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Abstract. In this article, we continue our work [11] on time-domain decomposition of optimal
control problems for systems of semilinear hyperbolic equations in that we now consider mixed two-
point boundary value problems and provide an in-depth well-posedness analysis. The more general
boundary conditions signi�cantly enlarge the scope of applications, e.g., to hyperbolic problems on
metric graphs with cycles. We design an iterative method based on the optimality systems that can be
interpreted as a decomposition method for the original optimal control problem into virtual control
problems on smaller time domains.

1. Introduction

In this article, we are concerned with an iterative and completely parallel time-domain decom-
position technique for optimality systems associated to optimal control problems for semilinear,
one-dimensional, hyperbolic systems with general mixed two-point boundary conditions. The main
interest is to design an iterative method such that the time-wise decomposed optimality system at
each iteration is by itself an iteration of parallel optimality systems on the smaller time-domains. In
the following, we explain the context more speci�cally and provide (non-exhaustive) references
to the literature. Time-domain decomposition for partial di�erential equations (PDEs) has been a
subject of intense research in the past. Let a partial di�erential equation with respect to space and
time be given with time domain [0,T ]. Often in the applications, the time horizon is very large and,
hence, the computation of the entire time evolution of the system is very costly. The desire is to
apply a time-domain decomposition that allows to reduce the original problem on the long time
horizon to similar problems on a short time interval such that the sub-problems can be treated in
parallel. To be more precise, one introduces a coarse time discretization of [0,T ] into a disjoint union
of subintervals Ik := [Tk ,Tk+1] with [0,T ] = cl(∪Kk=1(Tk ,Tk+1)) such that on each subinterval Ik ,
the same PDE is solved together with time-like transmission conditions at the breakpoints Tk that
couple the states at the current iteration n + 1 with those at iteration n. This approach is not new,
in principle, and can be traced back to the contributions to the seminal paper [20] by J. L. Lions et
al., in which the so-called “parareal”-scheme has been introduced, which, in turn, has later been
identi�ed as a variant of the common multiple-shooting method; see, e.g., [7]. These methods, see
also [21, 22], which consist of a coupling of coarse grain discrete-in-time solutions at the break
points with a parallel computation of full (respectively, small grain) solutions on the subintervals,
were �rst developed for the mere simulation of nonlinear PDEs. In the article [13], the authors,
for the �rst time, considered the time-domain decomposition of optimal control problems for the
time-dependent Maxwell system. Later, in [12], a broad number of such problems—even combined
with a spatial domain decomposition for PDEs on networked domains—have been investigated. We
also refer to [1, 5, 6, 28, 29] as well as [10, 26], where methods related to multiple-shooting have
been provided along with applications for the heat equation also in the context of optimal control
problems. A distinguishing feature of the method in [12–14] is the fact mentioned above, namely,
that the iterative time-domain decomposition is applied to the optimality system of the original
optimal control problem on the time domain [0,T ] in such a way that the decomposed problems
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are by themselves optimality systems corresponding to so-called virtual control problems on the
subintervals Ik . Thus, the fully parallel iteration can be seen as one of optimal control problems on
the subintervals. The analysis here is provided on the continuous level and relies on the fact that
the state variables evolve forwardly in time, whereas the adjoint variable progresses backwardly. A
time-domain decomposition for semilinear optimal control problems that enjoys this distinguishing
feature has been considered in [11] for separated two-point boundary conditions. It turns out that
in a number of important applications, including problems on metric graphs with cycles, such
separated two-point initial boundary value problems are not applicable. The goal of this article is to
extend the time-domain decomposition method of [12, 14], that has been the conceptual bases for
[11], to optimal control problems involving semilinear hyperbolic systems of conservation laws with
more general boundary conditions. Moreover, in this article, we restrict ourselves to coe�cients
constant with respect to time. This enables us to add a complete well-posedness analysis based on
semilinear perturbations of linear semi-groups.

We emphasize that the resulting algorithm is derived in analogy to the classic spatial domain
decomposition for elliptic problems by P. L. Lions [18] which was, in turn, interpreted by Glowinski
and LeTallec [8] as a variant of a Uzawa-type saddle-point iteration. The relaxation that we introduce
in Section 5, represented by the parameter ε ∈ [0, 1), is related to a damped Richardson ansatz. This
indicates that, in general, very rapid convergence may not take place. However, in very special cases,
in particular for separated boundary conditions, distributed controls and simple homogeneous state
equations, we observe almost “two-step-convergence”, as in optimized non-overlapping Schwarz
iterations. See [11] for details and numerical experiments and [12] for a general discussion.

We are particularly interested in applications that focus on processes on metric graphs or
networks containing cycles. As an example, we will focus on networks of semilinear strings or rods.
Systems that are related to gas �ow in pipe networks are easily seen to �t into the framework of
this article—for the model; see, e.g., [9, 15]. Such problems on metric graphs with cycles, where the
edges, which are representative of the spatial domains of the corresponding PDEs, are coupled at
the vertices of the graph, can be transformed into mixed two-point initial boundary value problems
with a possibly large number of state variables; see Example 1 for further explanation.

The remainder of the article is organized as follows. We begin with the problem statement
in Section 2, where we include a detailed discussion of an example of a network of controlled
strings or rods, possibly including cycles. In this example, a local nonlinear damping term is present
along some or all strings involved together with nonlinear boundary conditions. In Section 3, we
introduce the time-domain decomposition method for the overall optimality system into systems
on the subintervals and show in which way these decomposed systems are themselves optimality
systems for “virtual” optimal control problems on the subintervals. In Section 4, we discuss the
well-posedness of the underlying systems. In Section 5, we discuss the convergence of the iteration
for unconstrained controls, while the constrained case is considered in Section 6, however, for the
linear case only. As the nonlinearities are not assumed to be explicitly given by speci�c functions
and the corresponding Nemytskij operators, we will rely on bounds, regularity, and smallness
assumptions as well as use the control structure to compensate for nonlinear e�ects. Finally, the
paper closes with some concluding remarks in Section 7.

2. Problem Statement

Let y(t, x) ∈ Rd , t ∈ [0,T ], x ∈ [0, L], denote the state and let

Λ(x) = diag (λ1(x), . . . , λm(x), λm+1(x), . . . , λd (x)) ∈ R
d×d

with
λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x) > 0 > λm+1(x) ≥ · · · ≥ λd (x)

for all (x) ∈ [0, L] represent the physics of the system, taken in characteristic coordinates to make
the mathematical description simpler. We use the block-matrix abbreviation

λ(x) = diag
(
Λ+(x),Λ−(x)

)
,

with Λ+(x) := diag(λ1(x), . . . , λm(x)) and Λ−(x) := diag(λm+1(x), . . . , λd (x)). Accordingly, we
denote the �rst m components of the state by y+ and the remaining d −m components by y− such
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that y = (y+,y−). In order to describe our boundary conditions, we introduce a block matrix K as
follows

K :=
[
K00 K01

K10 K11

]
, K00 ∈ Rm×m, K01 ∈ Rm×d−m, K10 ∈ Rd−m×m, K11 ∈ Rd−m×d−m . (1)

Alluding to this block structure and for the sake of simplicity, we introduce boundary controls u for
negative components only. The corresponding input operator is given by

B :=
(

0
Bb

)
,

while Bd signi�es the input operator for distributed controls v . We consider mixed two-point
boundary value problems for systems of hyperbolic semilinear equations of the form

∂ty + Λ(x)∂xy +My = f (y) + Bdu, (t, x) ∈ (0,T ) × (0, L), (2a)(
y+(t, 0)
y−(t, L)

)
= K

(
y+(t, L)
y−(t, 0)

)
+ Bv t ∈ (0,T ), (2b)

y(0, x) = y0(x), x ∈ (0, L), (2c)

u(t) ∈ U d
ad, a.e. in (0,T ), (2d)

v(t) ∈ U b
ad, a.e. in (0,T ), (2e)

We have introduced a matrix M ∈ Rd×d to allow for a linear coupling on the distributed PDE-level,
which is useful if one resorts to linear systems of equations or to those with small nonlinearities. The
functions fj , j = 1, . . . ,d , are di�erentiable and satisfy Lipschitz conditions to be speci�ed below.
Moreover, u and v are taken to represent boundary and distributed controls, respectively, where
u(t, x) ∈ Rd , v(t) ∈ Rm , are constrained a. e. by closed and convex sets U d

ad and U b
ad. If U d

ad = R
d ,

U b
ad = R

m , then controls are unrestricted. Finally, y0(x) ∈ R
d for x ∈ [0, L] denotes the initial data.

We should note that the boundary conditions in (2) are in accordance with the standard formulation
as in Chapter 6 of [2]. Under these conventions, System (2) is a controlled hyperbolic and semilinear
system. In addition to (2), we consider the natural tracking-type cost function

J (w,y) :=
κ

2

∫ L

0
‖y(T ) − ydt ‖ dx +

µ

2

∫ T

0

∫ L

0
‖y − yd ‖

2 dx dt

+
ν

2

∫ T

0

∫ L

0
‖u‖2 dx dt +

ρ

2

∫ T

0
‖v(t)‖2 dt

(3)

with w = (u,v). The considered control problem is thus given by
min
w ,y

J (w,y) s.t. (w,y) satis�es (2). (4)

It is a matter of standard variations to derive the adjoint system from the Lagrangian function

L(w,y,p) = J (w,y) +
d∑
i=1

∫ T

0

∫ L

0
(∂ty + Λ(x)∂xy +My − f (y) − Bdu)i pi dx dt .

The details are left to the reader. We obtain the following optimality conditions governing the
adjoint variable p:

∂tp + Λ(x)∂xp(∂xΛ(x) −M
>p + f ′(y)>)p = µ(y − yd ), (t, x) ∈ (0,T ) × (0, L),(

p+(t, L)
p−(t, 0)

)
= K̃

(
p+(t, 0)
p−(t, L)

)
, t ∈ (0,T ),

p(T , x) = − κ(y(T ) − ydt ), x ∈ (0, L).

(5)

Here, the boundary matrix K̃ is given by

K̃ := diag(Λ+(L)−1, |Λ−(0)−1 |)K> diag(Λ+(0)−1, |Λ−(L)−1 |), (6)
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where we used the absolute value signs to indicate absolute values of the diagonal entries. By taking
the directional derivative of L(w,y,p) w.r.t. u in the direction û we obtain∫ T

0

∫ L

0

(
νv − B>d p

)
(v̂ −v) dx dt ≥ 0 for all v̂ ∈ U d

ad. (7)

and, similarly, for v we get∫ T

0

(
ρ(t)u − B>b |Λ

−(L)|p−(t, L)
)
(û(t) − u(t)) dt ≥ 0 for all û ∈ U b

ad. (8)

Obviously, in the case of no constraints on the control, the optimality conditions (7) and (8) reduce
to

v(t) =
1
ρ
B>b |Λ

−(L)|p(t, L), t ∈ (0,T ), (9)

u(t) =
1
ν
B>d p, (t, x) ∈ (0,T ) × (0, L). (10)

Example 1 (A network of strings). We consider a star-graph consisting ofm strings or rods connected
at a multiple node located at x = 0. The individual strings are stretched along an interval [0, L].
Each string is represented by a displacementwi (t, x) for x ∈ [0, L] and t ∈ [0,∞). Indeed, we assume
that there is a spatio-temporal axial loading ci (t, x). These strings or rods form a network located in
the plane andwi (t, x) is either the out-of-the-place displacement of the ith string or the longitudinal
displacement of the ith rod. We assume that the strings (or rods) satisfy a semilinear damped wave
equation such that at x = 0, the displacements are equal for all times and the sum of forces is 0. At
the simple nodes, i.e., at x = L, the strings i = 2, . . . ,m are subject to dissipative controlled boundary
conditions, while string i = 1 is clamped. The corresponding system can be written as

∂t twi − ∂x (ci∂xwi ) + bi (∂twi )) = Bdu in (0,T ) × (0, L), i = 1, . . . ,m, (11a)
wi (t, 0) = w j (t, 0) in (0,T ), i, j = 1, . . . ,m, (11b)

m∑
i=1

ci (t, 0)∂xwi (t, 0) = 0 in (0,T ), (11c)

wm(t, L) = 0, in (0,T ), (11d)
∂xwi (t, L) = vi (t) in (0,T ), i = 2, . . . ,m, (11e)
wi (0, x) = wi0(x) in (0, L), i = 1, . . . ,m, (11f)
∂twi (0, x) = wi1(x) in (0, L), i = 1, . . . ,m. (11g)

We now transform (11) into the format (2). In a �rst step, we transform (11a) into a 2 × 2-system,
assuming for simplicity ci (x) = ci . To this end, we set

zi1 :=
1
2

(
∂twi −

√
ci∂xwi

)
, zi2 :=

1
2

(
∂twi +

√
ci∂xwi

)
.

Hence
∂twi = (zi1 + zi2), ∂xwi =

1
√
ci
(zi2 − zi1)

and, therefore

∂t

(
zi1
zi2

)
+

[√
c 0

0 −
√
c

]
∂x

(
zi1
zi2

)
= −bi

(
1
2
(zi1 + zi2)

) (
1
1

)
.

We de�ne
yi = zi1 for i = 1, . . . ,m, yi = z(i−m)2 for i =m + 1, . . . ,d .

For the sake of simplicity, we assume that the tensions are equal at x = 0 for all times; i.e., ci (t, 0) =
c j (t, 0) holds for all t ∈ [0,T ]. Then, the transmission conditions (11b) and (11c) can be equivalently
written as

©«
y1
...
ym

ª®®¬ (t, 0) = −
1
m


m − 2 −2 · · · −2
−2 m − 2 · · · −2
...

...
. . .

...
−2 −2 · · · m − 2


©«
ym+1
...
yd

ª®®¬ (t, 0). (12)
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Notice that without the assumption on the axial loads at x = 0, the matrix on the right-hand side
becomes non-symmetric which, in turn, is not a problem in principle. We introduce the matrix S such
that

(Sφ)i :=

(
2
m

m∑
j=1

φ j − φi

)
.

Thus, (12) reads as Y+(0) = SY−(0). The matrix S has nice properties. It can be interpreted as a
scattering matrix. In particular,

m∑
i=1
(Sφ)i =

m∑
i=1

φi and SSφ = φ

holds. At x = L, we have, at least formally for su�ciently regular states,

∂twm(t, L) = 0 =⇒ z11(t, L) + z12(t, L) = 0 =⇒ ym(t, L) = −yd (t, L)

for the clamped string and

∂xwi (t, L) = vi (t) =⇒ zi2(t, L) − zi1(t, L) =
√
civi (t)

for the other strings. This provides the boundary conditions at the end x = L:

ym(t, L) = −yd (t, L),

yi (t, L) = ym+i (t, L) + hi (t, 2ym+i (t, L) +vi (t)), i = 1, . . . ,m − 1.

Thus, with K00 = 0,K11 = 0, as well as K01 = S and K10 = diag(−1, . . . ,−1), we obtain the boundary
condition (

y+(t, 0)
y−(t, L)

)
=

[
0 K01

K10 0

] (
y+(t, L)
y−(t, 0)

)
.

Thus, our example is of the format (2), however, with separated boundary conditions.

Remark 1. We remark that there are many more examples—in particular for systems of semilinear
hyperbolic balance laws on metric graphs—that exactly �t into this framework. These are, e.g., networks
of open channels with the dynamics governed by the shallow water equations with wall friction (see,
e.g., [17]), or networks of gas pipelines [15]. Moreover, networks of semilinear Timoshenko beams [16]
can be written in the framework of (2) as well.

Example 2 (A network of strings with a cycle). Here, we consider the simplest network that contains
a cycle, namely a triangle. We take the same model equations as in the example above, now for three
strings:

∂t twi − ∂xxwi + bi (∂twi ) = Bdu in (0,T ) × (0, L), i = 1, 2, 3,
w1(t, 0) = w3(t, L) in (0,T ),
w1(t, L) = w2(t, 0) in (0,T ),
w2(t, L) = w3(t, 0) in (0,T ),

∂xw1(t, 0) = ∂xw3(t, L) + u1(t) ∂xw1(t, L) = ∂xw2(t, 0) + u2(t),

∂xw2(t, L) = ∂xw3(t, 0) in (0,T ),
wi (0, x) = wi0(x) in (0, L), i = 1, 2, 3,
∂twi (0, x) = wi1(x) in (0, L), i = 1, 2, 3.

In this case it easily deduced by the same analysis as in the �rst example that the boundary conditions
now are given by (

y+(t, 0)
y−(t, L)

)
=

[
K00 0

0 K11

] (
y+(t, L)
y−(t, 0)

)
+ Bb

(
u1
u2

)
,
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where now

K00 :=

0 0 1
1 0 0
0 1 0

 , K11 :=

0 1 0
0 0 1
1 0 0

 , K := diag(K00,K11)

Bb :=
1
2

[
B+b
B−b

]
, B+b :=


−1 0
0 1
0 0

 , B−b :=


0 1
0 0
−1 0

 .
It is remarkable that K3 = id, which re�ects the fact that the longest path has length 3.

3. Time-Domain Decomposition

We now embark on time-domain decomposition of the optimal control problem by decomposing
the optimality system (2), (5)–(8). The procedure pursued in this article is the same as in [11] and is,
in turn, very much inspired by [14], where the linear wave equation and the Maxwell equations
are considered. As discussed at the beginning, the novelty here is the more general boundary
condition and the well-posedness analysis. We introduce a coarse time discretization so that we
obtain [Tk ,Tk+1] × (0, L) with

0 = T0 < T1 < · · · < Tk < Tk+1 < · · · < TK < TK+1 = T .

We now formulate the time-domain decomposition procedure for the general optimality system (2),
(5)–(8) and then focus on the case of unconstrained controls u, v and quadratic costs as in (3)
for a proof of convergence in the next sections. We denote the restrictions of yk , pk , uk , vk to
Qk := Ik × (0, L) with Ik := (Tk ,Tk+1) by

yk := y |Qk , pk := p |Qk , uk := u |Qk , vk := v |Ik .
The idea is to satisfy the continuity conditions

yk (Tk+1) = yk+1(Tk+1), k = 0, . . . ,K − 1,
pk (Tk+1) = pk+1(Tk+1), k = 0, . . . ,K − 1, (13)

in the limit of an iterative procedure. We therefore use the decoupling
yn+1
k (Tk+1) + βp

n+1
k (Tk+1) = ϕ

n
k ,k+1, k = 0, . . . ,K − 1,

yn+1
k (Tk ) − βp

n+1
k (Tk ) = ϕ

n
k ,k−1, k = 1, . . . ,K,

(14)

together with the update rule
ϕnk ,k+1 = (1 − ε)

(
ynk+1(Tk+1) + βp

n
k+1(Tk+1)

)
+ ε

(
ynk (Tk+1) + βp

n
k (Tk+1)

)
, k = 0, . . . ,K − 1,

ϕnk ,k−1 = (1 − ε)
(
ynk−1(Tk ) − βp

n
k−1(Tk )

)
+ ε

(
ynk (Tk ) − βp

n
k (Tk )

)
, k = 1, . . . ,K,

(15)

and β > 0, 0 ≤ ε < 1, n = 0, 1, 2, . . .

Remark 2. Suppose that the iteration (14), (15) converges for n → ∞, where yk , pk , uk , vk solve
(2), (5)–(8) on Qk . Then, (14) holds without iteration indices n and n + 1. As a result, the iteration
updates (15) and the decoupling (14) reduce to

(1 − ε) (yk (Tk+1) + βpk (Tk+1)) = (1 − ε) (yk+1(Tk+1) + βpk+1(Tk+1)) ,

(1 − ε) (yk (Tk ) − βpk (Tk )) = (1 − ε) (yk−1(Tk ) − βpk−1(Tk )) ,

where we may divide by (1 − ε) and shift the second equation by k → k + 1 to obtain

yk (Tk+1) + βpk (Tk+1) = yk+1(Tk+1) + βpk+1(Tk+1),

yk+1(Tk+1) − βpk+1(Tk+1) = yk (Tk+1) − βpk (Tk+1).

Adding the last two equations leads to

yk (Tk+1) = yk+1(Tk+1), pk (Tk+1) = pk+1(Tk+1).

Thus, (13) is satis�ed and in the limit and the continuity conditions hold. Therefore, the non-overlapping
domain decomposition (14), (15) appears reasonable.
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In view of this remark, we propose the time-domain decomposition
∂ty

n
k + Λ(x)∂xy

n
k +My

n
k = fk (y

n
k ) + Bdu

n
k , (t, x) ∈ Qk ,

∂tp
n
k + Λ(x)∂xp

n
k + (∂xΛ(x) −M

T )pnk = (y
n
k − yk ), (t, x) ∈ Qk ,(

y+,nk (t, 0)
y−,n(t, L)

)
= K

(
y+,n(t, L)
y−,n(t, 0)

)
+ Bbv

n
k (t), t ∈ Ik ,(

p+,n(t, L)
p−,n(t, 0)

)
= K̃

(
p+,n(t, 0)
p−,n(t, L)

)
, t ∈ Ik ,

(16)

of System (5)–(8) together with (7), (8) and (14), (15), which have to be extended by
yn0 (0, ·) = y0 and pnK (TK+1, ·) = 0.

For k = 1, . . . ,K − 1, we now introduce so-called virtual controls дk ,k−1(x) for x ∈ (0, L) in the
sense of [12, 14] and consider the following virtual control problem on Qk :

min
дk ,k−1,wk ,yk

Jk (wk ,yk ) +
1

2β
(
‖yk (Tk+1) − ϕk ,k+1‖

2 + ‖дk ,k−1‖
2)

s.t. ∂tyk + Λ(x)∂xyk +Myk = fk (yk ) + Bdu, (t, x) ∈ Qk ,(
y+k (t, 0)
y−(t, L)

)
= K

(
y+(t, L)
y−(t, 0)

)
+ Bbvk (t), t ∈ Ik ,

y(Tk , x) = ϕk ,k−1 + дk ,k−1, x ∈ (0, L),

u(t) ∈ U d
ad a. e. in Ik ,

v(t) ∈ U b
ad a. e. in Ik ,

(17)

where Jk (wk ,yk ) is given by (3) restricted to Qk . Suppose that the controls дk ,k−1, uk , vk , and
the state yk are optimal for the virtual control problem (17). Then, formally, the corresponding
optimality system for yk ,pk is such that yk , pk satisfy (7), (8) and (14), (15), (16). In particular, the
optimal virtual control дk ,k−1 is given by

дk ,k−1 = βpk (Tk ).

The proof of this statement is straightforward and is, therefore, left to the reader.

Remark 3. The virtual control problems for k = 1, . . . ,K − 1 have to be complemented by a corre-
sponding problem for k = 0 and k = K , respectively. Clearly, for k = 0 no additional virtual control is
needed as

y0(T0) = y0(0) = y(0) = y0

is given data, while at k = K ,
pK (TK+1) = pK (T ) = p(T )

is prescribed and, therefore, no penalty term for the upper transmission condition is needed.

As for the existence of optimal controls for problem (4), we refer to the next section.

4. Well-Posedness

4.1. Strong and Mild Solutions. The semilinear format of (2) provides the possibility to handle
questions about well-posedness of both the forward and the backward problem in a unifying manner.
To this end, we de�ne the �rst-order di�erential expression A0 by

A0y := −Λ(x)dxy −My.
Let µ ≥ 0 be a weight and introduce the weight function

γµ (x) =

{
e−µx , i = 1, . . . ,m,
eµ(x−1), i =m + 1, . . . ,d .
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We can then introduce a weighted Hilbert space L2
µ (0, L))d =: Hµ , which is isomorphic to the

standard space L2(0, L))d . Now, we can write

D(A) :=

{
y ∈ Hµ : A0y ∈ Hµ ,

(
y+(0)
y−(L)

)
= K

(
y+(L)
y−(0)

) }
and integration by parts in the weighted space as in [2]. The adjoint operator A∗ is given by

A∗φ = Λ(x)dxφ + M̃φ

with
M̃ := −D(x)−1MTD(x) + µ diag(Λ+(x), |Λ−(x)|),

D(x) := diag(D+(x),D−(x)),
D+(x) := diag(exp (µ(L − x)), i = 1, . . .m),
D−(x) := diag(exp (−µx), i =m + 1, . . .d),

and

D(A∗) :=

{
φ ∈ Hµ : A∗ ∈ Hµ ,

(
φ+(L)
φ−(0)

)
= exp (−µL)K̃

(
φ+(0)
φ−(L)

) }
,

where K̃ is given by (6). According to Appendix A in [2], A and A∗ are densely de�ned and
quasi-dissipative inHµ for some µ > 0. Hence, according to the Lumer–Phillips Theorem, A (and,
accordingly,A∗) generates aC0-semi-groupT (t) inHµ and that, thus, the homogeneous problem (2)
with f ≡ 0, u ≡ 0, and v ≡ 0 admits a unique solution also in the case of non-vanishing u.

Remark 4. It is important to note that one can easily shift the generator of the semi-group in order
to also get a semi-group in the space without the weight function. Consequently, we will omit the
dependence on µ in the sequel.

In order to handle the boundary control, we may apply the standard shifting method to move
the non-homogeneous boundary condition involving the control to the state equation at the cost,
however, of extra regularity to be assumed for the control. To this end, we introduce a steady-state
solution

c(x) :=
(
c+(x)
c−(x)

)
of

Λ∂xc +Mc = 0,
(
c+(0)
c−(L)

)
= K

(
c+(L)
c−(0)

)
+ Bb , y = z + cv,

where u satis�es
u ∈ H 1(0,T ) and u(0) = u(T ) = 0. (18)

Then, z has to solve

∂tz + Λ(x)∂xz +Mz = f (z) + Bdvc
d
dt
v, (t, x) ∈ (0,T ) × (0, L), (19a)(

z+(t, 0)
z−(t, L)

)
= K

(
z+(t, L)
z−(t, 0)

)
+ Bv, t ∈ (0,T ), (19b)

z(0, x) = y0(x), x ∈ (0, L). (19c)
We are then left with a semilinear PDE in the context of C0 semi-groups—a case well studied in the
literature. We refer in particular to Vraibie [27]; see Theorem 1.11.1 and Corollary 11.3.1. Indeed,
we assume that there is a neighborhood D ⊂ H such that

f : D →H is continuous and locally Lipschitz.
Under this condition, there is an analogue to the concept of semi-global classical solutions as
introduced by Li Tatsien even for quasi-linear equations. The result says that starting in D, there
is a time T > 0 such that (19) admits a unique solution which, in turn, is given by the generalized
variation of constants formula for (19), i.e.,
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y(t, ·) = z(t, ·) + cv(t), z(t, ·) = T (t)y0 +

∫ t

0
T (t − s)

(
f (z + cv) + Bdu −

d
dt
v

)
ds . (20)

In particular, in order to handle our applications, we assume that f is in fact a Nemytskij operator
in the sense of, e.g., Section 1.3 of [24]:

(i) f = (fi )i is a Caratheodory mapping, (21)

(ii) | fi (r1, . . . , rd )| ≤ γici

d∑
j=1
|r j |

κ for all i = 1, . . . ,d . (22)

Then, according to Theorem 1.27 in [24], f is bounded and continuous from the space (L2κ (0, L))d
into L2(0, L)d . In addition, we will assume homogeneity of degree κ and strict dissipativity of f , i.e.,

(iii) f (λy) = λκ f (y), (23)

(iv) (f (v),v)µ ≤ −C‖v ‖κ+1. (24)

Example 3. In our applications, we typically have the structure

fi (y) = −b(y
+
i + y

−
i )|y

+
i + y

−
i | for i = 1 . . . ,d with β(s) := |s |ρs .

In this case, κ = 2 holds in (21) and, hence, the mapping f : L4(0, L)d →H is bounded and continuous.
Therefore, with Assumption (18) and initial data in L4(0, L)d , we obtain a unique solution y.

4.2. Weak Solutions. With the assumptions onv , the strong formulation (19) can be handled with
the classic semi-group properties of T (t) and integration by parts w.r.t. time in the term involving
∂tvi to achieve well-posedness of (19) and, hence, of (2). The price to pay is that the solutions
have to leave the domain of the generator of the semi-group. This necessitates a concept of weak
solutions. Of course, one can work with the dual of the domain for very weak solutions. The other
natural way is to work with variational arguments and a priori estimates.

To this end, we multiply the state equation (2) by ϕ ∈ D(A)∗ such that A∗ϕ = −w ∈ Lκ+1(0, L)d
holds. Then

d
dt

∫ L

0
y(t) · ϕ dx +

∫ L

0
y(t) ·w dx =

∫ L

0
f (y(t)) · ϕ dx (25)

+

∫ L

0
u · BTdϕ dx − BTb |Λ

−(L)|ϕ−(t, L) · v(t), t(0,T ).

We now integrate w.r.t. time and obtain the format of weak solutions:∫ L

0
y(t) · ϕ dx +

∫ t

0

∫ L

0
y(t) ·w dx ds =

∫ L

0
y0 · ϕ dx

∫ t

0

∫ L

0
f (y(t)) · ϕ dx ds (26)

+

∫ t

0

∫ L

0
u · BTdϕ dx ds −

∫ t

0
BTb |Λ

−(L)|ϕ−(s, L) · v(s) ds, t ∈ (0,T ).

The idea is to approximate the data needed in the weak formulation in (26) by those corresponding
to strong solutions discussed in the previous subsection and pass to the limit in (26). To this end,
we need some a priori estimate.

Lemma 1. For solutions y of (2), we �nd a suitable constant C > 0 such that
1
2

d
dt
‖y(t)‖2 + (f (y(t),y(t)) ≤ C (‖Bdu(t)‖‖y(t)‖ + ‖v(t)‖) .

Proof. We use arguments similar to the case of homogeneous boundary conditions of the previous
subsection in the context of the generation result. To this end, we go back to the weighted spaces.
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Indeed,
(−Λ∂xϕ −Mϕ,ϕ)µ

= −

∫ L

0

m∑
i=1

λi∂xϕiϕie
µ(L−x ) −

d∑
i=m+1

λi∂xϕiϕie
−µx dx − (Mϕ,ϕ)µ

= −
1
2

m∑
i=1

(
λi (L)|ϕi (L)|

2 − λi (0)|ϕi (0)|2e−µL
)

+
1
2

d∑
i=m+1

(
λi (L)|ϕi (L)|

2e−µL − λi (0)|ϕi (0)|2
)

+
1
2

m∑
i=1

∫ L

0
|ϕi |

2(|λi |e
µ(L−x ))x dx −

1
2

d∑
i=m+1

∫ L

0
|ϕi |

2(|λi |e
−µ(x ))x dx − (Mϕ,ϕ)µ

=: 1
2
(B + I ).

Due to the Lipschitz-property of the λi and the fact that they are bounded away from zero (say, by
4δ > 0) we can bound B as

B ≤ −2δ

(
m∑
i=1
|ϕi (L)|

2 +

d∑
i=m+1

)
m∑
i=1

λi (0)|ϕi (L)|2e−µL +
d∑

i=m+1
|λi (L)| |ϕi (L)|

2e−µL, (27)

whereas I satis�es

I ≤

(
max

i ∈{1, ...,d }
sup

x ∈(0,L)
|λi |µ +

dmax
i=1
‖λi ‖

)
‖ϕ‖2µ + ‖M ‖‖ϕ‖

2
µ ≤ 2ω‖ϕ‖2µ . (28)

We have
m∑
i=1

λi (0)|ϕi (0)|2e−µL

≤ 2e−µL
((

m∑
i=1

m∑
j=1

λi (0)(K00
i j )

2

)
m∑
i=1
|ϕ j (l)|

2 +

(
m∑
i=1

d∑
j=m+1

λi (0)(K01
i j )

2

)
d∑

i=m+1
|ϕ j |

2

) (29)

and
d∑

i=m+1
|λi (L)| |ϕi (L)|

2e−µL

≤ 2e−µL
((

d∑
i=m+1

m∑
j=1
|λi (L)|(K

10
i j )

2

)
m∑
j=1
|ϕ j |

2

+

(
d∑

i=m+1

d∑
j=m+1

|λi (L)|(K
11
i j )

2

)
d∑

i=m+1
|ϕ j (0)|2 +

d∑
i=m+1

|λi (L)|b
2
iv

2
i

)
.

(30)

If we choose µ large enough, we can compensate the quadratic terms in ϕi (L), i = 1, . . . ,m, and
ϕi (0), i =m + 1, . . . ,d , in (29) and (30) for the estimation of (27) to obtain

B < −δ

(∑
i=1

m |ϕi (L)|
2 +

d∑
i=m+1

|ϕ(0)|2
)
+ e−µL

d∑
i=m+1

|λi (L)|b
2
iv

2
i . (31)

Then, putting (31) and (28) together, we arrive at

(−Λ∂xϕ −Mϕ,ϕ)µ ≤ e−µL
d∑

i=m+1
|λi (L)|

2b2
iv

2
i
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for ϕ satisfying the boundary conditions in (2). If we de�ne v := e−ωty, we get

∂tv + Λ∂xv +Mv = eω(κ−1)t f (v) + Bdu,(
v+(t, 0)
v−(t, L)

)
= K

(
v+(t, L)
v−(t, 0)

)
+ Bbṽ,

v(0) = y0

(32)

with ṽ(t) := e−ωtv . If we now multiply (32) by v w.r.t. the weighted inner product, use (31), and the
Property (iv) in (24), we obtain

1
2

d
dt
‖v ‖2µ + |(f (v),v)µ | ≤ (Bdu,v)µ + e

−µL) |Λ−(L)| |bv |. (33)

Finally, we use the fact the weighted norm and the standard norm are equivalent in order to arrive
at the assertion of the lemma. �

We can now integrate (33) w.r.t. time and use the Gronwall lemma to infer that if we approximate
the initial data and the controls by

yn0 → y0 in D(A), (34)
un → u inH , (35)

vn → v in L2(0,T )d−m . (36)
If we associate to these data the strong solution yn , we obtain

(yn)n is bounded inH ,

(yn)n is bounded in Lκ+1(QT )
d ,

and we can extract subsequences, still denoted by (yn)n , such that
yn ⇀ y w-inH ,

yn ⇀ y w-in Lκ+1(QT )
d .

However, this alone does not imply f (yn) → f (y) in L
κ+1
κ (QT ). Notice that with q = (κ + 1)/κ, we

have p = κ + 1. We now recall the Lemma 1.3 in [19].

Lemma 2. Let O ⊂ R+ × Rd be an open and bounded set and let (дn)n,д ∈ Lq(O), 1 < q < ∞, such
that

‖дn ‖Lq ≤ C, дn → д a. e. in O.
Then дn ⇀ д weakly in Lq(O) as n →∞.

In our situation, дn := ‖yn ‖κ , q = κ+1
κ , and∫ L

0
|дn |q dx =

∫ L

0
‖yn ‖κ+1 dx ≤ C

holds. What is needed is that дn → д a.e. in QT . We follow the same arguments as in Lions [23]
(see Pages 209–211) to show that we can indeed extract a strongly convergent subsequence, i.e.,

yn → y inH ,

which then implies that f (yn) ⇀ f (y) in L
κ+1
κ (QT ). This, �nally, allows us to pass to the limit in

(26). We can therefore conclude the following theorem.

Theorem 1. Let the sequences (yn0 )n ⊂ D(A), (un)n ∈ H , and (vn)n in L2(0,T ;Rd−m) be given such
that (34) holds. Let (yn)n be the corresponding strong solution of (2). Furthermore, let ϕ ∈ D(A∗)
be such that A∗ϕ = −w ∈ Lκ+1 holds. Then, we can pass to the limit in (26) and, hence, y is a weak
solution of (2).

With this result, we can now state our existence theorem for the optimal control problem.



12 R. KRUG, G. LEUGERING, A. MARTIN, M. SCHMIDT, D. WENINGER

Theorem 2. The optimal control problem (4) can be re-framed in a reduced form as

min
w

J (w,y(w)) s.t. u ∈ Uad,

where y(w) is the mapping from the controls into y given by (26). This problem admits a unique
solution.

Theorem 3. For unconstrained controls u ∈ L∞(0,T ;H) and v ∈ L∞(0,T )d−m there exists a unique
solution (ū, v̄, ȳ) of Problem (4). Moreover, there exists an adjoint state p̄ such that (ȳ, p̄) satis�es the
optimality system (2), (5), (8), (7) for unconstrained controls and (9) in case of constrained controls.

Remark 5. (i) An analogous result holds for the time-decomposed semilinear problem (17).
(ii) Higher-order regularity of the boundary controls, as with (18), has to be re�ected in the cost

function. For the pure �nal-value problem, the one where µ = 0 in (3), the control appears in
the cost function only as a �rst-order derivative d

dtv ; see (20). Thus, we may then replace the
original control v by its derivative ṽ := d

dtv , which is an L∞(0,T )d−m-control.

5. Convergence for the Case of Unconstrained Controls

We now derive the proof of convergence for the described setting. We recall the decomposed
optimality system (16), (7), (8), (14), (15) and introduce the errors

ỹnk := ynk − yk , p̃nk := pnk − pk , ũnk := unk − uk , ṽnk := vnk −vk .

Then, yn+1
k and pn+1

k solve the semilinear problem

∂t ỹ
n+1
k + Λ∂xỹ

n+1
k +Mỹn+1

k = fk (y
n
k ) − fk (yk ) + Bdũ

n
k , (t, x) ∈ Qk , (37a)

∂t p̃
n
k + Λ∂x p̃

n
k + (Λx −M

T +Dy f (y
n+1
k )

T )p̃n+1
k (37b)

−(Dy fk (y
n+1
k )

> − Dy fk (yk )
>)pk = µỹ

n+1
k , (t, x) ∈ Qk , (37c)(

y+,nk (t, 0)
y−,n(t, L)

)
= K

(
y+,n(t, L)
y−,n(t, 0)

)
+ Bbv

n
k (t), t ∈ Ik , (37d)(

p+,n(t, L)
p−,n(t, 0)

)
= K̃

(
p+,n(t, 0)
p−,n(t, L)

)
, t ∈ Ik (37e)

and
ỹn+1
k (Tk+1) + βp̃

n+1
k (Tk+1) = ϕ̃

n
k ,k+1, k = 0, . . . ,K − 1,

ỹn+1
k (Tk ) − βp̃

n+1
k (Tk ) = ϕ̃

n
k ,k−1, k = 1, . . . ,K,

(38)

together with (15).

νũnk = p̃
n
k , µṽnki = |Λi (t, 1)|BTb p̃

n
ki (t, 1). (39)

In order to turn (37) into a semilinear problem just in ỹnk , p̃nk , we may rewrite

fk (t,y
n
k ) = fk (t, ỹ

n
k + yk ), Dy fk (y

n
k ) = Dy fk (ỹ

n
k + yk ).

Now, to compensate for the nonlinear terms, we make the following assumption.

Assumption 1. There exists a constant L > 0 such that for each k = 0, . . . ,K it holds:
(i) The functions fk , Dy fk are bounded by L.
(ii) The following pointwise estimates are valid:

‖(Dy fk (t,y
n
k (t)) − Dy fk (t,yk (t))ỹ

n
k (t)‖L2 ≤ L‖ỹnk (t)‖L2,

‖ fk (t,y
n
k (t)) − fk (t,yk (t)) − Dy fk (t,y

n
k (t))ỹ

n
k (t)‖L2 ≤ L‖ỹnk (t)‖L2 .

Remark 6. If we do not assume the boundedness of the derivatives of the nonlinear terms, we may
use the “Stampacchia-trick” in the sense that we �rst extend the corresponding derivatives outside a
given ball by constants and then show that for small enough data the solutions stay small and, hence,
the extensions are not active. This procedure, however, would substantially extend the arguments and
the length of this article as error estimates for the state and its traces would be in order. For the general
concept however, see [4]. As this is very closely related to the issue of existence of optimal controls, we
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defer the analysis to a forthcoming publication. As of now, we therefore leave it to the reader to assess
the validity of the remark.

The following arguments follow the spirit of [14] in which the linear wave equation (second-order
in space and time) is considered. We introduce

X :=
( (
ϕk ,k+1

)K−1
k=0 ,

(
ϕk ,k−1

)K
k=1

)
∈ X = L2(0, 1)2Kd ,

‖X ‖2 =
K−1∑
k=0
‖ϕk ,k+1‖

2 +

K∑
k=1
‖ϕk ,k−1‖

2.
(40)

For given iteration histories ϕk ,k+1 and ϕk ,k−1, i.e., for given X , we consider the unique solution ynk ,
pnk of (37), (38) and then de�ne T : X → X by

TX :=
(
(yk+1(Tk+1) + βpk+1(Tk+1))

K−1
k=0 , (yk−1(Tk ) − βpk−1(Tk ))

K
k=1

)
. (41)

In order to consider the �xed-point iteration
Xn+1 = (1 − ε)TXn + εXn, ε ∈ [0, 1), (42)

we will show that the operator T : X → X is non-expansive. Note that even though the de�nition
of T involves the time traces of the state and the adjoint linearly, the mapping is, in fact, nonlinear
according to the nonlinear term in the problem formulation. As X is a �xed point,

Xn − XX̃n =
( (
ỹnk (Tk+1) + βp̃

n
k (Tk+1)

)K−1
k=0 ,

(
ỹnk (Tk ) − βp̃

n
k (Tk )

)K
k=1

)
,

TXn − X = TXn −TX =
( (
ỹnk+1(Tk+1) + βp̃

n
k+1(Tk+1)

)K−1
k=0 ,

(
ỹnk−1(Tk ) − βp̃

n
k−1(Tk )

)K
k=1

) (43)

holds at iteration n. Moreover, we de�ne the energies

Enk (t) := ‖ỹnk (t)‖
2 + β2‖p̃nk ‖

2, En :=
K−1∑
k=0
Enk (Tk+1) + E

n
k+1(Tk+1). (44)

Now,

‖X̃n ‖2 =

K−1∑
k=0
‖ỹnk (Tk+1) + βp̃

n
k (Tk+1)‖

2 +

K∑
k=1
‖ỹnk (Tk ) − βp̃

n
k (Tk )‖

2

=

K−1∑
k=0

(
‖ỹnk (Tk+1)‖

2 + 2βỹnk (Tk+1)p̃
n
k (Tk+1) + β

2‖p̃nk (Tk+1)‖
2)

+

K∑
k=1

(
‖ỹnk (Tk )‖

2 − 2βỹnk (Tk )p̃
n
k (Tk ) + β

2‖p̃nk (Tk )‖
2)

= En + 2β

(
K−1∑
k=0

ỹnk (Tk+1)p̃
n
k (Tk+1) −

K∑
k=1

ỹnk (Tk )p̃
n
k (Tk )

)
=: En + F n .

(45)

holds. Similarly, we have
‖TXn −TX ‖2 = En − F n

and, hence,
‖TXn −TX ‖2 = ‖Xn − X ‖ − 2F n .

In fact, given any pair X1,X2 ∈ X, we have ‖TX1 −TX2‖ = ‖X1 −X2‖ − 2F by the same arguments.
Therefore, T is non-expansive if F ≥ 0. For the sake of brevity, it is enough to show this with the
iteration errors. We proceed with relations concerning the global errors E and the term F .

Proposition 1 (Lemma 2 in [14]). For any ε ∈ [0, 1) and n ∈ N, we have
(i) En+1 + F n+1 ≤ En − (1 − 2ε)F n ,
(ii) En+1+

∑n+1
l=1 cl (ε)F

l ≤ E1 with c1(ε) = 1−2ε , cn+1(ε) = 1, and cl (ε) = 2(1 − ε) for l = 2, . . . ,n.

Proof. As the proof is on the level of relations between En+1, F n+1, En, F n only, we refer to [14]. �
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In order to utilize the crucial property (ii) of Proposition 1, we need to establish the positiveness
of F n , where F n is de�ned in (45). To this end, we now multiply (37a) by p̃nk and integration by
parts then leads to

0 =
∫ Tk+1

Tk

∫ L

0

(
∂t ỹ

n
k + Λ∂xỹ

n
k +Mỹ

n
k − (fk (y

n
k ) − fk (yk )) − Bdũ

n
k
)
p̃nk dx dt

=

∫ L

0

(
ỹnk (Tk+1)p̃

n
k (Tk+1) − ỹ

n
k (Tk )p̃

n
k (Tk )

)
dx

−

∫ Tk+1

Tk
BTb |Λ

−(L)|p̃nk (t, L)ṽ
n
k dt −

∫ Tk+1

Tk

∫ L

0
ũnkB

T
d p̃

n
k dx dt

−

∫ Tk+1

Tk

∫ L

0
ỹnk

(
∂t p̃

n
k + Λ∂x p̃

n
k + (Λx −M

T )p̃nk

)
dx dt

−

∫ Tk+1

Tk

∫ L

0
(fk (t,y

n
k ) − fk (t,yk ))p̃

n
k dx dt

=

∫ L

0

(
ỹnk (Tk+1)p̃

n
k (Tk+1) − ỹ

n
k (Tk )p̃

n
k (Tk )

)
dx

−

∫ Tk+1

Tk
BTb |Λ

−(L)|p̃nk (t, L)ṽ
n
k dt −

∫ Tk+1

Tk

∫ L

0
ũnkB

T
d p̃

n
k dx dt

− µ

∫ Tk+1

Tk

∫ L

0
ỹnk ỹ

n
k dx dt

+

∫ Tk+1

Tk

∫ L

0
ỹnk

( (
Dy fk (t,y

n
k )
>
)
p̃nk +

(
Dy fk (t,y

n
k )
> − Dy fk (t,yk )

>
)
pk

)
− (fk (t,y

n
k ) − fk (t,yk ))p̃

n
k dx dt .

(46)

We obtain ∫ L

0

(
ỹnk (Tk+1)p̃

n
k (Tk+1) − ỹ

n
k (Tk )p̃

n
k (Tk )

)
dx

=

∫ Tk+1

Tk
BTb |Λ

−(L)|p̃nk (t, L)ṽ
n
k dt +

∫ Tk+1

Tk

∫ L

0
ũnkB

T
d p̃

n
k dx dt

+ µ

∫ Tk+1

Tk

∫ L

0
ỹnk ỹ

n
k dx dt

−

∫ Tk+1

Tk

∫ L

0
ỹnk

( (
Dy fk (t,y

n
k )
>
)
p̃nk +

(
Dy fk (t,y

n
k )
> − Dy fk (t,yk )

>
)
pk

)
− (fk (t,y

n
k ) − fk (t,yk ))p̃

n
k dx dt .

(47)

Up to now, we have not made use of the assumption that the controls are unconstrained. If we
do, we obtain from (47) that∫ L

0

(
ỹnk (Tk+1)p̃

n
k (Tk+1) − ỹ

n
k (Tk )p̃

n
k (Tk )

)
dx

=
1
ρ

∫ Tk+1

Tk
|BTb |Λ

−(L)|p̃nk (t, L)|
2 dt +

1
ν

∫ Tk+1

Tk

∫ L

0
|BTd p̃

n
k |

2 dx dt

+ µ

∫ Tk+1

Tk

∫ L

0
ỹnk ỹ

n
k dx dt

−

∫ Tk+1

Tk

∫ L

0
ỹnk

( (
Dy fk (t,y

n
k )
>
)
p̃nk +

(
Dy fk (t,y

n
k )
> − Dy fk (t,yk )

>
)
pk

)
− (fk (t,y

n
k ) − fk (t,yk ))p̃

n
k dx dt

(48)
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holds. Obviously, if there is no nonlinearity, the left-hand side of (48) is positive. In the case of the
appearance of the nonlinear term f , we need to absorb the last integral in (48) into the quadratic
terms. For this, we will resort to (1). We derive from (48) the following expression for F :

1
2β
F =

K∑
k=0

∫ L

0

(
ỹnk (Tk+1)p̃

n
k (Tk+1) − ỹ

n
k (Tk )p̃

n
k (Tk )

)
dx −

∫ Tk+1

Tk
ỹnK (TK+1)p̃

n
K (TK+1) dt

= κ

∫ L

0
|ỹnk (T )| dx + µ

K∑
k=0

∫ Tk+1

Tk

∫ L

0
ỹnk ỹ

n
k dx dt

+
1
ρ

K∑
k=0

∫ Tk+1

Tk
|BTb |Λ

−(L)|p̃nk (t, L)|
2 dt +

1
ν

K∑
k=0

∫ Tk+1

Tk

∫ L

0
|BTd p̃

n
k |

2 dx dt

−

K∑
k=0

∫ Tk+1

Tk

∫ L

0
ỹnk

( (
Dy fk (t,y

n
k )
>
)
p̃nk +

(
Dy fk (t,y

n
k )
> − Dy fk (t,yk )

>
)
pk

)
− (fk (t,y

n
k ) − fk (t,yk ))p̃

n
k dx dt .

(49)

In order to compensate the last term of (49), we invoke Assumption 1. We have
K∑
k=0

∫ Tk+1

Tk

∫ L

0

( (
fk (t,y

n
k ) − fk (t,yk ) − Dy fk (t,y

n
k )ỹ

n
k
)
p̃nk

−
(
Dy fk (t,y

n
k ) − Dy fk (t,yk )

)
ỹnkpk ) dx dt

≤

K∑
k=0

∫ T

0

∫ L

0

(
σ ‖ỹnk ‖

2 + η‖p̃nk ‖
2) dx dt

(50)

for some suitable numbers σ ,η > 0 that depend on L and the L∞-norm of p, i.e., of the adjoint of
the underlying global optimality system which is also equal to νu. The estimation in (49) together
with (50) leads to

F l ≥ 2β

{
κ

∫ L

0
|ỹnk (T )| dx +

K∑
k=0

(∫ Tk+1

Tk

∫ L

0
µ‖ỹlk ‖

2 +
1
ν
‖p̃lk ‖

2 dx dt

+
1
ρ

∫ Tk+1

Tk
|BTb |Λ

−(L)|p̃lk (t, L)
2 | dt −

∫ Tk+1

Tk

∫ L

0
ρ‖ỹlk ‖

2 + η‖p̃lk ‖
2 dx dt

)}
≥ 2β

{
κ

∫ L

0
|ỹnk (T )| dx +

K∑
k=0

(∫ Tk+1

Tk

∫ L

0

(
(µ − σ )‖ỹlk ‖

2 +

(
1
ν
− η

)
‖p̃lk ‖

2
)

dx dt

+
1
ρ

∫ Tk+1

Tk
|BTb |Λ

−(L)|p̃lk (t, L)
2 | dt

)}
.

Assume now that the parameters κ, µ are chosen su�ciently large and ρ,ν su�ciently small such
that δ1 := µ − σ > 0 and δ2 := 1

ν − η > 0 holds. Then, Proposition 1 (ii) yields

En+1 +

n+1∑
l=1

cl (ε)

{
κ

∫ L

0
|ỹnk (T )| dx +

K∑
k=0

(∫ Tk+1

Tk

∫ L

0
δ1‖ỹ

l
k ‖

2 + (δ2) ‖p̃
l
k ‖

2 dx dt

+
1
ρ

∫ Tk+1

Tk
|BTb |Λ(L)|p̃

l
ki (t, 1)|

2 dt
)}
≤ E1, n = 1, 2, . . .

(51)

and, in turn, (51) provides
En is bounded,

ỹlk → 0, p̃lk → 0 in L2 (
Ik ;L2(0, 1)

)
,

p̃lki (t, L) → 0, i =m + 1, . . . , ,d ỹlk (T , ·), p̃K (T , ·) → 0 in L2(0, L)d
(52)

as l → ∞ and for ε ∈ [0, 1). From (52) it is now clear that ỹnk (Tk+1), ỹnk (Tk ), p̃
n
k (Tk+1), and p̃nk (Tk )

converge to zero. In other words, the transmission conditions are satis�ed in the limit. We know,
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however, that En is bounded and, hence, that there is a weakly convergent subsequence. Notice,
however, that on a subsequence it is not necessarily clear that with index k also k + 1 is part of that
subsequence and, thus, the iteration cannot be used.

On the other hand, we see from (52) that ũnk → 0 and ṽnk → 0 in L2(0,T ;L2(0, 1))d or L2(0,T )m ,
respectively. Due to the continuity of the nonlinear functions fk and д1, we obtain vanishing
right-hand sides in the state and adjoint equations and homogeneous boundary conditions in the
limit on the entire sequence. Due to the uniqueness of the solution of the optimality system, the
initial and �nal data ỹnk (Tk ), ỹ

n
k (Tk+1), p̃nk (Tk ), and p̃nk (Tk+1) converge to zero in L2(0, 1)d . As the

functions yk (·) and pk (·) satisfy Conditions (13), in the limit, the transmission conditions hold. This
is true even for ε = 0.

Theorem 4. The solutions (ynk ,p
n
k ) of (16), (7), (8), (14), (15) with ε ∈ [0, 1) converge to (2), (5), (39)

strongly in L2 (
0,T ;L2(0, 1)

)
to (yk ,pk ), which is the solution of (17), for k = 0, . . . ,K .

Remark 7. For ε ∈ (0, 1), we can derive the convergence of the initial and �nal data for ynk , p
n
k at Tk ,

Tk+1 directly. To this end, we consider the term

TXnXn =

K−1∑
k=0

(
ỹnk (Tk+1) + βp̃

n
k (Tk+1)

) (
ỹnk+1(Tk+1) + βp̃k+1(Tk+1)

)
+

K∑
k=1

(
ỹnk (Tk ) − βp̃

n
k (Tk )

) (
ỹnk−1(Tk ) − βp̃

n
k−1(Tk )

)
= 2

K−1∑
k=0

(
ỹnk (Tk+1)ỹ

n
k+1(Tk+1) + β

2p̃nk (Tk+1)p̃
n
k+1(Tk+1)

)
.

Thus,
1
2
‖TXn − Xn ‖2 = En −TXnXn

=

K−1∑
k=0

(
‖ỹnk (Tk+1) − ỹ

n
k+1(Tk+1)‖

2 + β2‖p̃nk (Tk+1) − p̃
n
k+1(Tk+1)‖

2) .
On the other hand

‖T n
ε X

1 −T n−1
ε X 1‖ = (1 − ε)‖TXn − Xn ‖ → 0

holds according to Schaefer’s �xed-point theorem [25] for ε ∈ (0, 1). This directly shows the desired
convergence.

Remark 8. We see from the proof of Theorem 4 that with the given nonlinearity fk , we need the
distributed control uk to compensate the appearance of the nonlinearity in the estimates. We also need
the tracking term with κ > 0 being distributed over space and time. On the other hand, in this setting,
we obtain stronger convergence results than in [12, 14].

Remark 9. Distributed control with full access to the state are typically hard to implement in practice.
For boundary controls, on the other hand, full access is a not critical issue. As our convergence proofs
reveals, full access to the state is however essential to compensate the distributed nonlinear term. In this
respect, we add that one may replace the distributed control by yet another virtual control, however, at
the expense of introducing an approximation to the adjoint variable appearing in the optimality system
on the decomposed level. We do not have the space to elaborate on that variant here in detail but rather
sketch the idea and refer to a further publication. Indeed, assume we have an approximation p̂nki of the
true global adjoint variable pk := p |Qk such that p̂nki → pki . Then, we can write

∂ty
n
k + Λ∂xy

n
k +My

n
k = fk (t,yk ) +

1
σ
pnk −

1
σ
p̂nk , (t, x) ∈ Qk ,

∂tp
n
k + Λ∂xp

n
k = κ(y

n
k − yd ) − (Dy f

>
k + ∂xA −M

T )pnk , (t, x) ∈ Qk ,

on the level of Qk and n with the same initial and boundary conditions as in (16). We can interpret
the appearance of 1

σ p
n
k as the result of an unconstrained distributed control, where 1

σ p̂
n
k is seen as an

external input. Obviously, if there is convergence, then, in the limit, pk and its approximation do no
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longer appear in the state equation—therefore, the notion of a virtual control. Then, if we consider the
errors, we have

∂t ỹ
n
k + Λ∂xỹ

n
k = fk (y

n
k ) − fk (yk ) +

1
σ
p̃nk +

1
σ
(pk − p̂

n
k ), (t, x) ∈ Qk ,

∂t p̃
n
k + ∂xAp̃

n
k −M

T p̃nk = κỹ
n
k − (Dy f (y

n
k )
>)p̃nk − (Dy fk (y

n
k )
> − Dy fk (yk )

>)pk , (t, x) ∈ Qk .

The additional virtual load, which is indeed the error between the original adjoint variable and its
numerical approximation 1

σ (pk − p̂
n
k ) then accumulates in the crucial energy inequality (51). The

assumed boundedness of the accumulated error
n+1∑̀
=1

K∑
k=0

d∑
i=1

1
σ

∫ Tk+1

Tk

∫ L

0
(p̂`ki − pki )

2 dx dt

then provides the same result in Theorem 4. It is then a question of how to design the approximate
solutions in terms of the actual interface values to obtain a coarse-grain-small-grain error analysis. This
procedure results in a di�erent concept of non-exact time-domain decomposition, which is beyond the
scope of this article. We remark that the approach by Benamou [3] also uses the idea to add 1

σ p
n
k −

1
σ p

n−1
k .

However, this will not be su�cient to compensate for the nonlinear terms.

6. Convergence in the Presence of Control Constraints and Linear Dynamics

In this section, we consider pointwise constraints on u and v , i.e.,

u(t) ∈ U d
ad, v(t) ∈ U b

ad a. e. in (0,T ). (53)
However, we do not take into account nonlinearities. It turns out that the interaction of the control
bounds with the bounds on the nonlinearities is rather complicated and not fully explored up to
now. Nevertheless, we provide the convergence proof as also this extension is new in the context
of optimal control for linear hyperbolic systems. We stay in the context of Problem (4), together
with (53). We notice that this has already been considered in [11] for more simple boundary
conditions. We recall the optimality conditions (7) and (8). Moreover, we also have∫ Tk+1

Tk

∫ L

0
(νunk − p

n
k )(ûk − u

n
k ) dx dt ≥ 0 for all ûk ∈ U d

ad.

For the corresponding errors we have (with uk ∈ U
d
ad)

0 ≤
∫ Tk+1

Tk

∫ L

0
(νũnk − p̃

n
k + νuk − pk )(uk − u

n
k ) dx dt

=

∫ Tk+1

Tk

∫ L

0
(νũnk − p̃

n
k )(−ũ

n
k ) dx dt −

∫ Tk+1

Tk

∫ L

0
(νuk − pk )(u

n
k − uk ) dx dt

and, therefore,∫ Tk+1

Tk

∫ L

0
(νũnk − p̃

n
k )(−ũ

n
k ) dx dt ≥

∫ Tk+1

Tk

∫ L

0
(νuk − pk )(u

n
k − uk ) dx dt ≥ 0.

Hence, ∫ Tk+1

Tk

∫ L

0
ũnk p̃

n
k dx dt ≥ ν

∫ Tk+1

Tk

∫ L

0
ũnk ũ

n
k dx dt (54)

holds. By the same argument, we obtain∫ Tk+1

Tk
BTb |Λ

−(L)|p̃nk (t, 1)ṽ
n
ki (t) dt ≥ µ

∫ Tk+1

Tk
|ṽnk (t)|

2 dt, (55)
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where (unk ,v
n
k ,p

n
k ) and (ũnk , ṽ

n
k , p̃

n
k ) solve (16) and (37), respectively. We recall (46). Then, according

to (45) and (47), we obtain

F n = 2β

{
κ

∫ L

0
|ỹnK |

2(T ) dx +
K∑
k=0

(∫ Tk+1

Tk
ṽnki (t)B

T
b |Λ

−(L)|p̃nk (t, L) dt

+

∫ Tk+1

Tk

∫ L

0
ũnk p̃

n
k dx dt + µ

∫ Tk+1

Tk

∫ L

0
‖ỹnk ‖

2 dx dt

)}
.

Next, using (54) and (55), we can estimate F from below by

F n ≥ 2β

{
κ

∫ L

0
|ỹnK |(T )

2 dx
K∑
k=0

(∫ Tk+1

Tk

∫ L

0
µ‖ỹnk ‖

2 dx dt

+

∫ Tk+1

Tk

∫ L

0
ν ‖ũnk ‖

2 dx dt +
∫ Tk+1

Tk
ρ |ṽnk |

2 dt

)}
.

The de�nitions in (40)–(44) stay unchanged also in the case under consideration. Thus, we arrive at
the conclusion that

En is bounded,

ỹnk → 0 in L2
(
Ik , L

2(0, L)d
)
,

p̃nk → 0 in L2
(
Ik , L

2(0, L)d
)
,

ṽnki → 0 in L(Ik )
d−m,

ỹnK (T ) → 0 in L2(0, L)d ,

p̃nK (T ) → 0 in L2(0, L)d ,

(56)

as n →∞.

Theorem 5. Suppose that the controls u and v satisfy the pointwise constraints u(t) ∈ U d
ad, v(t) ∈ U

b
ad,

whereU d
ad ⊂ L2(0, 1)d as well asU b

ad ⊂ R
m are convex and closed. Further, let the iterates be de�ned as

solutions (ynk ,p
n
k ) of (16), (14), (15) with (54), (55). Then, these iterates converge in the sense of (56) to

the corresponding solutions of (2), (5)–(8).

7. Conclusions

We have considered mixed two-point initial-boundary value problems for semilinear hyperbolic
systems with distributed and boundary controls. We provided a detailed well-posedness analysis for
both strong and weak solutions. This enabled us to rigorously investigate a generic tracking-type
optimal control problem and we derived optimality conditions for constrained and unconstrained
controls. We then provided an iterative time-domain decomposition in the spirit of [11] and proved
convergence for unconstrained controls and, in the linear case, for constrained controls. The
numerical analysis of the iterative time-domain decomposition method derived here is beyond
the scope of this article. This and a posteriori error estimates will be subject to a forthcoming
publication. In particular, applications in the context of networks with cycles are envisioned.
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