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ABSTRACT. Many applications of bilevel optimization contain a leader facing a follower
whose reaction deviates from the one expected by the leader due to some kind of bounded
rationality. We consider bilinear bilevel problems with follower’s response uncertainty
due to limited observability regarding the leader’s decision and exploit robust optimization
to model the decision making of the follower. We show that the robust counterpart of the
lower level allows to tackle the problem via the lower level’s KKT conditions.

1. INTRODUCTION

In bilevel optimization, some of the variables are constrained to be optimal solutions of
another optimization problem, the so-called lower-level problem. The remaining variables
are decided on in the so-called upper-level problem. The upper-level player (or leader)
makes a decision first, anticipating the reaction of the lower-level player (or follower).
The concept of this class of optimization problems dates back to the seminal publications
of von Stackelberg (1932; 1954). In the last years and decades, bilevel problems have
gained increasing attention due to their ability to model hierarchical decision making
processes. These situations arise in various real-world applications such as in energy
markets; see, e.g., Ambrosius et al. (2020), Grimm et al. (2019), and Xinmin and Ralph
(2007), in transportation; see, e.g., Migdalas (1995) and Ben-Ayed et al. (1992), or in critical
infrastructure defense; see, e.g., Brown et al. (2006), DeNegre (2011), Fischetti et al. (2019),
Jain et al. (2010), Kiekintveld et al. (2009), Paruchuri et al. (2008), Pita, Jain, Marecki,
et al. (2008), and Shieh et al. (2012). Thus, it is obvious that the capability of modeling
hierarchical decision processes is important for practice. However, this ability makes
bilevel problems intrinsically hard to solve. Even their easiest instantiations, namely linear
bilevel problems, are strongly NP-hard; see Hansen et al. (1992).

In the classic setting of bilevel optimization, it is assumed that both players act perfectly
rational. However, this assumption rarely holds in many practical applications as both
players may face bounded rationality; see, e.g., Simon (1972). For instance, in Chariri
(2017), it is elaborated on how decision makers are confronted with cognitive limitations
preventing them from reaching a perfectly rational decision. Although Simon’s theory
received considerable recognition, this notion has long been abstracted from. It has been
a point of controversy between economists as it has been accused of being too limited
to individual psychological processes rather than that it fits the behavior of institutions
and large economies; see, e.g., Dequech (2001) and Rainey (2001). For a more detailed
discussion on bounded rationality, we refer to Rubinstein (1998).

Nevertheless, the consideration of bounded rationality has attained increasing attention
in recent years. One possible reason for bounded rationality is data uncertainty. In
the context of bilevel optimization, these types of problems have been investigated in,
e.g., Haghighat (2014), Dempe et al. (2017), Ivanov (2018), Yanikoglu and Kuhn (2018),
Burtscheidt, Claus, and Dempe (2020), and Burtscheidt and Claus (2020). Another reason
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for bounded rationality is uncertainty about the decision of the other player. Thus, it is
evident that uncertainty is an important aspect of bounded rationality. In mathematical
optimization, one approach to deal with uncertainties is robust optimization (see, e.g.,
Soyster (1973), Ben-Tal et al. (2009), and Bertsimas et al. (2010)), which we will also exploit
in this paper.

In contrast to the case of uncertain data, decision uncertainty has been much less
investigated in the context of bilevel optimization. Concerning this matter, we focus on the
following two papers. Recently, Besancon et al. (2019) propose a robust approach to hedge
against near-optimal lower-level decisions as a generalization of the “c-approximation”
introduced in Wiesemann et al. (2013). Pita, Jain, Ordofiez, et al. (2009) consider follower’s
response uncertainty due to limited observability regarding the upper-level decision using
anchoring biases; see, e.g., Kelly et al. (2006).

The contribution of this paper is the following. We follow the concept of Pita, Jain, Or-
doriez, et al. (2009) to consider follower’s response uncertainty due to limited observability
regarding the upper-level decision. In contrast to the approach using anchoring biases, we
pursue the same idea as in Besangon et al. (2019) and model bounded rationality using
the toolbox of robust optimization. However, while these authors consider the effect of
near-optimal decisions of the follower on the upper-level constraints, we focus on how
limited observability regarding the upper-level decision affects the problem at the lower
level.

The remainder of the paper is organized as follows. Section 2 gives a brief introduction
of bilinear bilevel problems and the concept of limited observability. In Section 3, we
present an illustrative example to demonstrate the importance of the proposed modeling
aspect. In Section 4, the robust counterpart of the lower level is shown to be a bilinear
problem as well so that we can establish an equivalent single-level reformulation by
replacing the lower-level problem with its Karush-Kuhn-Tucker (KKT) conditions. We
then return in Section 5 to the example to illustrate the effect of follower’s decisions under
bounded rationality on the problem studied in Section 3. Further, we address the relation
between limited observability regarding the upper-level decision and bilevel problems
with lower-level right-hand side uncertainty in Section 6. Finally, we conclude in Section 7.

2. PROBLEM STATEMENT

In this paper, we consider the bilinear bilevel problem

min ¢ x+d'y+x"Ry (1)
Xy
st. Ax+By > a, (1b)
yeargmin{f x+g'y +x'Qy’: Cx + Dy’ > b} (1¢)
”

with x,¢, f € R", y,d,g € R™, R,Q € R™™, A € RF*" B e RF*™ g € Rk, C e R,
D € R™ and b € RY. We refer to (1a)-(1b) as the upper level and to (1c) as the nominal
lower level. Here, we consider the optimistic approach to bilevel optimization; see, e.g.,
Dempe (2002). This means that whenever the lower-level problem has multiple solutions y,
the follower selects the most favorable one w.r.t. the leader’s objective function.

In Problem (1), we make the strong assumption that the leader and the follower act
perfectly rational. In real-world applications, however, this assumption rarely holds as
both players face bounded rationality; see, e.g., Simon (1972). Here, we consider follower
response uncertainty due to limited observability regarding the upper-level decision as
proposed, e.g., in Pita, Portway, et al. (2008). This means that the follower cannot perfectly
observe the actual leader’s decision x. Nevertheless, the observed upper-level decision x
provides an insight into the leader’s scope of action. Given this knowledge, the follower’s
response is based on %, which is assumed to belong to a given uncertainty set U(x). This
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leads to the robust bilevel problem

min ¢ x+d'y+x Ry (2a)
Xy
st. Ax+By > aq, (2b)

y € arg min {gTy’ + max {fTx+x'Qy’:Cx+Dy >bVxe (L[(x)}} (2¢)
y xeU(x)

with a robustified lower-level objective function as well as a robustified feasible set in the
lower-level problem. Note that due to the robustification of the lower-level’s objective
function, the linear term in x cannot be avoided as it is usually done in (bi)linear bilevel
optimization. Throughout this paper, the uncertainty set is parameterized in an affine way
by

Ux)={x+P{:{ € Z R} (3)
with P € R and a polyhedral perturbation set

Z={{eRY: H{ > h}

for H € R°*? and h € R®. To ensure that the original leader’s decision x is still part of the
uncertainty set U (x) one can additional assume that 0 € Z holds.

3. ExaMPLE: BILEVEL BIMATRIX GAMES

A bimatrix game is a non-cooperative two-player simultaneous-move game. This means
that two competitive players, called Player 1 and Player 2, select their strategies at the
same time. Each player can choose from a finite number of possible actions, which are
called pure strategies. We denote x € R" as the leader’s mixed strategy if

n
Zx,- =1 and x>0

i=1

holds. In this case, x; represents the probability that Player 1 plays strategy i € [n] :=
{1,...,n}. Analogously, we obtain the feasible set for the follower’s mixed strategy y € R™
via

m

Zyjzl and y>0.

j=1
Both players attempt to minimize their objective functions x "Ry and x ' Qy with cost
matrices R, Q € R™ for Player 1 and Player 2, respectively. The entries R;; and Q;;
represent the associated costs if Player 1 chooses action i € [n] and if Player 2 selects
strategy j € [m].

In what follows, we consider the sequential bimatrix game stated in Problem (4). Thus,

we refer to Player 1 as the leader and to Player 2 as the follower:

min x'Ry (4a)
x.y
n
sit. in =1, x>0, (4b)
i=1
y € arg min {xTQy’: Zyj' =19y > 0} . (4c)
y =1

In Problem (4), the leader has to commit to a strategy first. Then, after observing the
upper-level decision, the follower’s strategy is determined. In particular, Problem (4) is a
special case of Problem (1).

This type of problem has been subject to extensive research in many real-world appli-
cations in security domains such as defender-attacker scenarios and patrolling; see, e.g.,
Brown et al. (2006), Gatti (2008), Paruchuri et al. (2008), Pita, Portway, et al. (2008), Pita,
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TaBLE 1. Costs for the example in Section 3

Y1 Y2

x1 (2,5 (4,0)
x2 (3,1) (4,2

Jain, Marecki, et al. (2008), Kiekintveld et al. (2009), Jain et al. (2010), Shieh et al. (2012),
and Yang et al. (2014) and the references therein.

Under the assumption that the follower faces limited observability regarding the upper-
level decision, the reformulation of Problem (4) as a robust bilevel problem is given by

min x'Ry
X,y

m
i 0! 7 — ' >
RS argyr,mn {xrenrgz;) {x Qy ; y=Ly = 0}} .

To illustrate follower’s response uncertainty due to limited observability regarding the
upper-level decision, we consider the example depicted in Table 1 with the respective
costs for the leader and the follower. If the leader commits to a pure strategy and the
follower can perfectly observe the upper-level decision, the bilevel solution is given by
x =(0,1) and y = (1,0). If the leader commits to a mixed strategy of playing x; with
probability 1/6 and x, with probability 5/6, the optimistic follower will select y = (1, 0)
resulting in expected costs of 17/6 for the leader. In Section 5, we will return to this
example to illustrate the case of limited observability regarding the upper-level decision.
Before, we have to consider how these robust bilevel problems can be reformulated as
single-level optimization problems.

4. SINGLE-LEVEL REFORMULATION

As elaborated in Bertsimas et al. (2010), the lower-level problem (2c) can be replaced
with the robust formulation

min (6a)
y,T
st. g'y+ max {fTx+x Quy} <, (6b)
x€U(x)
Cx+Dy>b forallx € U(x), (6¢)

in which the uncertainties only arise in the constraints of the problem. In terms of the
affine parameterization of the uncertainty set, Constraint (6b) can be stated as

g'y+fTx+xTQy+max {(F+oy TP} <. )

For each fixed y € R™ in the follower’s objective function, the inner optimization problem
in (7) is equivalent to the solution of the linear problem

max  (f +Qy)" P (82)
st. H{>h. (8b)
Similarly, we can replace each constraint in (6¢) with the corresponding worst-case scenario

Cj.x+?élg{(cj.P) §} +Dj.y > b, 9)
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where C;. denotes the jth row of C for j € [£]. Thus, (9) requires the solution of
mgin (C;.P)¢ (10a)
st. H{ >h, (10b)

for each constraint j € [£]. We denote with o € RS and 1 € R?, j € [£], the dual variables
associated with Problem (8) and (10), respectively. The dual problem of (8) is given by

main -h'o (11a)
st. H'o=-P"(f+Qy), (11b)
o> 0. (11c)
Similarly, we obtain the dual formulation of (10) as
rriz}x hT A (12a)
st. H'M =(C;.P)", (12b)
M=o (12¢)

By strong duality, the objective values of the respective primal and dual problems coincide
for primal-dual optimal pairs. Thus, to satisfy the uncertain constraints in (6), the following
inequalities must hold for all dual variables o and A/

fTx+g'y+x"Qy—-hTo <7, (13a)
Cj.x + Djy +h' N > bj, JjE€ [f], (13b)

as well as (11b)—(11c) and (12b)-(12c). As a result, we obtain the robust counterpart
min T (14a)

y,7,0,A

st. flx+g'y+x'Qyu—h'o <, (14b)
Cj.x + DJy + hT/lj > bj, jE€ [5] , (14C)
H'o=-P" (f +Qy), (14d)
H™Y =(c.p)7, jelel, (14e)
M=o, jelel, (14f)
o >0, (14g)

of the lower-level problem. In particular, (14) is a linear problem for each fixed leader’s
decision x. Thus, we can replace the lower level with its KKT conditions and obtain the
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single-level reformulation

min ¢ x+d y+x"Ry (15a)
x,Y,z

st. Ax+By>a, (15b)

Cix+Djy+h" > b, jelel, (15¢)

H'o =-P" (f +Qy), (15d)

H™V = (c;.p)7, jelel, (15¢)

g+Q'x—D"a—-Q"PB =0, (15f)

h+HB+8=0, (15g)

ajh+ Hy! + ¢ =0, jeltl, (15h)

fix+g'y+x'Qy-hTo=r, (151)

aj (Cj.x + D]y + hT/lj - bj) =0, JE [f], (15j)

§To=0, (15k)

() MV =o, jeldl, (151)

Ml >0, jelel, (15m)

o,a,8 >0, (15n)

where z contains all primal variables used for modeling limited observability in the sense
of robust optimization as well as all dual lower-level variables with o € R?, MeRS, Tt eR,
a e R, BeRY, Y/ € RY, 5 € R®, and ¢/ € R* for all j € [£]. Note that 7 models the
robustified objective function value of the follower. Thus, we could—in principal—dispose
of Constraint (15i) since 7 is an auxiliary variable in Problem (14) that could be eliminated
in (14) as well.

5. THE [LLUSTRATIVE EXAMPLE REVISITED

We now reconsider the example in Section 3 under the assumption that the follower
faces limited observability regarding the upper-level decision. We focus on the case that
the perceived leader’s decision x is only known to lie within a box, i.e., the uncertainty set
is given by

Ux)={x=x+P(: {eZ}n{x: % +% =1}

p= [Pl 0} c R2X2
0 P2

with

and the perturbation set
Z={(eR* -1<{<1,i=12}.

In particular, this is a special case of a polyhedral uncertainty set. Before we discuss the re-
sults let us briefly comment on the interpretation of the modeling in this setting—especially
w.r.t. the definition of the uncertainty set U(x). The first set in the definition of U(x)
corresponds to the uncertainty modeling of the leader’s decision as stated around (3). In
this example, the leader commits to a mixed strategy, which is a probability distribution
over a finite number of possible actions. When facing limited observability, the follower
anticipates the resulting simplex structure of the leader’s mixed strategy, which is captured
in the second set of the intersection.

The specific example is implemented in Python 3.8 and Gurobi 9.1.0 is used to solve
the single-level reformulation (15). To handle the KKT complementarity constraints we
exploit special ordered sets of type 1 (SOS1) to avoid big-M reformulations that can be
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TABLE 2. Leader’s strategies under limited observability

G 0 0.25 0.5 0.75 1
pP1
0 | (0.167,0.833) (0.167,0.833) (0.167,0.833) (0.167,0.833) (0.167,0.833)
0.25 | (0.167,0.833) (0.417,0.583) (0.417,0.583) (0.417,0.583) (0.417,0.583)
0.5 | (0.167,0.833) (0.417,0.583) (0.667,0.333) (0.667,0.333) (0.667,0.333)
0.75 | (0.167,0.833) (0.417,0.583) (0.667,0.333) (0.917,0.083) (0.917,0.083)
1 |(0.167,0.833) (0.417,0.583) (0.667,0.333) (0.917,0.083) (1,0)

troublesome; see, e.g., Pineda and Morales (2019) and Kleinert et al. (2020). Hence, we
restate Constraints (15j)-(151) as

rj = Cj.x + D]y + hT/V - bj’ JE [f],
SOS1 (aj, ), jelel,
SOS1 (8, o), k e [s],
5081 (e, 4., kelsl,jelf.

Tables 2-3 summarize the nominal and robust leader’s and follower’s strategies for dif-
ferent uncertainty set parameterizations that model limited observability. The respective
objective function values are given in Table 4, where the first element of the tuple denotes
the value of the leader’s objective and the second one gives the objective function value
for the follower.

First, it can be seen that limited observability regarding the upper-level decision can
lead to deviations of the follower’s strategy from the nominal decision. In this example,
the follower moves from playing the pure strategy y = (1, 0) to committing to the mixed
strategy of playing y; with probability 1/6 and y, with probability 5/6 regardless of the
extent to which the follower is limited in the observability of the leader’s decision. In
particular, this means that the follower’s strategy shifts entirely when facing limited
observability. Due to the leader’s anticipation of the follower’s response uncertainty;,
the upper-level decision can also change significantly compared to the nominal strategy,
depending on the extent of the uncertainties. Under the assumption that the follower can
perfectly observe the upper-level decision, the leader tends to play x,. However, the greater
the uncertainty regarding the observability of the upper-level decision, the more the leader
tends to play x;. In particular, the leader will commit to the pure strategy of playing x; for
the uncertainty set parameterization with p; = p, = 1. Therefore, not only the follower’s
strategy but also the leader’s strategy can shift entirely if limited observability regarding
the upper-level decision is taken into account. Moreover, it can be seen that the strategies
of both players are symmetric w.r.t. the parameterization of the uncertainty set, which
is due to the simplex structure of the leader’s feasible set. Further, it is noticeable that
the leader’s anticipation of follower’s response uncertainty due to limited observability
regarding the upper-level decision always leads to significantly increased costs for the
leader. In this example, the increase in the leader’s costs is up to approximately 33 % of
the nominal value.

To sum up, this illustrative example shows that limited observability significantly
impacts the solution of the underlying bilevel problem. Thus, this modeling aspect should
not be ignored if the application problem at hand contains a lower-level player that cannot
perfectly observe the leader’s decision.
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TaBLE 3. Follower’s strategies under limited observability

P2l 0.25 0.5 0.75 1
P
(1,0) (1,0) (1,0) (1,0) (1,0)
0.25 | (1,0) (0.167,0.833) (0.167,0.833) (0.167,0.833) (0.167,0.833)
0.5 | (1,0) (0.167,0.833) (0.167,0.833) (0.167,0.833) (0.167,0.833)
0.75 | (1,0) (0.167,0.833) (0.167,0.833) (0.167,0.833) (0.167,0.833)
(1,0) (0.167,0.833) (0.167,0.833) (0.167,0.833) (0.167,0.833)

TaBLE 4. Leader’s and follower’s objective function values under limited observability

P 0 0.25 0.5 0.75 1
P1
0 (2.833,1.667) (2.833,1.667) (2.833,1.667) (2.833,1.667) (2.833,1.667)
0.25 | (2.833,1.667) (3.764,1.417) (3.764,1.417) (3.764,1.417) (3.764,1.417)
0.5 | (2.833,1.667) (3.764,1.417) (3.722,1.667) (3.722,1.667) (3.722,1.667)
0.75 | (2.833,1.667) (3.764,1.417) (3.722,1.667) (3.681,0.917) (3.681,0.917)
1 (2.833,1.667) (3.764,1.417) (3.722,1.667) (3.681,0.917) (3.667,0.833)

6. RELATION TO BILEVEL PROBLEMS WITH UNCERTAIN LOWER-LEVEL DATA

Compared to the problem under perfect rationality, the consideration of limited observ-
ability regarding the upper-level decision yields significantly larger optimization problems
in terms of the number of variables as well as the number of constraints. Therefore, it
seems reasonable to strive for a more compact formulation to model limited observability.
For this purpose, we now address the relation between Problem (15) and bilevel problems
with uncertain lower-level data. More specifically, we consider problems with uncertainties
in the right-hand sides of the lower-level’s constraints, i.e., we consider

I;’Cli;’l ¢c'x+d"y+x"Ry

st. Ax+ By > a,
yeargmin{f x+g'y +x'Qy’: Cx+Dy’ > bforallbe Ub)}.
”
Here, b is the nominal right-hand side and U(b) = U;(b1) X - - - X Ue(be) holds with
Uty = b+ (7)) ¢ e 77}
and
. AT .
Z= {gf: (HJ) 0> hf},

for all j € [£]. For the ease of presentation, we omit the dimensions of all vectors and
matrices in this section. Similar to the derivation in Section 4, we obtain the single-level
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reformulation

min ¢'x+d y+x Ry (16a)

x,Y,z
st. Ax+ By > a, (16b)

AT .
Cjx + Dy + (hl) A > b, jele, (160)
AT - .
(77) ¥ =-p. jelel, (16d)
g+Q'x-D"d =0, (16€)
ah + B +7 =0, jeltl, (16f)
S

dj (Cj.x + D]y + (h]) A - b]) =0, _] € [f], (16g)
()" ¥ =0, jelel, (b
M=o, jele], (16i)
a@>0, (16j)

where Z contains all primal variables used for the robustification of the uncertain right-
hand sides as well as all resulting dual lower-level variables N ,a, ,/)~’j ,and j/. Before we
show how Problem (15) relates to (16), we first consider an illustrative example taken and
adapted from Besancon et al. (2019).

Example 1. We consider the linear bilevel problem defined by 0 < x,y € R and the data

1 —4 -11
A—[_J, B—[_J, a—(AJ, c=1, d=-10, R=0,

2 1 5
C_|:_5:|9 D_|:4:|’ b_(_?)o)» f_oa 9_1» Q_O
Further, we assume that the perceived decision of the leader as well as the uncertain lower-level
data are known to lie within box constraints, i.e.,

Z=Z'={{eR: —1<{<1}, j=1,2

To model limited observability regarding the upper-level decision, we consider the uncertainty
set parameterizations with P € {0.5, 1}. The example is illustrated in Figure 1. The upper-
and lower-level constraints are represented with dashed and solid lines, respectively. The
optimal nominal solution and the two optimal robust solutions are illustrated with thick dots.
It can be seen that limited observability regarding the leader’s decision leads to a parallel shift
of the follower’s constraints, i.e., to lower-level right-hand side uncertainty. In particular, in
this example, the corresponding lower-level right-hand side uncertainty is given by p* = 2P
and p? = 5P.

Based on the observation in Example 1, the question naturally arises on whether limited
observability regarding the leader’s decision can, in general, be modeled as a problem
with uncertain lower-level right-hand side data. If this would be possible, it would be
particularly favorable for scaling reasons, since Problem (15) can get very large. Thus, we
next formally address how Problem (15) relates to Problem (16).

Theorem 2. Let (x,y, z) be a solution of Problem (15) with parameters P, h, and H mod-
eling the uncertainty set. Furthermore, let (x,y, z) be a solution of Problem (16) with the
uncertainty sets modeled with the parameters p’, W, and H/, j € [€]. Third, suppose that
the lower-level’s objective function does not contain bilinear terms, i.e., Q = 0, and that
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FIGURE 1. Relation between limited observability and uncertain lower-
level data

rank(D") = rank([DT, g]) holds. Then, the uncertainty modeling parameters satisfy

(W) W =nw. jelel.  ara)
(#) 7 =~ (en jet. am)
(# )T (HJ)Tif =— (/) H™Y, jelel, (7o)
(ﬁjT(iﬁ)Tifz(yUT(HTan-PT(C}-+f)), jelal.  7d)

Proof. Under the imposed assumptions, we obtain & = « by dual feasibility. Thus, (17a)
follows immediately from KKT complementarity. For all j € [{], the multiplication of
Constraint (16f) with A/ yields

AT = aAT AT o R
aj( J) W+ (ﬁf) (HJ) F+ ()W =o.
Due to (16d) and (16h), Constraint (16f) is thus equivalent to
AT - AT (AT AT
a; (hf) V= (ﬁf) (Hf) V= (ﬁf) J,ojel. (18)
Similarly, multiplying (15h) with A/ and using (15e) as well as (15) yields
ajh" N = - (yj)THT/Ij =- (yj)T (Cj.P)T, jele].
Then, plugging in (17a) and the results in (18) yields (17b)—(17c). Finally, Equation (17d)
follows immediately from (17c) as well as (15d)—(15e). O

To sum up, there exists a connection between Problem (15) and a suitably chosen
bilevel problem with lower-level right-hand side uncertainty. However, even though we
impose rather strong assumptions (such as the rank condition), the established relation
between the different uncertainty set parameterizations in (17) requires the knowledge of
the lower-level primal and dual variables in advance, which means that the established
result is only an ex-post relation. Thus, Problem (16) cannot be exploited to obtain a more
compact formulation for our modeling of limited observability.
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7. CONCLUSION

In this paper, we consider bilinear bilevel problems under follower’s response uncer-
tainty due to limited observability regarding the upper-level strategy. To this end, we
exploit robust optimization to model decision making in the lower level under bounded
rationality. An equivalent single-level reformulation is established by replacing the robust
counterpart of the lower-level problem with its KKT conditions. Compared to the prob-
lem under perfect rationality, the presented modeling yields much larger optimization
problems in terms of the number of variables and constraints. However, the problem
remains in the same problem class as the problem without taking limited observability into
account. We present an illustrative example to emphasize the importance of the proposed
modeling aspect. Further, we establish an ex-post relation between the modeling of limited
observability and robust bilevel problems with lower-level right-hand side uncertainty.

In this paper, polyhedral uncertainty sets have been considered. The consideration of
other uncertainty set geometries might be a reasonable aspect of future work.
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