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ABsTRACT. Motivated by examples from the energy sector, we consider market
equilibrium problems (MEPs) involving players with nonconvex strategy spaces
or objective functions, where the latter are assumed to be linear in market
prices. We propose an algorithm that determines if an equilibrium of such an
MEP exists and that computes an equilibrium in case of existence. Three key
prerequisites have to be met. First, appropriate bounds on market prices have
to be derived from necessary optimality conditions of some players. Second,
a technical assumption is required for those prices that are not uniquely
determined by the derived bounds. Third, nonconvex optimization problems
have to be solved to global optimality. We test the algorithm on well-known
instances from the power and gas literature that meet these three prerequisites.
There, nonconvexities arise from considering the transmission system operator
as an additional player besides producers and consumers who, e.g., switches
lines or faces nonlinear physical laws. Our numerical results indicate that
equilibria often exist, especially for the case of continuous nonconvexities in
the context of gas market problems.

1. INTRODUCTION

Market equilibrium problems are an important mathematical tool to model many
practically relevant applications such as energy markets for power or gas, auctions,
or transport network planning. Usually, these problems consist of a number of
rational players that compete for a set of goods, which they want to purchase to
maximize their utility. In such situations one asks whether there exists a price
for these goods so that the market clears and so that no player can improve her
utility by unilaterally changing her decisions. Mathematically, rationality is typically
modeled via optimization problems and a market equilibrium price then clears the
market while all players choose a global optimal solution. The main economic or
mathematical questions are (i) whether such an equilibrium exists, (ii) whether it is
unique, and (iii) how to compute it. In this paper, we address these three topics
but focus on the algorithmic aspects.

The classic results ensure existence of market equilibria under suitable convexity
assumptions; see, e.g., Wald (1951), Arrow and Debreu (1954), Gale (1955), McKen-
zie (1959), or Debreu (1962). Unfortunately, many real-world market equilibrium
problems do not satisfy these assumptions. Our study is mainly motivated by
practically relevant aspects of market equilibrium problems in energy—mnamely gas
and power market equilibrium models on networks. In these settings, the set of
players includes producers and consumers that are located at the nodes of the
energy network as well as the transmission system operator (TSO), who acts as an
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arbitrageur and who also controls the network itself; see, e.g., Hobbs and Helman
(2004), Gabriel and Smeers (2006) in Seeger (2006), Gabriel, Conejo, et al. (2012),
Grimm, Schewe, et al. (2017), or Krebs et al. (2018). The main challenge regarding
these equilibrium problems arises in situations in which either the energy flow model
is nonlinear or when controlling the network includes deciding on discrete switching
variables. Both aspects lead to nonconvex player problems and, thus, the classic
existence theory is not applicable anymore. See Scarf (1994) for the special case of
integralities in a power market or Grimm, Griibel, et al. (2019) for the special case
of gas market interaction on a network with nonconvex flow models.

There are different parts of the applied literature that tackle such nonconvex
situations; see, e.g., Shapley and Shubik (1971), Leonard (1983), Bikhchandani,
Ostroy, et al. (2002), and Bikhchandani and Ostroy (2006) for assignment problems,
Bikhchandani and Mamer (1997) and Baldwin and Klemperer (2019) for general
exchange economies with indivisibilities, O’Neill et al. (2005) and Guo et al. (2021)
for discrete markets, Hatfield et al. (2013), Fleiner et al. (2019), and Hatfield et al.
(2019) for trading networks, and Beato (1982), Brown et al. (1986), Bonnisseau and
Cornet (1988), and Bonnisseau and Cornet (1990) for economies with increasing
returns to scale. Very recently, Harks (2020) presented a unifying framework
for many (possibly nonconvex) equilibrium problems including network tolls for
transportation networks, indivisible item auctions, bilateral trade, or congestion
control. This framework is based on Lagrangian duality and enables to characterize
the existence of solutions to (possibly) nonconvex equilibrium problems by checking
if a suitably chosen optimization problem (e.g., the overall welfare maximization
problem in economic settings) has a zero duality gap.

The first main contribution of this paper is that we, based on the results of
Harks (2020), derive an algorithm to decide the existence of a solution of the
market equilibrium problem with convex and nonconvex player problems. If such
an equilibrium exists, our algorithm computes it—otherwise, it indicates that no
such equilibrium exists. However, three key prerequisites have to be met. First,
we need some specific knowledge about potential candidates for equilibrium prices.
More specifically, appropriate bounds on equilibrium prices have to be derived
from necessary optimality conditions of some players, e.g., of those facing convex
optimization problems. Second, a technical assumption is required for those prices
that are not uniquely determined by the derived bounds. In particular, for all
players, the part of their objective functions affected by non-unique prices has to be
minimal or maximal in the global solution of the corresponding welfare optimization
problem. Third and finally, the presented algorithm relies on solving nonconvex
optimization problems to global optimality. This cannot be avoided in our setting
that includes nonconvex player problems.

As second main contribution, we demonstrate the performance of the proposed
algorithm by testing it on two practically relevant equilibrium problems in energy for
which the three above-mentioned prerequisites are met: (i) a power market problem
in which the TSO controls the underlying DC network by switching on or off DC
power lines and (ii) a gas market problem in which the TSO’s model is nonconvex
due to the inherent nonlinearity of gas flow models. By doing so, we consider two
very different settings of nonconvex market equilibrium problems: one in which
the nonconvexity is continuous but nonlinear and one in which the nonconvexity is
due to the presence of integer variables. Thus, these studies nicely illustrate the
broad applicability of our methods. We present a detailed computational study for
both problems and discuss the reasons why equilibria exist or why not. One main
conclusion of this computational study is that in the case in which the nonconvexity
is due to integrality constraints, we show that no equilibrium exists for a large
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number of instances. On the other hand, we confirm the existence of an equilibrium
for all solvable instances in the nonconvex but continuous case.

The remainder of the paper is organized as follows. In Section 2 we present
the abstract model of the market equilibrium problem with convex and nonconvex
players. Then, the existence and uniqueness of equilibria is studied in Section 3.
The beginning of this section is based on the results by Harks (2020) and extends
this work to obtain the algorithm that computes equilibria or proves that no such
equilibria exist. Moreover, we provide a uniqueness result for the special case of
players with unique best responses. In Section 4 we present the networked power
and gas market equilibrium problems and derive theoretical results that are used in
Section 5, where the developed algorithm is applied to these two cases. The paper
closes with some concluding remarks and some further topics of future research in
Section 6.

2. THE MARKET EQUILIBRIUM PROBLEM

We consider a special type of market equilibrium problems with a finite set of
players i € I. We assume perfect competition, i.e., the players act as price takers
and do not anticipate the impact of their own actions on prices. Formally, for an
exogenously given price vector m € R"~, every player ¢ € I solves an optimization
problem of the form
rr;in filyi,m) = ci(ys) + 7 hiys) st €Y, (1)

where y; € R™ are the decision variables of player 7, f; : R™ x R"* — R is the
objective function consisting of ¢; : R™ — R and h; : R™ — R"~. Moreover,
Y; C R™ is the non-empty feasible set of player i.

Solving the market equilibrium problem in this context means to find market-
clearing prices m, i.e., prices to which the best responses of all players exist and
satisfy predefined market-clearing conditions that depend on the variables of all
players. We model these market-clearing conditions as

Z hi(yi) = 0. (2)
il
Thus, we consider the following market equilibrium problem:

optimization problems of the players: (1) for all i € I,
market-clearing conditions: (2). (MEP)
A broad range of market equilibrium problems can be modeled this way. For
instance, many economic applications, in which a large number of price-taking
players purchase and sell goods at certain prices, fall into this category. In this
context, 7 h;(y;) describes the part of the players’ money either spent or gained by
trading a specific amount of the goods. Moreover, the market-clearing conditions (2)
ensure that the traded amounts are balanced, i.e., there is no excess demand or
supply. Problems of this kind arise in energy market modeling; see, e.g., Hobbs and
Helman (2004) or Gabriel, Conejo, et al. (2012) and the references therein. Note that,
although the assumption of perfect competition might not be satisfied for all energy
applications, this is a common assumption used in the energy market literature; see,
e.g., Boucher and Smeers (2001), Daxhelet and Smeers (2007), Grimm, Kleinert,
et al. (2019), and Grimm, Martin, et al. (2016) for power market models as well as
Bottger et al. (2021) and Grimm, Schewe, et al. (2019) for gas market models. For
two further examples from the field of energy markets see also Section 4, where we
discuss them thoroughly. A detailed overview of applications from other fields can
be found in, e.g., Harks (2020).
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Although the existence of an equilibrium is not guaranteed in general if nonconvex
players are part of the (MEP), it is well-known that in the case of existence, market
equilibria correspond to welfare optima; cf. Part 1 of Theorem 2.3 in Harks (2020).
Formally, the welfare problem is the optimization problem in which the sum of all
players’ objectives is minimized subject to the constraints of all players and the
market-clearing conditions. This welfare optimization problem thus reads

rrbin Zcz(yz) st. yey, Zhl(yl) =0. (WFP)
’ i€l i€l
Here, we use y := (yi)ier € R™ with n, := Y ,_;n; as an abbreviation for the
decision variables of all players i € I. Analogously, let Y := X ;eq Yi denote the
Cartesian product of the individual feasible sets.

Even if a global solution to the welfare optimization problem (WFP) exists, this
solution does not necessarily constitute a market equilibrium if nonconvexities are
present in the optimization problems as given in (1). However, if these optimization
problems are convex for all 7, the existence of market equilibria is well-understood.
In particular, there exists a market equilibrium of (MEP) if there exists a global
solution to the welfare optimization problem (WFP). To see this note that, for each
player i, the convexity of the objective function over the convex set Y; yields

FiAgi + (1 = N)gi, ) < MG, ) + (1 = N) fi(Gi, )

for all g;,9; € Yi, A € [0,1], and all # € R™~. Inserting the definition of the objective
function and rearranging then yields

(Mg + (1 = N)0s) — Aei(§:) — (L — A)es(9s) )
< (@) + (1= Nha(G:) — ha(Agis + (1= X))

Note that the left-hand side is independent of 7, and the latter can take any value
in R™~. Hence, we conclude that

ARi(Gi) + (1 = MNhi(9:) = hi(Agi + (1 = A)g:). (4)
Since the right-hand side of (3) is zero, we see that ¢; has to be convex on Y;. Let
7,9 be feasible for (WFP) and A € [0,1]. The point Ag + (1 — A)g is also feasible
since the set Y is convex and the relation (4) implies that >, ; hi(A7+(1—A)7) =0
holds. Hence, the optimization problem (WFP) is convex. Furthermore, suppose
that Slater’s condition holds for (WEP). If there exists a global solution to (WFP),
then this solution together with the multipliers of the market-clearing conditions as
prices is a market equilibrium. In the presence of nonconvex players, the existence of
a market equilibrium to (MEP) is not guaranteed in general; see, e.g., Example 5.1
and Example 5.2. However, in many applications there is at least one player—or
possibly more—whose optimization problem is not convex.

3. EXISTENCE OF EQUILIBRIA

In this section we analyze how global solutions of the welfare optimization
problem (WEFP) can be used to either find a market equilibrium or to determine
that no market equilibria exist. To this end, we build on results from Harks (2020)
to observe that market equilibria of (MEP) are equivalent to primal-dual solution
pairs of the corresponding welfare problem with zero duality gap and provide some
practical consequences of this result. Among those are the fact that players with
unique best responses to given market prices also have a unique optimal strategy
over all market equilibria (if any exists). The close relation between global solutions
of the welfare problem and market equilibria motivates to first compute a global
solution y* of the welfare problem and then try to find suitable market prices 7*
such that (y*,7*) is a market equilibrium. We show that under certain technical
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assumptions, which are satisfied in the applications presented in Section 4, it suffices
to check one critical price to either obtain a market equilibrium or to know that
none can exist. This result is then formalized in an algorithm, which we use in
Section 5 to compute market equilibria of nonconvex energy market models.

If we denote the Lagrangian of the welfare optimization problem (WFP) by

Liy,m) =Y (ci(y) + 7 hi(ys))
il
the corresponding Lagrangian dual problem is given by
sup d(m), (5)
TERN~
where d(7) := infycy L(y, ). Due to weak duality we always have the relation

inf ch(yz) yey, th(yl) =0, > sup d(m).

veY et i€l TERNT
In the case of strong duality, i.e., if the latter inequality is satisfied with equality,
we refer to the welfare optimization problem as having a zero duality gap.

Definition 3.1. The welfare optimization problem has zero duality gap if there
exist globally optimal solutions y* of the primal problem (WFP) and 7* of the dual
problem (5) with the same objective function value.

However, the duality gap of the welfare problem can be positive in the presence
of nonconvexities. On the other hand, Part 1 of Theorem 2.3 in Harks (2020) states
that a zero duality gap is equivalent to the existence of a market equilibrium. In
our setting, this result reads as follows.

Theorem 3.2 (See Part 1 of Theorem 2.3 in Harks (2020)). The pair (y*,7*) is
a market equilibrium of (MEP) if and only if y* and ©* are global solutions of
the welfare optimization problem (WFP) and the corresponding dual problem (5),
respectively, with zero duality gap.

In what follows, we use this result to derive new results, which then will finally
lead to an algorithm that can decide the existence of a market equilibrium and
that computes such an equilibrium if it exists. Let us start with some immediate
consequences from the last theorem.

Corollary 3.3. (a) If (y*,7*) is a market equilibrium of (MEP), then y* is a

global solution of the welfare problem (WFP).

(b) If (y*,7*) is a market equilibrium of (MEP), then (y,n*) is a market
equilibrium of (MEP) for all global solutions y of the welfare problem.

(c) If (y*,7*) and (§,7) are two market equilibria of (MEP), then so are (y*,7)
and (§,7*).

(d) If y* is a global solution of the welfare problem (WEP) for which there exists
no m such that (y*,7) is a market equilibrium of (MEP), then the market
equilibrium problem (MEP) has no solution.

Part (a) of the corollary ensures that only global solutions y* of the welfare
problem are candidates for a market equilibrium. Part (d) states that there does
not exist any market equilibrium at all, if we find a global solution y* of the welfare
problem, which is not a market equilibrium for all 7. In general, neither y* nor 7*
have to be unique in a market equilibrium and Parts (b) and (c) state that we can
mix and match different solutions.

In some applications, we know for a subset S C I of the players that, for all
possible 7, their optimization problem (1) has at most one global solution. This
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FIGURE 1. Tlustration of Corollary 3.4 (based on Figures 2 and 3
of Grimm, Griibel, et al. (2019); see also Example 5.1). The
nonconvexity of the feasible set of the welfare problem (WFP)
(gray) leads to multiple welfare optima y§ and §g that differ in the
decisions of the strictly convex players. Thus, no market equilibrium
to (MEP) exists.

means that these players have a unique best response if it exists at all. This is,
e.g., the case for players with convex feasible sets Y; and strictly convex objective
functions y; — fi(y;, 7). Those players then also have a unique optimal strategy
in all market equilibria and multiplicity in global solutions of the welfare problem
immediately implies that no market equilibrium exists. For a graphic illustration of
this effect see Figure 1.

Corollary 3.4. Let S C I be the set of players with unique best responses for all
price vectors m € R"~.
(a) If (y*,7*) and (§,7) are two market equilibria of (MEP), then y§ = gs.
(b) If y* and § are two global solutions of the welfare problem (WFP) with y§ #
Us, then the market equilibrium problem (MEP) does not have a solution.

Proof. (a) By Corollary 3.3 (¢) we know that (g, 7*) is also a market equilibrium
and thus both yf and §; are global solutions of the optimization problem (1) of
player 7 with price 7*. For all players ¢ € S this solution is unique, i.e., y§ = Jg
holds.

(b) If the market equilibrium problem would have a solution for some price
vector 7, then both (y*,7) and (g, ) would be market equilibria, which contra-
dicts (a). O

Note, however, that the market equilibrium problem can have more than one
solution as long as the solutions differ only in the prices or in the strategies of the
players in I\ S, who do not have unique best responses to given prices.

Going back to Corollary 3.3, Part (a) motivates the following approach to compute
market equilibria of (MEP): First, we compute a global solution y* of the welfare
problem (WFP). Then, we find a price vector 7* such that for all players ¢ € I, the
vector ¥} is a global solution of the player’s optimization problem (1) for the given
price vector 7*. To determine such an equilibrium price 7*, let TI(y*) C R™" be a
set that includes all market equilibrium prices, i.e., it has the property

(y*,7") is a market equilibrium of (MEP) = =" € II(y™). (6)
Given a welfare solution y* and such a candidate set II(y*), only prices m € II(y*)

can be equilibrium prices. Thus, we can assume that II(y*) # ), since otherwise no
market equilibrium exists.
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For the forthcoming analysis, we assume that we can compute an enclosing box
of TI(y*) that takes the form

{meR" 17 <mp gw,j forall k € {1,...,n:}},

where the lower and upper bounds belong to the extended real line. We now show
that it is possible in some instances to reduce the study of the existence of a market
equilibrium to checking whether a global welfare optimal solution and a particular
price constitute a market equilibrium.

Theorem 3.5. Let y* be a global solution of the welfare problem (WFP) and let
I(y*) # 0 be a set satisfying Condition (6). Assume that for all k € {1,...,n.} at
least one of the following properties is satisfied:

(a) mp =,

(b) mF < oo and (hi(y}))k < (hi(y:))k for all'y; € Vi and all players i € I,
(c) m, > —o0 and (hi(y;))k = (hi(yi))k for all y; € Y; and all players i € I,
(d) m, = —oo, 71'; = o0, and (hi(y}))r = (hi(yi))k for all y; € Y; and all

players i € I.

Then, there exists a market equilibrium of (MEP) if and only if (y*,7) is a market
equilibrium, where the critical price T is defined as

T, =75, if (a) applies,

P 71'2', if (b) applies,
b T if (¢) applies,
0, if (d) applies.

Proof. If (y*, ) is a market equilibrium, then obviously one exists. So let us assume
that (y*,7) is not a market equilibrium. For every player ¢ € I and all y; € Y; as
well as all © € TI(y*), the difference in the player’s objective function values is

filyism) = filyr,m) = cilys) — ci(yp) + 7 (halys) — ha(y7)

() — cily?) + S mulhilys) — ha ()
k=1

It immediately follows from (a)—(d) that this difference becomes maximal over TI(y*)
for the critical price 7. Since (y*,#) is not a market equilibrium, there exists a
player i € I and a strategy y; € Y; of this player such that f;(y;, 7) < fi(y},7) holds.
For this player and this strategy, the following then holds for all = € II(y*):

filyi,m) = fily; ™) < filyi, ®) = fily;, 7) <0.
If a market equilibrium would exist, then by Corollary 3.3 (b) there would exist an
equilibrium price 7* € M (y*) such that (y*,7*) is a market equilibrium. But as we

have shown above none of the equilibrium price candidates in II(y*) supports an
equilibrium in y*. Consequently, no market equilibrium exists. O

Our approach relies on exploiting the interplay between the structural properties
of the players’ problems and the set of admissible prices II(y*) for a given global
solution y* of the welfare problem. This is best understood when looking at the
definition of the critical price 7. Looking at Case (b), one sees that if all players
contribute in their minimum way to the market-clearing conditions, then it is
sufficient to test for the upper bound as an equilibrium price candidate for this
component. If, analogously, all players reach their maximum possible contribution
for the market-clearing conditions, which is Case (c), then it is sufficient to check
whether the lower bound for the component is an equilibrium price. Such upper
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and lower bounds might implicitly result from (necessary) optimality conditions of
the players.

Applications fulfilling the properties stated in Theorem 3.5 arise, e.g., in trans-
portation networks. For applications in the context of energy markets, in which
all the stated properties are satisfied, see Section 4. Since these applications are
often formulated in terms of maximization problems, we provide the analogue of
Theorem 3.5 for maximization problems in Appendix A.

In general, one wants to choose the candidate set II(y*) as small as possible
in order to satisfy the conditions for Theorem 3.5. However, one cannot choose
II(y*) arbitrarily small since Condition (6) needs to be satisfied, i.e., II(y*) needs to
include all market equilibrium prices. A straightforward approach to construct the
set TI(y*) is to exploit necessary optimality conditions of each player’s optimization
problem. If (y*,x) is a market equilibrium, then for all players ¢ € I, yF is a global
solution of optimization problem (1) with a price vector 7 and thus has to satisfy the
necessary optimality conditions for (1). These optimality conditions evaluated at v
provide constraints for possible market equilibrium prices 7. Since we impose only
very few assumptions on the optimization problems (1), different types of necessary
optimality conditions might be needed for different classes of players. Fortunately,
mixing varying types of necessary optimality conditions is not a problem here.

Remark 3.6. Consider a player i € I. If the feasible set Y; is given by standard
constraints, e.g., Y; = {yi: gi(y:) < 0}, if all functions ¢;, h;, and g; are continuously
differentiable, and if a constraint qualification for'Y; is satisfied at y?, then the
KKT conditions for (1) are necessary. Thus, only prices m, for which there exist
multipliers p; with

0=Vci(y;) + Vhi(y;)m + Vagi(y )i, 0<p; Lgi(y;) <0 (7)

can be market equilibrium prices. If, additionally, y; — fi(y;,m) and g; are convex
functions, the KKT conditions are not only necessary but also sufficient optimality
conditions for (1).

For other players, using the KKT conditions as necessary optimality conditions
might not be possible, e.g., because they have discrete decision variables, their
optimization problem is not differentiable, or their feasible set does not satisfy a
constraint qualification. These players can either be ignored in the definition of TI(y*)
or one can use alternative optimality conditions to generate conditions on market
equilibrium prices w. For example, the textbooks by Clarke (1990), Luo et al. (1996),
Mordukhovich (2018), Rockafellar (1970), and Rockafellar and Wets (1998) provide
optimality conditions based on subdifferentials and variational analysis, which can
be used in the presence of nondifferentiable or degenerate constraints.

In situations, in which the KKT conditions (7) of certain players are necessary
and sufficient and used to obtain the candidate set II(y*), it is possible to weaken
the assumptions of Theorem 3.5. Note that this modification only works in the case
that # € II(y*) holds, which is a nontrivial assumption, because # is per definition
a vertex of an enclosing box of II(y*). However, in the application considered in
Section 4, this assumption will indeed be fulfilled.

Corollary 3.7. Let y* be a global solution of the welfare problem (WFP). Moreover,
let C C I denote the subset of players, for which the KKT conditions (7) are
necessary and sufficient optimality conditions and choose the candidate set TI(y*)
such that Condition (6) as well as the KKT conditions of all players i € C are
satisfied, i.e.,

II(y*) C{w € R" : for all i € C ewists pu; such that (7) holds} .
Assume that for allk € {1,...,n.} at least one of the following properties is satisfied:
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Ty =T
< (hi(y:))x for ally; € Y; and all players i € I\C,
7Tk > —o0 and (hi(yF))k = (hi(yi))x for all y; € Y; and all players i € I\C,
nd

(hi(Yi)ie = (hi(yi))k for ally; € Y; and all players

T, =75, if (a) applies,

R 7T2_, if (b) applies,

1=
¥ T if (¢) applies,
0, if (d) applies.

If the critical price satisfies © € II(y*), then there exists a market equilibrium of
(MEP) if and only if (y*,7) is a market equilibrium.

Proof. If (y*,7) is a market equilibrium, then obviously one exists. So let us assume
that (y*,7) is not a market equilibrium. Due to 7 € II(y*), the KKT conditions of
all players ¢ € C' are satisfied, i.e., y; is a best response to 7 for all players ¢ € C.
Thus, if (y*,7) is not a market equilibrium, this has to be due to one of the players
i ¢ C. For those players, one obtains a contradiction by applying the same argument
as in the proof of Theorem 3.5. O

Finally, we utilize the previously derived results to formally state Algorithm 1,
which terminates either with a market equilibrium or with the information that no
market equilibrium exists. The presented algorithm is based on Theorem 3.5. Note
that for the situation described in Corollary 3.7, the algorithm remains the same
except for Line 8, where it suffices to check whether y; is a best response to the
price vector 7 for all players i € I\C.

Algorithm 1: Deciding the existence of an equilibrium of (MEP) and
computing an equilibrium in case of existence

Input : Market equilibrium problem (MEP)
1 Compute a global solution y* of the welfare optimization problem (WFP).
2 if (WFP) cannot be solved then

3 ‘ return “No claim regarding the existence of equilibria can be made.”
4 else if (WFP) does not have a solution then
5 ‘ return “No market equilibrium exists.”
6 else
7 Define the critical price vector 7 as in Theorem 3.5.
8 if vy is a best response to the price vector @ for all players i € I then
9 | return (y*,7) is a market equilibrium.
10 else
11 ‘ return “No market equilibrium exists.”
12 end
13 end
Remark 3.8. (a) In Lines 1 and 8, we assume that it is possible to solve the

potentially nonconvex problems (WFP) and (1) to global optimality.

(b) If the solver computing the global solution of (WFP) in Line 1 addition-
ally provides dual variables such that strong duality holds, then a market
equilibrium exists and the dual variables associated to the market-clearing
conditions are market equilibrium prices. However, there is no guarantee
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that the solver is able to do so; see, e.g., Section 5.3 in the BARON manual
by Sahinidis (2021).

(¢) To execute Line 7, Algorithm 1 relies on the existence of a procedure to
compute the set II(y*) for any given welfare optimal solution y*. Please see
Section 4, where we present such procedure for specific applications.

(d) Note that if multiple equilibria exist, Algorithm 1 computes one of those
equilibria. An extension of the algorithm so that it computes all equilibria is
out of reach since this corresponds to computing all globally optimal solutions
of the nonconvexr welfare mazximization problem, which itself is an extremely
challenging problem.

(e) Let us finally comment on that we have to solve a potentially NP-hard and
nonconvexr welfare optimization problem at the beginning of the algorithm.
This nonconvezxity is inherited from the nonconvezity of the corresponding
player problems. Fortunately, there is an increasing number of NP-hard
problems in the energy sector, e.g., the AC-OPF problem, for which more
and more sophisticated solution techniques have been developed to solve such
problems to global optimality; see, e.g., Krasko and Rebennack (2017) and
the references therein.

Theorem 3.9. If the assumptions of Theorem 3.5 are satisfied and if the (WFP)
can be solved to global optimality or it can be decided that it has no solution, then
Algorithm 1 terminates correctly with either a market equilibrium of (MEP) or with
the information that such an equilibrium does not exist.

Proof. Follows from Theorem 3.5 and Corollary 3.3. O

4. APPLICATIONS IN ENERGY MARKET MODELING

In this section, we consider energy networks modeled as graphs G = (V, A) and
assume that the graph G is directed and weakly connected. The node set V' can
further be split in the set V_ C V of consumer locations, the set V. C V of producer
locations, and the set Vjj C V of so-called inner nodes. For the ease of presentation,
we assume that these three sets are disjoint and that V_ UV, UVy =V holds. A
possible approach to handle nodes, where both a producer and a consumer are
located, is discussed in Section 5. In the market model, there are three types of
players: producers, consumers, and the transmission system operator (TSO). For
the sake of simplicity, we assume that each consumer node can be identified with a
single consumer and each producer node with a single producer. For publications
that study similar producer and consumer models as we do see, e.g., Gabriel, Conejo,
et al. (2012), Grimm, Griibel, et al. (2019), Hobbs and Helman (2004), and Krebs
et al. (2018).

Consider the consumer located at node u € V_, let 7, be the market price at
this node, and let P,(-) be the consumer’s inverse demand function. The consumer
maximizes his surplus by choosing his demand d, as a global solution of

dy
max / P,(t)dt — myd, st dy > 0. (8)
u 0

For the producer located at v € V., let 7, again be the market price at this node
and let ¢,(+) denote the variable cost of production. The producer maximizes her
profits by choosing her production level ¥, within her production capacity g, > 0
as a global solution of

II}/&X TuYu — Cu(yu) st. Yu >y, > 0. (9)
The TSO is responsible for operating the network and his goal is to maximize
congestion rents by routing as much of the commodity from low-price to high-price
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areas. For all arcs a € A, let ¢, denote the flow along that arc and let ¢ := (ga)aca
be the vector of all flows. Besides the flow g, the TSO can have an additional
decision variable x to describe choices such as switching on or off a power line in the
power network or activating a compressor station in the gas network. In general,
the components of x can be continuous or integer. The optimization problem of the
TSO is then given by

max Z n Z qa — Z qa - ct(qa Z‘) (103“)

ueV_uUVy a€din(u) a€dout(u)
s.t. Z Qo — Z go >0 foralluelV_, (10b)
a€dn (u) agsout ()
Z Qo — Z qdo <0 forall ueV,, (10c)
a€din(u) a€dout (u)
Z qa - Z Ga > —Ty forallueV,, (10d)
a€din(u a€dout (u)
Z qa — Z o =0 for all u € Vj, (10e)
aesin(u a€sout (u)
F(q,x) > 0. (10f)

Here, c'(q, ) describes the transportation costs and 6™ (u) (6°**(u)) denote the sets
of incoming (outgoing) arcs at node u. Finally, the mapping F(g,2) summarizes
the, potentially nonconvex, network-related physical and technical constraints. The
first three constraints make sure that the net flow can only be positive at consumer
nodes, negative at producer nodes, and that it has to be zero at inner nodes.
Constraints (10d) ensure that at each supply node, the TSO does not obtain more
of the respective energy carrier than the nodal capacity allows for, i.e., the TSO is
informed about the capacities of all production facilities. Note that this is consistent
with the assumption of perfect competition.
The model is completed by the nodal market-clearing conditions

Z Ga — Z o =d, forallucV_, (11a)

a€s (u) a€dout(u)
Z Ga — Z Qa =—y, forallueV,, (11b)
a€din(u) a€dout(u

which ensure that production, Consumptlon, and the in- and outgoing flows are
balanced at every node of the network.
The complete energy market equilibrium problem is thus given by

consumers: (8) for all u € V_,

producers: (9) for all u € V, MEDP-E
TSO: (10), (MEP-E)
market-clearing conditions: (11).
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Since it has the form discussed in Sections 2 and 3, we know that market equilibria
(d*,y*, ¢*, x*, ") are related to global solutions of the welfare maximization problem

du
max Z Pu(t) dt — Z cu(yu) - ct(Qv {L‘)
d,y,q, v 0 1L€V+
s.t. Z Ga — Z go =0 forall u eV,
a€din (u) a€dout (u)
Z Qo — Z o =dy forallueV_, (WFP-E)
a€din(u) a€dout(u)
Z Ga — Z o = —Yu forallueV,,
a€sin(u) agdout (u)

F(g,2) >0, d>0, §>y>0.

In the remainder of this section, we show that the conditions from Corol-
lary A.2 are satisfied under standard assumptions on the market equilibrium prob-
lem (MEP-E). Thus, we can use Algorithm 1 to decide on the existence of equilibria
and to compute an equilibrium if one exists. The imposed standard assumptions
read as follows.

Assumption 1. (1) The inverse demand functions P,(-) are continuous and
strictly decreasing for all u € V_.
(2) The variable cost functions c,(-) are monotonically increasing with ¢, (0) = 0,
convex, and continuously differentiable for all u € V..

These assumptions ensure that the producers and consumers have concave maxi-
mization problems subject to linear constraints. Consequently, any global solution
of (8) and (9) is characterized by the respective KKT conditions. Exploiting this
observation, we can first derive sufficient information from these KKT conditions
to appropriately bound market prices and second ensure that the parts of the
TSO’s objective function affected by prices that are not yet uniquely determined by
the obtained bounds are minimal or maximal in the global solution of the welfare
problem. Hence, we can prove that Corollary A.2 is applicable.

Theorem 4.1. Suppose Assumption 1 holds. Let (d*,y*, ¢*,x*) be a global solution
of the welfare problem (WFP-E) and define & as

P P,(dY), ifueV_,
), ifueVy.
Then, either (d*,y*,q*,x*,7) is a market equilibrium of (MEP-E), or there is no
market equilibrium.

Proof. We use the KKT conditions of the producers and consumers to define the
set II(d*, y*, ¢*,x*). For a consumer located at u € V_, these KKT conditions can
be reduced to
0<d;, Lm,>P,d).
For a producer located at u € V., the KKT conditions read
Tu—C(ys) + By —BE =0, 0<B, Ly;>0, 0<BF Ly, —ys >0,

where 3; and 8;" denote the corresponding dual variables.



NONCONVEX EQUILIBRIUM MODELS FOR ENERGY MARKETS 13

All candidates for market equilibrium prices are thus elements of the set
II(d*, y*, ¢*, z*) defined by

{P,(d2)}, ifueV_,d>0,
[Pu(dy),00),  ifue Vo, d;=0,
me ROl m e (i)}, HuE Vi gu>yl >0,

(_Oo,ca(y:)], if u e V+7 y;; = O7
[C;(yz)? +OO)7 lf u € V_;'_, y:; = yu’

Due to the simple structure of II(d*, y*, ¢*, z*), the critical price & can be stated
explicitly and satisfies # € II(d*,y*, ¢*,z*). By definition of II(d*,y*, ¢*,x*), d*
thus is the consumers’ best response to @ and y* is the producers’ best response
to 7. Consequently, it remains to show that Cases (a)—(d) of Corollary A.2 are
fulfilled for the TSO.

For all production nodes u € V with positive but not binding production level
and for all consumption nodes v € V_ with positive demand, there is exactly one
candidate for an equilibrium price in II(d*, y*, ¢*,2*), namely 7,. Hence, we are in
Case (a) of Corollary A.2.

For all demand nodes u € V_ with zero demand, we have

(hrso(@Nu= Y a— >

a€din(u) a€dout (u)
=d;=0< > qa— Y ga=(hrso(q))u
a€din(u) a€§ont(u)

for all ¢ feasible for (10). Since, additionally, 7, is chosen as the finite minimum
nodal price in II(d*,y*, ¢*,x*), all conditions in Case (c) of Corollary A.2 are
satisfied.

For all supply nodes u € V. with zero production, we have

(hrso(@u= >, @— >,

CLE(S‘“(’U,) a€5°“t(u)
= —?JZ =02 Z Ga — Z Ga = (hTSO(Q))u
a€din(u) a€dout(u)

for all ¢ feasible for (10). Since, additionally, 7, is chosen as the finite maximum
nodal price in II(d*,y*,¢*, x*), all conditions in Case (b) of Corollary A.2 are
satisfied.

For supply nodes u € V. at full capacity, we have

(hrso(¢Nu= > a— >, a
a€din(u) a€dout (u)
= _yu = _gu >~ Z Ga — Z da = (hTSO(q))u
a€din(u) a€dout(u)

for all ¢ feasible for (10). Since, additionally, 7, is chosen as the finite minimum

nodal price in II(d*, y*, ¢*,z*), all conditions in Case (c) of Corollary A.2 are
satisfied.

Consequently, all conditions of Corollary A.2 are satisfied and the claim follows.

O

In general, choosing a sufficiently tight superset of all possible equilibrium prices
and computing the critical price can be difficult. However, in this application, we
get the critical price # “for free” once a global solution (d*,y*, ¢*, z*) of the welfare
problem (WFP-E) is known.
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Additionally, since II(d*,y*, ¢*,2*) is defined via the KKT conditions of the
consumers and producers, which are necessary and sufficient under Assumption 1,
and since 7 € II(d*,y*, ¢*,2*), we immediately know that d and y; are best
responses of all consumers v € V_ and all producers u € V. to the prices 7. To
check if (d*,y*, ¢*,z*, ) is a market equilibrium, one thus only has to verify that
(g*,x*) is a best response of the TSO to the prices 7.

5. COMPUTATIONAL STUDY

We now consider in more detail two applications in energy market modeling that
fit into the framework described above. We start with a detailed description of
the two applications in Section 5.1 and continue with giving information about the
computational setup and our test instances in Section 5.2. Afterward, we present
the numerical results for Algorithm 1; first for the gas application (Section 5.3) and
then for the power application (Section 5.4). The results are discussed and insights
are given on the conditions leading to non-existence of equilibria.

5.1. The Optimization Problems of the TSOs. We examine as applications
the case of a TSO operating a gas network under nonlinear stationary gas flow
equations and the case of a TSO switching DC lines in a DC power network. For
each application we provide an instance for which the duality gap of the welfare
problem is nonzero, i.e., for which no market equilibrium exists. In order to establish
non-existence of an equilibrium for the gas flow instance, we apply Corollary 3.4.
For the DC line switching instance, Algorithm 1 is applied to determine that no
market equilibrium exists.

We start with describing the optimization problems (10) of the respective TSOs, fo-
cusing mostly on the transportation costs c*(q, ) and the network constraints F'(q, z).
The optimization problems of the consumers (8) and producers (9) stay the same as
in Section 4. An overview of all technical and economic parameters and variables
together with the respective units used in this section can be found in Table 3
located in the Appendix B.

5.1.1. Gas Flow. This application is taken from Grimm, Griibel, et al. (2019). We
choose this application to study in particular the impact of continuous nonconvexities
on the existence of an equilibrium. The network-related physical constraints are
given by the following model of stationary gas physics:

pi _pzz; = Nadalgal, a=(u,v) € A,

Pu <pu<pl, ueV,

4o <qa<qy, acA
Here, the gas flow through the pipes is determined by the so-called Weymouth
equation; see, e.g., the chapter by Fiigenschuh et al. (2015) in Koch et al. (2015) for
more information on this topic. This equation links the flow ¢, on an arc to the
pressure drop (p2 — p?) over this arc in a nonlinear way. Finally, nodal pressure and
flow bounds are imposed to, e.g., guarantee technical and contractual requirements.

For more information on the general setup see Grimm, Griibel, et al. (2019).
The transportation costs are assumed to increase quadratically with the flow, i.e.,

we have
(g) =) oq.
acA
Next, we present an instance in which no market equilibrium exists for the
described gas application of (MEP-E). To simplify the presentation, we set the
transportation costs to zero for now.
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Example 5.1 (Non-existence of Equilibria). For the instance depicted in Figure 2,
Grimm, Griibel, et al. (2019) show that exactly two welfare mazimal solutions exist,
namely

dy=1+4+V2, ds=0, yp=1+v2 q2=V2 aqsz=1, qs=-1,
pr=V2 p2=0, p3=1,
and
dy=d3=1, 11 =2, Q2=Qs3=1, @3=0, p=V2 p=p=1,
which differ in demand and generation. Hence, by Corollary 3.4, we know that
there is no market equilibrium for this instance. For an illustration of the given

example see Figure 1, in which the demand at node 2 is plotted on the abscissa and
the demand at node 3 on the ordinate.

Demand:
A=1 pe[0,1]
P(d)y=13—-d
Generation: Ao
q € [_17 1}

A=1 Demand:

qe[_Ll] p:1
P(d)=10v2+ 1 —d

FIGURE 2. 3-node network with all physical and economic data
considered in Examples 5.1 and 5.2; based on Figure 1 of Grimm,
Griibel, et al. (2019).

5.1.2. DC Line Switching. This application addresses the problem introduced in,
e.g., Fisher et al. (2008), Hedman et al. (2008), or Hedman et al. (2009) from
an economic point of view. We split the set A of arcs into the set of switchable
arcs A4 and non-switchable arcs A_. As soon as a power line a € A, is switched
off (indicated by the binary variable z, being equal to 0), no power flow over this
line is possible and no physical laws are imposed for this line. Conversely, as soon
as a power line a € A, is switched on (z, = 1), the power flow over this line is
bounded by its capacities and follows physical laws.

As in Fisher et al. (2008), Hedman et al. (2008), and Hedman et al. (2009), we
use the lossless direct current (DC) load flow approximation to model power flow.
In particular, we follow the formulation given in Section 3.7 in Zimmerman and
Murillo-Sanchez (2021). In the previously presented application, we focus on the
effect of continuous nonconvexities on the existence of an equilibrium. Here, we
focus on integrality restrictions and therefore choose this linear power flow model.
In total, the network-related physical constraints read

4o <qu<qy, a€A, (12a)

0, — 0, — M = X g0, a= (u,v) € A, (12D)

M;(1—2,) <0y — 0, — M — X0, < MF(1—2,), a=(u,v) €Ay, (120)
(12d)
(12e)

G %a < o < qf2a, a €Ay,
Za 6{0,1}, GGA_;,_.
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First, all flows g, are bounded from below and above by the capacities of the
respective DC lines. In accordance with the DC load flow approximation, the
flow on a line multiplied by its reactance X, has to equal the nodal phase angle
change (6, — 6,) for all non-switchable lines. In addition, for transformer nodes,
a phase shift angle 65" is considered. The DC load flow approximation is only
fulfilled for switchable lines if they are switched on. Finally, if a switchable line is
switched off, the flow on this line must be zero.

Let us briefly comment on how we choose the big-M values M, and M} in
Equation (12¢). On the one hand, it is crucial to find sufficiently large big-M values
to obtain a correct linearization. On the other hand, the big-M values should be as
tight as possible to avoid numerical problems. While such big-M values are easily
obtained for (12d) by the flow bounds, computing big-M values for (12c) is harder.
Due to physics, there are bounds on the differences of nodal phase angles. One can
derive nodal phase angle bounds by fixing the phase angle at a reference node to zero.
Since the path from the reference node to any other node leads over at most |V| —1
arcs, the bounds on the nodal phase angles differences can be transferred to bounds
on the nodal phase angles. These bounds could be tightened by solving an all-pairs
longest-path problem. However, since this problem is known to be NP-hard, we
refrain from using this approach. The big-M values finally result from the DC load
flow approximation utilizing the derived phase angle bounds and the flow bounds.

As before, the transportation costs increase quadratically with the flow. In addi-
tion, a fee has to be paid for each line that is switched on. Hence, the transportation

costs are given by
Ma,2) =Y agg+ Y Bz

acA acAy

In the following example, we provide an instance for which no market equilibrium
exists for the described application of (MEP-E). For the sake of simplicity, we fix
the transportation costs to zero. Transformers are also not taken into account in
this example. Later in the computational study, we also provide instances without
an equilibrium when transportation costs are nonzero and transformers are included.

Example 5.2 (Non-existence of Equilibria). The instance considered here is based
on the instance considered in Fxample 5.1. The economic data is the same. In
addition, all reactances are 1 and the line (2,3) is switchable. The welfare mazimum
computed in Step 1 of Algorithm 1 is the following:

11 14 11
2 3 ) 3 ) Y1 3 ) q1,2 3 ’ q1,3 ) 42,3 )
11 8
9113, b2 =0, 93:§7 Z23 = 1.

The next step is to test whether the TSO’s best response to the resulting critical price
vector

T =

28 28 1
3 M=, F3=10V2-,
which is defined as in Corollary A.2, coincides with the TSO’s strategy in the welfare
mazimum. However, these prices are not incentive-compatible for the TSO since—
given these prices—the TSO’s objective is to route as much as possible to node 3,

neglecting node 2. This goal is achieved by the strategy
Gi2=05 G@13=1, G3=05 6;=1, 6,=05 0;3=0, Zz3=0

and not by (q,0,z). Thus, Algorithm 1 terminates with the indication that no market
equilibrium exists.
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TABLE 1. Overview of the instances of the gas flow application

Name V| |V-| |Vi| |A| 4 instances
Gas-134-S 134 45 3 133 60
Gas-11-H 11 3 3 10 36

5.2. Computational Setup and Test Instances. We implemented Algorithm 1
in Python 3.8.5 using Pyomo 5.7.3; see Hart et al. (2017). In order to solve the NLPs
arising in the gas application, we use ANTIGONE 1.1; see Misener and Floudas (2014).
In turn, we solve the MILPs arising in the power application with Gurobi 9.1.1; see
Gurobi Optimization (2021). The computations have been carried out on the Woody
compute nodes with four Xeon E3-1240 vb CPUs running at 3.50 GHz with 32 GB of
RAM; for more information on the compute cluster see Regionales Rechenzentrum
Erlangen (2021). For each considered instance, we limit the runtime to 1 hour.

5.2.1. Gas Flow Instances. For the gas application, we adapted instances from
Heitsch et al. (2021) and Schewe et al. (2020), which are both based on networks
from Schmidt et al. (2017). An overview of the resulting 96 instances is presented
in Table 1.

The 60 instances Gas-134-S are identical with those presented in Schewe et al.
(2020) but we set fixed transportation costs to 0, choose the transportation cost
factor a in {0.01,0.05,0.1}, and “shifts” of the intercepts of the demand functions
in {—10,-5,0,5,10}. We do not include fixed transportation costs here as the
existence of a short-run market equilibrium is independent of considering any fixed
costs. In addition, we divide all slopes of the demand functions by 10 and multiply
all pressure drop coefficients by 8 to obtain network congestion for more instances.!
This approach is chosen since Grimm, Griibel, et al. (2019) show in Theorem 4.3
that—as long as nodal pressures are not binding and further mild assumptions
are fulfilled—an equilibrium exists for the considered market equilibrium problem.
Therefore, to avoid too many instances with guaranteed equilibrium in our numerical
study, a high percentage of instances with network congestion is desirable. We
address this issue further when presenting the numerical results in Section 5.3.

The instances Gas-11-H are taken from Heitsch et al. (2021).? Varying the
transportation cost factor o within {0.01,0.05,0.1} yields 36 instances. To increase
the percentage of instances with network congestion, all pressure drop coefficients
in Gas-11-H are again multiplied by the factor 8. For further information on the
data, see Heitsch et al. (2021).

5.2.2. DC Line Switching Instances. For the power application, we adapted the
instances included in the Software MATPOWER 7.0; see Zimmerman and Murillo-
Sanchez (2019) or Zimmerman, Murillo-Séanchez, and Thomas (2011) for details.
We restrict our analysis to those instances for which the generation cost data is
provided as polynomial cost functions.? In addition, we neglect all instances for
which the reported minimum and maximum phase angle difference coincide in all
nodes. The reason is that the same minimum and maximum phase angle difference
imply the same lower and upper flow bound, i.e., there is a unique solution w.r.t.

LAn increase of all pressure drop coefficients around the factor 8 corresponds, e.g., to a diameter
reduction by 33 % for all pipes or the consideration of a hydrogen network instead of a natural gas
network (this approximately equals the change in the specific gas constant).

2Since the flow values in Heitsch et al. (2021) are given as volumetric flows under normal
conditions, we convert them to mass flow assuming a gas density of 0.87 kg/m3.

3For the two instances case30pwl and case RTS GMLC, the generation cost data is given by
piecewise linear functions.



18  J. GRUBEL, O. HUBER, L. HUMBS, M. KLIMM, M. SCHMIDT, AND A. SCHWARTZ

TABLE 2. Overview of the instances of the DC line switching application

Instance |V| |V_| |V4] |4] |A4|

Smallest 5 3 4 6 1
Average 56 33 15 97 10
Biggest 300 191 69 411 42

the flow in the welfare problem (WFP-E) and a matching unique solution of the
TSO problem (10). Hence, for these instances, an equilibrium always exists as the
TSO has no possibility to deviate from the welfare-maximal solution. After deleting
the described instances, 29 instances remain. Since all instances with more than
1000 nodes and more than 1500 arcs cannot be solved to optimality within the
time limit, we only report on the remaining 17 instances here. Finally, we vary the
transportation cost factor « and switching costs S as follows: « € {0.01,0.05,0.1}
and f € {20,50}. Thus, the final test set contains 102 instances in total. An
overview of this test set is given in Table 2.

The economic data is obtained in the following way. For the calibration of the
demand functions, we assume an elasticity of —0.1. The respective reference price is
chosen to be the mean of the suppliers’ critical prices given the real power outputs y,
reported by MATPOWER,; i.e., the reference price equals

1 /

[Vl u%%

The respective reference quantity is the real power demand reported by MATPOWER.
For generators, we utilize the reported generator cost data and generation capacities.
Again, fixed costs are not considered as the existence of a short-run market equi-
librium is independent of any given fixed costs. If multiple generators are located
at one node, we use the average of the coefficients of the reported polynomial cost
functions. We further note that there is also the possibility of a consumer and a
producer being located at the same node. For these nodes, Case (a) of Corollary A.2
has to be valid in order to apply Algorithm 1. This is always the case.

Since there is not enough information available on switchable arcs, we randomly
select 10 % of all arcs as switchable.* The reactance X, and the transformer phase
angle shift #S"f are chosen as described in Section 3 in Zimmerman and Murillo-
Sanchez (2021). The flow bounds are obtained from the minimum and maximum
phase angle difference reported by MATPOWER in combination with the DC load
flow approximation for all arcs a € A, i.e.,

3 (eu _ 91})_ _ ezllift
% o and g
holds if X, > 0, and
(6, — 0,) — gehift
Xa

(eu _ ev)+ _ ezllift
Xa

+
a

qa:

holds if X, < 0.
Finally, the main questions that arise are the following:

_ — __ pshift
and ¢ (b GU;( ba

(1) How often does a market equilibrium exist for the two considered applications
of (MEP-E)?

(2) Under which circumstances does it become more likely that an equilibrium
exists for the two considered applications of (MEP-E)?

4The number is rounded up to the next integer. The respective random seed to initialize the
random number generator of the Python package random equals the number of arcs in the network.
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We answer these questions now by applying Algorithm 1 to the presented instances.

5.3. Numerical Results: Gas Flow. The numerical results of Algorithm 1 ap-
plied to the described gas instances are as follows. In total, 84 instances out of
the 96 instances (87.5%) are solved within the time limit of 1hour. For the re-
maining 12 instances, we cannot make any statement regarding the existence of an
equilibrium within this time limit. The average runtime over all solved instances is
53.1s and the median runtime is 18.7s. To interpret the results, we call an instance
congested if at least one of the following cases applies in the global welfare solution:

(1) the flow on an arc is strictly positive and at the arc’s upper flow bound, or

(2) the flow on an arc is strictly negative and at the arc’s lower flow bound, or

(3) the nodal pressure is at an upper bound and another nodal pressure is at a
lower bound, while a directed flow path from this node to the other node
exists.

We observe network congestion in 56 (66.7 %) solved instances. Similar arguments
as used by Grimm, Griibel, et al. (2019) reveal that an equilibrium exists for the
uncongested 28 solved instances. Our computational results confirm this and show
that there also exists a market equilibrium in all solved and congested 56 instances.

Even though no instances (out of the 84 instances mentioned above) without
equilibrium exist in our numerical study, we have seen in Example 5.1 that the
non-existence of an equilibrium is possible for the considered application. We note
that this example was handcrafted with very specific data to ensure that it does not
have a market equilibrium. In contrast, our results suggest that non-existence of an
equilibrium hardly occurs for practical instances.

5.4. Numerical Results: DC Line Switching. For the 102 instances of the
DC line switching application, the average runtime of Algorithm 1 is 0.4s and the
median is 0.3s. As already mentioned above, all 102 instances are solved to global
optimality within the time limit. A market equilibrium exists for 60 out of the
102 instances. No market equilibrium exists for the MATPOWER instances case30,
case30Q), case ieee30, case39, caseb7, casel4b, and case300 for all variations of the
transportation cost factor and the switching costs. To simplify notation, we use,
e.g., case30-0.1-20 as an abbreviation for case30 with transportation cost factor
« = 0.1 and switching costs 8 = 20. Moreover, in the following, we refer by welfare
solution and TSO solution to the global optimal solutions of the welfare optimization
problem and of the optimization problem of the TSO.

In the following, we discuss the circumstances leading to non-existence of an
equilibrium based on examples from our computational study. In particular, there
does not exist an equilibrium when the welfare gains outweigh the losses induced
by a network decision, while the TSO’s profit gains do not. This may even result
in the TSO incurring losses in the welfare solution as the corresponding gains of
the producers and the consumers are greater than the losses of the TSO. Since the
TSO’s objective function value is bounded from below by zero (zero flows and all
lines switched off), no equilibrium exists in these instances. Actually, this situation
occurs in 29 out of the 42 instances without equilibrium.

All instances case30, case30Q, and case _ieee30 are based on the same network and
admit negative TSO profits in the welfare solution. Non-existence of an equilibrium
is caused in all instances by a single line being switched on in the welfare solution,
which is switched off in the optimal solution of the TSO. In Figure 3, the underlying
situation is exemplarily depicted for the instance case30-0.1-20. The welfare solution
and the TSO solution differ only in the flows on the three depicted lines, of which
(10,20) is the mentioned switchable line. By switching this line off, the TSO
separates the consumers located at nodes 18, 19, and 20 from the rest of the network.
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FIGURE 3. Part of the graph on which the welfare solution (left)
and the best response of the TSO (right) differ for the instance
case30-0.1-20

The reason for this is obvious. While the welfare gains from serving these three
consumers clearly outweigh the losses induced by switching on the line (10,20) in
the welfare solution, the profit gains for the TSO in case of switching this line on
are by far too low to outweigh the switching costs since price differences are too low
in the described subgraph. Consequently, the TSO has no incentive to switch on
line (10, 20).

A similar situation occurs for the instance case57. Here, non-existence of an
equilibrium is caused by two lines being switched on in the welfare solution, which
are switched off in the optimal solution of the TSO. In Figure 4, all differences of
the welfare and the TSO solution w.r.t. the flows are presented. The switching
decisions differ for the lines (54, 55) and (35,36). Again, individual consumers are
separated from the rest of the network in the TSO solution, namely the consumers
located at node 54 and at node 35. The reason for this is the same as before. The
profit gains induced by connecting these consumers to the network do not outweigh
the related switching costs for the TSO.

In all instances described so far, one or multiple adjacent nodes at which consumers
are located have been separated from the rest of the network in the T'SO solution
but not in the welfare solution. We like to note that, e.g., in the instance case39,
the same is true for a node where a generator is located.

There are three main circumstances that might ensure the existence of an equi-
librium in the above described situations: (i) lower switching costs, (ii) higher
switching costs, or (iii) a higher transportation cost factor. If the switching costs
are low enough (Case (1)), the TSO’s decisions align with the welfare solution, since
then the gained profits indeed outweigh the losses due to switching. If, on the other
hand, switching costs are high enough (Case (ii)), the welfare solution matches the
TSO’s solution since then the welfare gains as well as the profit gains no longer
outweigh the switching costs. Actually, in all instances of our computational study
for which a market equilibrium exists, this case applies. Due to relatively high
switching costs, all lines are switched off in the welfare and the TSO solution. A
higher transportation cost factor (Case (iii)) leads to increased price differences
within the network. Resulting profit gains for the TSO might indeed exceed possible
switching costs and therefore it becomes more likely that the TSO switches on lines.

To conclude, we study the Cases (i)—(iii) by varying in more detail the switching
costs and the transportation cost factor for the MATPOWER case case39. The results
for varying the switching costs are depicted in Figure 5. Indeed, if the switching
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FIGURE 4. Parts of the graph on which the welfare solution (left)
and the best response of the TSO (right) differ for the instance
case57-0.1-20
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F1IGURE 5. Comparison of a welfare optimum (“welfare solution”)
and the TSO’s best response to the corresponding critical prices
(“TSO solution”) for varying switching costs 5 and constant trans-
portation cost factor @ = 0.1. Left: Profits of the TSO. Right:
Number of lines switched on in the TSO’s strategies.

costs are low enough, the TSO’s decisions align with the welfare solution. Since the
profit gains and the welfare gains outweigh all losses due to switching, all 5 lines
are switched on. Now, if the switching costs rise above 0.7, the profit gains of the
TSO no longer outweigh all switching costs and the number of switched-on lines in
the TSO solution decreases. This continues until the value 3.2 is reached, at which
also the welfare gains no longer outweigh all losses due to switching and the number
of switched-on lines in the welfare solution reduces to 4. However, this reduction
does not lead to the TSO aligning again with the welfare solution. Even the reverse
behavior can be observed as, e.g., when the number of switched-on lines in the
welfare solution further reduces to 2. There, the TSO exploits the price differences
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FIGURE 6. Comparison of a welfare optimum (“welfare solution”)
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transportation cost factor «. Left: Profits of the TSO. Right:
Number of lines switched on in the TSO’s strategies.

resulting from switching off the two additional lines in the welfare solution by even
switching on 4 lines in total. Nevertheless, the incentive to do so decreases with
further increasing switching costs. Finally, an equilibrium is obtained again when
the switching costs are high enough such that neither the welfare gains nor the
profit gains outweigh the losses from switching on any line. This point is reached
for significantly larger switching costs of 17524, which are omitted in the figure for
the ease of readability.

Figure 6 shows the results for varying the transportation cost factor for the
MATPOWER case case39. For a transportation cost factor of 0, no market equilibrium
exists. The price differences are not yet high enough for the TSO to outweigh the
losses due to switching. In turn, one line is switched on in the welfare solution.
With increasing transportation cost factor, the number of switched-on lines in the
welfare solution increases monotonically. This is because the additional transport
possibilities allow for a cheaper transport despite the additional switching costs.
Since an increasing transportation cost factor furthermore leads to increasing price
differences, the number of switched-on lines also increases monotonically in the
TSO solution for a constant number of switched-on lines in the welfare solution. At
the points where additional lines are switched on in the welfare solution, the TSO
responds to the corresponding critical prices by reducing the number of switched-on
lines. The main reason behind this behavior is as follows. The additional switched-
on lines in the welfare solution decrease the price differences. As a result, profit
gains due to switching no longer outweigh the arising costs. Consequently, less lines
are switched on. Finally, if the transportation cost factor is larger than 2.7, an
equilibrium always exists since then all lines are switched on in the TSO and in the
welfare solution.

6. CONCLUSION

In this paper we considered market equilibrium problems in which both convex as
well as nonconvex player problems appear. This setting is motivated by applications
from energy markets, where, e.g., nonconvexities arise in power markets due to
integer decisions of certain players or in gas markets due to nonlinear flow models.
In the cases studied in this paper, these nonconvexities always appear in the
optimization problem of the TSO. Based on the recent results presented in Harks
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(2020), we derived an algorithm that computes a solution of such nonconvex market
equilibrium problems or correctly indicates the non-existence of such an equilibrium.
Our computational study reveals interesting aspects. In the continuous but nonlinear
and nonconvex market equilibrium problems from the gas sector, all tested instances
have an equilibrium. This is different in the power application. Here, integrality
restrictions lead to many instances for which no equilibrium exists.

Our results pave the way for some interesting topics of future research. First,
one could try to find sufficient conditions under which an equilibrium exists, i.e.,
under which the resulting welfare problem has a zero duality gap. The discussed
instances from the gas sector indicate that this might be possible. Second, one
could consider approximate market equilibria in the nonconvex setting. A potential
research question might be whether e-relaxed optimal solutions to the players’
problems give enough freedom to prove the existence of equilibria in settings in
which classic equilibria fail to exist. Third, alternative pricing schemes that support
an equilibrium could be tested for the DC line switching application as, e.g., the
scheme of O’Neill et al. (2005) or the one of Huppmann and Siddiqui (2018). Fourth,
one could investigate how the results change in a computational study in which
nonlinearities and integralities are combined, as it would be the case for AC line
switching models. Fifth, let us note again that our general theory does not require
that a special type of player is convex. Thus, in general, it is not required that in
all applications both producers and consumers have convex problems. Intuitively
speaking, the prerequisite of our method is that there is enough information available
to bound market prices appropriately. This information does not necessarily have
to be provided by the producers and consumers as in our examples, but might also
be provided by the TSO instead. This opens the door for studies of equilibrium
models in which the TSO is convex but in which, e.g., the producers face some
kind of mixed-integer unit commitment constraints. Sixth and finally, all the results
presented in this paper rely on the assumption of perfect competition. Adding
strategic interaction is, thus, a very important topic to be addressed in future
research.
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APPENDIX A. EXISTENCE OF EQUILIBRIA FOR MAXIMIZATION (GAMES
Instead of the minimization problem (1), each player i € I now faces the maxi-
mization problem
max filyism) = ci(ys) + 7 T hi(ys) st yi €Y (13)
Thus, the corresponding maximization game reads
optimization problems of the players: (13) for all ¢ € I,

MEP-
market-clearing conditions: (2), ( max)
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while the corresponding welfare optimization problem now reads
ma. i\Yi -b. ) i\Yi) = U. -
ax Zc(y) st. yeY. Zh(y) 0 (WFP-max)
el icl
In this setting, Theorem 3.5 reads as follows.

Corollary A.1. Let y* be a global solution of the welfare problem (WFP-max) and
let TI(y*) # 0 be a set satisfying the condition
(y*, ") is a market equilibrium of (MEP-max) = =™ € II(y").
Assume that for allk € {1,...,n.} at least one of the following properties is satisfied:
(a) ™, =7y,
(b) < o0 and (hi(y}))i >
(0) my > —o0 and (hi(y))e
(d) 7, = —o0, 7T]-:—OO(1 d
iel.
Then, there exists a market equilibrium of (MEP-max) if and only if (y*, %) is a
market equilibrium, in which the critical price & is defined as

(hi(y:))k for all y; € Y; and all players i € I,
< (hi(yi))g for all y; € Y; and all players i € I,
(hily?))r = (he(ye))x for ally: € Y; and all players

T, = w,j, if (a) applies,

. T, if (b) applies,

o=
F T if (¢) applies,
0, if (d) applies.

Consider again a player ¢ € I for which the feasible set Y; is given by standard
constraints, e.g., Y; = {y;: g:(y;) < 0}. If all functions ¢;, h;, and g; are continuously
differentiable, if y; — f;(y;, m) are concave functions and g; are convex functions,
and if a constraint qualification for Y; is satisfied at y;, then the KKT conditions
for (13) are necessary and sufficient for optimality. As a consequence, only prices 7
for which there exists multipliers p; with

0=—=Vei(y;) = Vhi(yi)m + Vgi(yi Jpi,  0<pi Lgi(y;) <0 (14)
can be market equilibrium prices. The analogue of Corollary 3.7 for maximization

problems thus reads as follows.

Corollary A.2. Let y* be a global solution of the welfare problem (WFP-max).
Moreover, let C C I denote the subset of players for which the KKT conditions (14)
are necessary and sufficient optimality conditions and choose the candidate set TI(y*)
such that the condition
(y*,7*) is a market equilibrium of (MEP-max) = =™ € II(y*)
as well as the KKT conditions of all players i € C' are satisfied, i.e.,
II(y*) C{m € R" : for all i € C ewists y; such that (14) holds} .
Assume that for all k € {1,...,n,} at least one of the following properties is satisfied:
(a) 77]9_ - 7T2_,
(b) ™ < oo and (hi(y;))k > (hi(yi))x for ally; € Y; and all players i € I\C,
(c) 7Tk > —o0 and (hi(y})k < (hi(yi))x for all y; € Y; and all players i € I\C,
(d) nd (h;(y3)k = (hi(y:)k for ally; € Y; and all players
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TABLE 3. Technical and economic parameters (top) and variables (bottom)

Sym. Explanation Unit Unit
gas power
my  Market price at node v € V_ UV, €/(1000 Nm® /h) $/MWh
a,  Intercept of inverse demand P,(-) of €/(1000 Nm* /h) $/MWh
consumer u € V_
b,  Slope of inverse demand P,(-) of €/(1000Nm? /h)? $/MW?h
consumer u € V_
cu,1 Coefficient of linear term of variable €/(1000 Nm* /h) $/MWh
cost ¢, (+) of producer u € V
cu2 Coefficient of quadratic term of vari-  €/(1000Nm® /h)? $/MW?h
able cost ¢, () of producer u € V.
7.  Capacity of producer u € V. 1000 Nm?® /h MW
a  Transportation cost factor €/(1000Nm?® /h)? $/MW?h
B Switching costs — $/h
A, Pressure drop coefficient of arc a € A (bar)?/(1000Nm® /h)? —
p,  Lower pressure bound at node u € V bar —
pt Upper pressure bound at node u € V bar —
g, Lower flow bound of arc a € A 1000 Nm?® /h MW
gt Upper flow bound of arc a € A 1000 Nm3/h MW
X, Reactanceof arcac A — p.u.
gshift  Transformer phase shift angle (a € A) — rad
d,  Demand of consumer u € V_ 1000 Nm? /h MW
yu  Production of producer u € V, 1000 Nm?® /h MW
¢o Flowonarcae A 1000 Nm?® /h MW
p.  Pressure at node u € V bar —
0,  Phase angle at node u € V — rad
Zo  Switching decision of arc a € A — —

Now, let the critical price & be defined as

T, =7, if (a) applies,

) m if (b) applies,
=

¥ T if (c) applies,

0, if (d) applies.

If the critical price satisfies & € Il(y*), then there exists a market equilibrium of
(MEP) if and only if (y*,#) is a market equilibrium.

APPENDIX B. NOTATION

All technical and economic parameters and variables used throughout the com-
putational study in Section 5 are presented together with their respective units in
Table 3. We do not use SI units here but the units that are commonly used in
the literature of the respective applications, e.g., Nm?> /h denotes volumetric flow
under normal conditions. This is in line with the literature from which we adapted
our instances; see, e.g., Schewe et al. (2020) and Zimmerman and Murillo-Sanchez

(2021).
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