
Presolving Linear Bilevel Optimization Problems

Thomas Kleinert, Julian Manns, Martin Schmidt, Dieter Weninger

Abstract. Linear bilevel optimization problems are known to be strongly NP-hard and
the computational techniques to solve these problems are often motivated by techniques
from single-level mixed-integer optimization. Thus, during the last years and decades many
branch-and-bound methods, cutting planes, or heuristics have been proposed. On the other
hand, there is almost no literature on presolving linear bilevel problems although presolve
is a very important ingredient in state-of-the-art mixed-integer optimization solvers. In
this paper, we carry over standard presolve techniques from single-level optimization to
bilevel problems and show that this needs to be done with great caution since a naive
application of well-known techniques does often not lead to correctly presolved bilevel
models. Our numerical study shows that presolve can also be very bene�cial for bilevel
problems but also highlights that these methods have a more heterogeneous e�ect on the
solution process compared to what is known from single-level optimization. As a side
result, our numerical experiments reveal that there is an urgent need for better and more
heterogeneous test instance libraries to further propel the �eld of computational bilevel
optimization.

1. Introduction

In the last years and decades, bilevel optimization has received increasing attention.
In particular, the progress of computational mixed-integer bilevel optimization has been
signi�cant. This progress resembles the development in mixed-integer single-level op-
timization for two reasons. First, many algorithms for (mixed-integer) linear bilevel
problems rely on highly-developed mixed-integer solvers as the working horse. Second,
game-changing developments from mixed-integer optimization are also used in bilevel
optimization such as tailored branch-and-bound methods [6, 13, 29], cutting planes [4, 15,
21, 34], and heuristics [13, 16, 23]—to name only a few references for each of the �elds.
These developments allow to tackle bilevel problems of signi�cant size today that have
been far out of reach one or two decades ago. Nevertheless, one main driver of the success
of mixed-integer solvers has hardly seen any attention in the bilevel literature so far:
presolve.

As usual, presolve for bilevel problems should be applied, in general, to reduce the
size of the problem in terms of variables and constraints as well as to obtain a tighter
formulation of the problem. For bilevel problems, however, it is particularly important to
reduce the number of follower constraints since classic reformulations such as the one
using the Karush–Kuhn–Tucker (KKT) conditions lead to harder problems if the number
of follower constraints is large.

To the best of our knowledge, [14] is the only work that computationally analyzes a
general-purpose presolve method for bilevel problems. The authors show that applying
duality �xing in the lower level of a mixed-integer bilevel problem can be very e�ective.
We will later numerically con�rm this result for linear bilevel problems as well. One
reason for the sparse literature on bilevel presolve might be the inherent nonconvex
structure of bilevel problems. This structure yields some surprising properties that render
presolving bilevel problems a very challenging task. In [25], it is discussed that bilevel
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Figure 1. Feasible set and optimal solution without (left) and with
(right) bound tightening applied. The dashed black line corresponds to
the upper-level coupling constraint, the orange lines correspond to the
lower-level constraints, the gray area is the joint feasible set w.r.t. the
upper- and lower-level constraints, and the blue lines denote the bilevel
feasible set with the dot marking the optimal solution.

problems do not posses the independence of irrelevant constraints (IIC) property known
from single-level optimization. Essentially, the consequence is that adding inequalities to
the lower-level problem of a bilevel problem that are inactive at the optimal bilevel solution
may change the bilevel feasible set and, ultimately, the optimal solution as well. In [12], it
is shown that under certain assumptions on the bilevel problem, a global solution remains
locally optimal when adding irrelevant constraints. The two results render cutting-plane
algorithms, which subsequently develop the lower-level problem, infeasible. This is in
contrast to single-level optimization, where a solution of a relaxed problem (in which, e.g.,
some constraints are left out) that is also feasible for the omitted constraints is the global
optimum. Additionally, the results also indicate that applying common mixed-integer
presolve techniques such as, e.g., bound strengthening, to bilevel problems may not be
without obstacles. To shed some light on this, let us consider the linear bilevel problem

min
x ,y∈R

x s.t. y ≥ 0.5x + 1, x ≥ 0, y ∈ arg min
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 0.5} ,

with optimal solution (2, 2); see Figure 1 (left). When strengthening the bound ȳ ≥ 0.5 in
the lower-level problem using the constraint y ≥ 0.5x + 1 of the upper-level problem, one
�nds that the minimum value of 0.5x + 1 is 1 due to x ≥ 0, which increases the bound of ȳ
to ȳ ≥ 1. This yields the problem

min
x ,y∈R

x s.t. y ≥ 0.5x + 1, x ≥ 0, y ∈ arg min
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 1},

having the optimal solution (0, 1) , (2, 2); see Figure 1 (right). See also the thesis [26]
for further examples. It can thus not be expected that presolve techniques known from
single-level mixed-integer linear optimization can be applied directly to bilevel problems.

In this paper we formally and computationally analyze presolve methods for the easiest
variant of bilevel problems, i.e., problems with a linear upper and lower level. To this
end, we mainly carry over classic presolve techniques from mixed-integer optimization
to the bilevel setting, which has—to the best of our knowledge—not been done before
in the literature with the only exception being a single technique discussed in [14]. We
introduce the relevant notation and theory in Section 2. We then introduce several presolve
methods for linear bilevel problems in Section 3 by carrying over classic presolve ideas
from (single-level) linear and mixed-integer optimization to the �eld of bilevel problems.
Afterward, we evaluate these methods in a computational study in Section 4. These
numerical experiments reveal two main insights. First, we observe that presolving linear
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bilevel problems can be very bene�cial for some instances whereas it is rather harming
for the solution process of other instances. Second, although we have a test set of more
than 2500 instances, only very few of them are a�ected by some of the presolve methods
discussed in this paper. We conclude, thus, that there is an urgent need for more realistic
and more heterogeneous test instance libraries to further propel the �eld of computational
bilevel optimization; see Section 5.

2. Notation and Theoretical Background

In this paper, we consider linear bilevel problems of the form
min

x ∈Rn ,y∈Rm
c>x + d>y

s.t. Ax + By ≥ a,

¯
xL ≤ x ≤ x̄L,

¯
yL ≤ y ≤ ȳL,

y ∈ S(x),

(1)

where S(x) denotes the set of optimal solutions or the rational reaction set of the so-called
follower (or lower-level) problem

min
y∈R

f >y s.t. Dy ≥ b −Cx,
¯
yF ≤ y ≤ ȳF , (2)

with c ∈ Rn , d, f ∈ Rm , A ∈ Rk×n , B ∈ Rk×m , a ∈ Rk , C ∈ R`×n , D ∈ R`×m , and b ∈ R` .
Further, we denote variable bounds by

¯
xL, x̄L ∈ Rn and

¯
yL, ȳL ∈ Rm as well as

¯
yF , ȳF ∈ Rm .

Note that we explicitly distinguish leader and follower bounds on the follower variables y.
We exploit these bounds later in various presolve techniques.

The formulation (1) establishes the optimistic (or cooperative) solution, i.e., in case the
set of optimal follower solutions S(x) is not a singleton, the reaction y ∈ S(x) is chosen
in favor of the objective function of the so-called leader (or upper-level) problem (1); see,
e.g., [11]. We denote the shared constraint set and its projection onto the decision space
of the leader by

Ω :=
{
(x,y) : Ax + By ≥ a, Cx + Dy ≥ b,

¯
xL ≤ x ≤ x̄L,

¯
yL ≤ y ≤ ȳL,

¯
yF ≤ y ≤ ȳF

}
and

ΩL := {x : ∃y with (x,y) ∈ Ω} ,
respectively. Finally, the bilevel feasible set, often also called the inducible region, is
denoted by

F :=
{
(x,y) : Ax + By ≥ a,

¯
xL ≤ x ≤ x̄L,

¯
yL ≤ y ≤ ȳL, y ∈ S(x)

}
.

It is well known that the set {(x,y) : x ∈ Rn, y ∈ S(x)} is nonconvex as well as that the
bilevel feasible set F is nonconvex and, in general, disconnected; see, e.g., [5] or [11].
This is also illustrated in Figure 1 (right). Consequently, even linear bilevel problems are
intrinsically nonconvex and nonsmooth. It is shown in [20] that linear bilevel problems
are strongly NP-hard and, in [35], that even checking local optimality of a given point is
NP-hard.

These unpleasant properties of linear bilevel problems are well known and it is thus
clear that one faces di�erent challenging aspects when solving bilevel problems. However,
it is still surprising that applying classic presolve techniques like, e.g., bound tightening,
fails for bilevel problems; see Figure 1. We highlight that it is in particular invalid to
exploit the so-called high-point relaxation

min
x ,y

c>x + d>y s.t. (x,y) ∈ Ω (3)

to presolve the original bilevel problem (1). As briefly discussed in the introduction,
this is related to the independence of irrelevant constraints property. For single-level
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problems, this property states that adding any constraint that is satis�ed at the global
optimal solution does not change the global optimum. In [25], the IIC property for linear
bilevel problems of the form (1) is de�ned as follows.

De�nition 1. Let Ω∗ be the set of optimal solutions of a linear bilevel problem P of the
form (1). Further, let P̃ := P(u,v,w) be the modi�ed problem, in which the inequality
u>x + v>y ≥ w is added to the follower problem of P and let Ω̃∗ be its set of optimal
solutions. P is called independent of irrelevant constraints, if for any (u,v,w) ∈ Rn+m+1

with u>x∗ +v>y∗ ≥ w it holds
(x∗,y∗) ∈ Ω̃∗

for every (x∗,y∗) ∈ Ω∗.

It is shown in [25] that bilevel problems can only possess the IIC property if the solution
of the high-point relaxation (3) is also a solution of the bilevel problem (1). Consequently,
most practical bilevel problems for which the objectives of the leader and the follower are
not aligned, lack the IIC property.

On the other hand, De�nition 1 of the IIC property for bilevel problems is not entirely
in line with the IIC property known for single-level problems. In order to see this, we
consider the equivalent single-level reformulation

min
x ,y

c>x + d>y (4a)

s.t. (x,y) ∈ Ω, (4b)
f >y ≤ φ(x), (4c)

of Problem (1), which makes use of the optimal-value function

φ(x) := min
y∈Rm

{
f >y : Dy ≥ b −Cx,

¯
yF ≤ y ≤ ȳF

}
of the follower problem. We denote the optimal solution of this problem by (x∗,y∗). It is
clear that any inequality valid for (x∗,y∗) can safely be added to Problem (4), i.e., the single-
level problem (4) possesses the (single-level) IIC property. Adding such a constraint to
Problem (4) however corresponds to adding an irrelevant constraint to the leader problem
of the bilevel problem (1). On the contrary, adding a constraint that is valid for the bilevel
optimal solution to the follower problem of (1) may change the rational reaction set S(x),
respectively, the optimal-value function φ(x). In the point of view of Problem (4), adding
such a constraint to the follower problem thus not only adds this constraint to the set Ω
but may also change the right-hand side of the existing Constraint (4c). In this case, the
concept of the (single-level) IIC property is not applicable. Detecting such constraints that
do not a�ect Constraint (4c) is a delicate task and will play a crucial role in the presolve of
linear bilevel problems.

In general, the goal of presolving optimization problems is to transform the given
problem into an easier-to-solve problem that has the following properties:

(i) It is infeasible (unbounded) if and only if the original problem is infeasible (un-
bounded).

(ii) Every feasible solution of the presolved problem can be transformed into a feasible
solution of the original problem.

(iii) The objective value of every optimal solution of the presolved problem matches
(at least after possibly required post-processing steps) the optimal objective value
of the original problem.

This gives rise to two di�erent presolve strategies. First, we can modify Problem (1) in a
way that leaves the bilevel feasible set F unchanged, i.e., we can apply a feasibility-based
presolve; see, e.g., [7, 8] for single-level problems. Second, we can apply an optimality-
based presolve by modifying the bilevel feasible set F in a way to ensure that at least one
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bilevel optimal solution remains feasible for the reduced problem; see, e.g., [32] for single-
level problems or the removal of dominated columns in mixed-integer programming [18].
In the following section, we introduce several such presolve methods. We also evaluate
these methods in a computational study in Section 4.

3. Presolve Methods

In this section, we present presolve methods for linear bilevel problems.

3.1. Bound Strengthening. A well-known presolve technique for single-level optimiza-
tion is bound strengthening [2, 33]. This approach tries to strengthen variable bounds by
domain propagation without changing the set of feasible solutions.

We now consider bound strengthening for bilevel problems of Type (1). Leader
bounds

¯
xLi and x̄Li can be tightened by exploiting the shared constraint set Ω and, thus, by

solving
min {xi : (x,y) ∈ Ω} and max {xi : (x,y) ∈ Ω} , (5)

respectively, for i = 1, . . . ,n. Tight follower bounds
¯
yL and ȳL located in the leader problem

can be derived analogously. We emphasize that this computation of tighter bounds is
computationally costly. For more details on this approach applied to single-level problems
we refer to [19]. In practice, there exist di�erent approaches to compute tight bounds
e�ciently for single-level optimization problems and, usually, there is a trade-o� between
the tightness of the derived bounds and computation times. In the simplest case, one
considers each constraint separately and tries to derive tighter bounds for the variables
occurring in it, which is doable in linear time; see [2, 27]. Approaches that consider more
than one constraint simultaneously, see, e.g., [1, 10], usually yield better bounds than
approaches that consider only one constraint. However, an increased running time is to be
expected. Naturally, this procedure can be continued until all constraints are considered,
which results in the best possible bounds. Obviously, the computational e�ort involved
is also the largest. In this work, we focus on the analysis of the e�ectiveness of bound
strengthening by using the best available bounds and, thus, we refrain from using other
methods as to solve (5) to compute these bounds.

The strengthening of follower bounds
¯
yF and ȳF located in the follower problem is not

that straightforward. We already illustrated in the introduction that a naive strengthening
of follower bounds that exploits the shared constraint set Ω may result in wrong “solutions”
of Problem (1). The reason is that the shared constraint set also contains the leader
constraints. This suggests to tighten follower bounds by disregarding the leader constraints,
i.e., by solving

min
x ,y

yi s.t. Cx + Dy ≥ b,
¯
yF ≤ y ≤ ȳF (6)

and
max
x ,y

yi s.t. Cx + Dy ≥ b,
¯
yF ≤ y ≤ ȳF , (7)

for i = 1, . . . ,m. These problems can be further tightened by considering follower-
independent leader constraints that only depend on leader variables x , i.e., leader con-
straints with Bi · = 0 or leader bounds

¯
xL ≤ x ≤ x̄L . We show in the following theorem that

follower-independent leader constraints can be moved to the follower problem without
changing the bilevel feasible set F .

Theorem 1. Consider a leader constraint u>x ≥ w with u ∈ Rn and w ∈ R of the bilevel
problem (1). Further, consider the bilevel problem obtained from Problem (1) by moving the
constraint u>x ≥ w to the follower problem. We denote the feasible set of the latter problem
by FM . Then, F = FM holds.

Proof. The shared constraint set for both problems is given by
Ω̃ = Ω ∩ {(x,y) : u>x ≥ w}.
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Further, we denote the rational reaction set of Problem (1), for which the constraint is
moved to the follower, by SM . We then have

FM = Ω̃ ∩ {(x,y) : x ∈ Rn,y ∈ SM (x)}.
Thus, for any point (x,y) in FM it holds u>x ≥ w . Further, for x ∈ Rn it holds

SM (x) =

{
S(x), if u>x ≥ w,

∅, if u>x < w .

Consequently,
FM = Ω̃ ∩ {(x,y) : x ∈ Rn,y ∈ SM (x)} = Ω̃ ∩ {(x,y) : x ∈ Rn,y ∈ S(x)} = F . �

This theorem can be exploited to tighten the Problems (6) and (7).

Observation 1. We can add all follower-independent leader constraints to Problem (6) and
(7). In particular, this includes the bounds

¯
xL ≤ x ≤ x̄L on the leader variables.

Let us also note that we can handle tightened bounds also slightly di�erent. In practice,
linear bilevel problems (1) are mostly solved by a single-level reformulation that replaces
the follower problem with its KKT conditions or with the strong-duality condition. In this
view, it makes sense to move follower bounds to the leader instead of tightening them.
This results in a smaller single-level reformulation. For instance, in the case that the KKT
reformulation is used, moving bounds to the leader results in fewer KKT complementarity
conditions. However, it is well known that moving constraints between the leader and
the follower problem is not without obstacles and, in general, it may change the optimal
solution. Nevertheless, we make the following observation.

Observation 2. Consider a follower variable yi with a lower bound
¯
yFi that can be tightened,

i.e., the objective value
¯
y∗i of Problem (6) is strictly larger than

¯
yFi . Instead of tightening the

bound, we can move the original bound
¯
yFi from the follower to the leader problem. Since

the bound is implied by the follower constraints anyway, this does not change the rational
reaction set S(x) of the follower. The same holds for upper bounds.

Note that this is in contrast two general lower-level constraints (i.e., constraints that
are more involved than simple bounds for the lower-level variables), which can be added
to the leader without problems but not moved from the follower to the leader without
altering the bilevel-feasible set F . We �nally note that one can also simply remove the
(anyway redundant) bound

¯
yFi from the follower problem without adding it to the leader

problem, or one can add the updated bound
¯
y∗i to the leader problem. From single-level

optimization it is known to be unclear, which strategy “helps” the solver and which one is
rather harmful to the solution process. Thus, these di�erent strategies need to be evaluated
numerically.

3.2. Parallel Columns. We �rst briefly explain the presolve of parallel columns in the
single-level context; see also, e.g., [2, 3]. In [2] it is both shown that parallel columns are
common in public and commercial single-level problems and that their treatment helps
for solving the instances more e�ciently. To this end, consider the single-level follower
problem (2) for a �xed leader decision x = x̄ as well as two follower variables yi and
yj for some i , j, i, j ∈ {1, . . . ,m}. The two columns D ·i and D ·j are called parallel if
D ·i = µD ·j holds for some µ , 0. An algorithm for determining parallel columns with
runtime O(

∑
i li log li ), where li represents the number of non-zeros in column D ·i , is

given in [9].
If, in addition, fi = µ fj holds, we can merge, or “crush”, the two variables yi and yj into

a new variable ynew by setting
ynew := yj + µyi . (8)
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Consequently, we obtain a presolved version of Problem (2) by removing the two original
variables yi and yj and by instead adding the variable ynew with

fnew = fj , D ·new = D ·j

as well as bounds

¯
yFnew =

{
¯
yFj + µ¯

yFi for µ > 0,

¯
yFj + µȳ

F
i for µ < 0,

ȳFnew =

{
ȳFj + µȳ

F
i for µ > 0,

ȳFj + µ¯
yFi for µ < 0.

(9)

Now, let y∗ be an optimal solution of the presolved problem. Then, we can post-process,
or “uncrush”, the value y∗new into values y∗i and y∗j by using Equation (8) and by paying
attention to the bounds (9). It holds

Dnewy
∗
new = D ·j (y

∗
j + µy

∗
i ) = D ·jy

∗
j + µD ·jy

∗
i = D ·jy

∗
j + D ·iy

∗
i

so that the uncrushed solution is feasible for the original problem (2) if and only if y∗ is
feasible for the presolved problem. In addition, we have

fnewy
∗
new = fj (y

∗
j + µy

∗
i ) = fjy

∗
j + µ fjy

∗
i = fjy

∗
j + fiy

∗
i .

Thus, the uncrushed solution is optimal for Problem (2) if and only if y∗new is optimal for
the presolved problem.

From now on, we consider the bilevel setting again. A straightforward idea is to apply
the approach stated above only to the parametric follower problem (2). In other words,
we have two follower variables yi and yj for some i , j, i, j ∈ {1, . . . ,m}, with parallel
columns in the follower problem. However, the corresponding leader columns need not
necessarily be parallel, i.e., we might have B ·i , µB ·j . In this setting, we can crush the two
variables in the follower problem according to (8). This removes the two variables yi and
yj from the follower problem such that they only appear in the leader problem. In order
to still respect the (crushed) optimal follower solution in the leader problem, we add the
constraint ynew = yj + µyi to the leader problem. This leaves the bilevel feasible set, after
uncrushing, unchanged.

A similar approach can be applied if two follower columns are parallel in both the
leader and the follower problem, i.e.,

di = µdj , fi = µ fj , B ·i = µB ·j , D ·i = µD ·j

for i , j, i, j ∈ {1, . . . ,m}, and some µ , 0. We can now crush yi and yj into ynew. For the
follower, we proceed according to (8) and (9), For the leader we apply

dnew = dj , B ·new = B ·j

and

¯
yLnew =

{
¯
yLj + µ¯

yLi for µ > 0,

¯
yLj + µȳ

L
i for µ < 0,

ȳLnew =

{
ȳLj + µȳ

L
i for µ > 0,

ȳLj + µ¯
yLi for µ < 0.

As above, we argue that an uncrushed solution is feasible for the follower problem (2) if and
only if the crushed solution is feasible. Also, following the discussion for the single-level
case above, the crushed and uncrushed solutions yield the same objective value for the
follower problem. Furthermore, with the same arguments as for the follower-only case, the
uncrushed solution is feasible for the leader if and only if the crushed solution is feasible
for the leader. Consequently, the uncrushed solution is bilevel feasible if and only if the
crushed solution is bilevel feasible. Finally, the crushed and uncrushed solution have the
same leader objective value, which means that the uncrushed solution is bilevel optimal if
and only if the crushed solution is bilevel optimal.

We now consider two parallel leader columns in Problem (1), i.e.,
ci = µc j , A ·i = µA ·j , C ·i = µC ·j

for i , j, i, j ∈ {1, . . . ,n}, and some µ , 0. We can crush xi and x j into xnew across all
leader and follower constraints and the two objectives, similarly to the parallel follower
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Table 1. Implications of parallel rows depending on µ and the right-hand
sides ãq and ãr .

ãq < µãr ãq = µãr ãq > µãr

µ > 0 inequality with index q both inequalities inequality with index r
is irrelevant are equivalent is irrelevant

µ < 0 both inequalities are relevant infeasible model

case. Now, let x∗ be part of an optimal solution of the presolved, i.e., crushed, problem.
We uncrush this solution by setting x∗new = x∗j + µx

∗
i . This does not a�ect the right-hand

sides b −Cx of the follower constraints. In addition, the uncrushed solution is feasible for
the leader constraints if and only if the crushed solution is feasible. Thus, the uncrushed
solution is bilevel feasible if and only if the crushed solution is bilevel feasible for presolved
bilevel problem.

Up to now, we only considered the case in which either both columns are leader columns
or both columns are follower columns. Unfortunately, we cannot presolve a leader column
that is parallel to a follower column, as the following example shows.

Example 1. Consider the linear bilevel problem

min
x ∈R,y∈R2

x + y1 s.t. 0 ≤ x ≤ 1, y ∈ arg max
ȳ∈R2

{ȳ2 : ȳ2 ≤ x + ȳ1, 0 ≤ ȳ1 ≤ 1} ,

which has the unique optimal solution x∗ = 0, y∗1 = 1, and y∗2 = 1. Note that the columns
of x and y1 are parallel with µ = 1. If we crush them into a leader variable, we obtain

min
xnew,y2∈R

xnew s.t. 0 ≤ xnew ≤ 2, y2 ∈ arg max
ȳ2∈R

{ȳ2 : ȳ2 ≤ xnew} ,

which has the unique optimal solution x∗new = 0 and y∗2 = 0. By uncrushing x∗new = x∗ + y1,
we obtain x∗ = 0 and y1 = 0. Contrary, if we crush the two variables into a follower variable,
we obtain

min
ynew,y2∈R

ynew s.t. (ynew,y2) ∈ arg max
ȳnew,ȳ2∈R

{ȳ2 : ȳ2 ≤ ȳnew, 0 ≤ ȳnew ≤ 2} ,

which has the unique optimal solution y∗new = 2 and y∗2 = 2. Uncrushing yields x∗ = 1 and
y∗1 = 1.

3.3. Parallel Rows. This presolve technique is also known from single-level optimization.
We briefly explain it based on the high-point relaxation (3) and use the notation

Ã =

[
A
C

]
, B̃ =

[
B
D

]
, ã =

(
a
b

)
.

We call two inequalities with indices q, r ∈ {1, . . . ,k + `} parallel, if Ãq · = µÃr · and
B̃q · = µB̃r · hold for µ , 0. The sign of µ and the right-hand sides ãq and ãr can be used to
determine infeasibility of the entire problem or that one of the two constraints is redundant.
More precisely, we distinguish the cases shown in Table 1. Detailed descriptions of this
procedure for single-level optimization are given in [2, 3, 27]. Although the occurrence
of parallel rows can be seen as bad modeling, it is shown in [2] that parallel rows occur
rather frequently in real-world single-level instances and that their treatment contributes
to a more e�cient solution process for these instances. Note that the same algorithm as
in [9] to detect parallel columns can also be used to detect parallel rows.

We now turn to the linear bilevel problem (1). The two inequalities can now either be
two leader inequalities, two follower inequalities, or one leader and one follower inequality.
In the �rst two cases, we can directly apply the rules given in Table 1. The third case
requires a more detailed discussion. We assume w.l.o.g. that q is an index of a leader
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inequality and r is an index of a follower inequality. In case µ < 0, the rules in Table 1 still
apply, because for ãq > µãr the model is infeasible and for ãq ≤ µãr no deduction can be
made. However, in case µ > 0, we obtain di�erent rules:

(i) If ãq < µãr , then Ãqx + B̃qy ≥ ãq is implied by y ∈ S(x) and the leader inequality
with index q is redundant.

(ii) If ãq > µãr , then the follower constraint may only be active for a point (x,y)
that violates the leader constraint. Thus, removing this constraint only changes
the rational reaction y ∈ S(x) for leader decisions x < ΩL . Consequently, the
follower inequality with index r must be inactive for every bilevel feasible point
and we can safely remove it.

(iii) If ãq = µãr , then the inequalities are equivalent. For the follower inequality with
index r , the argument of Case (ii) does not hold, because it can be active at a
bilevel feasible point. Thus, removing the follower constraint might change the
response of the follower in a way that renders the follower response infeasible for
the leader constraints. However, the leader inequality with index q is redundant
and we can remove it.

In summary, this means that we can detect parallel rows using the shared constraint set Ω
as long as we pay attention to Case (iii).

Until now, we only covered parallel inequalities. Equality constraints can, in principle,
be reformulated as two inequalities, such that we may apply the techniques above. From a
practical point of view, however, it is often not a good idea to divide an equation into two
inequalities. Keeping the equation results in further cases that have to be distinguished;
see, e.g., [2].

3.4. Duality Fixing. This well-known single-level presolve method tries to detect vari-
ables that can be �xed to certain values based on optimality conditions. Duality �xing is
often very e�cient in practice and can be applied to both continuous and integer variables.
Details on this method are given in [2, 27].

In the following, we briefly describe duality �xing for single-level problems by con-
sidering the follower problem (2) for a �xed leader decision x = x̄ . We now consider
variables yi that ful�ll one of the two conditions:

(i) fi ≥ 0 and D ji ≤ 0 for all j ∈ {1, . . . , `},
(ii) fi ≤ 0 and D ji ≥ 0 for all j ∈ {1, . . . , `}.

Assume that the index i ful�lls Condition (i) and that
¯
yFi > −∞ holds. Then we can �x

yi =
¯
yFi . For fi > 0, this variable �xing is given directly as a necessary optimality condition.

For fi = 0, there exists at least one optimal solution that satis�es this variable �xing. If we
assume

¯
yFi = −∞ instead of

¯
yFi > −∞, we have to distinguish two cases. For fi > 0, the

problem is infeasible or unbounded and for fi = 0, the variable yi and all constraints, for
which yi has a nonzero coe�cient, can be removed from the problem. Condition (ii) can
be tackled analogously. If ȳFi < ∞, we �x yi = ȳFi . For ȳFi = ∞ we distinguish the same
cases as for Condition (i).

As shown in [14], this single-level duality �xing can be applied almost directly to the
follower problem (2) without taking into account the leader decision x .

Theorem 2 ([14]). For every follower variable yi , i ∈ {1, . . . ,m}, the following �xing is
correct:

(i) If fi > 0 and D ji ≤ 0 for all j ∈ {1, . . . , `}, �x yi =
¯
yFi ,

(ii) If fi < 0 and D ji ≥ 0 for all j ∈ {1, . . . , `}, �x yi = ȳFi .

Note that in Theorem 2 the case fi = 0 is not taken into account. The reason might be
that this case is somehow problematic. For fi = 0, the optimal choice of yi by the follower
might be ambiguous. Under the optimistic assumption, the leader is free to choose among
the optimal follower solutions the one that she prefers. Thus, �xing yi must preserve this
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optimistic solution. Since the case fi = 0 does hardly appear in our instance set that we
use in the computational study in Section 4, we do not further investigate this issue.

Until now, we have applied duality �xing to the follower problem. We now present an
example that illustrates the occurring di�culties in the application of duality �xing to the
leader problem or to the leader and follower problem simultaneously.

Example 2. Consider the bilevel problem

min
x ,y

x − y s.t. − 3x + y ≥ −3, x ≥ 0, y ∈ arg min
ȳ
{ȳ : − 2x + ȳ ≥ 0}. (10)

For all leader and follower constraints, the coe�cient of the leader variable x is negative. In
addition, the coe�cient in the upper-level objective function is positive. If we naively apply
duality �xing as we would do in single-level optimization, we would �x x to its lower bound,
i.e., x = 0. This yields the point (0, 0) with objective function value 0.

However, for every leader decision x , the optimal solution of the follower is given byy = 2x .
Thus, we can substitute y with 2x in the leader problem of Problem (10) to obtain

min
x

−x s.t. − x ≥ −3, x ≥ 0.

This reformulated problem has the optimal solution x = 3, such that we obtain the optimal
solution (3, 6) of Problem (10) with objective function value −3. Hence, the point (0, 0) we
obtained by �xing x = 0 is not an optimal solution of Problem (10).

The reason for the observation in the example is that we omit the optimality of the
follower in the �xing step. In other words, we applied duality �xing to the high-point
relaxation (3), which is not su�cient to guarantee correctness.

3.5. Optimality-Based Presolve. Up to now, we presented feasibility-based presolve
methods that do not change the bilevel-feasible set F . In order to further simplify the
solution of Problem (1), it might be desirable to tighten F in a way that retains at least
one bilevel optimal solution. In particular, it would be bene�cial to exclude bilevel-feasible
points that can be proven to be not bilevel optimal. In general, this requires to respect
bilevel optimality, i.e., to deal with the nonconvexity of the problem. One the one hand,
optimality-based presolve can thus be expected to be a very di�cult task. On the other
hand, one might be able to identify non-optimal feasible points without knowledge of the
bilevel-optimal solution. In this section, we present a �rst step in this direction.

In Section 3.1, we discussed to move constraints to tighten the linear problems used
for the bound strengthening. To be speci�c, we moved follower-independent leader
constraints to the follower problem. This is a feasible approach because in this special
case, the bilevel feasible set F remains unchanged. However, it is well-known that
moving constraints between the two levels changes the bilevel feasible set in general.
In the following paragraphs we propose a criterion that can be used to detect follower
constraints that can be safely moved to the leader problem without changing the set of
bilevel-optimal points—although the bilevel-feasible set F might be changed. We illustrate
this approach in Figure 2, in which upper-level constraints correspond to dashed lines and
lower-level constraints to solid lines. The speci�c problem can be found on Page 33 of [26].
In addition, the shared constraint set Ω is colored gray, the bilevel feasible set is colored
in blue, and the set of optimal follower solutions lifted to the x-y-space is the union of
the blue and orange lines. Figure 2 (left) shows the original problem, in which the bilevel
solution is attained at the point (0, 1). We see that the lower-level constraints c1, c2, and c3
are not active in (0, 1). In Figure 2 (right), we moved these constraints to the leader. This
changes the optimal reaction of the follower and, thus, also changes the bilevel feasible set.
However, the bilevel optimal solution (0, 1) is retained. We formalize this in the following
theorem.
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Figure 2. Moving follower constraints c1, c2, and c3 (left) that are in-
active at the bilevel optimal solution (0, 1) to the leader (right) changes
the reaction of the follower (blue and orange) and the bilevel feasible
set (blue), but retains the optimal solution.

Theorem 3. Let (x∗,y∗) be an optimal solution of Problem (1) and consider a follower
constraint with index i ∈ {1, . . . , `} such that Ci ·x

∗ + Di ·y
∗ > bi holds. Then, (x∗,y∗) is also

optimal for the problem that we obtain by moving Ci ·x + Di ·y ≥ bi from the follower to the
leader.

Proof. We denote the bilevel feasible set of Problem (1) by F and the bilevel feasible set
after moving the constraint by FM . We prove the theorem by showing that

(i) the optimal solution (x∗,y∗) remains bilevel feasible when moving the constraint,
i.e., (x∗,y∗) ∈ FM , and

(ii) we do not obtain additional bilevel feasible points by moving the constraint, i.e.,
(x,y) ∈ FM implies (x,y) ∈ F .

We �rst show (i). Since Ci ·x
∗ + Di ·y

∗ > bi , the reaction y∗ of the follower must still be
optimal for the leader decision x∗ after removing the constraint from the follower problem.
In addition, the point (x∗,y∗) is feasible for all original leader constraints as well as for the
constraint Ci ·x + Di ·y ≥ bi . Thus, (x∗,y∗) ∈ FM holds.

We now turn to (ii). Let (x̄, ȳ) ∈ FM , i.e., ȳ is optimal for the relaxed follower problem (2)
for �xed x = x̄ , in which the ith follower constraint is removed. Since (x̄, ȳ) ∈ FM ,
Ci ·x̄ + Di ·ȳ ≥ bi holds and ȳ is also optimal for Problem (2) with �xed x = x̄ . Thus,
(x̄, ȳ) ∈ F . �

In order to turn Theorem 3 into a presolve method, it is crucial to detect such inactive
constraints. One approach might be to exploit the high-point relaxation in special cases.
For example, in min-max problems the objective functions of the leader and the follower
point into opposite directions. Follower constraints that are binding for the solution of
the high-point relaxation are canonical candidates to be inactive at the bilevel-optimal
solution—although, of course, easy examples can be constructed for which this does not
hold. It remains an open question and subject of future research whether this technique
can be carried out e�ciently.



12 T. KLEINERT, J. MANNS, M. SCHMIDT, D. WENINGER

4. Computational Experiments

In this section, we try to shed some light on the e�ectiveness of the proposed presolve
techniques. To this end, we consider the following single-level reformulation

min
x ,y,

¯
λ,λ̄,λ

c>x + d>y (11a)

s.t. (x,y) ∈ Ω, (11b)
λ,

¯
λ, λ̄ ≥ 0, (11c)

D>λ +
¯
λ − λ̄ = f , (11d)

λ>(Cx + Dy − b) = 0, (11e)

¯
λ>(y −

¯
yF ) = 0, (11f)

λ̄>(ȳF − y) = 0. (11g)
of Problem (1). This well-known reformulation has been proposed in [17] and can be
derived by replacing the lower-level problem (2) with its Karush–Kuhn–Tucker (KKT)
conditions, i.e., primal feasibility that is contained in (11b), nonnegativity of the dual
variables (11c), stationarity (11d), and complementarity (11e)–(11g). Due to the latter con-
ditions, Problem (11) is a mathematical problem with complementarity constraints (MPCC).
The complementarity constraints (11e) can be replaced using the mixed-integer reformu-
lation

u ∈ {0, 1}`, λ ≤ Mu, Cx + Dy − b ≤ M(1 − u);
see [17] as well. The complementarity constraints (11f) and (11g) can be treated in the
same way. This formulation requires additional binary variables u and a su�ciently large
value M . It is pointed out in [30] that this approach is not without obstacles. Choosing M
too large may cause numerical instabilities and choosing it too small may result in subop-
timal solutions of Problem (1). Further, in [22], it is shown that verifying the correctness
of a given value M is as hard as solving the original bilevel problem. Still, this approach
is by far the most frequently used approach to solve linear bilevel problems in practice,
which is why we test our presolve techniques for this approach.1 Throughout all tests, we
set M = 106. Although this might exclude some bilevel-optimal points from the feasible
set of the bilevel problem’s reformulation (11), it still allows for a proper computational
evaluation of the speed-ups obtained by applying presolve techniques, which is what we
do in the following.

4.1. Computational Setup and Test Sets. The big-M based single-level reformulation
as well as all presolve techniques have been implemented in C++-11 and have been
compiled with GCC 7.5.0. We solved all mixed-integer problems with Gurobi 9.0.2. The
computational experiments have been executed on a compute cluster using compute nodes
with Intel Xeon E3-1240 v6 CPUs with 4 cores, 3.7 GHz, and 32 GB RAM; see [31] for more
details. Note the we limited the number of threads to 1 in all computations.

Our initial test set contains more than 2500 instances and mainly consists of the mixed-
integer linear bilevel instances that are used in [23]. This set consists of mixed-integer
bilevel instances from the literature, for which the integrality conditions are relaxed to
obtain continuous bilevel problems. From this set, we removed all infeasible instances
and all instances that we solve in less than 1 s and that we thus consider as too easy. The
resulting test set only contains roughly 600 instances, on which we test the proposed
presolve methods in the following. Let us already comment that—although we started
with a rather large instance set that contains (to the best of our knowledge) all available

1Note that the presolve techniques evaluated in this section would also have a comparably bene�cial e�ect
on other solution approaches such as classic branch-and-bound for LP-LP bilevel problems [5] due to, e.g., a
reduced number of lower-level constraints.
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Table 2. Running times for parallel row presolve. All times are given in seconds.

Running Time # Rows

Instance i Ref. two
i tw

i t
p
i si w/o w

neos-1109824 [23, 24] 63.51 1.06 0.11 59.92 28979 9979
gmu-35-40 [23, 24] 1.28 0.86 0.01 1.49 424 419
acc-tight5 [23, 24] 12.37 9.55 0.03 1.30 3052 3045
rocI-4-11 [23, 28] 3.29 2.91 0.04 1.13 10883 10663
neos-4647030-tutaki [23, 28] 206.08 209.87 3.08 -1.02 8382 8381
unitcal_7 [23, 24] 82.29 84.94 0.14 -1.03 48939 48936
bab5 [23, 24] 17.21 28.45 0.14 -1.65 4964 4943
gmu-35-50 [23, 28] 2.00 3.30 0.01 -1.65 435 427

(mixed-integer) linear bilevel instances from the literature—most presolve methods can
only be applied to a very small amount of instances. The reason is that not too many
instances indeed have, e.g., parallel rows or columns. We will discuss this test-library
speci�c problem later on again in our conclusion in Section 5. Since the number of relevant
instances is rather small, we specify the instances that we use for each presolve method
along with a reference to its origin in the literature in each of the following sections.

4.2. Parallel Rows. We detected parallel rows in only 8 out of the roughly 600 instances.
In Table 2, we compare the running times two

i for solving an instance i without presolve
with the running time tw

i obtained if parallel-rows presolve is applied; see Section 3.3. In
addition, we also specify the time tpi that is needed for detecting and removing parallel
rows. Note that tw

i speci�es the total running time including t
p
i . The e�ect of the presolve

method is measured by the speed-up factor

si =

{
two
i /t

w
i , if two

i ≥ tw
i ,

−tw
i /t

wo
i , else.

We see that removing parallel rows has a very signi�cant e�ect on the neos-1109824
instance, which is solved almost 60 times faster if parallel-rows presolve is applied. The
reason for this is an enormous reduction of constraints: around one third of all constraints
can be removed; see the “# Rows” column in Table 2. On the other instances, presolving
has mixed e�ects. On some instances (gmu-35-40, acc-tight5, and rocI-4-11), we observe a
moderate reduction in running time and of the number of constraints. However, on other
instances, removing parallel rows has none or a rather negative e�ect. The latter is hard
to explain on the data basis we have—especially because di�erent aspects seem to be the
reason for the observed results. For example, the instance bab5 is solved by a root-node
heuristic if no presolve is applied, which is not the case if presolve is applied, whereas the
instance gmu-35-50 requires less branch-and-bound nodes to be solved if parallel-rows
presolve is not used.

4.3. Parallel Columns. We detected parallel columns in 7 instances. The results are
similar to the case of parallel-rows presolve; see Table 3. Detecting parallel columns has a
signi�cantly positive e�ect on the instance tanglegram1, on which we observe a speed-up
of over 8, which is due to 126 presolved columns. On all other instances, we observe only
moderate or no e�ects. This is surprising for some instances. For example, we remove
more than 40 % of the variables of the instance gmu-35-50. Still, the speed-up of 1.13 is
rather small. Moreover, we observed that the root node model after Gurobi’s own presolve
is smaller if we apply our parallel-columns presolve beforehand. However, this is not
re�ected in signi�cant speed-ups for the running time.



14 T. KLEINERT, J. MANNS, M. SCHMIDT, D. WENINGER

Table 3. Numerical results for parallel columns presolve. All times are
given in seconds.

Running Time # Columns

Instance i Ref. two
i tw

i t
p
i si w/o w

tanglegram1 [23, 24] 42.54 5.19 0.31 8.20 34759 34633
gmu-35-50 [23, 28] 2.00 1.77 0.02 1.13 1919 1106
unitcal_7 [23, 24] 82.49 81.42 0.20 1.01 25755 24747
eilB101 [23, 24] 23.84 23.88 0.03 -1.00 2818 2817
istanbul-no-cuto� [23, 28] 24.18 24.36 0.08 -1.01 5282 5278
tanglegram2 [23, 24] 1.12 1.16 0.04 -1.04 4714 4680
neos13 [23, 24] 1.37 1.49 0.23 -1.09 1827 1826

20 40 60 80 100
2

0

2

4

Figure 3. Speed-up factors si for duality �xing.

4.4. Duality Fixing. We detected variables that can be �xed via duality �xing in 103
instances. Thus, duality �xing can be applied by far to the largest subset of instances of our
test set. This is in line with the positive results reported in [14], in which duality �xing is
applied as well. Due to the large number of instances, we illustrate the speed-up factors si
in a more condensed way in Figure 3. For the sake of completeness, we also denote
running times and the number of variables in Table 6 in the appendix. We see that for the
majority of instances, duality �xing is bene�cial, and for many of them, the speed-up can
be considered signi�cant. For example, for 26 instances, we observe a speed-up of 1.5 or
above, and for 55 instances, we observe a speed-up of 1.2 or above. In contrast, there are
only very few instances, for which duality �xing has a negative impact. Only 5 instances
have a speed-up factor of −1.5 or below.

4.5. Bound Strengthening and Bound Moving. Finally, we consider bound strength-
ening (see Section 3.1) and bound moving (see Remark 2). These methods are applicable
to 7 instances; see Table 4 and Table 5. For both methods, the detection of implied tighter
bounds is implemented in a computationally costly way by solving Problem (6) and (7).
This could certainly be improved, e.g., by using internal solver information that is not
accessible when using commercial solvers. In order to measure the speed-up provided by
the presolve method, we denote cleaned speed-up factors s̃i with respect to t̃w

i = tw
i − pi

instead of tw
i , i.e., we disregard the presolve time when computing the speed-up factors.

For bound strengthening, we observe positive e�ects for the majority of instances.
Comparing the two tables, we see that bound strengthening clearly outperforms bound
moving. One reason for this might be that for bound strengthening we may compute
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Table 4. Numerical results for bound strengthening. All times are given
in seconds.

Running Time

Instance i Ref. two
i tw

i t
p
i s̃i # Bounds

gmu-35-50 [23, 28] 2.00 2.24 1.33 2.20 41
gmu-35-40 [23, 24] 1.28 1.35 0.56 1.62 17
2AP05-21 [13] 49.68 40.85 0.01 1.22 1
n4-3 [23, 24] 1.76 8.14 6.65 1.18 1637
mcsched [23, 24] 1.61 3.10 1.50 1.01 24
rococoB10-011000 [23, 28] 1.78 8.51 6.74 1.01 385
bna�500 [23, 28] 1.07 18.65 17.57 -1.01 1055

Table 5. Numerical results for bound moving. All times are given in seconds.

Running Time

Instance i Ref. two
i tw

i t
p
i s̃i # Bounds

gmu-35-40 [23, 24] 1.28 1.30 0.53 1.66 12
2AP05-21 [13] 49.68 38.09 0.01 1.30 1
rococoB10-011000 [23, 28] 1.78 10.96 9.20 1.01 385
bna�500 [23, 28] 1.07 21.17 20.10 -1.00 1055
n4-3 [23, 24] 1.76 6.36 4.59 -1.01 13
mcsched [23, 24] 1.61 3.88 1.48 -1.49 24
gmu-35-50 [23, 28] 2.00 4.79 1.29 -1.75 36

implied bounds even for follower variables that are initially unbounded. In contrast, bound
moving only shifts existing redundant bounds from the follower to the leader. Thus, bound
strengthening a�ects more bounds as indicated in the �nal column of the two tables.

5. Conclusion

In this paper, we systematically studied presolve methods for linear bilevel problems.
Due to the fact that the IIC property does not hold for bilevel problems in general, this
is a delicate task and the application of standard presolve methods from single-level
optimization thus has to be done with great caution. Fortunately, we are able to carry
over bound strengthening, the handling of parallel rows and columns, duality �xing, and
a special type of an optimality-based presolve to the �eld of bilevel optimization.

Our numerical results indicate that the studied presolve methods can both be very
bene�cial for some instances but can also harm the solution process for other problems of
our test set. However, the number of instances to which, e.g., parallel-rows or parallel-
columns, presolve could be applied in our numerical experiments is too small to discuss the
general impact of presolve for linear bilevel problems. This, in particular, reveals that there
is an urgent need of better test instance libraries to further propel the �eld of computational
bilevel optimization. The instance sets used in computational (mixed-integer) linear bilevel
optimization are mostly interdiction instances that (i) have a very special structure and
that (ii) are too easy if their inherent integrality conditions are relaxed so that they can
be used to test techniques to solve continuous bilevel problems. In particular, (i) is most
likely the reason that all interdiction instances of our general test set do not play any role
for the numerical experiments carried out in this paper. Moreover, there are almost no
real-world test instances publicly available that usually possess much more structures
such as parallel columns or rows. In our opinion—and we are rather convinced that the
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numerical study in this paper clearly reveals this aspect—the availability of better test
instances is of crucial importance for the further development of the �eld. Finally, the
�eld would also bene�t from publicly available open-source solver frameworks for bilevel
optimization so that one is not restricted to use commercial solvers as black-boxes.
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Appendix: Detailed Results for Duality Fixing.

Here, we list detailed results for all of the 103 instances to which we applied duality
�xing.

Table 6: Numerical results for duality �xing. All times are given in
seconds.

Running Time # Variables

Instance i Ref. two
i tw

i t
p
i si w/o w

tanglegram1 [23, 24] 42.57 10.36 0.07 4.11 34759 17968
xuLarge900-1 [14] 70.74 23.41 0.26 3.02 1800 1355
bmilplib_310_1 [36] 2.15 0.73 0.04 2.95 620 448
bmilplib_360_9 [36] 3.19 1.15 0.05 2.77 720 550
xuLarge800-4 [14] 7.25 2.67 0.21 2.72 1600 1227
xuLarge500-9 [14] 6.12 2.35 0.09 2.60 1000 762
xuLarge1000-8 [14] 107.76 42.13 0.32 2.56 2000 1476
bmilplib_360_7 [36] 2.01 0.80 0.05 2.51 720 547
bmilplib_460_6 [36] 5.68 2.31 0.07 2.46 920 683
xuLarge900-4 [14] 70.74 29.97 0.26 2.36 1800 1341
bmilplib_410_4 [36] 1.35 0.65 0.08 2.08 820 609
xuLarge600-1 [14] 13.76 7.05 0.12 1.95 1200 887
xuLarge500-4 [14] 8.40 4.36 0.08 1.93 1000 739
bmilplib_310_2 [36] 1.88 1.01 0.04 1.86 620 458
xuLarge800-5 [14] 5.60 3.14 0.21 1.78 1600 1189
xuLarge800-9 [14] 20.68 11.60 0.21 1.78 1600 1197
xuLarge700-5 [14] 9.27 5.30 0.16 1.75 1400 1027
xuLarge800-1 [14] 49.98 29.00 0.21 1.72 1600 1215
xuLarge900-5 [14] 21.15 12.70 0.26 1.67 1800 1342
bmilplib_460_9 [36] 3.73 2.25 0.07 1.66 920 675
bmilplib_360_2 [36] 4.25 2.65 0.05 1.60 720 546
bmilplib_310_4 [36] 2.58 1.61 0.04 1.60 620 455
xuLarge1000-4 [14] 6.14 3.86 0.32 1.59 2000 1479
xuLarge600-5 [14] 8.11 5.14 0.12 1.58 1200 877
xuLarge1000-3 [14] 99.36 64.99 0.32 1.53 2000 1461
xuLarge700-10 [14] 24.49 16.27 0.16 1.51 1400 1038
xuLarge700-1 [14] 3.28 2.20 0.16 1.49 1400 1035
xuLarge900-6 [14] 19.63 13.18 0.26 1.49 1800 1366
bmilplib_410_8 [36] 2.02 1.37 0.06 1.47 820 609
xuLarge1000-5 [14] 35.67 24.72 0.32 1.44 2000 1488
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bmilplib_460_2 [36] 5.57 3.86 0.07 1.44 920 680
bmilplib_260_2 [36] 1.14 0.80 0.03 1.42 520 394
xuLarge1000-9 [14] 18.40 13.15 0.32 1.40 2000 1494
bmilplib_310_6 [36] 1.36 0.97 0.04 1.40 620 456
xuLarge600-3 [14] 5.31 3.83 0.12 1.39 1200 893
xuLarge900-8 [14] 47.64 34.32 0.26 1.39 1800 1332
xuLarge700-8 [14] 19.37 13.90 0.16 1.39 1400 1049
bmilplib_410_9 [36] 5.50 4.03 0.06 1.36 820 620
bmilplib_310_8 [36] 1.21 0.89 0.04 1.36 620 446
bmilplib_360_5 [36] 2.37 1.77 0.05 1.34 720 548
bmilplib_460_8 [36] 7.64 5.78 0.08 1.32 920 682
xuLarge800-7 [14] 7.85 5.98 0.21 1.31 1600 1199
bmilplib_310_7 [36] 1.38 1.07 0.04 1.29 620 485
xuLarge600-8 [14] 6.41 4.98 0.12 1.29 1200 917
bmilplib_310_10 [36] 3.20 2.48 0.04 1.29 620 474
bmilplib_410_2 [36] 3.08 2.41 0.06 1.28 820 597
xuLarge700-3 [14] 56.34 44.84 0.16 1.26 1400 1051
xuLarge900-3 [14] 55.40 43.87 0.30 1.26 1800 1333
xuLarge600-2 [14] 7.60 6.02 0.12 1.26 1200 881
xuLarge800-2 [14] 100.68 80.77 0.21 1.25 1600 1206
xuLarge500-5 [14] 7.63 6.17 0.09 1.24 1000 759
bmilplib_360_4 [36] 4.57 3.70 0.05 1.24 720 536
bmilplib_360_3 [36] 2.66 2.17 0.05 1.23 720 549
bmilplib_460_4 [36] 3.67 3.06 0.07 1.20 920 689
bmilplib_460_1 [36] 4.85 4.03 0.08 1.20 920 699
xuLarge600-10 [14] 6.13 5.14 0.12 1.19 1200 895
xuLarge600-6 [14] 7.51 6.33 0.12 1.19 1200 914
xuLarge500-1 [14] 10.97 9.24 0.09 1.19 1000 755
xuLarge1000-1 [14] 23.32 19.78 0.32 1.18 2000 1482
xuLarge800-6 [14] 28.41 24.11 0.21 1.18 1600 1205
xuLarge500-7 [14] 6.83 5.93 0.08 1.15 1000 753
bmilplib_410_1 [36] 4.79 4.16 0.06 1.15 820 625
xuLarge500-10 [14] 3.10 2.69 0.09 1.15 1000 739
bmilplib_310_9 [36] 1.97 1.71 0.04 1.15 620 471
xuLarge700-7 [14] 12.97 11.58 0.16 1.12 1400 1040
bmilplib_410_6 [36] 2.41 2.15 0.06 1.12 820 609
bmilplib_410_3 [36] 1.72 1.55 0.06 1.11 820 614
gmu-35-50 [23, 28] 2.00 1.80 0.01 1.11 1919 1769
xuLarge600-7 [14] 15.23 13.72 0.12 1.11 1200 895
xuLarge500-8 [14] 4.05 3.68 0.09 1.10 1000 759
bmilplib_460_3 [36] 3.32 3.04 0.07 1.09 920 695
wachplan [23, 28] 1.32 1.22 0.03 1.08 3361 2870
cvs16r128-89 [23, 28] 15.27 14.41 0.01 1.06 3472 3160
bmilplib_360_10 [36] 2.17 2.10 0.05 1.03 720 541
xuLarge700-4 [14] 21.16 20.54 0.16 1.03 1400 1059
xuLarge700-6 [14] 11.23 11.04 0.16 1.02 1400 1040
bmilplib_360_1 [36] 2.36 2.31 0.05 1.02 720 533
bmilplib_410_5 [36] 2.49 2.46 0.06 1.01 820 600
bmilplib_360_8 [36] 3.73 3.71 0.05 1.01 720 543
tanglegram2 [23, 24] 1.12 1.12 0.01 -1.00 4714 2581
bmilplib_410_10 [36] 9.56 9.62 0.06 -1.01 820 631
xuLarge800-10 [14] 24.10 24.39 0.21 -1.01 1600 1200
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bmilplib_460_5 [36] 10.60 10.68 0.07 -1.01 920 702
gmu-35-40 [23, 24] 1.28 1.35 0.01 -1.05 1205 1055
xuLarge800-3 [14] 92.04 97.73 0.21 -1.06 1600 1195
xuLarge900-9 [14] 51.79 54.74 0.26 -1.06 1800 1330
xuLarge600-9 [14] 12.76 13.54 0.12 -1.06 1200 891
bmilplib_460_7 [36] 2.94 3.11 0.08 -1.06 920 684
xuLarge700-2 [14] 26.89 29.05 0.16 -1.08 1400 1061
satellites1-25 [23, 24] 59.16 64.37 0.03 -1.09 9013 9012
xuLarge1000-10 [14] 48.11 54.28 0.33 -1.13 2000 1516
xuLarge600-4 [14] 6.54 7.86 0.12 -1.20 1200 919
xuLarge500-6 [14] 7.12 8.86 0.09 -1.24 1000 756
xuLarge500-3 [14] 4.67 5.84 1.89 -1.25 1000 749
xuLarge1000-2 [14] 13.10 16.95 0.32 -1.29 2000 1513
xuLarge900-7 [14] 89.33 116.28 0.27 -1.30 1800 1361
xuLarge500-2 [14] 12.64 16.58 0.09 -1.31 1000 761
xuLarge800-8 [14] 15.86 22.97 0.21 -1.45 1600 1181
xuLarge1000-7 [14] 116.16 177.57 0.32 -1.53 2000 1460
xuLarge900-2 [14] 58.69 92.74 0.26 -1.58 1800 1341
xuLarge1000-6 [14] 18.48 32.71 0.32 -1.77 2000 1488
xuLarge900-10 [14] 123.22 221.17 0.26 -1.79 1800 1338
bmilplib_410_7 [36] 2.90 6.41 0.06 -2.21 820 619
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