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Abstract. In this article, we extend the time-domain decomposition method described by Lagnese and
Leugering [15] to semilinear optimal control problems for hyperbolic balance laws with spatio-temporal
varying coe�cients. We provide the design of the iterative method applied to the global �rst-order optimality
system, prove its convergence, and derive an a posteriori error estimate. The analysis is done entirely on
the continuous level. A distinguishing feature of the method is that the decomposed optimality system
can be interpreted as an optimality system of a local “virtual” optimal control problem. Thus, the iterative
time-domain decomposition of the optimality system can be interpreted as an iterative parallel scheme for
virtual optimal control problems on the subintervals. A typical example and further comments are given to
show the range of potential applications. Moreover, we provide some numerical experiments to give a �rst
interpretation of the role of the parameters involved in the iterative process.

1. Introduction

Time-domain decomposition for partial di�erential equations (PDEs) has been a subject of intense
research in the past. Given a PDE with time domain [0,𝑇 ], the idea is to introduce a coarse time
discretization of [0,𝑇 ] into a disjoint union of subintervals 𝐼𝑘 := [𝑇𝑘 ,𝑇𝑘+1] with [0,𝑇 ] = cl(∪𝐾

𝑘=1 (𝑇𝑘 ,𝑇𝑘+1) )
and then to iteratively decouple the PDE such that on each subinterval 𝐼𝑘 , the same PDE is solved
together with conditions at the breakpoints 𝑇𝑘 that couple the states at the current iteration 𝑛 + 1 with
those at iteration 𝑛. We may trace back the contributions to the seminal paper [21] by J. L. Lions et al.,
in which the so-called “parareal”-scheme has been introduced. In [24, 25], the authors further developed
the scheme and applied it to quantum control problems. This scheme has then later been identi�ed as
a variant of the common multiple-shooting method; see, e.g., [8]. These methods, which consist of a
coupling of coarse grain discrete-in-time solutions at the break points with a parallel computation of full
(respectively, small grain) solutions on the subintervals, were �rst developed for the mere simulation
of nonlinear PDEs. In the article [14], the authors, for the �rst time, considered the time-domain
decomposition of optimal control problems for the time-dependent Maxwell system. Later, in [13], a
broad number of such problems—even combined with a spatial domain decomposition for PDEs on
networked domains—have been investigated. We also refer to [11] and [28], where methods related
to multiple-shooting have been provided along with applications for the heat equation. During the
last decade, there has been an increasing interest in applying time- and space-domain decomposition
techniques to optimal control problems; see, e.g., [1, 6, 7, 23, 29, 30].

A distinguishing feature of the method in [13–15] is the fact that the iterative time-domain decomposi-
tion is applied to the optimality system of the original optimal control problem on the time domain [0,𝑇 ]
in such a way that the decomposed problems are by themselves optimality systems corresponding to
so-called virtual control problems on the subintervals 𝐼𝑘 . Thus, the fully parallel iteration can be seen as
one of optimal control problems on the subintervals. This can be utilized in applications, where solvers
for the virtual control problems, possibly on small time intervals, are available. The analysis is provided
at the continuous level, as an example of the �rst-optimize-then-discretize approach, leading inherently
to mesh independence when it comes to numerical realizations. The method uses the fact that the state
variables evolve forwardly in time, whereas the adjoint variable progresses backwardly. Therefore, on
the subinterval level, one can design two-point boundary value problems w.r.t. the time variable.
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To the best of our knowledge, the contributions in the literature do not include time-varying systems
so far. Moreover, time-domain decomposition for semilinear optimal control problems that posses this
distinguishing feature do not seem to be tackled as well. The goal of this article is to extend the time-
domain decomposition method of [13, 15] to optimal control problems involving semilinear hyperbolic
systems of conservation laws where the coe�cients may depend on time and space. We are particularly
interested in applications that focus on processes on metric graphs or networks. As examples, we will
focus on networks of semilinear strings or rods. Systems that are related to gas �ow in pipe networks
are easily seen to �t into the framework of this article—for the model; see, e.g., [10, 16]. Such problems
on metric graphs, where the edges, which are representative of the spatial domains of the corresponding
PDEs, are coupled at the vertices of the graph, can be transcribed into two-point initial boundary value
problems with a possibly large number of state variables; see Example 2 for further explanation.

The issue of existence of solutions to optimal control problems, in particular in the context of possibly
nonsmooth, say 𝐿2 (0,𝑇 ), boundary controls is not settled for the type of systems considered. For a class
of distributed controls, where the spatial part is �xed, we refer to [27]. Using smooth controls, one can
use the classic shifting of boundary data to the state equation to use the results of [27]. We may already
add here, for the sake of clarity, that the problem is not with the well-posedness of the PDE systems per se,
but rather with the regularity of controls interlinked with a su�cient sequential-lower-semi-continuity
property of the cost function. As for the well-posedness of the optimality system, we refer to the work [4]
of Brokate. The analysis provided in this article is based on the continuous PDE-level and hence follows
the “�rst-optimize-then-discretize” paradigm. Thus, we obtain mesh-independent convergence results
so that we do not aim for an e�cient numerical implementation. For numerical evidence, we provide
some simple examples to give a �rst idea on the behavior of the di�erent parameters involved. For a full
treatment, we have to refer to a further publication.

We also remark that the iterative time-domain decomposition considered here can be interpreted in a
way in the context of the classic Robin-Robin-type Schwarz-method introduced by P. L. Lions [22], which
has been interpreted by Glowinski and Le Tallec in [9] as a variant of their Uzawa-type saddle-point
algorithm. This algorithm, in turn, results from an augmented Lagrangian formulation of the interface
problem. Indeed, for the time-domain decomposition, say with two time intervals, one may regard the
optimality system as a second-order boundary value problem in space and time. The analogue of the
P. L. Lions algorithm with the addition of a damped-Richardson relaxation, see [3], is then related to our
method. This will be made more explicit in due course.

The article is organized as follows. We begin with the problem statement in Section 2, where we
include a detailed discussion of an example of a network of controlled strings or rods, in fact a star
graph, where a possibly local nonlinear damping term is present along some or all strings involved
together with nonlinear boundary conditions. In Section 3, we introduce the time-domain decomposition
method for the overall optimality system into systems on the subintervals and show in which way these
decomposed systems are themselves optimality systems for “virtual” optimal control problems on the
subintervals. In Section 4, we discuss the convergence of the iteration for unconstrained controls, while
the constrained case is tackled in Section 5—however, for the linear case only. As the nonlinearities are
not assumed to be explicitly given by speci�c functions and the corresponding Nemytskij operators, we
will rely on bounds, regularity, and smallness assumptions and use the control structure to compensate
for nonlinear e�ects. Section 6 contains the development of an a posteriori error estimate for our
iteration. In Section 7, we provide some numerical examples, which demonstrate �rst evidence for the
behavior of the iterative time-domain decomposition approach. Finally, the paper closes with some
concluding remarks in Section 8.
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2. Problem Statement

We consider two-point boundary value problems for systems of hyperbolic semilinear equations of
the form

𝜕𝑡𝑦 +𝐴(𝑡, 𝑥)𝜕𝑥𝑦 = 𝑓 (𝑡, 𝑥,𝑢,𝑦), (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1), (1a)

𝑦𝑖 (𝑡, 0) =
𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑡, 𝑦 𝑗 (𝑡, 0)), 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ (0,𝑇 ), (1b)

𝑦𝑖 (𝑡, 1) =
𝑑∑︁

𝑗=𝑚+1
𝑔1𝑖 𝑗 (𝑡, 𝑣𝑖 (𝑡), 𝑦 𝑗 (𝑡, 1)), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ (0,𝑇 ), (1c)

𝑦 (0, 𝑥) = 𝑦0 (𝑥), 𝑥 ∈ (0, 1), (1d)

𝑢 (𝑡) ∈ 𝑈 d
ad a. e. in (0,𝑇 ), (1e)

𝑣 (𝑡) ∈ 𝑈 b
ad a. e. in (0,𝑇 ), (1f)

where 𝑦 (𝑡, 𝑥) ∈ R𝑑 , 𝑡 ∈ [0,𝑇 ], 𝑥 ∈ [0, 1], denotes the state,
𝐴(𝑡, 𝑥) = diag (𝜆1 (𝑡, 𝑥), . . . , 𝜆𝑚 (𝑡, 𝑥), 𝜆𝑚+1 (𝑡, 𝑥), . . . , 𝜆𝑑 (𝑡, 𝑥)) ∈ R𝑑×𝑑

with
𝜆1 (𝑡, 𝑥) ≤ 𝜆2 (𝑡, 𝑥) ≤ · · · ≤ 𝜆𝑚 (𝑡, 𝑥) < 0 < 𝜆𝑚+1 (𝑡, 𝑥) ≤ · · · ≤ 𝜆𝑑 (𝑡, 𝑥)

for all (𝑡, 𝑥) ∈ [0,𝑇 ] × [0, 1] represents the physics of the system, taken in characteristic coordinates to
make the mathematical description simpler. Moreover, 𝑓𝑗 , 𝑗 = 1, . . . , 𝑑 , 𝑔0𝑖 𝑗 , 𝑖 =𝑚 + 1, . . . , 𝑑 , 𝑗 = 1, . . . ,𝑚,
and 𝑔1𝑖 𝑗 , 𝑖 = 1, . . . ,𝑚, 𝑗 = 𝑚 + 1, . . . , 𝑑 , are di�erentiable functions to be speci�ed below, 𝑢 and 𝑣 are
taken to represent distributed and boundary controls, respectively, where 𝑢 (𝑡, 𝑥) ∈ R𝑑 , 𝑣 (𝑡) ∈ R𝑚 ,
are constrained a. e. by closed and convex sets 𝑈 d

ad and 𝑈
b
ad. If 𝑈

d
ad = R𝑑 , 𝑈 b

ad = R𝑚 , then controls are
unrestricted. Finally, 𝑦0 (𝑥) ∈ R𝑑 for 𝑥 ∈ [0, 1] denotes the initial data. We should note that the boundary
conditions in (1) are in accordance with the standard formulation as in Chapter 6 of [2]. Under these
conventions, System (1) is a controlled hyperbolic and semilinear system. In addition to (1), we consider
the cost function

𝐽 (𝑤,𝑦) :=
∫ 𝑇

0

∫ 1

0
𝐿(𝑡, 𝑥,𝑢,𝑦) d𝑥 d𝑡 +

∫ 1

0
𝐿𝑇 (𝑥,𝑦 (𝑇, 𝑥)) d𝑥 +

∫ 𝑇

0
𝐿b (𝑡, 𝑣 (𝑡), 𝑦 (𝑡, 1)) d𝑡, (2)

with 𝑤 = (𝑢, 𝑣) and functions 𝐿, 𝐿𝑇 , 𝐿b that are measurable w.r.t. (𝑡, 𝑥), di�erentiable w.r.t. (𝑢,𝑦), 𝑦,
(𝑣,𝑦), respectively, with bounded derivatives on bounded sets, and uniformly continuous w.r.t. (𝑡, 𝑥).
The considered control problem is thus given by

min
𝑤,𝑦

𝐽 (𝑤,𝑦) s.t. (𝑤,𝑦) satis�es (1). (3)

This problem, even on non-cylindrical domains, has already been considered by Brokate in [4].
In order to describe the corresponding �rst-order optimality system for (3), we useD𝑦𝑖 , D𝑢𝑖 , andD𝑣𝑖

to describe the corresponding derivatives of 𝑦𝑖 , 𝑢, and 𝑣 . Moreover, we use the Lagrangian

L(𝑤,𝑦, 𝑝) = 𝐽 (𝑤,𝑦) +
𝑑∑︁
𝑖=1

∫ 𝑇

0

∫ 1

0
(𝜕𝑡𝑦 +𝐴(𝑡, 𝑥)𝜕𝑥𝑦 − 𝑓 (𝑡, 𝑥,𝑢,𝑦))𝑖 𝑝𝑖 d𝑥 d𝑡 . (4)
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Using integration by parts, the Lagrangian (4) reads as follows

L(𝑤,𝑦, 𝑝) = 𝐽 (𝑤,𝑦) +
𝑑∑︁
𝑖=1

∫ 1

0
𝑦𝑖 (𝑇, 𝑥)𝑝𝑖 (𝑇, 𝑥) d𝑥 −

𝑑∑︁
𝑖=1

∫ 1

0
𝑦𝑖0 (𝑥)𝑝𝑖 (0, 𝑥) d𝑥

+
𝑚∑︁
𝑖=1

∫ 𝑇

0

(
|𝜆𝑖 (𝑡, 0) |𝑦𝑖 (𝑡, 0)𝑝𝑖 (𝑡, 0) −

𝑑∑︁
𝑗=𝑚+1

|𝜆 𝑗 (𝑡, 0) |𝑔0𝑗𝑖 (𝑡, 𝑦𝑖 (𝑡, 0))𝑝 𝑗 (𝑡, 0)
)
d𝑡

+
𝑑∑︁

𝑖=𝑚+1

∫ 𝑇

0

(
|𝜆𝑖 (𝑡, 1) |𝑦𝑖 (𝑡, 1)𝑝𝑖 (𝑡, 1) −

𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑡, 1) |𝑔1𝑗𝑖 (𝑡, 𝑣𝑖 (𝑡), 𝑦𝑖 (𝑡, 1))𝑝 𝑗 (𝑡, 1)
)
d𝑡

−
𝑑∑︁
𝑖=1

∫ 𝑇

0

∫ 1

0
(𝑦𝑖 (𝜕𝑡𝑝𝑖 + 𝜕𝑥 (𝜆𝑖 (𝑡, 𝑥)𝑝𝑖 )) + 𝑓𝑖 (𝑡, 𝑥,𝑢,𝑦)𝑝𝑖 ) d𝑥 d𝑡 .

We obtain the directional derivative of L(𝑤,𝑦, 𝑝) w.r.t. 𝑦 in the direction of 𝑦:
𝜕𝑦L(𝑤,𝑦, 𝑝) (𝑦)

= 𝜕𝑦 𝐽 (𝑤,𝑦) (𝑦) +
𝑑∑︁
𝑖=1

∫ 1

0
𝑦𝑖 (𝑇, 𝑥)𝑝𝑖 (𝑇, 𝑥) d𝑥

+
𝑚∑︁
𝑖=1

∫ 𝑇

0

(
|𝜆𝑖 (𝑡, 0) |𝑦𝑖 (𝑡, 0)𝑝𝑖 (𝑡, 0) −

𝑑∑︁
𝑗=𝑚+1

|𝜆 𝑗 (𝑡, 0) |𝜕𝑦𝑔0𝑗𝑖 (𝑡, 𝑦𝑖 (𝑡, 0))𝑦𝑖 (𝑡, 0)𝑝 𝑗 (𝑡, 0)
)
d𝑡

+
𝑑∑︁

𝑖=𝑚+1

∫ 𝑇

0

(
|𝜆𝑖 (𝑡, 1) |𝑦𝑖 (𝑡, 1)𝑝𝑖 (𝑡, 1) −

𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑡, 1) |𝜕𝑦𝑔1𝑗𝑖 (𝑡, 𝑣𝑖 (𝑡), 𝑦𝑖 (𝑡, 1))𝑦𝑖 (𝑡, 1)𝑝 𝑗 (𝑡, 1)
)
d𝑡

−
𝑑∑︁
𝑖=1

∫ 𝑇

0

∫ 1

0

(
𝑦𝑖 (𝜕𝑡𝑝𝑖 + 𝜕𝑥 (𝜆𝑖 (𝑡, 𝑥)𝑝𝑖 )) +

𝑑∑︁
𝑗=1

𝜕𝑦𝑖 𝑓𝑗 (𝑡, 𝑥,𝑢,𝑦)𝑦𝑖𝑝 𝑗

)
d𝑥 d𝑡 .

Going further, we now take variations and derive the following optimality conditions governing the
adjoint variable 𝑝:

𝜕𝑡𝑝 +𝐴(𝑡, 𝑥)𝜕𝑥𝑝 = D𝑦𝐿(𝑡, 𝑥,𝑢,𝑦) −
(
D𝑦 𝑓

> (𝑡, 𝑥,𝑢,𝑦) + 𝜕𝑥𝐴(𝑡, 𝑥)
)
𝑝, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1),

|𝜆𝑖 (𝑡, 0) |𝑝𝑖 (𝑡, 0) =
𝑑∑︁

𝑗=𝑚+1
|𝜆 𝑗 (𝑡, 0) |𝜕𝑦𝑔0𝑗𝑖 (𝑡, 𝑦𝑖 (𝑡, 0))𝑝 𝑗 (𝑡, 0), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ (0,𝑇 ),

|𝜆𝑖 (𝑡, 1) |𝑝𝑖 (𝑡, 1) =
𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑡, 1) |𝜕𝑦𝑔1𝑗𝑖 (𝑡, 𝑣𝑖 (𝑡), 𝑦𝑖 (𝑡, 1))𝑝 𝑗 (𝑡, 1)

− D𝑦𝑖𝐿b (𝑡, 𝑣 (𝑡), 𝑦 (𝑡, 1)), 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ (0,𝑇 ),
𝑝 (𝑇, 𝑥) = − D𝑦𝐿𝑇 (𝑥,𝑦 (𝑇, 𝑥)), 𝑥 ∈ (0, 1).

(5)

By taking the directional derivative of L(𝑤,𝑦, 𝑝) w.r.t. 𝑢 in the direction 𝑢 we obtain

𝜕𝑢L(𝑤,𝑦, 𝑝) (𝑢) = 𝜕𝑢 𝐽 (𝑤,𝑦) (𝑢) −
𝑑∑︁
𝑖=1

∫ 𝑇

0

∫ 1

0

𝑑∑︁
𝑗=1

𝜕𝑢𝑖 𝑓𝑗 (𝑡, 𝑥,𝑢,𝑦)𝑢𝑖𝑝 𝑗 d𝑥 d𝑡

and, thus, taking variations leads to
𝑑∑︁
𝑖=1

(
𝜕𝑢𝑖𝐿(𝑡, 𝑥,𝑢,𝑦) −

𝑑∑︁
𝑗=1

𝜕𝑢𝑖 𝑓𝑗 (𝑡, 𝑥,𝑢,𝑦)𝑝 𝑗

)
(𝑢𝑖 − 𝑢𝑖 ) ≥ 0 (6)

a. e. in (0,𝑇 ) × (0, 1). Similarly, for 𝑣 we get
𝑑∑︁

𝑖=𝑚+1

(
𝜕𝑣𝑖𝐿b (𝑡, 𝑣,𝑦 (𝑡, 1)) −

𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑡, 1) |𝜕𝑣𝑔1𝑗𝑖 (𝑡, 𝑣𝑖 , 𝑦𝑖 (𝑡, 1))𝑝 𝑗 (𝑡, 1)
)
(𝑣𝑖 − 𝑣𝑖 ) ≥ 0 (7)

a. e. in (0,𝑇 ). We are now in the position to restate Theorem 3.4 of [4].
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Theorem 1 (Brokate, 1985). Under the assumptions above, the system consisting of (1) and (5)–(7) admits
a unique solution (𝑤,𝑦, 𝑝), where 𝑝 ∈ 𝐿∞ ((0,𝑇 ) × (0, 1))𝑑 and (𝑤,𝑦) solves the optimal control problem (3).

Example 1 (Tracking-type cost functional). We are going to focus on semilinear problems as in (1) with
quadratic cost functions

𝐽 (𝑤,𝑦) := 𝜅

2

∫ 𝑇

0

∫ 1

0
‖𝑦 − 𝑦𝑑 ‖2R𝑑 d𝑥 d𝑡 +

𝜌

2

∫ 𝑇

0
‖𝑦 (𝑡, 1) − 𝑦𝑑1 (𝑡)‖2R𝑑 d𝑡

+ 𝜈
2

∫ 𝑇

0

∫ 1

0
‖𝑢‖2

R𝑑
d𝑥 d𝑡 + 𝜇

2

∫ 𝑇

0
‖𝑣 (𝑡)‖2R𝑚 d𝑡 .

(8)

Hence,

D𝑦𝐿(𝑡, 𝑥,𝑢,𝑦) = 𝜅 (𝑦 − 𝑦𝑑 ), (9a)

D𝑦𝑖𝐿b (𝑡, 𝑣 (𝑡), 𝑦 (𝑡, 1)) = 𝜌 (𝑦𝑖 (𝑡, 1) − 𝑦𝑑1𝑖 (𝑡)), (9b)
D𝑦𝐿𝑇 (𝑥,𝑦 (𝑇, 𝑥)) = 0, (9c)

D𝑢𝐿(𝑡, 𝑥,𝑢,𝑦) = 𝜈𝑢, (9d)
D𝑣𝐿b (𝑡, 𝑣 (𝑡), 𝑦 (𝑡, 1)) = 𝜇𝑣 . (9e)

Example 2 (A network of strings). We consider a star-graph consisting of𝑚 strings or rods connected
at a multiple node located at 𝑥 = 0. The individual strings are stretched along an interval [0, 𝐿]. Each
string is represented by a displacement𝑤𝑖 (𝑡, 𝑥) for 𝑥 ∈ [0, 𝐿] and 𝑡 ∈ [0,∞). Indeed, we assume that there
is a spatio-temporal axial loading 𝑐𝑖 (𝑡, 𝑥). These strings or rods form a network located in the plane and
𝑤𝑖 (𝑡, 𝑥) is either the out-of-the-place displacement of the 𝑖th string or the longitudinal displacement of the
𝑖th rod. We assume that the strings (or rods) satisfy a semilinear damped wave equation such that at 𝑥 = 0,
the displacements are equal for all times and the sum of forces is 0. At the simple nodes, i.e., at 𝑥 = 𝐿, the
strings 𝑖 = 2, . . . ,𝑚 are subject to dissipative controlled boundary conditions, while string 𝑖 = 1 is clamped.
The corresponding system can be written as

𝜕𝑡𝑡𝑤𝑖 − 𝜕𝑥 (𝑐𝑖𝜕𝑥𝑤𝑖 ) + 𝑏𝑖 (𝜕𝑡𝑤𝑖 )) = 𝐵𝑑𝑢𝑑𝑖 in (0,𝑇 ) × (0, 𝐿), 𝑖 = 1, . . . ,𝑚, (10a)
𝑤𝑖 (𝑡, 0) = 𝑤 𝑗 (𝑡, 0) in (0,𝑇 ), 𝑖, 𝑗 = 1, . . . ,𝑚, (10b)

𝑚∑︁
𝑖=1

𝑐𝑖 (𝑡, 0)𝜕𝑥𝑤𝑖 (𝑡, 0) = 0 in (0,𝑇 ), (10c)

𝑤1 (𝑡, 𝐿) = 0, in (0,𝑇 ), (10d)
𝜕𝑥𝑤𝑖 (𝑡, 𝐿) + 𝛽𝑖 (𝜕𝑡𝑤𝑖 (𝑡, 𝐿)) = 𝑣𝑖 (𝑡) in (0,𝑇 ), 𝑖 = 2, . . . ,𝑚, (10e)

𝑤𝑖 (0, 𝑥) = 𝑤𝑖0 (𝑥) in (0, 𝐿), 𝑖 = 1, . . . ,𝑚, (10f)
𝜕𝑡𝑤𝑖 (0, 𝑥) = 𝑤𝑖1 (𝑥) in (0, 𝐿), 𝑖 = 1, . . . ,𝑚. (10g)

We now transform (10) into the format (1). In a �rst step, we transform (10a) into a 2 × 2-system. To this
end, we set

𝑧𝑖1 :=
1
2

(
𝜕𝑡𝑤𝑖 +

√
𝑐𝑖𝜕𝑥𝑤𝑖

)
, 𝑧𝑖2 :=

1
2

(
𝜕𝑡𝑤𝑖 −

√
𝑐𝑖𝜕𝑥𝑤𝑖

)
.

Hence
𝜕𝑡𝑤𝑖 = (𝑧𝑖1 + 𝑧𝑖2), 𝜕𝑥𝑤𝑖 =

1
√
𝑐𝑖
(𝑧𝑖1 − 𝑧𝑖2)

and, therefore

𝜕𝑡

(
𝑧𝑖1
𝑧𝑖2

)
+

[
−
√
𝑐 0

0
√
𝑐

]
𝜕𝑥

(
𝑧𝑖1
𝑧𝑖2

)
=

1
4𝑐

[
𝜕𝑡𝑐 +

√
𝑐𝜕𝑥𝑐 −(𝜕𝑡𝑐 +

√
𝑐𝜕𝑥𝑐)

−(𝜕𝑡𝑐 −
√
𝑐𝜕𝑥𝑐) 𝜕𝑡𝑐 −

√
𝑐𝜕𝑥𝑐

]
𝜕𝑥

(
𝑧𝑖1
𝑧𝑖2

)
− 𝑏𝑖

(
1
2
(𝑧𝑖1 + 𝑧𝑖2)

) (
1
1

)
.

We de�ne
𝑦𝑖 = 𝑧𝑖1 for 𝑖 = 1, . . . ,𝑚, 𝑦𝑖 = 𝑧 (𝑖−𝑚)2 for 𝑖 =𝑚 + 1, . . . , 𝑑 .
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For the sake of simplicity, we assume that the tensions are equal at 𝑥 = 0 for all times; i.e., 𝑐𝑖 (𝑡, 0) = 𝑐 𝑗 (𝑡, 0)
holds for all 𝑡 ∈ [0,𝑇 ]. Then, the transmission conditions (10b) and (10c) can be equivalently written as

©­­«
𝑦𝑚+1
...

𝑦𝑑

ª®®¬ (𝑡, 0) =
1
𝑚


𝑚 − 2 −2 · · · −2
−2 𝑚 − 2 · · · −2
...

...
. . .

...

−2 −2 · · · 𝑚 − 2


©­­«
𝑦1
...

𝑦𝑚

ª®®¬ (𝑡, 0). (11)

Notice that without the assumption on the axial loads at 𝑥 = 0, the matrix on the right-hand side becomes
non-symmetric which, in turn, is not a problem in principle. We introduce the matrix 𝑆 such that

(𝑆𝜑)𝑖 :=
(
2
𝑚

𝑚∑︁
𝑗=1

𝜑 𝑗 − 𝜑𝑖

)
.

Thus, (11) reads as 𝑌 + (0) = 𝑆𝑌− (0). The matrix 𝑆 has nice properties. It can be interpreted as a scattering
matrix. In particular,

𝑚∑︁
𝑖=1

(𝑆𝜑)𝑖 =
𝑚∑︁
𝑖=1

𝜑𝑖 , 𝑆𝑆𝜑 = 𝜑

holds. At 𝑥 = 𝐿, we have, at least formally for su�ciently regular states,

𝜕𝑡𝑤1 (𝑡, 𝐿) = 0 =⇒ 𝑧11 (𝑡, 𝐿) + 𝑧12 (𝑡, 𝐿) = 0 =⇒ 𝑦1 (𝑡, 𝐿) = −𝑦𝑚+1 (𝑡, 𝐿)
for the clamped string and

𝜕𝑥𝑤𝑖 (𝑡, 𝐿) + 𝛽𝑖 (𝜕𝑡𝑤𝑖 (𝑡, 𝐿)) = 𝑣𝑖 (𝑡)

=⇒ 𝑧𝑖1 (𝑡, 𝐿) − 𝑧𝑖2 (𝑡, 𝐿) +
√︁
𝑐𝑖 (𝑡, 𝐿)𝛽𝑖 (𝑧11 (𝑡, 𝐿) + 𝑧12 (𝑡, 𝐿)) =

√︁
𝑐𝑖 (𝑡, 𝐿)𝑣𝑖 (𝑡)

=⇒ (𝐼𝑑 +
√︁
𝑐𝑖 (𝑡, 𝐿)𝛽𝑖 (·)) (𝑧11 (𝑡, 𝐿) + 𝑧12 (𝑡, 𝐿)) =

√︁
𝑐𝑖 (𝑡, 𝐿)𝑣𝑖 (𝑡) + 2𝑧𝑖2 (𝑡, 𝐿)

for the other strings. Therefore, if we now assume that the functions 𝛽𝑖 are monotone, then on the left-hand
side of (10e), 𝐼𝑑 +

√︁
𝑐𝑖 (𝑡, 𝐿)𝛽𝑖 (·) is invertible for each 𝑡 with inverse (𝐼𝑑 +

√︁
𝑐𝑖 (𝑡, 𝐿)𝛽𝑖 (·))−1 =: ℎ(𝑡, ·) and

the boundary condition (10e) can be rewritten as

𝑧𝑖1 (𝑡, 𝐿) = −𝑧𝑖2 (𝑡, 𝐿) + ℎ𝑖 (𝑡, 2𝑧𝑖2 (𝑡, 𝐿) + 𝑣𝑖 (𝑡)), 𝑖 = 2, . . . ,𝑚,
𝑦𝑖 (𝑡, 𝐿) = −𝑦𝑚+𝑖 (𝑡, 𝐿) + ℎ𝑖 (𝑡, 2𝑦𝑚+𝑖 (𝑡, 𝐿) + 𝑣𝑖 (𝑡)), 𝑖 = 2, . . . ,𝑚.

This provides the boundary conditions at the end 𝑥 = 𝐿:

𝑦1 (𝑡, 𝐿) = −𝑦𝑚+1 (𝑡, 𝐿),
𝑦𝑖 (𝑡, 𝐿) = −𝑦𝑚+𝑖 (𝑡, 𝐿) + ℎ𝑖 (𝑡, 2𝑦𝑚+𝑖 (𝑡, 𝐿) + 𝑣𝑖 (𝑡)), 𝑖 = 2, . . . ,𝑚.

Thus, our example (after normalization of the length) is of the format (1).

Remark 1. We remark that there are many more examples—in particular for systems of semilinear
hyperbolic balance laws on metric graphs—that exactly �t into this framework. These are, e.g., networks of
open channels with the dynamics governed by the shallow water equations with wall friction; see, e.g., [18],
or networks of gas pipelines [16]. Moreover, networks of semilinear Timoshenko beams [17] can be written
in the framework of (1) as well.

3. Time-Domain Decomposition

We now embark on time-domain decomposition of the optimal control problem by decomposing the
optimality system (1), (5)–(7). The procedure pursued in this article is very much inspired by the work
in [15] for the wave equation and the Maxwell equations in case of linear dynamics. The novelty of the
current article lies in the fact that we deal with �rst-order semilinear equations of hyperbolic type with
coe�cients varying in space and time. The emphasis on the non-overlapping paradigm in time-domain
decomposition and the particular focus on the method described in [15] is due to the fact that after the
decomposition of the optimality system into subsystems on [𝑇𝑘 ,𝑇𝑘+1] × (0, 1) with

0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑘 < 𝑇𝑘+1 < · · · < 𝑇𝐾 < 𝑇𝐾+1 = 𝑇,

the subsystems themselves are optimality systems for suitably chosen optimal control problems on the
subdomains. By this procedure, the original optimal control problem is iteratively decomposed into
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optimal control problems on [𝑇𝑘 ,𝑇𝑘+1] × [0, 1], which, in turn, can be solved completely in parallel.
Another distinguishing feature is the fact that the approach is formulated completely in the continuous
space-time setting in which also a proof of convergence will be given. To the best of our knowledge,
there is no other paper in the literature meeting these requirements.

We now formulate the time-domain decomposition procedure for the general optimality system (1),
(5)–(7) and then focus on the case of unconstrained controls 𝑢, 𝑣 and quadratic costs as in (8) for a
proof of convergence in the next section. To this end, we denote the restrictions of 𝑦𝑘 , 𝑝𝑘 , 𝑢𝑘 , 𝑣𝑘 to
𝑄𝑘 := 𝐼𝑘 × (0, 1) with 𝐼𝑘 := (𝑇𝑘 ,𝑇𝑘+1) by

𝑦𝑘 := 𝑦 |𝑄𝑘
, 𝑝𝑘 := 𝑝 |𝑄𝑘

, 𝑢𝑘 := 𝑢 |𝑄𝑘
, 𝑣𝑘 := 𝑣 |𝐼𝑘 .

The idea is to satisfy the continuity conditions
𝑦𝑘 (𝑇𝑘+1) = 𝑦𝑘+1 (𝑇𝑘+1), 𝑘 = 0, . . . , 𝐾 − 1,
𝑝𝑘 (𝑇𝑘+1) = 𝑝𝑘+1 (𝑇𝑘+1), 𝑘 = 0, . . . , 𝐾 − 1, (12)

in the limit of an iterative procedure. We therefore use the decoupling
𝑦𝑛+1
𝑘

(𝑇𝑘+1) + 𝛽𝑝𝑛+1𝑘
(𝑇𝑘+1) = 𝜙𝑛𝑘,𝑘+1, 𝑘 = 0, . . . , 𝐾 − 1,

𝑦𝑛+1
𝑘

(𝑇𝑘 ) − 𝛽𝑝𝑛+1𝑘
(𝑇𝑘 ) = 𝜙𝑛𝑘,𝑘−1, 𝑘 = 1, . . . , 𝐾,

(13)

together with the update rule
𝜙𝑛
𝑘,𝑘+1 = (1 − 𝜀)

(
𝑦𝑛
𝑘+1 (𝑇𝑘+1) + 𝛽𝑝

𝑛
𝑘+1 (𝑇𝑘+1)

)
+ 𝜀

(
𝑦𝑛
𝑘
(𝑇𝑘+1) + 𝛽𝑝𝑛𝑘 (𝑇𝑘+1)

)
, 𝑘 = 0, . . . , 𝐾 − 1,

𝜙𝑛
𝑘,𝑘−1 = (1 − 𝜀)

(
𝑦𝑛
𝑘−1 (𝑇𝑘 ) − 𝛽𝑝

𝑛
𝑘−1 (𝑇𝑘 )

)
+ 𝜀

(
𝑦𝑛
𝑘
(𝑇𝑘 ) − 𝛽𝑝𝑛𝑘 (𝑇𝑘 )

)
, 𝑘 = 1, . . . , 𝐾,

(14)

where𝑛 = 0, 1, 2, . . . , 𝛽 > 0, 0 ≤ 𝜀 < 1.Asmentioned in the introduction, 𝛽 is related to the corresponding
parameter in the algorithm of P. L. Lions [22], while 𝜀 can be interpreted as a classic relaxation parameter;
see [3].

Remark 2. Suppose that the iteration (13), (14) converges for 𝑛 → ∞, where 𝑦𝑘 , 𝑝𝑘 , 𝑢𝑘 , 𝑣𝑘 solve (1), (5)–(7)
on 𝑄𝑘 . Then, (13) holds without iteration indices 𝑛 and 𝑛 + 1. As a result, the iteration updates (14) and the
decoupling (13) reduce to

(1 − 𝜀) (𝑦𝑘 (𝑇𝑘+1) + 𝛽𝑝𝑘 (𝑇𝑘+1)) = (1 − 𝜀) (𝑦𝑘+1 (𝑇𝑘+1) + 𝛽𝑝𝑘+1 (𝑇𝑘+1)) ,
(1 − 𝜀) (𝑦𝑘 (𝑇𝑘 ) − 𝛽𝑝𝑘 (𝑇𝑘 )) = (1 − 𝜀) (𝑦𝑘−1 (𝑇𝑘 ) − 𝛽𝑝𝑘−1 (𝑇𝑘 )) ,

where we may divide by (1 − 𝜀) and shift the second equation by 𝑘 → 𝑘 + 1 to obtain
𝑦𝑘 (𝑇𝑘+1) + 𝛽𝑝𝑘 (𝑇𝑘+1) = 𝑦𝑘+1 (𝑇𝑘+1) + 𝛽𝑝𝑘+1 (𝑇𝑘+1),

𝑦𝑘+1 (𝑇𝑘+1) − 𝛽𝑝𝑘+1 (𝑇𝑘+1) = 𝑦𝑘 (𝑇𝑘+1) − 𝛽𝑝𝑘 (𝑇𝑘+1).
Adding the last two equations leads to

𝑦𝑘 (𝑇𝑘+1) = 𝑦𝑘+1 (𝑇𝑘+1), 𝑝𝑘 (𝑇𝑘+1) = 𝑝𝑘+1 (𝑇𝑘+1).
Thus, (12) is satis�ed and, in the limit, the continuity conditions hold. Therefore, the non-overlapping
domain decomposition (13), (14) appears reasonable.
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In view of this remark, we propose the time-domain decomposition
𝜕𝑡𝑦

𝑛
𝑘
+𝐴(𝑡, 𝑥)𝜕𝑥𝑦𝑛𝑘 = 𝑓𝑘 (𝑡, 𝑥,𝑢𝑛𝑘 , 𝑦

𝑛
𝑘
), (𝑡, 𝑥) ∈ 𝑄𝑘 ,

𝜕𝑡𝑝
𝑛
𝑘
+𝐴(𝑡, 𝑥)𝜕𝑥𝑝𝑛𝑘 = D𝑦𝐿(𝑡, 𝑥,𝑢𝑛𝑘 , 𝑦

𝑛
𝑘
) −

(
D𝑦 𝑓

> (𝑡, 𝑥,𝑢𝑛
𝑘
, 𝑦𝑛
𝑘
) + 𝜕𝑥𝐴(𝑡, 𝑥)

)
𝑝𝑛
𝑘
, (𝑡, 𝑥) ∈ 𝑄𝑘 ,

𝑦𝑛
𝑘𝑖
(𝑡, 0) =

𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑡, 𝑦𝑛𝑘 𝑗 (𝑡, 0)), 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ 𝐼𝑘 ,

|𝜆𝑖 (𝑡, 0) |𝑝𝑛𝑘𝑖 (𝑡, 0) =
𝑑∑︁

𝑗=𝑚+1
|𝜆 𝑗 (𝑡, 0) |𝜕𝑦𝑔0𝑗𝑖 (𝑡, 𝑦𝑛𝑘𝑖 (𝑡, 0))𝑝

𝑛
𝑘 𝑗
(𝑡, 0), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ 𝐼𝑘 ,

𝑦𝑛
𝑘𝑖
(𝑡, 1) =

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑡, 𝑣𝑛𝑘𝑖 (𝑡), 𝑦
𝑛
𝑘 𝑗
(𝑡, 1)), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ 𝐼𝑘 ,

|𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1) =
𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑡, 1) |𝜕𝑦𝑔1𝑗𝑖 (𝑡, 𝑣𝑛𝑘𝑖 (𝑡), 𝑦
𝑛
𝑘𝑖
(𝑡, 1))𝑝𝑛

𝑘 𝑗
(𝑡, 1)

− D𝑦𝑛
𝑘𝑖
𝐿b (𝑡, 𝑣𝑛𝑘 (𝑡), 𝑦

𝑛
𝑘
(𝑡, 1)), 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ 𝐼𝑘 .

(15)

of System (5)–(7) together with (6), (7) and (13), (14), which have to be extended by
𝑦𝑛0 (0, ·) = 𝑦0, 𝑝𝑛𝐾 (𝑇𝐾+1, ·) = 0.

Here, we use the sub-index notation 𝑦𝑛
𝑘𝑖

to denote the 𝑖th element of 𝑦𝑛
𝑘
and denote the derivatives

w.r.t. 𝑦 on the distributed level by D𝑦 , while for the boundary terms, we use 𝜕𝑦 .
For 𝑘 = 1, . . . , 𝐾 − 1, we now introduce so-called virtual controls 𝑔𝑘,𝑘−1 (𝑥) for 𝑥 ∈ (0, 1) in the sense

of [13, 15] and consider the following virtual control problem on 𝑄𝑘 :

min
𝑔𝑘,𝑘−1,𝑤𝑘 ,𝑦𝑘

𝐽𝑘 (𝑤𝑘 , 𝑦𝑘 ) +
1
2𝛽

(
‖𝑦𝑘 (𝑇𝑘+1) − 𝜙𝑘,𝑘+1‖2𝐿2 (0,1)𝑑 + ‖𝑔𝑘,𝑘−1‖2𝐿2 (0,1)𝑑

)
s.t. 𝜕𝑡𝑦𝑘 +𝐴(𝑡, 𝑥)𝜕𝑥𝑦𝑘 = 𝑓𝑘 (𝑡, 𝑥,𝑢𝑘 , 𝑦𝑘 ), (𝑡, 𝑥) ∈ 𝑄𝑘 ,

𝑦𝑘𝑖 (𝑡, 0) =
𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑡, 𝑦𝑘 𝑗 (𝑡, 0)), 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ 𝐼𝑘 ,

𝑦𝑘𝑖 (𝑡, 1) =
𝑑∑︁

𝑗=𝑚+1
𝑔1𝑖 𝑗 (𝑡, 𝑣𝑘𝑖 (𝑡), 𝑦𝑘 𝑗 (𝑡, 1)), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ 𝐼𝑘 ,

𝑦 (𝑇𝑘 , 𝑥) = 𝜙𝑘,𝑘−1 + 𝑔𝑘,𝑘−1, 𝑥 ∈ (0, 1),
𝑢 (𝑡) ∈ 𝑈 d

ad a. e. in 𝐼𝑘 ,

𝑣 (𝑡) ∈ 𝑈 b
ad a. e. in 𝐼𝑘 ,

(16)

where 𝐽𝑘 (𝑤𝑘 , 𝑦𝑘 ) is given by (2) restricted to 𝑄𝑘 , i.e.,

𝐽𝑘 (𝑤𝑘 , 𝑦𝑘 ) =
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝐿(𝑡, 𝑥,𝑢𝑘 , 𝑦𝑘 ) d𝑥 d𝑡 +

∫ 𝑇𝑘+1

𝑇𝑘

𝐿b (𝑡, 𝑣𝑘 (𝑡), 𝑦𝑘 (𝑡, 1)) d𝑡 . (17)

Theorem 2. Suppose that the controls 𝑔𝑘,𝑘−1, 𝑢𝑘 , 𝑣𝑘 , and the state 𝑦𝑘 are optimal for the virtual control
problem (16). Then, there exists a unique adjoint state 𝑝𝑘 ∈ 𝐿∞ (𝑄𝑘 )𝑑 such that 𝑦𝑘 , 𝑝𝑘 satisfy (6), (7) and
(13), (14), (15). In particular, the optimal virtual control 𝑔𝑘,𝑘−1 is given by

𝑔𝑘,𝑘−1 = 𝛽𝑝𝑘 (𝑇𝑘 ).

Proof. The proof is essentially an adaption of the proof of Theorem 1 (cf. Theorem 3.4 in [4]), where the
additional virtual control 𝑔𝑘,𝑘−1 now appears in the initial data, while the extra term

1
2𝛽

‖𝑦𝑘 (𝑇𝑘+1) − 𝜙𝑘,𝑘+1‖2𝐿2 (0,1)𝑑
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is an adaption of 𝐿𝑇 in the original cost function (2). The Lagrangian of Problem (16) is thus given by
L𝑘 (𝑤𝑘 , 𝑦𝑘 , 𝑝𝑘 )

= 𝐽𝑘 (𝑤𝑘 , 𝑦𝑘 ) +
1
2𝛽

(
‖𝑦𝑘 (𝑇𝑘+1) − 𝜙𝑘,𝑘+1‖2𝐿2 (0,1)𝑑 + ‖𝑔𝑘,𝑘−1‖2𝐿2 (0,1)𝑑

)
+

𝑑∑︁
𝑖=1

(∫ 1

0
𝑦𝑘𝑖 (𝑇𝑘+1)𝑝𝑘𝑖 (𝑡𝑘+1) d𝑥 −

∫ 1

0
(𝜙𝑘,𝑘−1 + 𝑔𝑘,𝑘−1)𝑖𝑝𝑘𝑖 (𝑇𝑘 ) d𝑥

)
+

𝑚∑︁
𝑖=1

∫ 𝑇𝑘+1

𝑇𝑘

(
|𝜆𝑖 (𝑡, 0) |𝑦𝑘𝑖 (𝑡, 0)𝑝𝑘𝑖 (𝑡, 0) −

𝑑∑︁
𝑗=𝑚+1

|𝜆 𝑗 (𝑡, 0) |𝑔1𝑗𝑖 (𝑡, 𝑣𝑘𝑖 (𝑡), 𝑦𝑘𝑖 (𝑡, 0))𝑝𝑘 𝑗 (𝑡, 0)
)
d𝑡

+
𝑑∑︁

𝑖=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

(
|𝜆𝑖 (𝑡, 1) |𝑦𝑘𝑖 (𝑡, 1)𝑝𝑘𝑖 (𝑡, 1) −

𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑡, 1) |𝑔0𝑗𝑖 (𝑡, 𝑦𝑘𝑖 (𝑡, 1))𝑝𝑘 𝑗 (𝑡, 1)
)
d𝑡

−
𝑑∑︁
𝑖=1

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝑦𝑘𝑖 (𝜕𝑡𝑝𝑘𝑖 + 𝜕𝑥 (𝜆𝑖 (𝑡, 𝑥)𝑝𝑘𝑖 )) + 𝑓𝑘𝑖 (𝑡, 𝑥,𝑢𝑘 , 𝑦𝑘 )𝑝𝑘𝑖 ) d𝑥 d𝑡 .

Taking the corresponding variations of L𝑘 w.r.t. 𝑦𝑘 , 𝑢𝑘 , 𝑣𝑘 , and 𝑔𝑘,𝑘−1, we arrive at the conclusion. �

Remark 3. The virtual control problems for 𝑘 = 1, . . . , 𝐾 − 1 have to be complemented by a corresponding
problem for 𝑘 = 0 and 𝑘 = 𝐾 , respectively. Clearly, for 𝑘 = 0, no additional virtual control is needed as

𝑦0 (𝑇0) = 𝑦0 (0) = 𝑦 (0) = 𝑦0
is given data, while at 𝑘 = 𝐾 ,

𝑝𝐾 (𝑇𝐾+1) = 𝑝𝐾 (𝑇 ) = 𝑝 (𝑇 )
is prescribed and, therefore, no penalty term for the upper transmission condition is needed. We remark
that the fact that the iteration procedure can be reformulated as an iteration involving parallel virtual
optimal control problems on the sub-intervals is important for applications, where one wants to resort to
solvers for this kind of standard tracking-type optimal control problems. We will dwell on this potential in a
forthcoming publication in which the numerical realization is at the focus.

Remark 4. As for the existence of optimal controls for problem (3), we reiterate the remark from the
introduction that, in general, no such result seems to be published yet. However, for distributed controls
where the spatial part is kept �xed, a rather general existence result is given in [27], where the method
of characteristics is used. In case of time-independent coe�cients, one can use semi-group theory to
achieve well-posedness in a Sobolev-space setting for the semilinear problem such that the cost function
is sequentially weakly lower semi-continuous w.r.t. sequences of pairs (𝑢𝑚, 𝑦𝑚). In the given case of time-
varying coe�cients, one may use the Kato framework of evolution operators; see, e.g., [12]. For the case
of quasilinear equations, which we do not study here, we refer to [2]. We also note that the theory of
semi-global classical solutions by Tatsien Li, in particular its extension to BV-solutions, might be used; see,
e.g., [19, 20]. In this article, we do not embark on this issue, and refer instead to an upcoming publication.

4. Convergence for the Case of Unconstrained Controls

In order to approach a convergence proof for the iterative time-domain decomposition (13)–(15), we
assume, for the sake of simplicity, that the controls are unrestricted and appear linearly in (1). In the
general nonlinear case, as in [4], one has to formulate appropriate conditions on the nonlinearities that
guarantee coercivity w.r.t. controls. We also refrain from taking into account control-input operators
that map the corresponding control spaces into the state space, but rather accept that where controls
are present in the state equation or at the boundary, they have full access to state variables. Again, the
general case can be handled as well but results in tedious details that are not of interest in the �rst place.
The same remark applies to the terms in the cost function. We thus stick to the tracking-type case as in
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Example 1. This means we consider
𝜕𝑡𝑦𝑖 + 𝜆𝑖 (𝑡, 𝑥)𝜕𝑥𝑦𝑖 = 𝑓𝑖 (𝑡, 𝑥,𝑦) + 𝑢𝑖 , 𝑖 = 1, . . . , 𝑑, (𝑡, 𝑥) ∈ 𝑄, (18a)

𝑦𝑖 (𝑡, 0) =
𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑡)𝑦 𝑗 (𝑡, 0), 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ (0,𝑇 ), (18b)

𝑦𝑖 (𝑡, 1) = 𝑣𝑖 (𝑡) +
𝑑∑︁

𝑗=𝑚+1
𝑔1𝑖 𝑗 (𝑡, 𝑦 𝑗 (𝑡, 1)), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ (0,𝑇 ), (18c)

𝑦𝑖 (0, 𝑥) = 𝑦0𝑖 (𝑥), 𝑖 = 1, . . . , 𝑑, 𝑥 ∈ (0, 1), (18d)
together with the cost function

𝐽 (𝑤,𝑦) := 𝜅

2

∫ 𝑇

0

∫ 1

0
‖𝑦 − 𝑦𝑑 ‖2R𝑑 d𝑥 d𝑡 +

𝜌

2

∫ 𝑇

0
‖𝑦 (𝑡, 1) − 𝑦𝑑 (𝑡)‖2R𝑑 d𝑡

+ 𝜈
2

∫ 𝑇

0

∫ 1

0
‖𝑢‖2

R𝑑
d𝑥 d𝑡 + 𝜇

2

∫ 𝑇

0
‖𝑣 ‖2R𝑚 d𝑡 .

(19)

The control problem considered from now on thus reads
min
𝑤,𝑦

𝐽 (𝑤,𝑦) s.t. (𝑤,𝑦) satis�es (18). (20)

We go back to the decomposed optimality system (15), which reads
𝜕𝑡𝑦

𝑛
𝑘
+𝐴𝜕𝑥𝑦𝑛𝑘 = 𝑓𝑘 (𝑡, 𝑦𝑘 ) + 𝑢𝑛𝑘 , (𝑡, 𝑥) ∈ 𝑄𝑘 , (21a)

𝜕𝑡𝑝
𝑛
𝑘
+𝐴𝜕𝑥𝑝𝑛𝑘 = 𝜅 (𝑦𝑛

𝑘
− 𝑦𝑑 ) − (D𝑦 𝑓

>
𝑘

+ 𝜕𝑥𝐴)𝑝𝑛𝑘 , (𝑡, 𝑥) ∈ 𝑄𝑘 , (21b)

𝑦𝑛
𝑘𝑖
(𝑡, 0) =

∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑡)𝑦𝑛𝑘 𝑗 (𝑡, 0), 𝑖 =𝑚 + 1, . . . , 𝑡 ∈ 𝑇𝑘 , (21c)

𝑦𝑛
𝑘𝑖
(𝑡, 1) =

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑡, 𝑦𝑛𝑘 𝑗 (𝑡, 1)) + 𝑣
𝑛
𝑘𝑖
(𝑡), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ 𝐼𝑘 , (21d)

|𝜆𝑖 (𝑡, 0) |𝑝𝑛𝑘𝑖 (𝑡, 0) =
𝑑∑︁

𝑗=𝑚+1
𝑔0𝑗𝑖 (𝑡) |𝜆 𝑗 (𝑡, 0) |𝑝𝑛𝑘 𝑗 (𝑡, 0), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ 𝐼𝑘 , (21e)

|𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1) =
𝑚∑︁
𝑗=1

𝜕𝑦 (𝑔1𝑗𝑖 (𝑡, 𝑦𝑛𝑘𝑖 (𝑡, 1)) |𝜆 𝑗 (𝑡, 1) |𝑝
𝑛
𝑘 𝑗
(𝑡, 1) (21f)

− 𝜌 (𝑦𝑛
𝑘𝑖
(𝑡, 1) − 𝑦𝑑

𝑘𝑖
(𝑡)), 𝑖 =𝑚 + 1, . . . , 𝑡 ∈ 𝑇𝑘 , (21g)

and
𝑦𝑛
𝑘
(𝑇𝑘+1) + 𝛽𝑝𝑛𝑘 (𝑇𝑘+1) = 𝜙

𝑛−1
𝑘,𝑘+1, 𝑘 = 0, . . . , 𝐾 − 1,

𝑦𝑛
𝑘
(𝑇𝑘 ) − 𝛽𝑝𝑛𝑘 (𝑇𝑘 ) = 𝜙

𝑛−1
𝑘,𝑘−1, 𝑘 = 1, . . . , 𝐾,

(22)

together with (14) for 𝑛 − 1 as well as
𝜈𝑢𝑛
𝑘
= 𝑝𝑛

𝑘
, 𝜇𝑣𝑛

𝑘𝑖
= |𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1). (23)

We introduce the errors
𝑦𝑛
𝑘
:= 𝑦𝑛

𝑘
− 𝑦𝑘 , 𝑝𝑛

𝑘
:= 𝑝𝑛

𝑘
− 𝑝𝑘 , 𝑢̃𝑛

𝑘
:= 𝑢𝑛

𝑘
− 𝑢𝑘 , 𝑣𝑛

𝑘
:= 𝑣𝑛

𝑘
− 𝑣𝑘 .
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These errors solve the semilinear problems for each 𝑘 = 1, . . . , 𝐾 − 1, i.e.,
𝜕𝑡𝑦

𝑛
𝑘
+𝐴𝜕𝑥𝑦𝑛𝑘 = 𝑓𝑘 (𝑦𝑛𝑘 ) − 𝑓𝑘 (𝑦𝑘 ) + 𝑢̃

𝑛
𝑘
, (𝑡, 𝑥) ∈ 𝑄𝑘 , (24a)

𝜕𝑡𝑝
𝑛
𝑘
+ 𝜕𝑥 (𝐴𝑝𝑛𝑘 ) = 𝜅𝑦

𝑛
𝑘
− (D𝑦 𝑓 (𝑦𝑛𝑘 )

>)𝑝𝑛
𝑘
− (D𝑦 𝑓𝑘 (𝑦𝑛𝑘 )

> − D𝑦 𝑓𝑘 (𝑦𝑘 )>)𝑝𝑘 , (𝑡, 𝑥) ∈ 𝑄𝑘 , (24b)

𝑦𝑛
𝑘𝑖
(𝑡, 0) =

𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑡)𝑦𝑛𝑘 𝑗 (𝑡, 0), 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ 𝐼𝑘 , (24c)

𝑦𝑛
𝑘𝑖
(𝑡, 1) =

𝑑∑︁
𝑗=𝑚+1

(𝑔1𝑖 𝑗 (𝑡, 𝑦𝑛𝑘 𝑗 (𝑡, 1) − 𝑔
1
𝑖 𝑗 (𝑡, 𝑦𝑘 𝑗 (𝑡, 1)) + 𝑣𝑛𝑘𝑖 (𝑡), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ 𝐼𝑘 , (24d)

|𝜆𝑖 (𝑡, 0) |𝑝𝑛𝑘𝑖 (𝑡, 0) =
𝑑∑︁

𝑗=𝑚+1
𝑔0𝑗𝑖 (𝑡) |𝜆 𝑗 (𝑡, 0) |𝑝𝑛𝑘 𝑗 (𝑡, 0), 𝑖 = 1, . . . ,𝑚, 𝑡 ∈ 𝐼𝑘 , (24e)

|𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1) =
𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑡, 1) |
(
𝜕𝑦𝑔

1
𝑗𝑖 (𝑡, 𝑦𝑛𝑘𝑖 (𝑡, 1))𝑝

𝑛
𝑘 𝑗
(𝑡, 1) − 𝜕𝑦𝑔1𝑗𝑖 (𝑡, 𝑦𝑘𝑖 (𝑡, 1))𝑝𝑘 𝑗 (𝑡, 1))) (24f)

− 𝜌𝑦𝑛
𝑘𝑖
(𝑡, 1)

)
, 𝑖 =𝑚 + 1, . . . , 𝑑, 𝑡 ∈ 𝐼𝑘 , (24g)

and
𝑦𝑛
𝑘
(𝑇𝑘+1) + 𝛽𝑝𝑛𝑘 (𝑇𝑘+1) = 𝜙

𝑛−1
𝑘,𝑘+1, 𝑘 = 0, . . . , 𝐾 − 1,

𝑦𝑛
𝑘
(𝑇𝑘 ) − 𝛽𝑝𝑛𝑘 (𝑇𝑘 ) = 𝜙

𝑛−1
𝑘,𝑘−1, 𝑘 = 1, . . . , 𝐾,

(25)

together with (14) for 𝑛 − 1 as well as
𝜈𝑢̃𝑛
𝑘
= 𝑝𝑛

𝑘
, 𝜇𝑣𝑛

𝑘𝑖
= |𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1). (26)

In order to turn (24) into a semilinear problem just in 𝑦𝑛
𝑘
, 𝑝𝑛
𝑘
, we may rewrite

𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) = 𝑓𝑘 (𝑡, 𝑦
𝑛
𝑘
+ 𝑦𝑘 ), D𝑦 𝑓𝑘 (𝑦𝑛𝑘 ) = D𝑦 𝑓𝑘 (𝑦𝑛𝑘 + 𝑦𝑘 ).

Notice that the decomposed optimality system (24), (25) for the errors is again the optimality system w.r.t.
a corresponding virtual control problem in analogy to (16). This implies that the iteration is well-de�ned,
according to Theorem 1 and 2. The following arguments follow the spirit of [15]. We introduce

𝑋 :=
( (
𝜙𝑘,𝑘+1

)𝐾−1
𝑘=0 ,

(
𝜙𝑘,𝑘−1

)𝐾
𝑘=1

)
∈ X = 𝐿2 (0, 1)2𝐾𝑑 ,

‖𝑋 ‖2X =

𝐾−1∑︁
𝑘=0

‖𝜙𝑘,𝑘+1‖2𝐿2 (0,1)𝑑 +
𝐾∑︁
𝑘=1

‖𝜙𝑘,𝑘−1‖2𝐿2 (0,1)𝑑 .
(27)

For given iteration histories 𝜙𝑘,𝑘+1 and 𝜙𝑘,𝑘−1, i.e., for given 𝑋 , we consider the unique solution 𝑦𝑛𝑘 , 𝑝
𝑛
𝑘
of

(24), (25) and then de�ne 𝑇 : X → X by

𝑇𝑋 :=
(
(𝑦𝑘+1 (𝑇𝑘+1) + 𝛽𝑝𝑘+1 (𝑇𝑘+1))𝐾−1𝑘=0 , (𝑦𝑘−1 (𝑇𝑘 ) − 𝛽𝑝𝑘−1 (𝑇𝑘 ))

𝐾
𝑘=1

)
. (28)

As the evaluation of the states and adjoint states involves a nonlinear process, the mapping𝑇 is nonlinear,
even though the transmission conditions are linear. Thus, formally, in order to estimate the errors, we
need to write 𝑇 (𝑋𝑛) −𝑇 (𝑋 ), but when we understand that in the arguments below we always consider
the solutions of the semilinear problem, no ambiguities appear if we write 𝑇 (𝑋𝑛 − 𝑋 ) instead. Keeping
this in mind, we replace in the sequel 𝑋𝑛 −𝑋 by 𝑋̃𝑛 and in fact just by 𝑋𝑛 . The key for our convergence
proof is the �xed-point iteration

𝑋𝑛+1 = (1 − 𝜀)𝑇𝑋𝑛 + 𝜀𝑋𝑛, 𝜀 ∈ [0, 1). (29)
Thus, we have

𝑋𝑛 =

( (
𝑦𝑛
𝑘
(𝑇𝑘+1) + 𝛽𝑝𝑛𝑘 (𝑇𝑘+1)

)𝐾−1
𝑘=0 ,

(
𝑦𝑛
𝑘
(𝑇𝑘 ) − 𝛽𝑝𝑛𝑘 (𝑇𝑘 )

)𝐾
𝑘=1

)
,

𝑇𝑋𝑛 =

( (
𝑦𝑛
𝑘+1 (𝑇𝑘+1) + 𝛽𝑝

𝑛
𝑘+1 (𝑇𝑘+1)

)𝐾−1
𝑘=0 ,

(
𝑦𝑛
𝑘−1 (𝑇𝑘 ) − 𝛽𝑝

𝑛
𝑘−1 (𝑇𝑘 )

)𝐾
𝑘=1

) (30)
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at iteration 𝑛. Moreover, we de�ne the energies

E𝑛
𝑘
(𝑡) := ‖𝑦𝑛

𝑘
(𝑡)‖2

𝐿2 (0,1)𝑑 + 𝛽2‖𝑝𝑛
𝑘
‖2
𝐿2 (0,1)𝑑 , E𝑛 :=

𝐾−1∑︁
𝑘=0

E𝑛
𝑘
(𝑇𝑘+1) + E𝑛

𝑘+1 (𝑇𝑘+1). (31)

Now, abbreviating the norm indices by 𝐿2 in place of 𝐿2 (0, 1)𝑑 , we have that

‖𝑋𝑛 ‖2X =

𝐾−1∑︁
𝑘=0

‖𝑦𝑛
𝑘
(𝑇𝑘+1) + 𝛽𝑝𝑛𝑘 (𝑇𝑘+1)‖

2
𝐿2

+
𝐾∑︁
𝑘=1

‖𝑦𝑛
𝑘
(𝑇𝑘 ) − 𝛽𝑝𝑛𝑘 (𝑇𝑘 )‖

2
𝐿2

=

𝐾−1∑︁
𝑘=0

(
‖𝑦𝑛
𝑘
(𝑇𝑘+1)‖2𝐿2 + 2𝛽𝑦𝑛

𝑘
(𝑇𝑘+1)𝑝𝑛𝑘 (𝑇𝑘+1) + 𝛽

2‖𝑝𝑛
𝑘
(𝑇𝑘+1)‖2𝐿2

)
+

𝐾∑︁
𝑘=1

(
‖𝑦𝑛
𝑘
(𝑇𝑘 )‖2𝐿2 − 2𝛽𝑦𝑛

𝑘
(𝑇𝑘 )𝑝𝑛𝑘 (𝑇𝑘 ) + 𝛽

2‖𝑝𝑛
𝑘
(𝑇𝑘 )‖2𝐿2

)
= E𝑛 + 2𝛽

(
𝐾−1∑︁
𝑘=0

𝑦𝑛
𝑘
(𝑇𝑘+1)𝑝𝑛𝑘 (𝑇𝑘+1) −

𝐾∑︁
𝑘=1

𝑦𝑛
𝑘
(𝑇𝑘 )𝑝𝑛𝑘 (𝑇𝑘 )

)
(32)

holds. We now multiply (24a) by 𝑝𝑛
𝑘
and integration by parts then leads to

0 =
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

(
𝜕𝑡𝑦

𝑛
𝑘
+𝐴𝜕𝑥𝑦𝑛𝑘 − (𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) − 𝑓𝑘 (𝑡, 𝑦𝑘 )) − 𝑢̃

𝑛
𝑘

)
𝑝𝑛
𝑘
d𝑥 d𝑡

=

∫ 1

0

(
𝑦𝑛
𝑘
(𝑇𝑘+1)𝑝𝑛𝑘 (𝑇𝑘+1) − 𝑦

𝑛
𝑘
(𝑇𝑘 )𝑝𝑛𝑘 (𝑇𝑘 )

)
d𝑥

+
∫ 𝑇𝑘+1

𝑇𝑘

[𝐴𝑦𝑛
𝑘
𝑝𝑛
𝑘
] |1𝑥=0 d𝑡 −

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑢̃𝑛
𝑘
𝑝𝑛
𝑘
d𝑥 d𝑡

−
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑦𝑛
𝑘

(
𝜕𝑡𝑝

𝑛
𝑘
+ 𝜕𝑥𝐴𝑝𝑛𝑘

)
d𝑥 d𝑡 −

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) − 𝑓𝑘 (𝑡, 𝑦𝑘 ))𝑝

𝑛
𝑘
d𝑥 d𝑡

=

∫ 1

0

(
𝑦𝑛
𝑘
(𝑇𝑘+1)𝑝𝑛𝑘 (𝑇𝑘+1) − 𝑦

𝑛
𝑘
(𝑇𝑘 )𝑝𝑛𝑘 (𝑇𝑘 )

)
d𝑥

−
𝑚∑︁
𝑖=1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |2
1
𝜇
𝑝𝑛
𝑘𝑖
(𝑡, 1)2 d𝑡 −

𝑑∑︁
𝑖=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

𝜌𝑦𝑛
𝑘𝑖
(𝑡, 1)2 d𝑡

− 1
𝜈

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑝𝑛
𝑘
𝑝𝑛
𝑘
d𝑥 d𝑡 − 𝜅

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑦𝑛
𝑘
𝑦𝑛
𝑘
d𝑥 d𝑡

+
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑦𝑛
𝑘

( (
D𝑦 𝑓𝑘 (𝑡, 𝑦𝑛𝑘 )

> + 𝜕𝑥𝐴
)
𝑝𝑛
𝑘
+

(
D𝑦 𝑓𝑘 (𝑡, 𝑦𝑛𝑘 )

> − D𝑦 𝑓𝑘 (𝑡, 𝑦𝑘 )>
)
𝑝𝑘

)
− (𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) − 𝑓𝑘 (𝑡, 𝑦𝑘 ))𝑝

𝑛
𝑘
d𝑥 d𝑡

+
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |
(
𝑦𝑛
𝑘 𝑗
(𝑡, 1)

(
𝜕𝑦𝑔

1
𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1))𝑝

𝑛
𝑘𝑖
(𝑡, 1) − 𝜕𝑦𝑔1𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))𝑝𝑘𝑖 (𝑡, 1)

)
− 𝑝𝑛

𝑘𝑖
(𝑡, 1)

(
(𝑔1𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1)) −𝑔

1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1)

))
d𝑡 .

(33)



TIME-DOMAIN DECOMPOSITION FOR OCPS GOVERNED BY SEMILINEAR HYPERBOLIC SYSTEMS 13

Next, we use (33), 𝑦𝑛0 (𝑇0) = 0, and 𝑝𝑛
𝐾
(𝑇𝐾+1) = 𝑝𝑛𝐾 (𝑇 ) = 0 to obtain

‖𝑋𝑛 ‖2 = E𝑛 + 2𝛽
𝐾∑︁
𝑘=0

(∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝜅‖𝑦𝑛

𝑘
‖2
R𝑑

+ 1
𝜈
‖𝑝𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑡

+ 1
𝜇

∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) |2𝑝𝑛𝑘𝑖 (𝑡, 1)
2 d𝑡 + 𝜌

𝑑∑︁
𝑖=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝑦𝑘𝑖 (𝑡, 1) | d𝑡

+
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

(
𝑓𝑘 (𝑦𝑛𝑘 ) − 𝑓𝑘 (𝑦𝑘 ) − D𝑦 𝑓 (𝑦𝑛𝑘 )𝑦

𝑛
𝑘

)
𝑝𝑛
𝑘

−
(
D𝑦 𝑓𝑘 (𝑦𝑛𝑘 ) − D𝑦 𝑓𝑘 (𝑦𝑘 )

)
𝑦𝑛
𝑘
𝑝𝑘 d𝑥 d𝑡 −

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑦𝑛
𝑘
𝜕𝑥𝐴 d𝑥𝑝𝑛

𝑘
d𝑡

+
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |
(
𝑦𝑛
𝑘 𝑗
(𝑡, 1)

(
𝜕𝑦𝑔

1
𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1)) − 𝜕𝑦𝑔

1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))

)
𝑝𝑛
𝑘𝑖
(𝑡, 1)

)
d𝑡

+
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |𝑦𝑛𝑘 𝑗 (𝑡, 1) (𝜕𝑦𝑔
1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))𝑝𝑛𝑘𝑖 (𝑡, 1) d𝑡

−
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1)
(
𝑔1𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1)) − 𝑔

1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))

)
d𝑡

)
=: E𝑛 + F 𝑛 .

(34)

Similarly, we have
‖𝑇𝑋𝑛 ‖2X = E𝑛 − F 𝑛 . (35)

Proposition 1 (Lemma 2 in [15]). For any 𝜀 ∈ [0, 1) and 𝑛 ∈ N we have
(i) E𝑛+1 + F 𝑛+1 ≤ E𝑛 − (1 − 2𝜀)F 𝑛 ,
(ii) E𝑛+1 + ∑𝑛+1

𝑙=1 𝑐𝑙 (𝜀)F 𝑙 ≤ E1 with 𝑐1 (𝜀) = 1 − 2𝜀, 𝑐𝑛+1 (𝜀) = 1, and 𝑐𝑙 (𝜀) = 2(1 − 𝜀) for 𝑙 = 2, . . . , 𝑛.

Proof. As the proof is on the level of relations between E𝑛+1, F 𝑛+1, E𝑛, F 𝑛 only, we refer to [15]. �

In order to utilize the crucial property (ii) of Proposition 1, we need to establish a lower bound on F 𝑛 ,
where F 𝑛 is de�ned in (34). To this end, we need to compensate the nonlinear terms. In order to simplify
the presentation below, we simply assume uniform norm bounds on the distributed and the boundary
nonlinearity, respectively.

Assumption 1. There exist bounds 𝐿𝑓 , 𝐿𝑔 ≥ 0 such that for 𝑡 ∈ [𝑇𝑘 ,𝑇𝑘+1], 𝑘 = 0, . . . , 𝐾 − 1, we have
(i) ‖ 𝑓𝑘 (𝑡, ·)‖𝑑𝐿2 , ‖D𝑦 𝑓𝑘 (𝑡, ·)‖𝑑𝐿2 ≤ 𝐿𝑓 , ‖𝑔1 (𝑡, ·)‖, ‖𝜕𝑦𝑔1 (𝑡, ·‖ ≤ 𝐿𝑔,
(ii) and it holds

‖(D𝑦 𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) − D𝑦 𝑓𝑘 (𝑡, 𝑦𝑘 ))𝑦𝑛𝑘 ‖ ≤ 𝐿𝑓 ‖𝑦𝑛𝑘 (𝑡)‖𝐿2 (0,1)𝑑 ,
‖ 𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) − 𝑓𝑘 (𝑡, 𝑦𝑘 ) − D𝑦 𝑓𝑘 (𝑡, 𝑦𝑛𝑘 )𝑦

𝑛
𝑘
‖ ≤ 𝐿𝑓 ‖𝑦𝑛𝑘 (𝑡)‖𝐿2 (0,1)𝑑 ,

| (𝜕𝑦𝑔1𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1) − 𝜕𝑦𝑔
1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))) | ≤ 𝐿𝑔 |𝑦𝑛𝑘 𝑗 (𝑡, 1) |,

| (𝑔1𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1)) − 𝑔
1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1)) | ≤ 𝐿𝑔 |𝑦𝑛𝑘 𝑗 (𝑡, 1) |.

Remark 5. If we do not assume the boundedness of the derivatives of the nonlinear terms, we may use
the “Stampacchia-trick” in the sense that we �rst extend the corresponding derivatives outside a given ball
by constants and then show that for small enough data the solutions stay small and, hence, the extensions
are not active. This procedure, however, would substantially extend the arguments and the length of this
article as error estimates for the state and its traces would be in order. For the general concept however,
see [5]. As this is very closely related to the issue of existence of optimal controls, we defer the analysis to a
forthcoming publication. As of now, we therefore leave it to the reader to assess the validity of the remark.
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We rewrite the the last integrals and use Assumption 1 to obtain
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |𝑦𝑛𝑘 𝑗 (𝑡, 1)
(
𝜕𝑦𝑔

1
𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1))𝑝

𝑛
𝑘𝑖
− 𝜕𝑦𝑔1𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))𝑝𝑘𝑖 (𝑡, 1)

)
d𝑡

−
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1)
(
𝑔1𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1)) − 𝑔

1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1)

)
d𝑡

=

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |
(
𝑦𝑛
𝑘 𝑗
(𝑡, 1)

(
𝜕𝑦𝑔

1
𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1)) − 𝜕𝑦𝑔

1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))

)
𝑝𝑘𝑖 (𝑡, 1)

)
d𝑡

+
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |𝑦𝑛𝑘 𝑗 (𝑡, 1) (𝜕𝑦𝑔
1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1))𝑝𝑛𝑘𝑖 (𝑡, 1) d𝑡

−
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1)
(
𝑔1𝑖 𝑗 (𝑦𝑛𝑘 𝑗 (𝑡, 1)) − 𝑔

1
𝑖 𝑗 (𝑦𝑘 𝑗 (𝑡, 1)

)
d𝑡

≤ 𝐿𝑔 (𝑑 −𝑚)
∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) | |𝑝𝑛𝑘𝑖 (𝑡, 1) |
2 d𝑡 + 𝐿𝑔 (𝜇𝑀 +𝑚‖𝜆‖𝐿∞ (0,𝑇 )𝑑 )

∫ 𝑇𝑘+1

𝑇𝑘

𝑑∑︁
𝑗=𝑚+1

|𝑦𝑛
𝑘 𝑗
(𝑡, 1) |2 d𝑡

≤ 𝐿𝑔𝛾𝑔

∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) | |𝑝𝑛𝑘𝑖 (𝑡, 1) |
2 d𝑡 + 𝐿𝑔𝛼𝑔

∫ 𝑇𝑘+1

𝑇𝑘

𝑑∑︁
𝑗=𝑚+1

|𝑦𝑛
𝑘 𝑗
(𝑡, 1) |2 d𝑡,

(36)

where, 𝛾𝑔 = 𝑑 −𝑚,𝑀 > 0, is such that the original boundary controls 𝑣𝑖 (𝑡) with 𝜇𝑣𝑖 (𝑡) = |𝜆𝑖 (𝑡, 1) |𝑝𝑖 (𝑡, 1)
satisfy

𝑚∑︁
𝑖=1

|𝑣𝑖 (𝑡) | ≤ 𝑀 and 𝛼𝑔 = 𝜇𝑀 + ‖𝜆‖𝐿∞ (0,𝑇 )𝑑 .

Notice that due to the 𝐿∞-existence result in [4] w.r.t. time and space, such a number exists. We also need
to estimate the contribution of the distributed nonlinearities (34), which corresponds to the Lipschitz
constants 𝐿𝑓 . We have

𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

( (
𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) − 𝑓𝑘 (𝑡, 𝑦𝑘 ) − D𝑦 𝑓𝑘 (𝑡, 𝑦𝑛𝑘 )𝑦

𝑛
𝑘

)
𝑝𝑛
𝑘
−

(
D𝑦 𝑓𝑘 (𝑡, 𝑦𝑛𝑘 ) − D𝑦 𝑓𝑘 (𝑡, 𝑦𝑘 )

)
𝑦𝑛
𝑘
𝑝𝑘

)
d𝑥 d𝑡

≤
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

(
𝐿𝑓 𝛼 𝑓 ‖𝑦𝑛𝑘 ‖

2
R𝑑

+ 𝐿𝑓 𝛾𝑓 ‖𝑝𝑛𝑘 ‖
2
R𝑑

)
d𝑥 d𝑡,

(37)
with 𝛼 𝑓 = 1

2 + ‖𝑝 ‖∞ and 𝛾𝑓 = 3
2 . As in the case of nonlinear boundary conditions, with 𝜈𝑢 = 𝑝 , and

the 𝐿∞-existence result of [4], ‖𝑝 ‖∞ ≤ 𝑀 holds. We also recall the estimate (36) for the boundary
contributions, which used together with (37) in (34) leads to

F 𝑙 ≥ 2𝛽
𝐾∑︁
𝑘=0

(∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

(
(𝜅 − 𝐿𝑓 𝛼 𝑓 )‖𝑦𝑙𝑘 ‖

2 +
(
1
𝜈
− 𝐿𝑓 𝛾𝑓

)
‖𝑝𝑙
𝑘
‖2

)
d𝑥 d𝑡

+
(
1
𝜇
− 𝐿𝑔𝛾𝑔

) ∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) |2𝑝𝑙𝑘𝑖 (𝑡, 1)
2 d𝑡 + (𝜌 − 𝐿𝑔𝛼𝑔)

𝑑∑︁
𝑖=𝑚+1

∫ 𝑇𝑘+1

𝑇𝑘

|𝑦2
𝑘𝑖
(𝑡, 1) | d𝑡

)
.

Assume now that the parameters 𝜅, 𝜌 are chosen su�ciently large and 𝜇, 𝜈 su�ciently small such that
𝛿1 := 𝜅 − 𝐿𝑓 𝛼 𝑓 > 0, 𝛿2 := 1

𝜈
− 𝐿𝑓 𝛾𝑓 > 0, 𝛿3 := 1

𝜇
− 𝐿𝑔𝛾𝑔 > 0, and 𝛿4 := 𝜌 − 𝐿𝑔𝛼𝑔 > 0 holds, and/or 𝐿𝑓 , 𝐿𝑔

are su�ciently small. Then, Proposition 1 (ii) yields

E𝑛+1 +
𝑛+1∑︁
𝑙=1

𝑐𝑙 (𝜀)
𝐾∑︁
𝑘=0

(∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝛿1‖𝑦𝑙𝑘 ‖

2
R𝑑

+ 𝛿2‖𝑝𝑙𝑘 ‖
2
R𝑑

d𝑥 d𝑡

+ 𝛿3
∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) |2 |𝑝𝑙𝑘𝑖 (𝑡, 1) |
2 d𝑡 +

∫ 𝑇𝑘+1

𝑇𝑘

𝑑∑︁
𝑖=𝑚+1

𝛿4 |𝑦𝑙𝑘𝑖 (𝑡, 1) |
2 d𝑡

)
≤ E1, 𝑛 = 1, 2, . . . ,

(38)
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and, in turn, (38) provides
E𝑛 is bounded,
𝑦𝑙
𝑘
→ 0, 𝑝𝑙

𝑘
→ 0 in 𝐿2

(
𝐼𝑘 ;𝐿2 (0, 1)

)
,

𝑝𝑙
𝑘𝑖
(𝑡, 1) → 0, 𝑖 = 1, . . . ,𝑚, 𝑦𝑙

𝑘𝑖
(𝑡, 1) → 0, 𝑖 =𝑚 + 1, . . . , 𝑑 in 𝐿2 (𝐼𝑘 ),

(39)

as 𝑙 → ∞ and for 𝜀 ∈ [0, 1). We see from (39) that 𝑢̃𝑛
𝑘
→ 0 and 𝑣𝑛

𝑘
→ 0 in 𝐿2

(
0,𝑇 ;𝐿2 (0, 1)

)𝑑 or 𝐿2 (0,𝑇 )𝑚 ,
respectively. Due to the continuity of the nonlinear functions 𝑓𝑘 and 𝑔1, we obtain vanishing right-hand
sides in the state and adjoint equations and homogeneous boundary conditions in the limit on the entire
sequence. Due to the uniqueness of the solution of the optimality system, the initial and �nal data
𝑦𝑛
𝑘
(𝑇𝑘 ), 𝑦𝑛𝑘 (𝑇𝑘+1), 𝑝

𝑛
𝑘
(𝑇𝑘 ), and 𝑝𝑛𝑘 (𝑇𝑘+1) converge to zero in 𝐿2 (0, 1)𝑑 . As the functions 𝑦𝑘 (·) and 𝑝𝑘 (·)

satisfy Conditions (12), in the limit, the transmission conditions hold. This is true even for 𝜀 = 0.

Theorem 3. The iteration (21)–(23) with 𝜀 ∈ [0, 1) converges to (1), (5), (26) in the sense that the solutions
(𝑦𝑛
𝑘
, 𝑝𝑛
𝑘
) of (21)–(23) strongly converge in 𝐿2

(
0,𝑇 ;𝐿2 (0, 1)

)
to (𝑦𝑘 , 𝑝𝑘 ), which is the solution of (16), (17)

for 𝑘 = 0, . . . , 𝐾 .

Remark 6. For 𝜀 ∈ (0, 1), we can derive the convergence of the initial and �nal data for 𝑦𝑛
𝑘
, 𝑝𝑛
𝑘
at 𝑇𝑘 , 𝑇𝑘+1

directly. To this end, we consider the identity

𝑇𝑋𝑛𝑋𝑛 =

𝐾−1∑︁
𝑘=0

(
𝑦𝑛
𝑘
(𝑇𝑘+1) + 𝛽𝑝𝑛𝑘 (𝑇𝑘+1)

) (
𝑦𝑛
𝑘+1 (𝑇𝑘+1) + 𝛽𝑝𝑘+1 (𝑇𝑘+1)

)
+

𝐾∑︁
𝑘=1

(
𝑦𝑛
𝑘
(𝑇𝑘 ) − 𝛽𝑝𝑛𝑘 (𝑇𝑘 )

) (
𝑦𝑛
𝑘−1 (𝑇𝑘 ) − 𝛽𝑝

𝑛
𝑘−1 (𝑇𝑘 )

)
= 2

𝐾−1∑︁
𝑘=0

(
𝑦𝑛
𝑘
(𝑇𝑘+1)𝑦𝑛𝑘+1 (𝑇𝑘+1) + 𝛽

2𝑝𝑛
𝑘
(𝑇𝑘+1)𝑝𝑛𝑘+1 (𝑇𝑘+1)

)
.

Thus,
1
2
‖𝑇𝑋𝑛 − 𝑋𝑛 ‖2X = E𝑛 −𝑇𝑋𝑛𝑋𝑛

=

𝐾−1∑︁
𝑘=0

(
‖𝑦𝑛
𝑘
(𝑇𝑘+1) − 𝑦𝑛𝑘+1 (𝑇𝑘+1)‖

2
𝐿2

+ 𝛽2‖𝑝𝑛
𝑘
(𝑇𝑘+1) − 𝑝𝑛𝑘+1 (𝑇𝑘+1)‖

2
𝐿2

)
.

(40)

On the other hand, with 𝑇𝜖 := 𝜖𝐼 + (1 − 𝜖)𝑇 , we obtain that

‖𝑇𝑛𝜀 𝑋 1 −𝑇𝑛−1𝜀 𝑋 1‖X = (1 − 𝜀)‖𝑇𝑋𝑛 − 𝑋𝑛 ‖X → 0
holds according to Schaefer’s �xed-point theorem [26] for 𝜀 ∈ (0, 1). This directly shows the desired
convergence.

Remark 7. It is apparent from the proof of Theorem 3 that the convergence of the iterative process (i.e., the
�xed-point iteration) and its rate depend on a proper choice of the parameters 𝜅, 𝜇, 𝜈, 𝜌 determining the cost
function and 𝛽, 𝜀 which are de�ned in the iteration procedure, as well as on the bounds in Assumption 1.
In order to get a general idea of the role and the choice of 𝛽 and the relaxation parameter 𝜀, we refer to
the analysis in [9] for 𝛽 and to, e.g., [3] for 𝜀. As can be seen immediately from the proof of the theorem,
𝛽 > 0 is essential, as it is the factor of the dissipative part F . Nevertheless, for 𝛽 = 0, the iteration is on the
state, only, and is similar to a non-overlapping Schwarz algorithm for the state variables, while the adjoint
variables are not a�ected and, therefore, one cannot expect convergence at the interface. The question of how
to choose the set of parameters optimally is open on the general level and has to be answered via speci�c
numerical examples. A rigorous treatment is, therefore, not possible in the current article. However, an
analysis as in [6], which was conducted for a semi-discretization of a parabolic problem, may be applied for
a very particular scenario, namely, for a simple optimal control problem for a linear harmonic oscillator.
Again, the analysis is beyond the scope of this article. In Section 7, we provide some insights into the choice
of the parameters, where we focus on the wave equation as in our Example 2 (for a single link, i.e., 𝑑 = 2)
with costs as in Example 1.
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Remark 8. We see from the proof of Theorem 3 that with the given nonlinearity 𝑓𝑘 , we need the distributed
control 𝑢𝑘 to compensate the appearance of the nonlinearity in the estimates. We also need the tracking
term with 𝜅 > 0 being distributed over space and time. On the other hand, in this setting, we obtain stronger
convergence results than in [13, 15].

Remark 9. Distributed control with full access to the state are typically hard to implement in practice. For
boundary controls, on the other hand, full access is a not critical issue. As our convergence proofs reveals,
full access to the state is however essential to compensate the distributed nonlinear term. In this respect, we
add that one may replace the distributed control by yet another virtual control, however, at the expense of
introducing an approximation to the adjoint variable appearing in the optimality system on the decomposed
level. We do not have the space to elaborate on that variant here in detail but refer to a further publication.

5. Convergence in the Presence of Control Constraints and Linear Dynamics

In this section, we consider pointwise constraints on 𝑢 and 𝑣 , i.e.,

𝑢 (𝑡) ∈ 𝑈 d
ad, 𝑣 (𝑡) ∈ 𝑈 b

ad a. e. in (0,𝑇 ). (41)
However, we do not take into account nonlinearities. It turns out that the interaction of the control
bounds with the bounds on the nonlinearities is rather complicated and not fully explored up to now.
Nevertheless, we provide the convergence proof as also this extension is new in the context of optimal
control for linear hyperbolic systems. We, thus, consider the tracking-type optimal control problem (20)
together with the constraints (41). We notice that this has not been considered even in the context of
[13, 15] and, thus, extends the literature in this direction. With the cost function given by (19), the
optimality conditions (6), (7) are given by

𝑑∑︁
𝑖=1

(𝜈𝑢𝑖 − 𝑝𝑖 (𝑡, 𝑥)) (𝑢𝑖 − 𝑢𝑖 (𝑡, 𝑥)) ≥ 0 a. e. in (0,𝑇 ) × (0, 1), (42a)

𝑚∑︁
𝑖=1

(𝜇𝑣𝑖 − |𝜆𝑖 |𝑝𝑖 (𝑡, 1)) (𝑣𝑖 − 𝑣𝑖 (𝑡)) ≥ 0 a. e. in (0,𝑇 ) (42b)

for all 𝑢𝑖 ∈ 𝑈 d
ad, 𝑣𝑖 ∈ 𝑈

b
ad, or

(𝜈𝑢 − 𝑝) (𝑡, 𝑥) (𝑢 − 𝑢) (𝑡, 𝑥) ≥ 0,
where the product is understood as the scalar product. We also have

(𝜈𝑢𝑘 − 𝑝𝑘 ) (𝑡, 𝑥) (𝑢𝑘 − 𝑢𝑘 ) (𝑡, 𝑥) ≥ 0
for the solutions on 𝐼𝑘 × (0, 1) and, by similar arguments, for 𝑢𝑛

𝑘
, 𝑝𝑛
𝑘
. Moreover, we also have∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝜈𝑢𝑛

𝑘
− 𝑝𝑛

𝑘
) (𝑢𝑘 − 𝑢𝑛𝑘 ) d𝑥 d𝑡 ≥ 0 for all 𝑢𝑘 ∈ 𝑈 d

ad . (43)

For the corresponding errors we obtain (with 𝑢𝑘 ∈ 𝑈 d
ad)

0 ≤
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝜈𝑢̃𝑛

𝑘
− 𝑝𝑛

𝑘
+ 𝜈𝑢𝑘 − 𝑝𝑘 ) (𝑢𝑘 − 𝑢𝑛𝑘 ) d𝑥 d𝑡

=

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝜈𝑢̃𝑛

𝑘
− 𝑝𝑛

𝑘
) (−𝑢̃𝑛

𝑘
) d𝑥 d𝑡 −

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝜈𝑢𝑘 − 𝑝𝑘 ) (𝑢𝑛𝑘 − 𝑢𝑘 ) d𝑥 d𝑡

and, therefore,∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝜈𝑢̃𝑛

𝑘
− 𝑝𝑛

𝑘
) (−𝑢̃𝑛

𝑘
) d𝑥 d𝑡 ≥

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
(𝜈𝑢𝑘 − 𝑝𝑘 ) (𝑢𝑛𝑘 − 𝑢𝑘 ) d𝑥 d𝑡 ≥ 0.

Hence, ∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑢̃𝑛
𝑘
𝑝𝑛
𝑘
d𝑥 d𝑡 ≥ 𝜈

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑢̃𝑛
𝑘
𝑢̃𝑛
𝑘
d𝑥 d𝑡 (44)
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holds. By the same argument, we obtain∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) |𝑝𝑛𝑘𝑖 (𝑡, 1)𝑣
𝑛
𝑘𝑖
(𝑡) d𝑡 ≥ 𝜇

∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

𝑣𝑛
𝑘𝑖
(𝑡)2 d𝑡, (45)∫ 𝑇𝑘+1

𝑇𝑘

|𝜆(𝑡, 1) |𝑝𝑛
𝑘
(𝑡, 1)𝑣𝑛

𝑘
(𝑡) d𝑡 ≥ 𝜇

∫ 𝑇𝑘+1

𝑇𝑘

𝑣𝑛
𝑘
(𝑡)𝑣𝑛

𝑘
(𝑡) d𝑡, (46)

where (𝑢𝑛
𝑘
, 𝑣𝑛
𝑘
, 𝑝𝑛
𝑘
) and (𝑢̃𝑛

𝑘
, 𝑣𝑛
𝑘
, 𝑝𝑛
𝑘
) solve (21) and (24), respectively. We recall (33) and rewrite it as∫ 1

0
𝑦𝑛
𝑘
(𝑇𝑘+1)𝑝𝑛𝑘 (𝑇𝑘+1) − 𝑦

𝑛
𝑘
(𝑇𝑘 )𝑝𝑛𝑘 (𝑇𝑘 ) d𝑥

=

∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) |𝑣𝑛𝑘𝑖 (𝑡)𝑝
𝑛
𝑘𝑖
(𝑡, 1) d𝑡 + 𝜌

∫ 𝑇𝑘+1

𝑇𝑘

𝑑∑︁
𝑖=𝑚+1

|𝑦𝑛
𝑘𝑖
|2 d𝑡

+
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑢̃𝑛
𝑘
𝑝𝑛
𝑘
d𝑥 d𝑡 + 𝜅

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑡 .

Then, according to (32) and (34), we obtain

F 𝑛 = 2𝛽
𝐾∑︁
𝑘=0

(∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) |𝑣𝑛𝑘𝑖 (𝑡)𝑝
𝑛
𝑘𝑖
(𝑡, 1) d𝑡 + 𝜌

∫ 𝑇𝑘+1

𝑇𝑘

𝑑∑︁
𝑖=𝑚+1

|𝑦𝑛
𝑘𝑖
|2 d𝑡

+
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝑢̃𝑛
𝑘
𝑝𝑛
𝑘
d𝑥 d𝑡 + 𝜅

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑡

)
.

(47)

Next, using (44) and (46), we can estimate F from below by

F 𝑛 ≥ 2𝛽
𝐾∑︁
𝑘=0

(∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝜅‖𝑦𝑛

𝑘
‖2
R𝑑

d𝑥 d𝑡 +
∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
𝜈 ‖𝑢̃𝑛

𝑘
‖2
R𝑑

d𝑥 d𝑡

+
∫ 𝑇𝑘+1

𝑇𝑘

𝜇

𝑚∑︁
𝑖=1

|𝑣𝑛
𝑘𝑖
|2 d𝑡 + 𝜌

∫ 𝑇𝑘+1

𝑇𝑘

𝑑∑︁
𝑖=𝑚+1

|𝑦𝑛
𝑘𝑖
|2 d𝑡

)
.

The de�nitions in (27)–(31) stay unchanged also in the case under consideration, whereas (34) now reads
‖𝑋𝑛 ‖2 = E𝑛 + F 𝑛 , where now F 𝑛 is given by (47). By the same argument, we have ‖𝑇𝑋𝑛 ‖X = E𝑛 − F 𝑛

and Proposition 1 as well as (37) hold true as well. Thus, we arrive at the conclusion that
E𝑛 is bounded,
𝑦𝑛
𝑘
→ 0 in 𝐿2

(
𝐼𝑘 , 𝐿

2 (0, 1)
)
,

𝑝𝑛
𝑘
→ 0 in 𝐿2

(
𝐼𝑘 , 𝐿

2 (0, 1)
)
,

𝑣𝑛
𝑘𝑖

→ 0 in 𝐿(𝐼𝑘 ),

(48)

as 𝑛 → ∞.

Theorem 4. Suppose that the controls 𝑢 and 𝑣 satisfy the pointwise constraints 𝑢 (𝑡) ∈ 𝑈 d
ad, 𝑣 (𝑡) ∈ 𝑈

b
ad,

where 𝑈 d
ad ⊂ 𝐿2 (0, 1)𝑑 and 𝑈 b

ad ⊂ R𝑚 are convex and closed. Further, let the iterates be de�ned as solutions
(𝑦𝑛
𝑘
, 𝑝𝑛
𝑘
) of (21), (22) with (43), (45). Then, these iterates converge in the sense of (48) to the corresponding

solutions of (1), (5)–(7) together with (9). In fact, we have (42).

6. A Posteriori Error Estimates

We now embark on a posteriori error estimates for the iterates discussed in Section 4. Such estimates
are important for the decisions on the choice of the breaks points 𝑇𝑘 . Moreover, following the intention
of this article, these estimates are developed on the continuous level. In the interest of space, we
develop the estimates only for the case of unconstrained controls and nonlinearities in the state equation.
Boundary nonlinearities can be handled similarly. In order to provide the corresponding information,
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we introduce measures for global and local errors, pointwise in time, as well as measures of mismatch
at the break points. In particular, we introduce the accumulated global error

𝑒𝑛 := max
0≤𝑘≤𝐾

∫ 1

0
‖𝑦𝑛
𝑘
‖2
𝐿∞ (𝐼𝑘 ) d𝑥 + max

0≤𝑘≤𝐾

∫ 1

0
‖𝑝𝑛
𝑘
‖2
𝐿∞ (𝐼𝑘 ) d𝑥

+
𝐾∑︁
𝑙=0

∫ 𝑇𝑙+1

𝑇𝑙

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑙𝑖 (𝑠, 0)
2 + |𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑙𝑖 (𝑠, 1)

2

+
𝑑∑︁

𝑖=𝑚+1
|𝜆𝑖 (𝑠, 1) |𝑦𝑙𝑖 (𝑠, 1)2 + |𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑙𝑖 (𝑠, 0)

2 d𝑠

(49)

and the pointwise local error on 𝐼𝑘

𝑒𝑛
𝑘
(𝑡) :=

∫ 1

0
‖𝑦𝑛
𝑘
(𝑡)‖2

R𝑑
+ ‖𝑝𝑛

𝑘
(𝑡)‖2

R𝑑
d𝑥

+
∫ 𝑡

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑘𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

+
∫ 𝑇𝑘+1

𝑡

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑘 (𝑠, 0)
2 d𝑠 .

(50)

We further introduce the mismatch at the break point 𝑇𝑘+1 at iteration 𝑛 via
E𝑛
𝑘,𝑘+1 (𝑇𝑘+1) := ‖𝑦𝑛

𝑘
(𝑇𝑘+1) − 𝑦𝑛𝑘+1 (𝑇𝑘+1)‖

2
𝐿2

+ ‖𝑝𝑛
𝑘
(𝑇𝑘+1) − 𝑝𝑛𝑘+1 (𝑇𝑘+1)‖

2
𝐿2

(51)
and between two consecutive iterates 𝑛 and 𝑛 + 1 as

E𝑛,𝑛+1
𝑘,𝑘+1 (𝑇𝑘+1) := ‖𝑦𝑛

𝑘
(𝑇𝑘+1) − 𝑦𝑛+1𝑘+1 ‖

2
R𝑑

+ ‖𝑝𝑛
𝑘
(𝑇𝑘+1) − 𝑝𝑛+1𝑘+1 (𝑇𝑘+1)‖

2
R𝑑
,

𝑒𝑛,𝑛+1 := max
0≤𝑘≤𝐾

‖𝑒𝑛
𝑘
+ 𝑒𝑛+1

𝑘
‖𝐿∞ (𝐼𝑘 ) .

We further need energy estimates for 𝑦, 𝑦𝑛
𝑘
, 𝑝 , and 𝑝𝑛

𝑘
. To this end, we multiply the state equation (18a)

by 𝑦 and integrate to obtain

0 =
∫ 𝑡

0

∫ 1

0
(𝜕𝑡𝑦 +𝐴𝜕𝑥𝑦 − 𝑓 (𝑡, 𝑦) − 𝑢) 𝑦 d𝑥 d𝑠

=
1
2

∫ 1

0
‖𝑦‖2
R𝑑

��𝑡
0 d𝑥 +

∫ 𝑡

0

1
2

𝑑∑︁
𝑖=1

𝜆𝑖𝑦
2
𝑖 d𝑠 −

1
2

∫ 𝑡

0

∫ 1

0

𝑑∑︁
𝑖=1

𝜕𝑥𝜆𝑖 ‖𝑦𝑖 ‖2R𝑑 d𝑥 d𝑠

−
∫ 𝑡

0

∫ 1

0
𝑓 (𝑠,𝑦)𝑦 d𝑥 d𝑠 −

∫ 𝑡

0

∫ 1

0
𝑢𝑦 d𝑥 d𝑠 .

(52)

Moreover, we have

1
2

𝑑∑︁
𝑖=1

𝜆𝑖 (𝑡, 1)𝑦𝑖 (𝑡, 1)2 − 𝜆𝑖 (𝑡, 0)𝑦𝑖 (𝑡, 0)2

= − 1
2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 1) |
(

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑡)𝑦 𝑗 (𝑡, 1) + 𝑣𝑖 (𝑡)
)2

+ 1
2

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑡, 1) |𝑦𝑖 (𝑡, 1)2

+ 1
2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑡, 0) |𝑦𝑖 (𝑡, 0)2 −
1
2

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑡, 0) |
(
𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑡)𝑦 𝑗 (𝑡, 0)
)2 (53)
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and (53) turns (52) into

1
2

∫ 1

0
‖𝑦‖2
R𝑑
(𝑡) d𝑥 −

∫ 𝑡

0

∫ 1

0
𝑓 (𝑥,𝑦)𝑦 d𝑥 d𝑠 + 1

2

𝑚∑︁
𝑖=1

∫ 𝑡

0
|𝜆𝑖 (𝑠, 0) |𝑦𝑖 (𝑠, 0)2 d𝑠

+ 1
2

∫ 𝑡

0

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑖 (𝑠, 1)2 d𝑠

=
1
2

∫ 1

0
‖𝑦‖2
R𝑑
(0) d𝑥 +

∫ 𝑡

0

∫ 1

0
𝑢𝑦 d𝑥 d𝑠 + 1

2

∫ 𝑡

0

∫ 1

0

𝑑∑︁
𝑖=1

𝜕𝑥𝜆𝑖 ‖𝑦𝑖 ‖2R𝑑 d𝑥 d𝑠

+ 1
2

∫ 𝑡

0

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |
(

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑠)𝑦 𝑗 (𝑠, 1) + 𝑣𝑖 (𝑠)
)2

d𝑠

+ 1
2

∫ 𝑡

0

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |
(
𝑚∑︁
𝑖=1

𝑔0𝑖 𝑗 (𝑠)𝑦 𝑗 (𝑠, 0)
)2

d𝑠 .

(54)

Furthermore, we have the estimates

1
2

∫ 𝑡

0

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |
(

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑠)𝑦 𝑗 (𝑠, 1) + 𝑣𝑖 (𝑠)
)2

d𝑠

≤ 1
2

𝑚∑︁
𝑖=1

∫ 𝑡

0
|𝜆𝑖 (𝑠, 1) |

©­«2
(

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑠)𝑦 𝑗 (𝑠, 1)
)2

+ 𝑣𝑖 (𝑠)2
ª®¬ d𝑠

≤
𝑚∑︁
𝑖=1

∫ 𝑡

0
|𝜆𝑖 (𝑠, 1) |

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑠)2
𝑑∑︁

𝑗=𝑚+1
𝑦 𝑗 (𝑠, 1)2 + 𝑣𝑖 (𝑠)2 d𝑠

=

∫ 𝑡

0

𝑚∑︁
𝑖=1

(
|𝜆𝑖 (𝑠, 1) |

𝑑∑︁
𝑗=𝑚+1

𝑔1𝑖 𝑗 (𝑠)2
)

𝑑∑︁
𝑗=𝑚+1

𝑦 𝑗 (𝑠, 1)2 +
𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑣𝑖 (𝑠)2 d𝑠 .

(55)

Similarly,

1
2

∫ 𝑡

0

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |
(
𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑠)𝑦 𝑗 (𝑠, 0)
)2

d𝑠 ≤ 1
2

∫ 𝑡

0

(
𝑑∑︁

𝑖=𝑚+1
|𝜆𝑖 (𝑠, 0) |

𝑚∑︁
𝑗=1

𝑔0𝑖 𝑗 (𝑠)2
)
𝑚∑︁
𝑗=1
𝑦 𝑗 (𝑠, 0)2 d𝑠 (56)

holds. In order to absorb the terms (55), (56) into (54), we assume
𝑑∑︁

𝑖=𝑚+1

𝑚∑︁
𝑗=1

𝑔1𝑗𝑖 (𝑠)2 |𝜆 𝑗 (𝑠, 1) | ≤
𝛿

2
,

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

𝑔0𝑗𝑖 (𝑠)2 |𝜆 𝑗 (𝑠, 0) | ≤
𝛿

2
, 1 > 𝛿 > 0. (57)

Then, (54) becomes
1
2

∫ 1

0
‖𝑦 (𝑡)‖2

R𝑑
d𝑥 −

∫ 𝑡

0

∫ 1

0
𝑓 (𝑠,𝑦)𝑦 d𝑥 d𝑠

+ 1 − 𝛿
2

∫ 𝑡

0

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑖 (𝑠, 0)2 d𝑠 +
1 − 𝛿
2

∫ 𝑡

0

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑖 (𝑠, 1)2 d𝑠

≤ 1
2

∫ 1

0
‖𝑦 (0)‖2

R𝑑
d𝑥 +

∫ 𝑡

0

∫ 1

0
𝑢𝑦 d𝑥 d𝑠 +

𝑚∑︁
𝑖=1

∫ 𝑡

0
|𝜆𝑖 (𝑠, 1) |𝑣𝑖 (𝑠)2 d𝑠

+ 1
2

∫ 𝑡

0

∫ 1

0

𝑑∑︁
𝑖=1

𝜕𝑥𝜆𝑖 ‖𝑦𝑖 ‖2R𝑑 d𝑥 d𝑠 .
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We now extend the estimate to the errors 𝑦𝑘 . To this end, we use Assumption 1 and obtain∫ 1

0
‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 + (1 − 𝛿)
∫ 𝑡

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑘𝑖 (𝑠, 0)
2 d𝑠 + (1 − 𝛿)

∫ 𝑡

𝑇𝑘

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

≤
∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘 )‖2R𝑑 d𝑥 +

∫ 𝑡

𝑇𝑘

∫ 1

0

(
𝑢̃𝑛
𝑘

)2 d𝑥 d𝑠 + 2
𝑚∑︁
𝑖=1

∫ 𝑡

𝑇𝑘

|𝜆𝑖 (𝑠, 𝑡) |𝑣𝑖 (𝑠)2 d𝑠

+
∫ 𝑡

𝑇𝑘

∫ 1

0

(
𝐿 + 1 +max

𝑠,𝑥
|𝜕𝑥𝜆𝑖 |

)
‖𝑦𝑛
𝑘𝑖
‖2
R𝑑

d𝑥 d𝑠 .

(58)

Multiplying the adjoint equation (21b) by 𝑝𝑛
𝑘
, which satisfy

𝑝𝑛
𝑘
(𝑇𝑘+1) =

1
𝛽

(
𝜙𝑛
𝑘,𝑘+1 − 𝑦

𝑛
𝑘
(𝑇𝑘+1)

)
,

and integrating from 𝑡 to 𝑇𝑘+1, we obtain

0 =
∫ 𝑇𝑘+1

𝑡

∫ 1

0

(
𝜕𝑡𝑝

𝑛
𝑘
𝑝𝑛
𝑘
+𝐴𝜕𝑥𝑝𝑛𝑘𝑝

𝑛
𝑘
+

(
D𝑦 𝑓𝑘 (𝑦𝑚𝑘 )

> + 𝜕𝑥𝐴
)
𝑝𝑛
𝑘
𝑝𝑛
𝑘

+
(
D𝑦 𝑓𝑘 (𝑦𝑚𝑘 )

> − D𝑦 𝑓𝑘 (𝑦𝑘 )>
)
𝑝𝑘𝑝

𝑛
𝑘
+ 𝜅𝑦𝑛

𝑘
𝑝𝑛
𝑘

)
d𝑥 d𝑡

=
1
2

∫ 1

0
‖𝑝𝑛
𝑘
(𝑠)‖2

R𝑑

��𝑇𝑘+1
𝑡

d𝑥 + 1
2

∫ 𝑇𝑘+1

𝑡

𝑑∑︁
𝑖=1

𝜆𝑖 (𝑠, 𝑥)𝑝𝑛𝑘𝑖𝑝
𝑛
𝑘𝑖

�����1
0

d𝑠

+
∫ 𝑇𝑘+1

𝑡

∫ 1

0

1
2
𝜕𝑥𝐴𝑝

𝑛
𝑘
𝑝𝑛
𝑘
d𝑥 + 𝜅𝑦𝑛

𝑘
𝑝𝑚
𝑘
d𝑥 d𝑠

+
∫ 𝑇𝑘+1

𝑡

∫ 1

0
D𝑦 𝑓𝑘 (𝑦𝑛𝑘 )

>𝑝𝑛
𝑘
𝑝𝑛
𝑘
+

(
D𝑦 𝑓𝑘 (𝑦𝑚𝑘 )

> − D𝑦 𝑓𝑘 (𝑦𝑛𝑘 )
>)
𝑝𝑘𝑝

𝑛
𝑘
d𝑥 d𝑠

(59)

Similar to (55)–(57), we need boundary estimates

1
2

𝑑∑︁
𝑖=1

∫ 𝑇𝑘+1

𝑡

𝜆𝑖 (𝑠, 1)𝑝𝑛𝑘𝑖 (𝑠, 1)
2 − 𝜆𝑖 (𝑠, 0)𝑝𝑘𝑖 (𝑠, 0)2 d𝑠

=
1
2

∫ 𝑇𝑘+1

𝑡

−
𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 +

𝑑∑︁
𝑖=𝑚+1

(
𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑠, 1) |𝑔1𝑗𝑖 (𝑠)𝑝𝑛𝑘 𝑗 (𝑠, 1)
)2

+
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

|𝜆 𝑗 (𝑠, 0) |𝑔0𝑗𝑖 (𝑠)𝑝𝑛𝑘 𝑗 (𝑠, 0)
2 −

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑘𝑖 (𝑠, 0)
2 d𝑠 .

(60)

We have
𝑑∑︁

𝑖=𝑚+1

(
𝑚∑︁
𝑗=1

|𝜆 𝑗 (𝑠, 1) |𝑔1𝑗𝑖 (𝑠)𝑝𝑛𝑘 𝑗 (𝑠, 1)
)2

≤
𝑑∑︁

𝑖=𝑚+1

𝑚∑︁
𝑗=1

(
𝜆 𝑗 (𝑠, 1)𝑔1𝑗𝑖 (𝑠)

)2 𝑚∑︁
𝑗=1

𝑝𝑛
𝑘 𝑗
(𝑠, 1)2 (61)

and
𝑚∑︁
𝑖=1

(
𝑑∑︁

𝑗=𝑚+1
𝜆 𝑗 (𝑠, 0)𝑔0𝑗𝑖 (𝑠)𝑝𝑛𝑘 𝑗 (𝑠, 0)

)2
≤

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=𝑚+1

(
|𝜆 𝑗 (𝑠, 0) |𝑔0𝑗𝑖 (𝑠)

)2 𝑑∑︁
𝑗=𝑚+1

𝑝𝑛
𝑘 𝑗
(𝑠, 0)2. (62)
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Recalling (57), we obtain from (59) together with (60)–(62) that∫ 1

0
‖𝑝𝑛
𝑘
‖2
R𝑑

d𝑥 + (1 − 𝛿)
∫ 𝑇𝑘+1

𝑡

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠 + (1 − 𝛿)

∫ 𝑇𝑘+1

𝑡

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑘𝑖 (𝑠, 0)
2 d𝑠

≤
∫ 𝑇𝑘+1

𝑡

∫ 1

0

1
2

𝑑∑︁
𝑖=1

𝜕𝑥𝜆𝑖 (𝑠, 𝑥)
(
𝑝𝑛
𝑘𝑖

)2 d𝑥 d𝑠 +
∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1)‖2R𝑑 d𝑥

+
∫ 𝑇𝑘+1

𝑡

∫ 1

0
D𝑦 𝑓𝑘 (𝑦𝑛𝑘 )

>𝑝𝑛
𝑘
𝑝𝑛
𝑘
+

(
D𝑦 𝑓𝑘 (𝑦𝑛𝑘 )

> − D𝑦 𝑓𝑘 (𝑦𝑘 )>
)
𝑝𝑘𝑝

𝑛
𝑘
+ 𝜅𝑦𝑛

𝑘
𝑝𝑛
𝑘
d𝑥 d𝑠

≤
∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1)‖2R𝑑 d𝑥 +𝐶

∫ 𝑇𝑘+1

𝑡

∫ 1

0
‖𝑝𝑛
𝑘
‖2
R𝑑

+ ‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠

(63)
holds for some𝐶 > 0 that depends on the Lipschitz constant 𝐿 in Assumption 1. Since in this section, as
it was the case in Section 4 as well, we deal with unconstrained controls. Hence, (26) holds. Therefore,
(58) reads∫ 1

0
‖𝑦𝑛
𝑘
(𝑡)‖2

R𝑑
d𝑥 ≤

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘 )‖2R𝑑 d𝑥 + 1

𝜈2

∫ 𝑡

𝑇𝑘

∫ 1

0
‖𝑝𝑛
𝑘
‖2
R𝑑

d𝑠 d𝑥 + 2
𝜇2

∫ 𝑡

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |3𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

+
∫ 𝑡

𝑇𝑘

∫ 1

0

𝑑∑︁
𝑖=1

(𝐿 + 1 +max|𝜕𝑥𝜆𝑖 |) ‖𝑦𝑛𝑘𝑖 ‖
2
R𝑑

d𝑥 d𝑠

− (1 − 𝛿)
∫ 𝑡

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑘𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠 .

(64)
Clearly,∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘 )‖2R𝑑 d𝑥 =

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘 )‖2R𝑑 d𝑥 −

∫ 1

0
‖𝑦𝑛
𝑘−1 (𝑇𝑘 )‖

2
R𝑑

d𝑥 +
∫ 1

0
‖𝑦𝑛
𝑘−1 (𝑇𝑘 )‖

2
R𝑑

d𝑥 . (65)

We now apply (64) to the index 𝑘 − 1 and evaluate at 𝑇𝑘 , which gives∫ 1

0
‖𝑦𝑛
𝑘−1 (𝑇𝑘 )‖

2
R𝑑

d𝑥 ≤
∫ 1

0
‖𝑦𝑛
𝑘−1 (𝑇𝑘−1)‖

2
R𝑑

d𝑥

− (1 − 𝛿)
∫ 𝑇𝑘

𝑇𝑘−1

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑘−1,𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑘−1,𝑖 (𝑠, 1)
2 d𝑠

+ 1
𝜈2

∫ 𝑇𝑘

𝑇𝑘−1

∫ 1

0
‖𝑝𝑛
𝑘−1‖

2
R𝑑

d𝑥 d𝑠 + 2
𝜇2

∫ 𝑇𝑘

𝑇𝑘−1

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |3𝑝𝑛𝑘−1,𝑖 (𝑠, 1)
2 d𝑠

+
∫ 𝑇𝑘

𝑇𝑘−1

∫ 1

0

𝑑∑︁
𝑖=1

(𝐿 + 1 +max|𝜕𝑥𝜆𝑖 |) ‖𝑦𝑛𝑘−1,𝑖 ‖
2
R𝑑

d𝑥 d𝑠 .

(66)

With 𝜔 := 𝐿 + 1 +max|𝜕𝑥𝜆𝑖 |, (64) and (65) imply∫ 1

0
‖𝑦𝑘 (𝑡)𝑛 ‖2R𝑑 d𝑥 + (1 − 𝛿)

(∫ 𝑇𝑘

𝑇𝑘−1

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑘−1,𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑘−1,𝑖 (𝑠, 1)
2 d𝑠

+
∫ 𝑡

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑘𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

)
≤

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘 )‖2R𝑑 − ‖𝑦𝑛

𝑘−1 (𝑇𝑘 )‖
2
R𝑑

+ ‖𝑦𝑛
𝑘−1 (𝑇𝑘−1)‖

2
R𝑑

d𝑥

+
∫ 𝑇𝑘

𝑇𝑘−1

∫ 1

0

1
𝜈2

‖𝑝𝑛
𝑘−1‖

2
R𝑑

+ 𝜔 ‖𝑦𝑛
𝑘−1‖

2
R𝑑

d𝑥 d𝑠 +
∫ 𝑡

𝑇𝑘

∫ 1

0

1
𝜈
‖𝑝𝑛
𝑘
‖2
R𝑑

+ 𝜔 ‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠

+
∫ 𝑇𝑘

𝑇𝑘−1

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |3𝑝𝑛𝑘−1,𝑖 (𝑠, 1)
2 d𝑠 +

∫ 𝑡

𝑇𝑘

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |3𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠 .

(67)
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We can now iterate (67) by replacing the term ‖𝑦𝑛
𝑘−1 (𝑇𝑘−1)‖

2
R𝑑

using (65) for 𝑘 − 1 and then (66). This
procedure leads to∫ 1

0
‖𝑦𝑛
𝑘
(𝑡)‖2

R𝑑
d𝑥 + (1 − 𝛿)

(
𝑘−1∑︁
𝑙=0

∫ 𝑇𝑙+1

𝑇𝑙

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑙𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑙𝑖 (𝑠, 1)
2 d𝑠

+
∫ 𝑡

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑘𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

)
≤

𝑘−1∑︁
𝑙=0

∫ 1

0
‖𝑦𝑛
𝑙+1 (𝑇𝑙+1)‖

2
R𝑑

− ‖𝑦𝑛
𝑙
(𝑇𝑙+1)‖2R𝑑 d𝑥

+
𝑘−1∑︁
𝑙=0

∫ 𝑇𝑙+1

𝑇𝑙

∫ 1

0

1
𝜈2

‖𝑝𝑛
𝑙
‖2
R𝑑

+ 𝜔 ‖𝑦𝑛
𝑙
‖2
R𝑑

d𝑥 d𝑠 +
∫ 𝑡

𝑇𝑘

∫ 1

0

1
𝜈2

‖𝑝𝑛
𝑘
‖2
R𝑑

+ 𝜔 ‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠

+
𝑘−1∑︁
𝑙=0

∫ 𝑇𝑙+1

𝑇𝑙

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |3𝑝𝑛𝑙𝑖 (𝑠, 1)
2 d𝑠 +

∫ 𝑡

𝑇𝑘

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠 .

(68)

In order to arrive at an estimate for 𝑒𝑛
𝑘
(𝑡) in (50), we take the maximum in (68) w.r.t. 𝑘 :

max
0≤𝑘≤𝐾

∫ 1

0
‖𝑦𝑛
𝑘
(𝑡)‖2

R𝑑
d𝑥

+ (1 − 𝛿)
𝐾∑︁
𝑙=0

∫ 𝑇𝑙+1

𝑇𝑙

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 0) |𝑦𝑛𝑙𝑖 (𝑠, 0)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 1) |𝑦𝑛𝑙𝑖 (𝑠, 1)
2 d𝑠

≤
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

1
𝜈2

‖𝑝𝑛
𝑘
‖2
R𝑑

+ 𝜔 ‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠 +
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |3𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

+
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘+1) − 𝑦𝑛𝑘+1 (𝑇𝑘+1)‖R𝑑

(
‖𝑦𝑛
𝑘
(𝑇𝑘+1)‖R𝑑 + ‖𝑦𝑘+1 (𝑇𝑘+1)‖

)
d𝑥R𝑑

≤
√
2

(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘+1) − 𝑦𝑛𝑘+1 (𝑇𝑘+1)‖R𝑑 d𝑥

) 1
2
(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘+1)‖2R𝑑 + ‖𝑦𝑛

𝑘+1 (𝑇𝑘+1)‖
2
R𝑑

d𝑥

) 1
2

+
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

1
𝜈2

‖𝑝𝑛
𝑘
‖2
R𝑑

+ 𝜔 ‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠 +
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠 .

(69)

We now go back to (63) and focus on the adjoint variable. We proceed in the same way and obtain∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1)2R𝑑 ‖ d𝑥

∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1)‖2R𝑑 − ‖𝑝𝑛

𝑘+1 (𝑇𝑘+1)‖
2
R𝑑

+ ‖𝑝𝑛
𝑘+1 (𝑇𝑘+1)‖

2
R𝑑

d𝑥

≤
∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1)‖2R𝑑 − ‖𝑝𝑛

𝑘+1 (𝑇𝑘+1)‖
2
R𝑑

d𝑥 +
∫ 1

0
‖𝑝𝑛
𝑘+1 (𝑇𝑘+2)‖

2
R𝑑

d𝑥

+𝐶
∫ 𝑇𝑘+2

𝑇𝑘+1

∫ 1

0
‖𝑝𝑛
𝑘+1‖

2
R𝑑

+ ‖𝑦𝑛
𝑘+1‖

2
R𝑑

d𝑥 d𝑠

− (1 − 𝛿)
∫ 𝑇𝑘+2

𝑇𝑘+1

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘+1 (𝑠, 1)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑘+1,𝑖 d𝑠 .

(70)
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Putting the last expression on the other side and iterating (70), we arrive at∫ 1

0
‖𝑝𝑛
𝑘
(𝑡)‖2

R𝑑
d𝑥 +

∫ 𝑇𝑘+1

𝑡

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑘𝑖 (𝑠, 0)
2 d𝑠

+
𝐾∑︁

𝑙=𝑘+1

∫ 𝑇𝑙+1

𝑇𝑙

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑙𝑖 (𝑠, 1)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑙𝑖 (𝑠, 0)
2 d𝑠

≤ 𝐶
𝐾∑︁
𝑙=𝑘

∫ 𝑇𝑙+1

𝑇𝑙

∫ 1

0
‖𝑝𝑛
𝑙
‖2
R𝑑

+ ‖𝑦𝑛
𝑙
‖2
R𝑑

d𝑥 d𝑠 +
𝐾∑︁
𝑙=𝑘

∫ 1

0
‖𝑝𝑚
𝑙
(𝑇𝑙+1)‖2R𝑑 − ‖𝑝𝑛

𝑙+1 (𝑇𝑙+1)‖
2
R𝑑

d𝑥

for 𝑘 = 0, . . . , 𝐾 . Again, we take the maximum w.r.t. 𝑘 and use the Cauchy–Schwartz inequality as before
and get

max
0≤𝑘≤𝐾

∫ 1

0
𝑝𝑛
𝑘
(𝑡) d𝑥 +

𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 +

𝑑∑︁
𝑖=𝑚+1

|𝜆𝑖 (𝑠, 0) |𝑝𝑛𝑘𝑖 (𝑠, 0)
2 d𝑠

≤
√
2

(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1) − 𝑝𝑛𝑘+1 (𝑇𝑘+1)‖

2
R𝑑

d𝑥

) 1
2
(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1)‖2 + ‖𝑝𝑛

𝑘+1 (𝑇𝑘+1)‖
2
R𝑑

d𝑥

) 1
2

+𝐶
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
‖𝑝𝑛
𝑘
‖2
R𝑑

+ ‖𝑦𝑛
𝑘
‖2 d𝑥R𝑑 d𝑠

(71)

We add (69) and (71) to achieve, according to (50) and (49),

𝑒𝑛 ≤
√
2

(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘+1) − 𝑦𝑛𝑘+1 (𝑇𝑘+1)‖

2
R𝑑

d𝑥

) 1
2

·
(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑦𝑛
𝑘
(𝑇𝑘+1)‖2R𝑑 + ‖𝑦𝑛

𝑘+1 (𝑇𝑘+1)‖
2
R𝑑

d𝑥

) 1
2

+
√
2

(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1) − 𝑝𝑛𝑘+1 (𝑇𝑘+1)‖

2
R𝑑

d𝑥

) 1
2
(
𝐾−1∑︁
𝑘=0

∫ 1

0
‖𝑝𝑛
𝑘
(𝑇𝑘+1)‖2R𝑑 + ‖𝑝𝑛

𝑘+1 (𝑇𝑘+1)‖
2
R𝑑

d𝑥

) 1
2

+𝐶
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0
‖𝑝𝑛
𝑘
‖2
R𝑑

+ ‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠 +
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

1
𝜈2

‖𝑝𝑛
𝑘
‖2
R𝑑

+ 𝜔 ‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠

+
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

≤ 2
√
2max

(
1,
1
𝛽

) √
E𝑛

(
𝐾−1∑︁
𝑘=0

E𝑛
𝑘,𝑘+1 (𝑇𝑘+1)

) 1
2

+
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

2
𝜇2

𝑚∑︁
𝑖=1

|𝜆𝑖 (𝑠, 1) |3𝑝𝑛𝑘𝑖 (𝑠, 1)
2 d𝑠

+
𝐾∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

∫ 1

0

(
𝐶 + 1

𝜈2

)
‖𝑝𝑛
𝑘
‖2
R𝑑

+ (𝐶 + 𝜔)‖𝑦𝑛
𝑘
‖2
R𝑑

d𝑥 d𝑠 .

(72)
There is a computable constant 𝐶 > 0 such that (72) yields

𝑒𝑛 ≤ 2
√
2max

(
1,
1
𝛽

) √
E𝑛

(
𝐾−1∑︁
𝑘=0

E𝑛
𝑘,𝑘+1 (𝑇𝑘+1)

) 1
2

+𝐶F 𝑛 .

We now need an estimate of F 𝑛 w.r.t. E𝑛 and E𝑛
𝑘,𝑘+1 (𝑇𝑘+1). To this end, recall (40), i.e.,

‖𝑇𝑋𝑛 − 𝑋𝑛 ‖2X = 2 (E𝑛 −𝑇𝑋𝑛𝑋𝑛) ≤ 2max
(
1, 𝛽2

) 𝐾−1∑︁
𝑘=0

E𝑛
𝑘,𝑘+1 (𝑇𝑘+1).

On the other hand, according to Proposition 1 (i), (50), and (35), we have that
2(1 − 𝜀)F 𝑛 ≤ E𝑛 + F 𝑛 −

(
E𝑛+1 + F 𝑛+1) ≤ ‖𝑋𝑛 − F𝑋𝑛 ‖X2(1 − 𝜀)‖𝑋𝑛 ‖X (73)
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holds. Here, we used the de�nition of 𝑋𝑛+1 in (29) and the fact that ‖𝑋𝑛 ‖X is non-increasing. Now, (73)
shows

F 𝑛 ≤
√
2max(1, 𝛽) (E𝑛 + F 𝑛)

1
2

(
𝐾−1∑︁
𝑘=0

E𝑛
𝑘,𝑘+1 (𝑇𝑘+1)

) 1
2

.

Theorem 5. In addition to Assumption 1, we assume (57) to hold for the system data with 𝜀 ∈ [0, 1). Then,
the iterates de�ned in Section 3 satisfy the a posteriori estimate

𝑒𝑛 ≤ 𝐶
√︁
E𝑛 + F 𝑛

(
𝐾−1∑︁
𝑘=0

E𝑛
𝑘,𝑘+1 (𝑇𝑘+1)

) 1
2

, 𝐶 =
√
2
(
2max

(
1,
1
𝛽

)
+𝐶 max(1, 𝛽)

)
,

where E𝑘,𝑘+1 (𝑇𝑘+1) and 𝑒𝑛 are given by (51) and (49), respectively. Moreover, 𝐶 is explicitly computable in
terms of the Lipschitz constant 𝐿 in Assumption 1.

Corollary 1. Under the conditions in Theorem 5, E𝑛 + F 𝑛 is bounded and, hence, there exists a con-
stant 𝐶 > 0 depending in a computable way on the initial and tracking data, as well as on the parameters
𝛽 , K, and the initial values of the transmission data 𝜇, 𝜂 such that

𝑒𝑛 ≤ 𝐶
(
𝐾−1∑︁
𝑘=0

E𝑛
𝑘,𝑘+1 (𝑇𝑘+1)

) 1
2

holds for 𝜀 ∈ [0, 1) and 𝑛 = 1, 2, . . .

Proof. For the sake of brevity, we refer the reader to the proof of Corollary 6.3.3.1 in [13], where the
dependence of 𝐶 on the data is made explicit in a special case. �

Using similar arguments as in the proof of Theorem 6.3.3.2 in [13], we can prove estimates w.r.t. the
measures E𝑛,𝑛+1

𝑘,𝑘+1 (𝑇𝑘+1) and 𝑒
𝑛,𝑛+1 between two iterates.

Theorem 6. Under the conditions in Theorem 5, for 𝜀 ∈
[
0, 12

)
, we have

𝑒𝑛,𝑛+1 ≤ 𝐶𝜀
√
E𝑛+1 + E𝑛

(
E𝑛,𝑛+1
𝑘,𝑘+1 (𝑇𝑘+1) + E𝑛,𝑛+1

𝑘+1,𝑘 (𝑇𝑘+1)
) 1

2

with a computable bound 𝐶𝜀 .

Corollary 2. Under the conditions in Theorem 5 and 𝜀 ∈
[
0, 12

)
, there exists a computable constant𝐶𝜀 such

that

𝑒𝑛,𝑛+1 ≤ 𝐶𝜀
𝐾−1∑︁
𝑘=0

(
E𝑛,𝑛+1
𝑘,𝑘+1 (𝑇𝑘+1) + E𝑛,𝑛+1

𝑘+1,𝑘 (𝑇𝑘+1)
)

holds.

For the application of the a posteriori error estimates w.r.t. the choice of the sub-intervals 𝐼𝑘 and the
actual numerical realization we have to refer to a forthcoming publication.

7. Numerical Experiments

We close the mathematical analysis in this article with some numerical examples, which should
provide some �rst evidence for the behavior of the iterative time-domain decomposition w.r.t. the choice
of the parameters and the presence of nonlinear terms. It is clear that this setup is only suitable to
provide �rst evidence. A full numerical treatment will be the subject of a forthcoming publication.

We consider the wave equation as in Example 2 for a single link, i.e., 𝑑 = 2. Moreover, we take
𝑓 (𝑠) = 𝛼 |𝑠 |𝑠 , 𝛼 ≥ 0, as the nonlinearity in the damping. We do not consider boundary controls but
assume, in fact, homogeneous Dirichlet boundary conditions. We apply a distributed control without
constraints and take two sub-intervals 𝐼1 = [0, 1) and 𝐼2 = (1, 2]. For the space discretization, we
use the standard approximations corresponding to the standard discrete Dirichlet-Laplacian 𝐴ℎ on
the second-order level in space. The corresponding global optimality system on the entire interval
[0, 2] and the local optimality systems on each time interval 𝐼1 and 𝐼2 are treated as a boundary value
problems w.r.t. the time variable. Then, we solve these problems using the MATLAB solver bvp4c
with tolerance 10−8. For any initial data and tracking term, the system governing the errors 𝑦𝑘 and
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(a) Errors of the states at 𝑡 = 1 over the course of
the iterations
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(b) Errors of the adjoints at 𝑡 = 1 over the course of
the iterations

Figure 1. Left-most curve: 𝜀 = 0.5; middle curve: 𝜀 = 0.4 or 0.6; right-most curve
𝜀 = 0.95 or 0.05

𝑝𝑘 is homogeneous and, hence, the local optimality systems are homogeneous up to the errors at the
transmission boundary 𝑇 = 1. In particular, for vanishing initial data and target, the global optimality
system has zero as the unique solution. We take 𝑛 = 10 discretization points w.r.t. the space variable
and choose 𝛽 = 105, 𝜅 = 103, 𝜈 = 103, and 𝜀 = 0.5.We observe very fast convergence for that particular
choice of 𝜀 (almost two-step-convergence).

In order to get an idea about the role of the under-relaxation parameter 𝜀, we repeat the calculations
with all parameters �xed, but with 𝜀 ∈ {0.95, 0.6, 0.4, 0.05}. It turned out that the symmetric choices
(𝜀 = 0.95 or 0.05 and 𝜀 = 0.4 or 0.6) produced numerically identical results. In the plots of Figures 1,
we show the errors of the state and the adjoint for the di�erent choices of 𝜀. The results show that
for a given set of parameters 𝜅, 𝜈 , 𝛽 , there is an “optimal” under-relaxation parameter 𝜀, in fact, the
value 𝜀 = 0.5. We notice that the size of 𝛽 balances between the errors of the state and those of the
adjoint variables. The large value of 𝛽 chosen here e�ects the stronger decay of the adjoint errors at the
interface. We also included a nonlinear damping as in the Example 2, which did not show an adverse
e�ect. In fact, it has dissipative nature, which may even enhance the convergence properties as pointed
out in [13]. As noted above, a detailed treatment on the numerical realization, including a convergence
analysis on the semi-discrete level, a full treatment of nonlinearities, more break-points 𝑇𝑘 , constrained
controls, more relevant examples on the level of networks as in Example 2, the use of the a posteriori
error estimates, and, �nally, the treatment of the virtual control paradigm is far beyond this article and
has to be presented in a forthcoming publication. Fast convergence cannot be expected, however, in
general as the iteration is related to an Uzawa-type saddle-point method [9].

8. Conclusion

In conclusion, we designed a time-domain decomposition for time-varying systems of semilinear
hyperbolic equations. We proved convergence of the iterates and provided an a posteriori error estimate.
The method extends the one originally given in [14, 15] for linear time-invariant elliptic and hyperbolic
equations. Even though the main ideas are similar, the proofs are substantially di�erent. A complete
numerical realization of the iterative time-domain decomposition method is beyond the scope of this
article and, instead, we refer to a forthcoming publication. However, to give some �rst insights into the
interplay of the various parameters involved in the iteration process, we already provided some �rst
numerical experiments in this paper.
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