p o s s i b l e .
4 %
5 % Input
6 % A: square (nxn) , sparse input matrix
7 % n : s i z e o f A
8 % gamma: a p o s i t i v e r e g u l a r i z a t i o n parameter
9 % S : a s p a r s i t y pa t t e rn o f the S matrix

10 % Output
11 % S : the g iven s p a r s i t y s t r u c t u r e such tha t AS i s as
12 % sh i f t e d skew−symetr ix as p o s s i b l e
13 %
14
15 % compute the s p a r s i t y s t r u c t u r e o f AS
16 AA = spones (A)∗ spones (S) ;
17
18 % spa r s i t y s t r u c t u r e o f the s t r i c t l y upper t r i an gu l a r par t
19 % each nonzero de f i n e s one e q u a l i t y in the LLS problem
20 U = t r i u (AA+AA’ , 1) ;
21
22 % number o f equat ions o f the LLS fo r the symmetry requirement only
23 neq = nnz (U) ;
24
25 % and t h e i r i nd i c e s
26 [I , J] = f i nd (U) ;
27
28 % ex t r a c t the i nd i c e s o f unknowns in column major order
29 I I = f i nd (S) ;
30

15

31 % number o f unknowns
32 nu = length (I I) ;
33
34 % place ” the compressed” ind i c e s in the corresponding nonzero en t r i e s
35 S(I I) = [1 : nu] ;
36
37 % Al l oca t e the LLS c o e f f c i e n t matrix
38 B = spar s e (neq+n , nu) ;
39
40 % for each nonzero : (AS) i j
41 f o r i =1:neq
42 % Our e q u a l i t y i s :
43 % (AS) i j + (AS) j i = 0
44 % f i r s t we need to determine those i nd i c e s o f nonzeros t ha t con t r i bu t e to the e q u a l i t y
45 ASij = spones (A(I (i) , :)) ’ . ∗ spones (S (: , J (i))) ;
46 ASji = spones (A(J (i) , :)) ’ . ∗ spones (S (: , I (i))) ;
47
48 INDij=f i nd (ASij) ;
49 B(i , S (INDij , J (i))) = A(I (i) , INDij) ;
50
51 INDji=f i nd (ASji) ;
52 B(i , S (INDji , I (i))) = A(J (i) , INDji) ;
53
54 end
55
56 % add i t i ona l c on s t r a i n t s to ob ta in ones on the main d iagona l
57 f o r i =1:n
58 ASi i = spones (A(i , :)) ’ . ∗ spones (S (: , i)) ;
59 INDii=f i nd (ASi i) ;
60 B(i+neq , S(INDii , i)) = sq r t (gamma)∗A(i , INDii) ;
61 end
62
63 % se t the r i g h t hand s i d e vec to r
64 v = [z e ro s (neq , 1) ; s q r t (gamma)∗ ones (n , 1)] ;
65
66 % Solve the sparse LLS problem
67 x = B\v ;
68
69 % map so l u t i on back to S matrix
70 S(I I) = x ;
71
72 re turn

B Shifted skew-symmetric iterative solver for multiple right
hand side vectors based on simultaneous mrs iterations

1 func t i on [x , i t s , res , r e l r e s h i s t] = mrs (alpha , S , b , maxit , t o l)
2 %so l v e s l i n e a r systems (a lpha ∗ I + S) x = b
3 % where b and x are o f s i z e nxnrhs
4 % Input
5 % alpha : a s ca l a r
6 % S : a sparse skew−symmetrix matrix
7 % b : the r i g h t hand s i d e vec to r
8 % maxit : maximum number o f i t e r a t a t i o n s
9 % t o l : s topp ing t o l e rance

10 % Output
11 % x : s o l u t i on vec tor
12 % i t s : number o f i t e r a t i o n s
13 % res : f i n a l r e s i d u a l s
14 % r e l r e s h i s t : r e l a t i v e r e s i d ua l h i s t o r y
15
16 [n , nrhs] = s i z e (b)
17
18 x = ze ro s (n , nrhs) ;
19 r = b ;

16

20
21 f o r j =1: nrhs
22 r0 (j) = norm(r (: , j) , 2) ;
23 r e l r e s h i s t (j) = [r0 (j)/ r0 (j)] ;
24 s (j) = r0 (j) ;
25 q (: , j) = r (: , j)/ s (j) ;
26 beta (j) = 0 ;
27 theta1 (j) = alpha ;
28 c o l d (j) = 1 ;
29 s o l d (j) = 0 ;
30 de l t a (j) = 0 ;
31 d e l t a o l d (j) = 0 ;
32 end
33 q o ld = ze ro s (n , nrhs) ;
34 p o ld = ze ro s (n , nrhs) ;
35 p o ld2 = ze ro s (n , nrhs) ;
36
37
38 f o r i =1:maxit
39 q new = S∗q + q o ld ∗diag (beta) ;
40 q o ld = q ;
41 f o r j =1: nrhs
42 beta (j) = norm(q new (: , j) , 2) ;
43 i f (beta (j) ˜= 0) q (: , j) = q new (: , j)/ beta (j) ; end
44 end
45 theta = sq r t (theta1 .∗ theta1 + beta .∗ beta) ;
46 c k = theta1 . / theta ;
47 s k = beta . / theta ;
48 de l t a = −s o l d .∗ beta ;
49 theta1= c o ld .∗ theta ;
50
51 p = (q o ld − p o ld2 ∗diag (d e l t a o l d))∗ diag (1 . / theta) ;
52
53 x = x + p∗diag (s)∗ diag (c k) ;
54 s = −s .∗ s k ;
55
56 r e l r e s h i s t = [r e l r e s h i s t ; abs (s) . / r0] ;
57
58 i f (max(abs (s) . / r0)< t o l)
59 i t s = i
60 f o r j = 1 : nrhs
61 r e s (j) = norm(b (: , j)−alpha ∗x (: , j)−S∗x (: , j) , 2) ;
62 end
63 r e l r e s = r e s . / r0 ;
64 break ;
65 end
66
67 p o ld2 = p o ld ;
68 p o ld = p ;
69 s o l d = s k ;
70 c o l d = c k ;
71 d e l t a o l d = de l t a ;
72
73 end

17

(a) bp 200 (b) bp 600 (c) west0989

(d) rajat19 (e) rdb1250l (f) west1505

(g) chebyshev2 (h) orani678 (i) rdb3200l

(j) rdb5000

Figure 3: Sparsity structures of the test matrices.

18

(a) bp 200 (b) bp 600 (c) west0989

(d) rajat19 (e) rdb1250l (f) west1505

(g) chebyshev2 (h) orani678 (i) rdb3200l

(j) rdb5000

Figure 4: Spectrum of the original matrix, after applying MC64 and shifted skew-
symmetrizers.

19

Table 3: The effect of MC64 and the shifted skew symmetrizer. In the table Skew-symmetry,
Diagonal and Cond denote ||(X −XT)/2||F /||X −D(X)||F , ||D(X)− I||F and the condition
number of X, respectively and rounded to one decimal place where X is either the original
matrix, after applying MC64, MC64 followed by Sd or MC64 followed by St in which Sd and
St are diagonal and tridiagonal shifted skew-symetrizers, respectively.

Matrix Original MC64 MC64+Sd MC64+St

bp 200
Skew-symmetry 70.7% 71% 70.7% 86.2%
Diagonal 28.7 35.8 12.2 11.6
Cond 6.4× 106 4.0× 102 4.8× 102 1.0× 104

bp 600
Skew-symmetry 70.7% 70.7% 71.3% 74.8%
Diagonal 28.7 36.6 13.2 12.7
Cond 1.5× 106 3.2× 102 3.5× 102 7.8× 103

west0989
Skew-symmetry 70.7% 70.7% 70.7% 100%
Diagonal 2.3× 104 28.8 13.4 12.6
Cond 9.9× 1011 6.7× 103 8.3× 103 9.3× 105

rajat19
Skew-symmetry 28.4% 67.1% 68.1% 83.4%
Diagonal 33.9 29.5 11.9 9.8
Cond 1.1× 1010 2.3× 1010 1.1× 1011 5.7× 1010

rdb1250l
Skew-symmetry 49% 56.2 % 55.4% 97.9%
Diagonal 690.8 70.7 17.2 9.8
Cond 4.7× 102 4.9× 102 3.6× 102 3.1× 102

west1505
Skew-symmetry 70.7% 70.7% 70.7% 100%
Diagonal 2.3× 104 35.9 16.6 15.7
Cond 1.6× 1012 8.8× 103 1.1× 104 1.2× 106

chebyshev2
Skew-symmetry 70.7% 11.8% 7.6% 37.4%
Diagonal 898.5 3.5 21.9 21.9
Cond 5.5× 1015 8.6× 109 2.9× 1010 1.5× 1010

orani678
Skew-symmetry 70.7% 70.8% 70.6% 100%
Diagonal 53.5 97.5 15.2 15.1
Cond 9.6× 103 7.5× 103 1.2× 104 6.4× 106

rdb3200l
Skew-symmetry 21.9% 27.9% 27.1% 99.7%
Diagonal 2.5× 103 113.1 20.6 12
Cond 1.1× 103 9× 102 8.2× 102 7.3× 102

rdb5000
Skew-symmetry 14.4% 18.3% 17.9% 99.9%
Diagonal 4.8× 103 141.4 24.6 14.1
Cond 4.4× 103 3× 103 2.8× 103 3.6× 103

20

Table 4: Rank of M̃r and its percentage with respect to the matrix dimension (r
n × 100)

rounded to one decimal place in parenthesis.

Matrix ∼ ildl(0) ildl(10−1) ildl(10−2)

bp 200 33(4%) 32(3.8%) 32(3.8%)
bp 600 48(5.8%) 46(5.6%) 45(5.5%)
west0989 35(3.5%) 32(3.2%) 35(3.5%)
rajat19 38(3.3%) 38(3.3%) 38(3.3%)
rdb1250l 36(2.9%) 1(0.1%) 26(2.1%)
west1505 54(3.6%) 55(3.7%) 56(3.7%)
chebyshev2 5(2%) 7(0.3%) 7(0.3%)
orani678 19(0.8%) 26(1%) 28(1.1%)
rdb3200l 0(0%) 0(0%) 1(0%)
rdb5000 0(0%) 0(0%) 0(0%)

Table 5: Number of tfqmr iterations. The average number of inner mrs iterations for the
proposed method rounded to one decimal place is given in parenthesis. ∗: tfqmr stagnated,
†: tfqmr reached the maximum number of iterations (2, 000) without reaching the required
relative residual, ‡: zero pivot is encountered during factorization.

Proposed method mps-rcm
Matrix ∼ ildl(0) ildl(10−1) ildl(10−2) ilu(0) ilutp(10−1) ilutp(10−2)

bp 200 26(53.6) 88(54.4) 3(55.8) † ‡ 2
bp 600 15(65.7) 33(66.6) 4(67) † ‡ 2
west0989 74(134.6) 45(106.9) 3(105.5) ∗ 20 1
rajat19 10(35.6) 46(35.8) 17(35.2) ‡ ‡ ‡
rdb1250l 90(66.7) 10(37.1) 49(71.8) ∗ ‡ 10
west1505 57(162.9) 75(166.9) 1(163) † ‡ 1
chebyshev2 10(15.9) 15(12) 14(15.6) 1 ‡ ‡
orani678 15(229.3) 13(235.9) 12(249) 15 ‡ 4
rdb3200l 9(63.6) 15(61) 3(69.1) ∗ ‡ 20
rdb5000 8(100.6) 16(101.5) 6(100.9) ∗ † 129

21

(a) bp 200 (b) bp 600 (c) west0989

(d) rajat19 (e) rdb1250l (f) west1505

(g) chebyshev2 (h) orani678 (i) rdb3200l

(j) rdb5000

Figure 5: Spectrum of the original skew-symmetric matrix and after deflation.

22

	1 Introduction
	2 A sparse approximate shifted skew-symmetrizing preconditioner
	3 A bilevel iterative scheme
	3.1 Solution of sparse shifted skew-symmetric sytems
	3.2 Improving the spectrum of shifted skew-symmetric systems via deflation

	4 Numerical results
	4.1 Implementation details for the numerical experiments
	4.2 Test problems
	4.3 Effectiveness of the shifted skew-symmetrizer
	4.4 Effectiveness of the deflation
	4.5 Iterative solution of general sparse linear systems

	5 Conclusions
	A Shifted skew-symmetrizer matlab code
	B Shifted skew-symmetric iterative solver for multiple right hand side vectors based on simultaneous mrs iterations

