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While the quasilinear isothermal Euler equations are an excellent model for gas pipeline

flow, the operation of the pipeline flow with high pressure and small Mach numbers allows

us to obtain approximate solutions by a simpler semilinear model. We provide a derivation

of the semilinear model that shows that the semilinear model is valid for sufficiently low

Mach numbers and sufficiently high pressures. We prove an existence result for continuous

solutions of the semilinear model that takes into account lower and upper bounds for

the pressure and an upper bound for the magnitude of the Mach number of the gas

flow. These state constraints are important both in the operation of gas pipelines and to

guarantee that the solution remains in the set where the model is physically valid. We

show the constrained exact boundary controllability of the system with the same pressure

and Mach number constraints.
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Introduction

In the energy sector, policy makers in many countries have started to prepare a shift away from

the use of nuclear or mostly fossil supplies to a portfolio with a strong emphasis on renewable

energy resources. It is commonly agreed that for the pertinent transition period the optimized

use of natural gas will be of paramount importance. This is substantiated by the currently known

available gas resources as well as technical aspects such as transportability or storage capacity.

Moreover, controlled market liberalization lies at the basis of an efficient distribution, with the

latter clearly also benefiting from the currently available and planned system of pipelines. As a

consequence a sound understanding of the transportation physics along with ways of (optimally)

influencing the gas transport in pipelines is one of the main building blocks towards the optimal

use of gas.

Mathematically, the flow of gas through pipes is modelled by the compressible Euler equations.

As typically the diameter of a pipe is much smaller than the pipe’s length one resorts to the

study of a one-dimensional model, only. Moreover, the usual operating conditions of the pipeline
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network lead to an isothermal setting; see [1]. The resulting isothermal Euler equations form a

quasilinear system of hyperbolic partial differential equations. Typically, in the operation of gas

pipelines, the gas velocity is rather small while the gas pressure is high. Under such conditions,

often a simpler semilinear model suffices. Correspondingly, based on an acoustic approximation

of the isothermal Euler equations in this paper we derive a semilinear model which generates

reasonable approximations of the state for sufficiently small Mach numbers and sufficiently high

gas pressures without abrupt changes. Relying on assumptions on the problem data (physical

characteristics of the pipe, initial and terminal states) the existence of solutions for this model

is shown.

Given this existence result, the main result of this paper is concerned with constrained exact

boundary controllability. In fact, we present assumptions that allow to control the gas flow from

a continuous initial state to a continuous terminal state by suitably chosen boundary controls

in such a way that during the whole process, bounds for the gas velocity and the gas pressure

are satisfied. Such bounds are a standard requirement in the operation of gas pipelines. In

our context, they have the additional effect that they guarantee that the states remain within

the range where the semilinear model is valid. We illustrate the exact controllability result by

numerical examples where the boundary controls for exact controllability are approximated with

a numerical method of characteristics.

This paper has the following structure. In Section 1 we present the isothermal Euler equations.

In Section 2 we derive the semilinear model, in Section 3 we consider the stationary solutions of

the semilinear model. In Section 4 we first state the semilinear model in diagonal form. Then,

we present our existence result for continuous solutions of the semilinear model that is based

upon the characteristic curves. For certain system parameters we obtain continuous solutions

for arbitrary long time intervals. In Section 5, we present our result on the exact controllability

for the semilinear model. In Section 6, two numerical examples illustrate how the gas flow in

a pipe can be transitioned between two stationary states using the approach introduced in the

previous Section 5. Finally, conclusions are presented in Section 7.

1 The isothermal Euler equations

Consider a pipe of length L > 0 that corresponds to the interval [0, L]. Let D > 0 denote the

constant diameter of the pipe, λfric ≥ 0 the friction coefficient and ϕ ∈ (−∞, ∞) the slope.

Define slope := sin(ϕ) and set θ := λfric
D

. Let g denote the gravitational constant, ρ > 0 the gas

density, p > 0 the pressure and q the mass flow rate in kg s−1 m−2. We assume that we have an

ideal gas that satisfies the state equation

p = Res T
e ρ,

where Res is the gas constant and T e is the temperature. The focus of our study is on the

isothermal Euler equations (see for example [5]){
ρt + qx = 0,

qt +
(
p+ q2

ρ

)
x

= − 1
2
θ q |q|

ρ
− ρ g slope,

(1.1)

that govern the flow through a single pipe. In our analysis we also make use of the velocity

v =
q

ρ
and the sound speed c given by

(
1

c

)2

=
∂ρ

∂p
=

1

Res T e
.
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Thus, we have

c =
√
Res T e.

In what follows we concentrate on an ideal gas where the sound speed is constant. For the Mach

number M this yields

M =
v

c
= c

q

p
.

Considering a subsonic flow regime, the absolute value of the velocity of the gas is strictly

less than the sound speed in the gas. For the Mach number we thus have

|M |< 1.

This setting reflects the case that is relevant for gas transportation networks where upper bounds

for the velocity of the gas are enforced in the operation of gas pipelines. In order to state (1.1)

in terms of the dimensionless Mach-number M and the pressure p, we observe that

ρ =
1

c2
p, q =

1

c
M p.

Hence, if M 6= 0, then the first equation of (1.1) yields

ln(p)t + (cM) ln(|M | p)x = 0. (1.2)

Moreover, from the second equation of (1.1) we infer

ln(p |M |)t +
c

M

(
1−M2) ln(p)x + 2 cM ln(p |M |)x = −1

2
θ c |M |−g slope

1

c

1

M
.

Note that multiplication by M yields an equation that is also well-defined for M = 0, namely

1

p
(pM)t + c

(
1−M2) px

p
+ 2 c

M

p
(pM)x = −1

2
θ c M |M |−g slope

1

c
.

2 The semilinear model for slow subsonic flow

Note that since ln(p)t = pt
p

, if the pressure p is sufficiently high and pt is bounded, ln(p)t is

small. Equation (1.2) implies that if ln(p)t is small (for example, close to a stationary state),

(cM) ln(|M | p)x is small. For Mach numbers with small absolute value,
(
1− (M)2

)
is close to

1. Hence, if the pressure p is sufficiently large, pt is bounded and for Mach numbers with small

absolute value we can approximate the solution of the second equation of (1.1) by the solution

of the equation

ln(p |M |)t +
c

M
ln(p)x = −1

2
θ c |M |−g slope

1

c

1

M
. (2.1)

For a solution of (1.1), due to (1.2), the error E on the left-hand side of (2.1) is

E = cM ln(p)x + 2 ln(p)t.

This error is small if the time derivative pt and the Mach number are sufficiently small, the

pressure is sufficiently large, and px remains uniformly bounded. In [3], for the initial data

q(0, x) = 0, ρ(0, x) = exp(β x) the solution of both the quasilinear and the semilinear models

are given, which allows us to observe how the difference between the two solutions can grow

exponentially fast with time.

For M 6= 0, define the matrix

A(M) = c

(
0 M
1
M

0

)
.
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In matrix notation, from (1.2) and (2.1) we obtain the model(
ln(p)

ln(|M | p)

)
t

+A(M)

(
ln(p)

ln(|M | p)

)
x

=

(
0

− θ
2
c |M |− g slope

cM

)
. (2.2)

Note that the eigenvalues of the system matrix A(M) are −c and c. In particular, they are

constant.

Remark 2.1 The eigenvalues of the quasilinear system (1.1) are v + c and v − c. This implies

that the error in the eigenvalues can only be small as long as |v| (the absolute value of the Mach

number M respectively) is sufficiently small.

Since the first equation in (1.1) has not been modified, also (2.2) guarantees the conservation

of mass. In terms of the physical variables p and q, the model (2.2) can be stated as the well–

known semilinear model (see for example [6], [4]):{
1
c2
pt + qx = 0,

qt + px = − 1
2
θ c2 q |q|

p
− g slope p

c2
.

(2.3)

Note that (2.3) is semilinear since the system matrix is constant whereas (2.2) is stated in

quasilinear form.

3 The stationary states

In this section, we consider the stationary states of system (2.2). The stationary solutions of the

quasilinear system (1.1) have been studied in [2]. For the stationary states of (2.2), there exists

a constant Ces such that

|M | p = Ces .

Moreover, we have

ln(p)x = −1

2
θM |M |−g slope

1

(c)2

= −1

2
θ (Ces )2 1

(p)2
sign(M)− g slope

1

(c)2
.

This yields

px = −1

2
θ (Ces )2 1

p
sign(M)− g slope

1

(c)2
p.

For a horizontal pipe (that is slope = 0), we get(
p2

2

)
x

= p px = −1

2
sign(M) θ (Ces )2.

Thus, for x ∈ [0, L] we obtain

p2

2
(x)− p2

2
(0) = −1

2
sign(M) θ (Ces )2 x.

This is the well-known Weymouth equation. Note that for M > 0 the equation is a valid model

only if x and consequently L > 0 are sufficiently small. Also, in the original model (1.1) for the

stationary states a blow up of the derivative occurs after a finite length; see [2].

Now we consider the case where slope 6= 0. For a stationary state we still have M p = Ces . We
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obtain a constant, that is with constant pressure p, stationary state if M is such that

M |M |= − 2

θ c
g slope

1

c
.

This yields

M = −sign(slope)

√
2

θ c
g |slope|

1

c
=: M̂.

In terms of physical variables, the constant stationary solution corresponds to a constant flow

rate q̄ and a constant pressure p̄ > 0 with

p̄2 =
c4 θ(q̄)2

2 g |slope|
.

More generally, there exist stationary solutions with a constant flow rate q̄ that satisfies

sign(q̄) = −sign(slope) (3.1)

where the pressure is given by

p(x) = p̄

√
1 + Ĉ exp

(
−2 g

slope
c2

x
)
,

as long as the term under the square root is positive with Ĉ chosen such that p(0) > 0 has

the appropriate value. This can be verified by inserting the solution (q̄, p(x)) into (2.3). More

precisely, the definition of p implies

(p(x))2 − p̄2

p̄2
= Ĉ exp

(
−2 g

slope
c2

x
)
.

Hence, due to the definition of p̄, we have

p′(x) =
p̄2

2

1

p(x)
Ĉ exp

(
−2 g

slope
c2

x
) (
−2 g

slope
c2

)
=
p̄2

2

1

p(x)

(
(p(x))2

p̄2
− 1

) (
−2 g

slope
c2

)
= 2 g

slope
c2

p̄2

2

1

p(x)
− 1

2
2 g

slope
c2

p(x)

= sign(slope)
1

2
θ c2

q̄2

p(x)
− g slope

p(x)

c2
.

Whence, the relation (3.1) implies that the second equation in (2.3) holds.

4 The semilinear model in diagonal form

In this section we state (2.2) in terms of the corresponding Riemann invariants. For the eigen-

values ±c of the matrix A we have the left-hand side eigenvectors

l± = (±p, M p).

Multiplication of (2.2) from the left-hand side with l± yields

(±p, M p)

(
ln(p)

ln(|M | p)

)
t

± c (±p, M p)

(
ln(p)

ln(|M | p)

)
x

= −1

2
θ c M |M | p− g slope

1

c
p.
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We obtain the Riemann invariants

R± = ±p+M p = (±1 +M) p.

Hence, the physical variables can be expressed in terms of the Riemann invariants as

p =
R+ −R−

2
, M =

R+ +R−
R+ −R−

,

and we have the flow rate

q =
1

c
M p =

1

2 c
(R+ +R−).

Let us further define some notation. In fact, let σ(z) := z |z| and consider the function

F (x, y) := (x+ y)

∣∣∣∣x+ y

x− y

∣∣∣∣ = (x− y)σ

(
x+ y

x− y

)
. (4.1)

Then, in terms of the Riemann invariants, the system has the diagonal form

(R±)t ± c(R±)x = −1

4
θ c F (R+, R−)− g slope

1

c

R+ −R−
2

, (4.2)

which is well-defined as long as R+ 6= R−. In terms of the physical variables, this is equivalent to

p > 0. This requirement is often satisfied, as in applications lower bounds p > 0 for the pressure

are often prescribed. In the subsonic flow regime, pressure constraints of the form

p ≤ p ≤ p̄ (4.3)

can be expressed in terms of the Riemann invariant as

2p ≤ R+ −R− ≤ 2p̄, (4.4)

Similarly, whenever 2p = R+ −R− > 0, the Mach number constraint

|M |≤ λ, 0 < λ < 1, (4.5)

is equivalent to

(1 + λ)R+ + (1− λ)R− ≥ 0, (4.6)

(1− λ)R+ + (1 + λ)R− ≤ 0. (4.7)

Moreover, with p > 0, it is easy to see that |M |< 1 implies that R+ > 0 and R− < 0. Note

that all the constraints for the Riemann invariants are linear. This is convenient for associated

optimal control problems for gas networks.

4.1 Existence of solutions of the semilinear model

The characteristic curves for the semilinear model are a priori given straight lines. Hence, the hy-

perbolic system is equivalent to a coupled family of integral equations along these characteristic

curves. This allows to prove the existence of continuous solutions for continuous problem data

using a fixed-point iteration with integration along the characteristic curves. The existence of

broad solutions of the semilinear system has already been shown in [7] for the case of horizontal

pipes. In [7], Proposition 4, lower and upper bounds for the pressures and for the flow rate are

considered. Indirectly, this also yields bounds for the gas velocity and the Mach number. In this

paper, in contrast to [7], we include sloped pipes in our analysis. Since the semilinear model is

only valid for sufficiently small Mach numbers, we also include constraints for the Mach number

directly in the analysis. We point out that such a constraint for the velocity of the gas is also



Constrained exact boundary controllability for a semilinear system 7

used in practice to avoid vibrations of the pipelines. Note that in our result, all the constants

in the assumptions are given explicitly, so they can be verified rather easily. Our result provides

conditions that allow to obtain continuous solutions that satisfy the box constraints for the pres-

sure and the Mach number. The conditions require continuous initial and boundary data that

satisfy certain inequalities. Note that it is not sufficient to require that the initial and boundary

data satisfy the state constraints for the pressure and the Mach number. This can be seen as

follows: for a stationary state in a horizontal pipe, the pressure is decreasing along the pipe in

the direction of flow. Hence, the pressure at the inflow end must be strictly above the lower

bound for the pressure in order to guarantee that the state constraint is satisfied throughout

the pipe.

In the forthcoming analysis, the inequality

θλ
√

5

2
+
g|slope|
c2

≤ 1

L
(4.8)

between the physical characteristics of the pipe is the key to the existence of a solution. This

explicit condition departs from the previous conditions for existence of solution, albeit with

higher regularity.

Remark 4.1 This condition is easy to check for existing networks. For instance, we can use the

GasLib1 dataset [12]. We focus here on pipes shorter than 1km of length. This is the case for the

GasLib-4197 dataset, which is based on a subset of the German gas transport. The operational

constraints on the gas velocity are as follows: the minimum velocity shall be greater than 3 to

5 m s−1, to minimize liquid fallout, but less than 20 to 25 m s−1 to minimize noise and prevent

corrosion. Note that this may decrease to 15 m s−1 if the presence of corrosives in the gas is

known. For a temperature of 15 °C, and the specific gas constant of 518.3 J kg−1 mol−1, we get

that condition (4.8) is fulfilled for the minimum speed requirements for 93.6% of the 2326 pipes

less than 1km. Note that in total, this represents 61.5% of all the pipes in that dataset. This

indicates that the condition is met by a substantial sample of real-world pipes.

For the analysis it is important to find accurate bounds for the source term. For t ≥ 0 and the

space variable x in order to describe the characteristic lines we define the R2-valued function

ξ±(s, x, t) as the solution of the initial value problem{
ξ±(t, x, t) = (t, x),

∂sξ±(t, x, t) = (1, ±c).

This implies that

ξ+(s, x, t) = (s, x+ c(s− t)), ξ−(s, x, t) = (s, x− c(s− t)).

Now we state our existence result.

Theorem 4.2 Let T > 0 and L > 0 be given. Let numbers p and p > 0 be given such that

0 < p < p. Define the sets

Γ+ = {0} × [0, L] ∪ [0, T ]× {0},

Γ− = {0} × [0, L] ∪ [0, T ]× {L}.
1 GasLib is a collection of technical gas network descriptions as well as contract-based nom-

ination data (gas flow and pressure specifications at entries and exits). This collection is based
on real-world network data from the gas transport company Open Grid Europe GmbH. The
data can be downloaded at http://gaslib.zib.de
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Define the points

P±0 (t, x) = Γ± ∩ {ξ±(s, x, t), s ∈ R} ∈ R2.

For the t-component of P±0 (t, x) we use the notation t±0 (t, x) ≥ 0.

Let a continuous state R+ on Γ+, a continuous state R− on Γ− and a number λ ∈ (0, 1) be

given. Assume that there exists a number ∆t > 0 such that the values of R+ and R− satisfy the

inequalities

R+(P+
0 (t, x))−R−(P−0 (t, x)) ≤ 2 p

(
1− θ c∆t

2
λ2

)
, (4.9)

R+(P+
0 (t, x))−R−(P−0 (t, x)) ≥ 2 p

(
1 +

θ c∆t

2
λ2 p

p

)
. (4.10)

Define the constant

Û =
1

2
θ c λ2 +

g slope
c

.

Assume that slope ≤ 0 and

Û ≥ 0, (4.11)

(1− λ)R+(P+
0 (t, x)) + (1 + λ)R−(P−0 (t, x))

2 ∆t p
≤ −1

2
θ c λ2 − g |slope|

c
(4.12)

and

(1 + λ)R+(P+
0 (t, x)) + (1− λ)R−(P−0 (t, x)) ≥ 2 ∆t p Û (4.13)

for all (t, x) ∈ [0, T ]× [0, L]. Moreover, assume that ∆t is sufficiently small in the sense that

∆t

[√
5

2
θ c λ+

g |slope|
c

]
< 1. (4.14)

Then with the given values of R+ on Γ+ and R− on Γ− that prescribe initial conditions

at t = 0 and boundary conditions at x = 0 and x = L, the hyperbolic system (4.2) has a

unique solution on [0, min{T, ∆t}] that is given by continuous functions R+(t, x), R−(t, x) for

t ∈ [0, min{T, ∆t}] and x ∈ [0, L]. The solution is subsonic and the absolute value of the Mach

number is less than or equal to λ. The values of the pressure are contained in the interval [p, p].

If ∆t ≥ L
c

, thus in particular if (4.8) holds, the solution exists on the interval [0, T ].

Remark 4.3 Note that our assumptions imply that the compatibility conditions for continuous

functions are satisfied at t = 0 and x = 0, x = L between the initial and the boundary data.

Proof

Let a continuous function R = (R+, R−) with R+, R− ∈ C([0, T ]× [0, L], R) be given that

satisfies the conditions (4.9), (4.10), (4.12), (4.13), as well as the box constraints (4.4)–(4.7).

Define the operator P := (P+, P−) with

P±(R)(t, x) = R±(P±0 (t, x))−
∫ t

t±0 (t,x)

[
1

4
θ c F (R+, R−) +

g slope
c

R+ −R−
2

]
(ξ±(s, t, x))ds.

Our first step is to check that P (R) satisfies, in terms of physical variables, the box constraints

for the pressure and the bound for the Mach number, that is

2 p ≤ (P+ − P−)(R) ≤ 2 p, (4.15)
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and ∣∣∣∣ (P+ + P−)(R)

(P+ − P−)(R)

∣∣∣∣ ≤ λ, (4.16)

are satisfied. Note that since λ < 1 and (P+−P−)(R) > 0, the relation (4.16) implies P+(R) > 0

and P−(R) < 0. Due to (4.11) we have

P±(R)(t, x) ≥ R±(P±0 (t, x))−
(
t− t±0 (t, x)

) (1

2
θ c λ2 +

g slope
c

)
p.

Moreover, we have

P±(R)(t, x) ≤ R±(P±0 (t, x)) +
(
t− t±0 (t, x)

) (1

2
θ c λ2 +

g |slope|
c

)
p.

Hence if t− t±0 (t, x) ≤ ∆t and slope ≤ 0, inequality (4.9) implies

(P+ − P−)(R) ≤ R+(P+
0 (t, x))−R−(P−0 (t, x)) + p θ c∆t λ2 ≤ 2 p.

Similarly, we have the inequality

(P+ − P−)(R) ≥ R+(P+
0 (t, x))−R−(P−0 (t, x))− (t− t0(t, x)) θ c λ2 p.

Hence, (4.10) implies

(P+ − P−)(R) ≥ 2 p.

and P (R) satisfies (4.15). Furthermore, we have (P+ − P−)(R) ≥ 2 p > 0. This implies that the

Mach number constraint (4.16) can expressed as in (4.6)–(4.7), that is:

(1− λ)P+(R) + (1 + λ)P−(R) ≤0, (4.17)

(1 + λ)P+(R) + (1− λ)P−(R) ≥0. (4.18)

For the first inequality, we obtain

(1− λ)P+(R) + (1 + λ)P−(R) ≤ (1− λ)R+(P+
0 (t, x)) + (1 + λ)R−(P−0 (t, x))

+ 2 ∆t

(
1

2
θ c λ2 +

g |slope|
c

)
p.

Due to (4.12), this implies

(1− λ)P+(R) + (1 + λ)P−(R) ≤ 0.

For the second inequality, we have

(1 + λ)P+(R) + (1− λ)P−(R) ≥ (1 + λ)R+(P+
0 (t, x)) + (1− λ)R−(P−0 (t, x))

− 2 ∆t

(
1

2
θ c λ2 +

g slope
c

)
p.

Due to (4.13), this implies

(1 + λ)P+(R) + (1− λ)P−(R) ≥ 0.

Remember that with (P+ − P−)(R) > 0, the inequality (4.16) implies that P+(R) > 0, and

P−(R) < 0. By Lemma A.2 P (R) is continuous.

So we can start a fixed-point iteration with the operator P where each iterate satisfies (4.15)–

(4.16). It remains to show that the fixed-point iteration is convergent. However, this is standard.

In fact for a continuous function that satisfies (4.15), (4.17)–(4.18), and S+ = R+ on Γ+ and
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S− = R− on Γ− we have

|P+(R)− P+(S)|(t, x) ≤ θ c

4

∫ t

t±0 (t, x))

|F (R+, R−)− F (S+, S−)| (ξ+(s, t, x)) ds

+

∫ t

t±0 (t, x))

∣∣∣∣g slopec

(R+ − S+)− (R− − S−)

2

∣∣∣∣ (ξ+(s, t, x)) ds.

Note that we can invoke Lemma A.1 to get the estimate

|P+(R)− P+(S)|(t, x) ≤
[√

5

2
θcλ+

gslope

c

]
|t− t0+(t, x)|max{|R+ − S+|, |R− − S−|}.

For P− a similar estimate holds. Hence, if |t− t0(t, x)|≤ ∆t, due to (4.14) we have

∆t

[√
5

2
θ c λ+

g |slope|
c

]
< 1,

which implies that P is a contraction. Hence, Banach’s fixed-point Theorem yields the existence

of a continuous solution on the corresponding short time-interval contained in [0, ∆t].

Note that due to the construction, we have the upper bound |t− t0(t, x)|≤ L
c

. Hence, if the

assumptions hold with ∆t ≥ L
c

, we obtain a contraction on [0, T ] × [0, L] which implies that

the solution exists on the interval [0, T ] where T can be chosen arbitrarily large.

Thus, we have proved Theorem 4.2.

Remark 4.4 Analogously to Theorem 4.2, for boundary and initial data with L∞-regularity

we obtain L∞-solutions that satisfy the PDE in the sense of the integral equation along the

characteristic curves. These L∞-solutions are particularly useful in the analysis of problems

of optimal boundary control. For the proof, the fixed-point iteration has to be defined in the

appropriate L∞-spaces.

5 Constrained exact controllability

In the operation of gas networks when the customer demand changes from an initially constant

demand to a new constant demand, it is necessary to steer the system from a stationary initial

state to a desired terminal state in such a way that the imposed state constraints for the

pressure and velocity remain valid. While there are numerous results about exact controllability

(see for example [9]), to our knowledge the exact boundary controllability with state constraints

has not yet been analyzed for hyperbolic systems. Exact boundary controllability with control

constraints has been studied for example in [8].

We want to analyze the problem of state–constrained exact boundary controllability between

stationary states in the framework of continuous solutions on Ω = [0, T ] × [0, L]. To this end,

we divide this domain into four domains, as shown on Fig. 1. The stationary solutions of (2.3)

are presented in Section 3. Note that an initial stationary state R
(0)
± completely determines the

system state on the triangle

DI := {(t, x) : t ≥ 0, x ∈ [0, L], c t ≤ x, c t ≤ L− x}.

If the state constraints hold for the initial state, they are also satisfied on DI. Similarly, for

T > L/c, a desired stationary terminal state R
(T )
± completely determines the system state on

the triangle

DII := {(t, x) : t ∈ [0, T ], x ∈ [0, L], c (T − t) ≤ x, c (T − t) ≤ L− x}.

Again if the state constraints hold for the terminal state, they are also satisfied on DII.
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In order to construct exact boundary controls that steer the system from R
(0)
± to R

(T )
± , we

define a new state Rmid
± on the Imid segment which joins the inner vertices of the DI and DII

triangles. More precisely, this segment is defined as:

Imid :=

[
L

2c
, T − L

2c

]
×
{
L

2

}
.

One possibility for the values of Rmid
± is to use a convex combination of the values at the

aforementioned vertices.

Now we introduce the boundaries for the following analysis: they are given by

ΓIII
+ := Imid ∪

{(
T − y

c
, y
)
| 0 ≤ y ≤ L

2

}
, ΓIII

− := Imid ∪
{(y

c
, y
)
| 0 ≤ y ≤ L

2

}
,

ΓIV
+ := Imid ∪

{(y
c
, L− y

)
| 0 ≤ y ≤ L

2

}
, ΓIV

− := Imid ∪
{(

T − y

c
, L− y

)
| 0 ≤ y ≤ L

2

}
.

Now we can exchange the roles of t and x and consider a leftwards initial boundary value

problem on the set

RIII := [0, T ]× [0,
L

2
]\(DI ∪DII),

with “initial” data from the stationary states R
(0)
± , R

(T )
± on ΓIII

± ∩ DI , ΓIII
± ∩ DII respectively

and Rmid
± on Imid. The PDE for the Riemannian invariants reads

(R±)x ∓
1

c
(R±)t = −1

4
θF (R+, R−)− g slope

R+ −R−
2c2

, (5.1)

where F is defined in (4.1). The plus component of the boundary trace of these solutions at x = 0

yields a continuous boundary control u+(t) for t ∈ (0, T ). The existence of solutions for such

a problem, with the solution satisfying the state constraints, is dealt with in Proposition 5.1,

under appropriate smallness assumptions for R(T ) − R(0) and on θ and |slope|. The latter is

addressed in (4.8), and the former is made precise in the forthcoming hypothesis (5.4)–(5.7).

Similarly, by considering a rightwards initial boundary value problem for the hyperbolic sys-

tem

(R±)x ±
1

c
(R±)t = −1

4
θF (R+, R−)− g slope

R+ −R−
2c2

, (5.2)

on the set

RIV := [0, T ]× [x0, L]\(DI ∪DII),

we obtain a continuous boundary control u−(t) for t ∈ (0, T ) as the minus-component of the

boundary trace of these solutions at x = L.

Since we have reversed the roles of time and space, the integration is performed along the

characteristics curves ψ(y, t, x), which satisfy the following ODE:{
ψ±(x, t, x) = (t, x),

∂yψ±(y, t, x) = (±c−1, 1).
(5.3)

These functions can be represented as

ψ±(y, t, x) = (t± c−1(y − x), y).

The following proposition contains sufficient conditions that guarantee the existence of con-

tinuous solutions of the corresponding Goursat-problems on RIII and RIV, respectively.
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0 T

L

DI DII

u−

Imid

RIII

RIV

ΓIII
− ΓIII

+

ΓIII
−

ΓIII
+

ψ−ψ+

(a) Boundaries for the RIII domain.

0 T

L

DI DII

u+

RIII

RIV ΓIV
−ΓIV

+

ΓIV
−

ΓIV
+

ψ− ψ+

(b) Boundaries for the RIV domain.

Figure 1. Domain and boundaries for the exact controllability boundary analysis.

Proposition 5.1 Suppose that T > L/c and (4.8) hold. Define

Ũ =
1

2
θλ2 +

g

c2
|slope|.

Furthermore, we suppose that the steady continuous initial state R
(0)
± , the steady terminal state

R
(T )
± , and the values on Imid are such that the following inequalities hold:

R+(P0
+(t, x))−R−(P0

−(t, x)) ≤ p̄
(

2− ŨL
)
, (5.4)

R+(P0
+(t, x))−R−(P0

−(t, x)) ≥ p

(
2 + ŨL

p̄

p

)
, (5.5)

(1 + λ)R+(P0
+(t, x)) + (1− λ)R−(P0

−(t, x)) ≥ L p̄ Ũ , (5.6)

(1− λ)R+(P0
+(t, x)) + (1 + λ)R−(P0

−(t, x)) ≤ −L p̄ Ũ , (5.7)

where the initial boundary domain P0
±(t, x) is defined as

P0
±(t, x) =

{{
ΓIII
± ∩ {ψ±(y, t, x), y ∈ R}

}
for the domain RIII,{

ΓIV
± ∩ {ψ±(y, t, x), y ∈ R}

}
for the domain RIV.

Then, there exists a unique continuous solution on the RIII (resp. RIV) domain for the hy-

perbolic system (5.1) (resp. (5.2)) with initial value on ΓIII
± (resp. ΓIV

± ) that satisfies the box

constraints (4.3) and (4.5).

Proof For |M |≤ λ we have ∣∣∣∣12θM |M |+ g

c2
slope

∣∣∣∣ ≤ Ũ .
Let us proceed with the analysis of the domain RIII, for which the initial conditions are ΓIII

± .
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The choice of ψ in (5.3) is such that

d

dy
R± ◦ ψ±(y, t, x) =

(
(R±)x ∓ c−1(R±)t

)
◦ ψ±(y, t, x)

=

(
−1

2
θF (R+, R−)− gslope

1

c2

(
R+ −R−

2

))
◦ ψ±(y, t, x).

As in the proof of Theorem 4.2, we tackle the existence of solutions by using a fixed-point

approach on P := (P+, P−), defined as follows:

P±(R±(t, x)) := R±(P 0
±(t, x)) +

∫ x

x0±

d

dy
R± ◦ ψ±(y, t, x)dy,

with P 0
±(t, x) := ΓIII

± ∩{ψ±(y, x, t), y ∈ R} is the initial boundary for the domain RIII (see Fig 1)

and x0
± is the “space”-component of P 0

±(t, x), where the argument (t, x) on x0
± is dropped since

there is no ambiguity. Note that by construction of the domain RIII, we have

|x(t, x)− x0
±(t, x)| ≤ L

2
. (5.8)

Finally, it holds that R±(P 0
±(t, x)) = R± ◦ ψ(x0

±, t, x).

Let a continuous function R = (R+, R−) be given that satisfies the box constraints (4.4)–

(4.7), and for which the hypothesis (5.4)–(5.7) and (4.8) hold. Let us denote the right-hand side

in (5.1) by f ◦R. Then, rewriting this function in terms of the pressure p and Mach number M ,

we get

f(p,M) = −1

2
θpM |M |−gslope

p

c2
,

which leads to the upper bound

|f | ≤ 1

2
θλ2p̄+ g|slope|

p̄

c2
= Ũ p̄. (5.9)

We continue our analysis by checking whether P (R) satisfies the following constraints

2 p ≤ (P+ − P−)(R) ≤ 2 p, (5.10)

and ∣∣∣∣ (P+ + P−)(R)

(P+ − P−)(R)

∣∣∣∣ ≤ λ, (5.11)

on RIII. Note that if (P+ − P−)(R) > 0 and λ < 1, then the relation (5.11) implies P+(R) > 0

and P−(R) < 0. Starting with (5.10), we get:

P+(R)(t, x)− P−(R)(t, x) = R+(P 0
+(t, x))−R−(P 0

−(t, x)) +

∫ x

x0+

f ◦R ◦ ψ+(y, t, x)dy

−
∫ x

x0−

f ◦R ◦ ψ−(y, t, x)dy.

Using (5.8) and (5.9), the magnitude of the difference of the integral terms can be bounded by

ŨLp̄. Then, invoking hypothesis (5.4) and (5.5), we get

2p ≤ P+(R)(t, x)− P−(R)(t, x) ≤ 2p̄.

Now let us move to the inequalities (5.11):

(1 + λ)P+(R)(t, x) + (1− λ)P−(R)(t, x) = (1 + λ)R+(P 0
+(t, x)) + (1− λ)R−(P 0

−(t, x))

+(1 + λ)

∫ x

x0+

f ◦R ◦ ψ+(y, t, x)dy + (1− λ)

∫ x

x0−

f ◦R ◦ ψ−(y, t, x)dy.
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Note that the sum of the integral terms is also bounded in magnitude by Ũ L p̄, for any value

of λ ∈ [−1, 1]. Using hypothesis (5.6), we get

(1 + λ)P+(R)(t, x) + (1− λ)P−(R)(t, x) ≥ 0.

And similarly, using hypothesis (5.7), we have

(1− λ)P+(R)(t, x) + (1 + λ)P−(R)(t, x) ≤ 0.

Hence, along the characteristics, the constraints (5.10) and (5.11) are fulfilled as long as R

satisfies the box constraints and the hypothesis (5.4)–(5.7) hold. Note that, by construction,

P+(R) (resp. P−(R)) is absolutely continuous on ψ+ (resp. ψ−).

We shall now show that P is a contraction. Remember that (5.10) and (5.11), with λ < 1,

implies that P+(R) > 0 and P−(R) < 0. We now consider continuous functions R± and S±
fulfilling (4.4) and (4.6)–(4.7), and such that S+ = R+ on ΓIII

+ and S− = R− on ΓIII
− . Following

the usual approach for studying contraction properties, we have

|P+(R)− P+(S)|(t, x) ≤θ
4

∫ x

x0+

|F (R+, R−)− F (S+, S−)|◦ψ+(y, t, x)dy

+
gslope

2c2

∫ x

x0+

|R+ − S+ −R− + S−|◦ψ+(y, t, x)dy.

Invoking Lemma A.1 yields the following estimate:

|P+(R)− P+(S)|(t, x) ≤
[
θλ

√
5

2
+
gslope

2c2

]
|x− x0

+(t, x)| max{|R+ − S+|, |R− − S−|}.

For P−, the same estimate holds. Since |x− x0
+(t, x)|≤ L

2
on RIII, using (4.8) we get

|P±(R)− P±(S)|(t, x) ≤ 1

2
max{|R+ − S+|, |R− − S−|}.

Hence Banach fixed-point theorem asserts the existence of a unique continuous solution, which

satisfies the box constraints.

For the domain RIV, the proof is along the same line. The hyperbolic system is (5.2), with

initial conditions now on ΓIV
± . The operator P := (P+, P−) on RIV reads

P±(R±(t, x)) = R±(P 0
±(t, x)) +

∫ x

x0±

f ◦ ψ±(y, t, x)dy,

with P 0
±(t, x) := ΓIV

± ∩ {ψ±(y, x, t), y ∈ R}. Note that the bound (5.9) is also valid for the term

under the integral. Furthermore, the initial values R±(P 0
±(t, x)) satisfy (5.4)–(5.7). Following the

same steps as for RIII, we get that P+ and P− satisfy (5.10)–(5.11). Additionally, the contraction

proof for P goes through whenever (4.8) holds. Hence, on RIV, there is also existence and

uniqueness of a continuous solution satisfying the box constraints.

The above construction implies that with the continuous boundary controls u+ at x = 0 and

u− at x = L, the initial boundary value problem with the initial state R(0) has a continuous

solution R on [0, T ]× [0, L] that satisfies the state constraint on [0, T ]× [0, L] and the terminal

constraint

R(T, x) = R(T )(x).

Thus, we have shown the following theorem on local constrained exact controllability:

Theorem 5.2 Assume that T > L/c, and that the characteristics of the pipe are such that the
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condition (4.8) is fulfilled. Assume that the steady initial state R(0), the steady terminal state

R(T ), and the Riemann invariants Rmid on Imid are continuous, satisfy the state constraints and

the inequalities (5.4)–(5.7). Then, the system can be steered by continuous boundary controls

from the stationary state R(0) to the stationary state R(T ) in the time T with a continuous state

in such a way that the state constraints are satisfied on Ω = [0, T ]× [0, L].

Proof The proof has been sketched at the beginning of the section. The assumptions of Propo-

sition 5.1 are satisfied. Hence Proposition 5.1 yields the existence of a solution on RIII and RIV.

The continuous boundary controls are then obtained from the boundary traces of the continuous

state at x = 0 and x = L.

6 Numerical experiments

We present some numerical results for the exact controllability between two stationary states,

and investigate two cases: the first one is an increase in the mass flow and the second one is

an inversion of the direction of the flow. The integral form of the systems (4.2) and (5.2) is

considered. The numerical scheme consists of discretizing the right-hand side those systems of

ODEs using the midpoint rule. To make this concrete, let us derive the expressions for the

system (4.2). First we consider three points (ti, xi), (tj , xj), and (tk, xk), such that (tk, xk) is at

the intersection of the ξ+ and ξ− characteristics starting from (ti, xi) and (tj , xj). Then, there

exists ∆+ such that ξ+(ti+∆+, xi, ti) = (tk, xk) and ∆− such that ξ−(tj+∆−, xj , tj) = (tk, xk).

Let Ri± := R±(ti, xi), R
j
± := R±(tj , xj), and Rk± := R±(tk, xk). The integral form of (4.2) over

the interval [ti, ti + ∆+] for R+ is[
R+ ◦ ξ+(s, xi, ti)

]ti+∆+

ti

=

∫ ti+∆+

ti

[
θ c

4
F (R+, R−)− g slope

R+ −R−
2c

]
◦ ξ+(s, xi, ti)ds.

Using the midpoint rule for approximating the integral on the right-hand side yields

Rk+ −Ri+ =
∆+

2

[
θ c

4
(F (Ri+, R

i
−) + F (Rk+, R

k
−))− g slope

Ri+ −Ri− +Rk+ −Rk−
2c

]
. (6.1)

Similarly, we have the following relation for Rj− and Rk−.

Rk− −Rj− =
∆−
2

[
θ c

4
(F (Rj+, R

j
−) + F (Rk+, R

k
−))− g slope

Rj+ −R
j
− +Rk+ −Rk−

2c

]
. (6.2)

Hence, the numerical scheme for computing the values of the Riemann invariants at (tk, xk)

consists in finding a solution to the nonlinear (implicit) system formed by the previous two

equations. Newton’s method is then used to compute a solution to this system. For this, we

first need to define a set of points {(tk, xk)} at which those quantities are evaluated. Since the

right-hand side involves both R+ and R−, the set of points must allow for the evaluation of both

quantities. This is achieved by considering a “triangular” grid, constructed in the following way:

for the DI and DII domains, ND equidistant nodes are placed on the line segment corresponding

to the initial (resp. terminal) state. Then, ND equidistant line segments, parallel to the y-axis,

slice the triangle DI (resp. DII) into ND − 1 convex isosceles trapezoids. The nodes in the grid

are defined as the intersection of the characteristic lines starting from the ND nodes located

on the initial (resp. terminal) state and the aforementioned vertical line segments. This also

implies that both Riemann invariants are defined at the nodes, as well as pressures and Mach

numbers. The number of nodes on each line segment is decreasing by one when moving away

from the initial (resp. terminal) state. The distance between two consecutive nodes on a given
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characteristic is ∆s = L
2c(ND−1)

. Note that this quantity is an output for a given choice of grid,

and not an input parameter for the construction of the grid.

The RIII and RIV domains are also sliced into convex isosceles trapezoids by NR horizontal

line segments, between Imid and the u+ (resp. u−) boundary. It is also the number of nodes on

any horizontal line segment of length TL, and hence gives the distance ∆t = L
2c(NR−1)

between

nodes on Imid. To simplify the numerical implementation, we round up the length of Imid so

that it is a multiple of ∆t. Then, the number of nodes on Imid is Nmid and the number of nodes

on each boundary u± is Nmid + NR. The distance between two consecutive nodes on a given

characteristic is ∆y = L
2(NR−1)

.

One of the property enjoyed by our numerical solution is its reversibility along the characteris-

tics. This is easy to see from the system (6.1)–(6.2): the right-hand side has the same expression

for both Ri and Rj . Hence, changing the integration interval from tk to tk−∆+ yields the same

relation as (6.1), with just both sides negated. This implies that the boundary values computed

by the forward/backward propagation of Imid can be interpreted as control. Indeed, assuming

that NR = ND, then integrating forward in time the pipe using those boundary values would

give the desired terminal state. For example, this is not the case with the explicit or implicit

Euler discretization. Another consequence is that values of R on ΓIII
± and ΓIV

± must coincide,

in particular outside of Imid. By construction, this is true for either R+ or R−, and this was

numerically verified for the other component of R at a very high numerical accuracy.

The setup for the numerical simulations is as follows: the pipe length L = 1000 km, D = 1 m,

T = 15 °C, Rs = 518.26 J kg−1 K, λfric = 2 · 10−6. This gives c = 386.44 m s−1 and TL =

2587.71 s. The large pipe length is there to further highlight the effect of the nonlinear source

term.

Example 6.1 With this pipe, we first compute the controls for increasing the flow rate in the

pipe from q0 = 100 kg s−1 m−2 to qT = 1000 kg s−1 m−2, while keeping a pressure of p = 50 bar

at x = 0. The associated stationary solutions yield the pressure drops displayed in Fig. 2.

Figure 2. Pressure profiles in the pipe for the initial and terminal states, both being

stationary.

Since our analysis is in the regime of a rather low friction parameter and low mass flows, the

nonlinearity of the pressure drop along the pipe is present, but hard to detect in Fig. 2.

We first study the evolution of the pressure and flow across time and space, as shown in

Fig. 3. The triangular areas that appear flat are DI on the right and DII on the left. The main

differences between the two different terminal times is the larger amplitude of the pressure, as

well as a smoother transition of the mass flow from the initial value to the terminal one for

T = 10159s when compared to T = 4540s.

Now, we focus on the evolution of the Riemann invariants at the ends of the pipe as shown

in Fig. 4. First, remember that due to the finite propagation speed, the values of the Riemann

invariants are fixed (or pre-determined) by the initial and terminal states for some time. Namely,

for R+ this is the case at x = 0 for t ∈ [T − TL, T ], and at x = L for t ∈ [0, TL]. For R− this is
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(a) Evolution of the pressure for T = 4540 s (b) Evolution of the mass flow for T = 4540 s

(c) Evolution of the pressure for T = 10159 s (d) Evolution of the mass flow for T = 10159 s

Figure 3. Evolution of the pressure and mass flow

the case at x = 0 for t ∈ [0, TL], and at x = L for t ∈ [T − TL, T ]. There is a major difference in

the control and behavior depends on whether T −TL < TL holds. If this is the case, then on the

time interval [T − TL, TL] both Riemann invariants are determined by the initial and terminal

states. Hence, there is no “choice” (in the sense of control input) of the Riemann invariants on

that interval. This motivates the presentation of the numerical results with two terminal times:

for the shorter time horizon T = 4540 s, T − TL < TL, whereas for the longer time horizon

T = 10159 s this inequality does not hold. Two vertical lines, one for t = TL in blue, and one

for t = T − TL in red, have been added to all the plots which depicts a time evolution.

In Fig. 4a and 4b, we see that R+ at x = 0 transitions from its initial value to the one at

the start of the pre-determined line segment in [0, T − TL], and at x = L the same appears in

[TL, T ]. For R−, we find the same phenomenon, with the values of x reversed. In Fig. 4c and 4d,

we observe that the evolution of the Riemann invariants occurs at a less steep slope thanks to

the longer duration T − TL of the transitions. Also, in the time interval [TL, T − TL], the values

of both Riemann invariants can freely be selected, in contrast to the case T = 4540 s, where

only one component of R can be selected at any time. While all plots depicted in Fig. 4 may

appear to shown piecewise linear graphs only, this is just a visual effect due to the low friction

and mass flow regime. Finally, note that the regularity of the Riemann invariants hinges on the

choice of their values on the Imid segment. Here we use a simple linear interpolation. We expect
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(a) Evolution of R+ for T = 4540 s (b) Evolution of R− for T = 4540 s

(c) Evolution of R+ for T = 10159 s (d) Evolution of R− for T = 10159 s

Figure 4. Evolution of the Riemann invariants at the endpoints

(a) Evolution of p for T = 4540 s (b) Evolution of M for T = 4540 s

(c) Evolution of p for T = 10159 s (d) Evolution of M for T = 10159 s

Figure 5. Evolution of the pressure p and Mach number M at the endpoints

that a smoother transition would also smoothen the values of R± at the endpoints. However,

such an investigation is beyond the scope of this paper.

In Fig. 5, the evolution of the pressure p and the Mach number M at the endpoints of the

pipe are shown. The evolution of the pressure as shown in Fig. 5a and Fig. 5c can be divided into

three phases: first a change from the initial values to a plateau-like phase, and then a transition

to the terminal state values. The duration of the first and third phase is min{TL, T − TL} for

each, and the second one lasts for the remaining time. Note that the variation in pressure is

much smaller in Fig. 5c when compared to the one in Fig. 5a. For the Mach number M , the

same behavior with 3 phases is present. Now, the difference between Fig. 5b and Fig. 5d is in

the rate of change of the Mach number, with the extremal values being the same, respectively.

In particular, remember that for T = 4540 s, the control input is predetermined on [T −TL, TL].
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(a) Evolution of q for T = 4540 s (b) Evolution of ∆q for T = 4540 s

(c) Evolution of q for T = 10159 s (d) Evolution of ∆q for T = 10159 s

Figure 6. Evolution of the mass flow q at the endpoints and the difference ∆q := q(·, 0)−
q(·, L).

(a) Evolution of the gas velocity difference ∆v
for T = 4540 s

(b) Evolution of the gas velocity difference ∆v
for T = 10159 s

Figure 7. Difference in gas velocities ∆v := v(·, 0) − v(·, L) between the endpoints.

Hence, outside this time interval, the rate of change has to be larger in order to account not

only for the reduction in terminal time, but also for this additional constraint.

In Fig. 6a and Fig. 6c, the evolution of the mass flow at the endpoints is depicted. The

behaviour is quite similar to the one for the Mach number in Fig. 5b and Fig. 5d. The associated

difference in input/output is highlighted in Fig. 6b and Fig. 6d. The evolution also follows again

a three phases regime. Note that the difference ∆q is about three times larger in magnitude for

T = 4540 s than for T = 10159 s.

Finally, in Fig. 7a and Fig. 7b, the difference ∆v in gas velocity at the end of the pipe is shown.

The values depicted in Fig. 7a drop more rapidly and remain relatively constant in the time

interval [T − TL, TL], whereas in Fig. 7b, the change is comparable in all three time intervals.

Example 6.2 Let us now move on to the second scenario: a flow inversion in the pipe, from

q0 = 1000 kg s−1 m−2 to qT = −1000 kg s−1 m−2, while keeping a pressure of p = 50 bar at

x = 0. The associated pressure profiles are given in Fig. 8. The evolution of the pressure and

mass flow rate are depicted in Fig. 9. Given a terminal time much larger than TL, the flow

reversal is rather smooth across the pipe, as one can see in Fig. 9b. In Fig. 9a, as expected, we

observe that the pressure increases at x = L and decreases at x = 0 to induce the switch.

As for the previous numerical analysis, we first focus on the evolution of the Riemann invari-
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Figure 8. Pressure profile in the pipe associated with the initial and terminal state, both

being stationary.

(a) Evolution of the pressure for T = 10159 s (b) Evolution of the mass flow for T = 10159 s

Figure 9. Evolution of the pressure and mass flow.

(a) Evolution of the pressure for T = 10159 s (b) Evolution of the mass flow for T = 10159 s

Figure 10. Evolution of the Riemann invariants at the endpoints.

ants in Fig. 10. The same three phase regime with T−TL > TL, is observed. The evolution of R±
follows the same logic as before: outside of the pre-determined values, the Riemann invariants

evolve according to the values on Imid propagated through the RIII and RIV domains.

This yields the pressure and Mach number as shown in Fig. 11. The main difference between

the endpoints is the pressure, which evolves in a symmetric fashion between the endpoints of

the pipe: a decrease (resp. increase) on [0, TL] followed by a plateau-like phase, and finally an

increase (resp. decrease) on [T − TL] to the values given by the stationary solutions. Note how

the pressure at x = L transitions from a smaller value to a larger one at x = 0. The amplitude

of the pressure remains small in this scenario. For the Mach number, in Fig. 11b, the difference

between the endpoints remains small. The same can be stated about the evolution of the mass

flow in Fig. 12, where the difference appears even smaller; see Fig. 12a. This is better appreciated

on Fig. 12b, where the difference ∆q is shown. Again we find an evolution with three phases,

featuring a plateau-like phase in the middle which is only a few percents of the magnitude of

the mass flow for the initial or terminal state.
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(a) Evolution of p for T = 10159 s (b) Evolution of M for T = 10159 s

Figure 11. Evolution of the pressure p and Mach number M at the endpoints.

(a) Evolution of q for T = 10159 s (b) Evolution of ∆q for T = 10159 s

Figure 12. Evolution of the mass flow q and the difference ∆q := q(·, 0) − q(·, L) at the

endpoints.

(a) Evolution of ∆v for T = 10159 s

Figure 13. Difference in gas velocities ∆v = v(·, 0) − v(·, L) between the endpoints

Finally, the difference ∆v in gas velocity sheds some light on the difference between endpoints.

Here the evolution is clearly nonlinear, and would be harder to to come by without observing

the Riemann invariants first.

7 Conclusions

We have derived a semilinear model for gas pipeline flow from the quasilinear isothermal Euler

equations. We have presented the corresponding stationary states not only for the case of hori-

zontal pipes but also for the case of pipes with constant slopes. Moreover, also for the general

case of pipes with constant slopes we have shown that for any given finite time horizon if the

continuous initial data are sufficiently small, a continuous transient solution of the semilinear

system exists that remains subsonic. In addition, the velocity of the gas remains below given a

priori bounds and the pressure of the gas remains within a prescribed interval. This is important,

since in the operation of gas pipelines, such bounds for the pressure and velocity occur regularly.

We have shown that under certain smallness assumptions, the continuous solution exists even

globally in time, that is for arbitrary large T > 0.

The constrained exact boundary controllability of the system was investigated. We have con-
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sidered continuous solutions where the system is controlled from a given stationary state to

a desired stationary state in such a way that the state constraints are satisfied everywhere

throughout the process. In terms of the physical variables, the state constraints are box con-

straints for the pressure and an upper bound for the absolute value of the Mach number. These

state constraints can be transformed to linear constraints in terms of the Riemann invariants.

We introduce a numerical scheme based on the midpoint rule to integrate the Riemann

invariants on the characteristics. Finally, numerical simulations supporting the theoretical anal-

ysis have been shown. From those, we illustrate how the Riemann invariants on the boundaries

evolve with respect to time. We highlighted the difference in behaviour whether the terminal

time T is larger than 2L/c or smaller. In the latter case, the Riemann invariants invariants are

determined on the time interval [T − TL, TL] by the initial and boundary states. This result in

a rather different behavior of the controls.
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Appendix A Technical lemmas

Lemma A.1 Consider F (x, y) := (x + y)
∣∣∣ x+y
x−y

∣∣∣, and η(x, y) := x+y
x−y . If x, u > 0 and y, v < 0

and |η(x, y)|≤ λ as well as |η(u, v)|≤ λ, then it holds that |F (x, y)− F (u, v)|≤
√

20λmax{|x−
u|, |y − v|}.

Proof Let X := {(w, z) | w > 0, z < 0}. Take (x, y) ∈ X satisfying the hypothesis, and such

that x+ y 6= 0. Then, it holds that

∇F (x, y) =
|x+ y|

(x− y)2

(
x− y − 2y

x− y + 2x

)
. (A 1)

Thus, the norm of the gradient can be estimated as follows

‖∇F (x, y)‖ =
|x+ y|

(x− y)2

√
2(x− y)2 + 4y2 + 4x2 + 4(x− y)2

=
|x+ y|
x− y

√
6 + 4

x2 + y2

(x− y)2

≤ |x+ y|
x− y

√
10 =

√
10|η(x, y)|, (A 2)

given that 1 > x2+y2

(x−y)2
on X. Now we consider (x, y) ∈ X such that x + y = 0. In this case, by

passing to the limit in (A 1), we infer ∇F (x, y) = 0, hence the estimate (A 2) also holds on that

line.

Note that we just shown that F is C1, allowing us to invoke the mean value theorem, leading

to the existence of τ ∈ [0, 1] such that

|F (x, y)− F (u, v)|= |∇F (τ(x, y) + (1− τ)(u, v)) · (x− u, y − v)|. (A 3)

Note that the level sets of |η| are convex on X. Since by hypothesis it holds that |η(x, y)|≤ λ as
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L1

L2

(t1, x1)(t2, x2)

ba

d
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o

Figure A 1. Projection near a corner

well as |η(u, v)|≤ λ, we get

|η(τ(x, y) + (1− τ)(u, v))|≤ λ.
Finally, using this relation in (A 2) gives us

‖∇F (τ(x, y) + (1− τ)(u, v))‖≤ λ
√

10.

Inserting this into (A 3) yields

|F (x, y)− F (u, v)| ≤ λ
√

10‖(x− u, y − v)‖

≤ λ
√

20 max{|x− y|, |y − v|}.

Lemma A.2 Suppose that P := (P+, P−) is one of the fixed-point operators defined on one of

the domains DI, DII, R
III, or RIV. Suppose that the box constraints (4.15) and (4.16) on P are

fulfilled. If the initial state R(P 0
±) is continuous, then P (R) is continuous on the corresponding

domain DI, DII, R
III, or RIV, respectively.

Proof The operator P has a similar structure on all domains:

P±(t, x) := R(P 0
±)(t, x) +G ◦R(t, x)−G ◦R(P 0

±(t, x)), (A 4)

where G is the antiderivative of a continuous function. On each domain, the operator P 0
± is an

oblique projector on the initial boundary. That is, P 0
± is an affine mapping. The term oblique

projector indicates that the difference (t, x)−P 0
±(t, x) does not lie in the orthogonal subspace to

the range of P 0
±(t, x), but is rather oblique to it. The difference (t, x)−P 0

±(t, x) is on a direction d

such that 〈d, v〉 6= 0, with v the direction of any piece of P 0
±(t, x). Indeed, the characteristic lines

are not orthogonal to neither the segment {{0}, [0, L]} or {[0, T ], {0}}. For instance the operator

P 0
± for the domain DI is the matrix

(
0 0

−c 1

)
. By construction of the operator P , the solution is

absolutely continuous along the characteristics. Let us proceed by showing that each function in

the right-hand side of (A 4) is continuous. This is clear for G by construction. For the remaining

two terms, we show that P 0
± is a Lipschitz operator. Note that if the initial boundary is made of

one line segment (like for DI and DII), this property holds true. If the boundary consists of two

line segments (like ΓIII), this requires a further step. In this case consider two points (t1, x1) and

(t2, x2). Suppose that their image by the same projection operator is on different line segments,

see Figure A 1. Let b (resp. d) be the projection of (t1, x1) onto L1 (resp. L2), and c (resp. a)
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be the projection of (t2, x2) onto L2 (resp. L1). Letting ΠLi
± be the oblique projector on Li, we

have

‖P 0
±(t1, x1)− P 0

±(t2, x2)‖ = ‖b− c‖≤ ‖b− o‖+‖o− c‖≤ ‖a− b‖+‖c− d‖

≤ ‖ΠL1
± (t1, x1)−ΠL1

± (t2, x2)‖+‖ΠL2
± (t1, x1)−ΠL2

± (t2, x2)‖.

Finally, since R± is continuous in space on the initial boundary, and G is continuous as well,

this concludes the proof.
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