
March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

Mathematical Models and Methods in Applied Sciences

© World Scientific Publishing Company

Model predictive control with random batch methods for a guiding

problem

Dongnam Ko

Department of Mathematics, The Catholic University of Korea
Jibongro 43, Bucheon, Gyeonggido 14662, Republic of Korea

dongnamko@catholic.ac.kr

Enrique Zuazua

Chair in Applied Analysis, Alexander von Humboldt-Professorship, Department of Mathematics,

Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany, and

Chair of Computational Mathematics, Fundación Deusto, University of Deusto
48007 Bilbao, Basque Country, Spain, and

Departamento de Matemáticas, Universidad Autónoma de Madrid

28049 Madrid, Spain
enrique.zuazua@fau.de

Received (Day Month Year)

Revised (Day Month Year)

Communicated by (xxxxxxxxxx)

We model, simulate and control the guiding problem for a herd of evaders under the
action of repulsive drivers. The problem is formulated in an optimal control framework,

where the drivers (controls) aim to guide the evaders (states) to a desired region of the

Euclidean space. The numerical simulation of such models quickly becomes unfeasible for
a large number of interacting agents, as the number of interactions grows O(N2) for N

agents. For reducing the computational cost to O(N), we use the Random Batch Method

(RBM), which provides a computationally feasible approximation of the dynamics. First,
the considered time interval is divided into a number of subintervals. In each subinterval,

the RBM randomly divides the set of particles into small subsets (batches), considering

only the interactions inside each batch. Due to the averaging effect, the RBM approx-
imation converges to the exact dynamics in the L2-expectation norm as the length of

subintervals goes to zero. For this approximated dynamics, the corresponding optimal
control can be computed efficiently using a classical gradient descent. The resulting con-

trol is not optimal for the original system, but for a reduced RBM model. We therefore
adopt a Model Predictive Control (MPC) strategy to handle the error in the dynamics.
This leads to a semi-feedback control strategy, where the control is applied only for a

short time interval to the original system, and then compute the optimal control for the

next time interval with the state of the (controlled) original dynamics. Through numer-
ical experiments we show that the combination of RBM and MPC leads to a significant

reduction of the computational cost, preserving the capacity of controlling the overall
dynamics.

Keywords: Agent-based models; Guiding problem; large scale complex systems; Random

1

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

2

Batch Method; Model Predictive Control.

AMS Subject Classification: 49M29, 90C59, 93B51

1. Introduction

Control problems for collective behavior systems have received huge attention

recently,2,4, 15,25 due to the growing needs in applications. In the context of in-

teracting particle systems, the emergence of collective behavior can be viewed as

a decentralized control problem,9,13,27 where each individual reacts to the other

agents according to its own decision, but a certain desired collective motion (such

as synchronization) may arise. As indicated in literature,5 a centralized control can

play as an external interference boosting the collective behavior to evoke the desired

dynamics. From a practical viewpoint, the control of a complex system is commonly

designed to manipulate a small portion of the particles,7,30 or preselected agents,

playing the role of leaders or informed agents.15,33

For example, the positions of a group of vehicles can be effectively operated by

local leaders,15 and a few drones can keep a herd of birds away at an airport.16 One

of the most relevant examples is the shepherding problem, where a few shepherd

dogs are required to handle a herd of sheep. Many attempts have been made in

various contexts to understand how the dogs can affect a group of sheep,36 and

steer them to the desired region.24

Our interest in this paper consists in modeling, deriving and simulating optimal

control strategies for guiding problems, where a small number of repelling agents

(drivers), which play the role of controls, have to guide a herd of flocking agents

(evaders), that we interpret as states, toward a given desired area. As a basis, we

follow the formulation based on the guidance-by-repulsion14,23 paradigm.

The problem with one driver and one evader has been addressed in Ref. 14.

Its long-time behavior and controllability properties were analyzed in Ref. 23. In

that simplified setting numerical simulations show that the guiding problem is very

sensitive to the motion of drivers, the optimization process being highly non-convex.

The first difficulty encountered when addressing many evaders is the computa-

tional complexity of the forward dynamics, which dangerously increases since the

number of interactions between N evaders grows as O(N2). With the standard Pon-

tryagin approach for the optimal control as in Ref. 23, the optimization algorithm

needs to compute the forward dynamics iteratively, for example, computing the

optimal control with 4 drivers and N = 16 evaders in a time-horizon T = 40 with

time step ∆t = 0.01 requires nearly two hours in a typical laptop computer with

CPU i5-4258U 2.4GHz and RAM DDR3L 8GB 1600MHz, operated in Matlab.

To overcome this, there are two kinds of methods that commonly used, one is

for approximating dynamics and the other is to get a control without simulating

dynamics numerically. A classical treatment to approximate interacting particles

is the fast multi-pole method35 with O(N) computational complexity, but these

methods require the decay of the interaction with respect to the distance. Hence,

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

3

they are not efficient if the interactions are similar, for example, when the sheep

are gathered in a small area. On the other hand, a direct control method such as

the proportional-integral-derivative (PID) controller may not be appropriate to our

nonlinear guiding problem; as described in Ref. 24, 36, there are plenty of possible

control functions for similar control objectives that depend on the situation.

The main novelty of this article is a new computational technique for an ap-

proximately optimal control strategy allowing to handle guiding problems with a

large number of drivers and evaders. In this paper, we suggest an algorithm (see

Algorithm 1 in Section 2), based on a classical optimal control formulation, but com-

bining critically two main ingredients: First, the Random Batch Method (RBM),22

which provides an approximation of the dynamics of the interacting particle sys-

tem at a small computational cost O(N), and second, Model Predictive Control

(MPC),17 a control design methodology to stabilize the approximation error for a

long-time horizon.

The RBM is an approximation method particularly suitable in the context of

collective dynamics when the individuals are not distinguishable. Instead of comput-

ing the whole interactions, for a given P with 1 < P � N , the RBM approximates

dynamics out of O(NP) interactions. More precisely, for a small duration of time,

we split the set of particles into random small subsets (batches) which contain,

at most, P particles. Then, one only considers the interactions within each batch,

ignoring the interactions between batches. In the next time interval, to average the

random effect in time, we again choose batches independently.

Therefore, from the all-to-all interacting particle system, the RBM produces a

deterministic networked model which periodically switches the network structure.

Thanks to the random choices, the reduced RBM model approximates the original

time evolution properly based on the Law of Large Numbers. As analyzed in,22

the squared expectation distance between original and approximated trajectories

follows O(C(T)∆t/P), where C(T) is a constant growing exponentially with the

final time T . The approximation error for the guiding problem is numerically simu-

lated in Section 3.1, which draw the 95% confidence intervals from 200 independent

simulations with T = 10 and ∆t = 0.01. It shows that just one realization of the

computation on the approximated trajectories could catch the density profile of the

evaders quite precisely though the RBM relies on the randomness.

In this paper, we solve an optimal control problem on the simplified RBM model

using standard gradient descent methods. But, of course, this does not lead to

an accurate control of the original dynamics and the performance of the control

depends on the approximation error which accumulates in time. To handle the

error for a long-time horizon, we adopt the viewpoint of Model Predictive Control

(MPC).17,19,28 The basic idea of MPC is to observe the original (controlled) system

periodically to refresh the approximate dynamics and computed controls with new

data while the original system evolves in time.

The MPC works as follows. We basically solve the optimal control problem on

the RBM model with an artificial short time horizon. The control that results from

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

4

this computation is then applied to the original system. This leads to a final state

that differs from the one corresponding to the RBM model. This difference is due

to the approximation error. Of course in practical applications unexpected noise

effects can increase that gap. At the final time, we again solve the optimal control

problem for the next time interval with the state from the original system. In this

iterative way, one can force the control to adapt to the true dynamics of the system.

A more detailed description of the RBM and MPC is presented in Section 2.

As shown in this paper, the adequate combination of the RBM and MPC may

lead to a significant reduction of the computational cost preserving the efficiency of

the control strategy to steer the original dynamics. In Section 3, we checked that

the overall computational cost mainly follows the number of considered interactions.

The RBM reduces this from O(N(N +M)) into O(N(P +M)) for N evaders and

M drivers (The batch size P is commonly chosen to be 2). For instance, in one of

the examples we describe in Section 3, our method shows an 84% reduction of the

computational time on the problem of 36 evaders and 2 drivers with T = 4 and

∆t = 0.01, while the running cost (performance of control) only differs by about

0.3%, compared to the standard optimal control problem.

The rest of this paper is organized as follows. In Section 2.1, we formulate the

guiding problem as an optimal control one. From Section 2.2 to Section 2.4, we

present the preliminaries on the RBM and MPC. Then, the detailed procedure of

how to combine MPC-RBM to build our algorithm is described in Section 2.5. The

simulations are presented in Section 3 to test computational costs and approxi-

mation errors. Finally, in Section 4, we discuss our results and present some final

remarks and open problems arising in this field.

2. The MPC-RBM algorithm

In this section, we first present the guiding optimal control problem. Then, the

combined MPC-RBM algorithm is described.

2.1. Optimal control formulation on the guiding problem

Let x = (x1, . . . ,xN) ∈ RNd and v = ẋ ∈ RNd be the positions and veloci-

ties of N Newtonian particles moving in a d-dimensional space, representing the

evaders. The control is indirectly introduced through M particles represented by

y = (y1, . . . ,yM) ∈ RMd, called the drivers. We assume that the evaders interact

with other evaders and the drivers as in the following collective behavior system:

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

5

for t ≥ 0, 

ẋi = vi, i = 1, . . . , N,

v̇i =
1

N − 1

N∑
k=1,k 6=i

a(xk − xi)(vk − vi)

+
1

N − 1

N∑
k=1,k 6=i

g(xk − xi)(xk − xi)

− 1

M

M∑
j=1

f(yj − xi)(yj − xi), i = 1, . . . , N,

ẏj = uj(t), j = 1, . . . ,M

xi(0) = x0
i , vi(0) = v0

i , yj(0) = y0
j .

(2.1)

We assume that the controls u(t) = (u1(t), . . . , uM (t)) ∈ RMd completely deter-

mine the dynamics of the drivers, as a means to indirectly influence the dynamics

of the evaders.

The nonlinearities a(·), f(·) and g(·) entering in the dynamics are assumed

to be smooth and positive, except for g(·) that may have negative values as in

the context of intermolecular forces, to avoid collisions between evaders.8,11 As a

concrete example and for the purpose of developing the numerical experiments, we

define a(·), f(·) and g(·) as follows:

a(x) := 1, f(x) := 4 exp(−8|x|2) and

g(x) :=

2

(
1− 1

3
√
N |x|2

)
if x 6= 0,

0 otherwise.

(2.2)

Note that (2.2) contains an unbounded function g(·), but local existence and

uniqueness is guaranteed for initial data satisfying x0
i 6= x0

j for any i 6= j. The

dynamical properties of the system (2.1) are discussed in Ref. 16 with a similar

formulation of interactions. The global existence of solutions for (2.2) follows similar

arguments to.11

The qualitative properties of the nonlinearities in (2.2) are chosen to reflect the

following main features of the “drivers-evaders” interactions (see also Ref. 16, 23,

31, 36 for specific guiding problems):

• The evaders are influenced by a repulsive force f(·) from each driver, its

strength being decreasing as the distance increases.

• Each evader has positional interactions with other evaders given by the

function g(·), which reflects their aim to remain close together. To prevent

the collisions between evaders, we also set g(·) to have a strong negative

value when a pair of evaders is too close. Overall, all the evaders have the

tendency to gather in a disk with a diameter ∼ 0.5.

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

6

• The evaders also interact each other, through the term a(·), to align the

velocities to a common value. This plays the role of friction to the mean

velocity of evaders, which reduces the oscillatory behavior arising from g(·).

Compared to herding24,36 and flocking problems,12,21 the above system (2.1)

contains both the velocity alignment a(·) and the positional potential interac-

tions g(·). The combination of positional and velocities’ interactions is suggested

in,16,29,37 which is used to model the dynamics of birds.

Our control objective is to guide the evaders to a desired region by the loco-

motion induced by the drivers in a given time horizon. In order to formulate this

problem in the context of optimal control, we define the cost function as follows:

J(u) :=

∫ T

0

α1

N

N∑
k=1

|xk − xf |2 +
α2

M

M∑
j=1

|uj |2 +
α3

M

M∑
j=1

|yj − xf |2
 dt. (2.3)

This functional takes account, in particular, of the running cost of the distances to

the target point xf ∈ Rd. The positive constants α1, α2, α3 allow to regulate the

weight of each of the terms entering in the cost. In practice, α1 is taken to be large

compared to α2 and α3. Involving the running cost of the control by means of α2

is rather standard, to avoid unfeasibly large controls. On the other hand, the term

involving α3 prevents the drivers not to go very far from the evaders. The target

position xf is chosen as a reference point since we expect that, tracking the evaders,

the drivers will also spend most of the time near xf .

We expect that, minimizing this functional, the optimal control of the system

will guide the evaders toward the region near xf and capture them for a long time.

Of course, the efficiency on doing so will depend on the length of the time-horizon

and the value of the parameters αj , j = 1, 2, 3.

The particular case of one driver and one evader was analyzed in Ref. 14, 23. In

that case, it was proved that there exist a final time T and a control function u1 ∈
L∞((0, T),Rd) satisfying x1(T) = xf . But, of course, achieving such controllability

results is much harder for multiple drivers and evaders. This is a very interesting

open analytical problem, out of the scope of the present article.

To analyze a large number of particles (evaders), one of the well-known approxi-

mation methods is the mean-field limit.18,21 It considers the distribution of particles

instead of the whole trajectories, in the form of kinetic (or transport) equations.

Hence, the evaders need to be indistinguishable; the interactions in (2.1) only de-

pend on the relative positions and velocities, not the index i or k. In addition, if

the interactions are bounded and smooth, then the mean-field limit strategy can

be applied,5,6, 31 This mean-field approach cannot be applied when the interactions

are not identical. In that case, one may rather employ a graph limit model as in

Ref. 3.

In this paper, we study the particle description of the guiding problem due to

its simplicity and generality. Our method, combining MPC and RBM, can be easily

generalized to the mean-field control problems and other formulations since the

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

7

corresponding dynamics can be approximated by the particle model through the

characteristic equations or the space discretization.

2.2. The RBM approximation for the forward dynamics

We use the RBM in Ref. 22 to reduce the computational cost to simulate the

time evolution of the interacting particle system (2.1).

We proceed as follows.

• The control time interval [0, T] is fixed. We fix a short duration of time

∆t > 0 and the discrete times tn := n∆t.

• Then, for each interval [tn, tn+1], we independently choose random batches:

a partition of the index set {1, . . . , N} as C1n, C2n, · · · , C
N/P
n , where each

batch Cmn has P particles. If P is not a divisor of N , then we have bN/P c
batches of size P and one additional batch containing the remainders. For

simplicity, we assume that P divides N .

• In this way, each evader belongs to one and only one batch in each sub-

interval [tn, tn+1]. We build a reduced dynamics which consists in consid-

ering only the interactions inside each batch. Then, the number of interac-

tions between the evaders decreases to O(NP) from the all-to-all number

of interactions O(N2).

The resulting dynamics is of switching nature. In each time sub-interval, the

RBM rearranges the interaction network randomly. For each index i identifying an

evader, we denote Cp(i)n as the batch that, in the time interval [tn, tn+1], contains

this evader. Then, the approximated dynamics on the ith evader (xR
i and vR

i ,

i = 1, . . . , N) can be formulated as follows: for t ∈ [tn, tn+1],

ẋR
i = vR

i , i = 1, . . . , N,

v̇R
i =

1

P − 1

∑
k∈Cp(i)n \{i}

a(xR
k − xR

i)(vR
k − vR

i)

+
1

P − 1

∑
k∈Cp(i)n \{i}

g(xR
k − xR

i)(xR
k − xR

i)

− 1

M

M∑
j=1

f(yj − xR
i)(yj − xR

i), i = 1, . . . , N,

ẏj = uj(t), j = 1, . . . ,M,

xR
i (0) = x0

i , vR
i (0) = v0

i , yj(0) = y0
j , i = 1, . . . , N, j = 1, . . . ,M.

(2.4)

In (2.4), the sum of interactions is averaged by 1/(P − 1) (instead of 1/(N − 1))

since there are P − 1 interacting evaders in each batch Cp(i)n . From the viewpoint

of statistics, this is a kind of sample mean of the interactions from one batch. The

total average (population mean) of the interactions is used in the original system

(2.1).

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

8

5 10 15 20 25 30 35

5

10

15

20

25

30

35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35

5

10

15

20

25

30

35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35

5

10

15

20

25

30

35 0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1: Graphical representation of the adjacency matrix A(t) = Aij(t) for 36 evaders

with P = 2 in the time intervals [0,∆t] (left) and [∆t, 2∆t] (middle). The dotted

points illustrate the interactions within the different batches, where the diagonal

line is colored for reference. The right figure represents the averaged matrix over 400

random batches. The reduced model in each time subinterval has a sparse network,

while the original system consists of all-to-all interactions.

From the initial data x0
i and v0

i , the RBM computes (2.4) with the batches

C10 , C20 , . . . , C
N/P
0 over t ∈ [0, t1] = [t0, t1]. Then, the final data xR

i (t1) and vR
i (t1)

are taken as the initial data for the next time interval [t1, t2] on which the batches

C11 , C21 , . . . , C
N/P
1 are used. Note that the system (2.4) has a switching nature since

the batches are defined differently on each interval [tn, tn+1]. Following the iterative

calculations on n, we can get the approximated time evolution in [0, T].

The reduced system has a network structure which switches the connectivity at

each time tn. In each time subinterval, [tn, tn+1] the adjacency matrix is as follows,

An
ij :=

{
1 if i 6= j and in the same set among C1n, . . . , C

N/P
n ,

0 otherwise,

Aij(t) := An
ij for t ∈ [tn, tn+1),

which is a piecewise constant matrix. With this notation, the system (2.4) can be

understood as a deterministic switching network system for t ∈ [0, T],

ẋR
i = vR

i , i = 1, . . . , N,

v̇R
i =

1

P − 1

N∑
k=1

Aki(t)a(xR
k − xR

i)(vR
k − vR

i)

+
1

P − 1

N∑
k=1

Aki(t)g(xR
k − xR

i)(xR
k − xR

i)

− 1

M

M∑
j=1

f(yj − xR
i)(yj − xR

i), i = 1, . . . , N,

ẏj = uj(t), j = 1, . . . ,M,

xR
i (0) = x0

i , vR
i (0) = v0

i , yj(0) = y0
j , i = 1, . . . , N, j = 1, . . . ,M.

(2.5)

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

9

This system is well-posed22 so that the unique solution exists as a Lipschitz function.

The velocity vR is not C1 in general due to the discontinuities of v̇R at each tn.

The reduced system (2.5), including both the interactions among evaders and

with drivers, involves a total number of O(N(P + M)) interactions while, in the

original dynamics (2.1), the total number of interactions is O(N(N +M)) per time

step.

Fig. 1 shows the adjacency matrix in (2.5) among 36 evaders, out of a choice

of random batches of size P = 2 (left and middle). The network structure changes

at each time step, while the number of interactions is fixed to N(P − 1). When

operating the numerical simulation with T = 4 and ∆t = 0.01, the connectivity

along time [0, 4] is averaged 400 times (right). As ∆t decreases to zero, it converges

to the matrix of ones except for the diagonal elements, which is the adjacency matrix

of the original system (2.1).

Indeed, in Ref. 22, the error analysis of the RBM is developed for a collective

behavior model in L2-expectation sense. In detail, the expected squared distance

follows,

sup
0≤t≤T

E

[
1

N

N∑
i=1

|xR
i (t)− xi(t)|2

]
. exp(CT)∆t

(
1

P − 1
− 1

N − 1

)
, (2.6)

where C is a constant related to the supremum of interactions which depends on

the functions a, g, f and initial data. The exponentially growing term exp(CT)

can be eliminated when the system has suitable contraction properties,22 which

does not hold for our approximated system (2.4). The uniform-in-time error anal-

ysis is still open for general collective behavior systems though in the numerical

simulations10,20 the RBM shows a successful guess on the long-time behavior.

Note that our goal is to find an approximated control, similar to the optimal

control for the original system (2.1) with the cost function J in (2.3). Our strategy

is based on computing the optimal control for the approximated system (2.4) with

the corresponding cost function JR:

JR(u) :=

∫ T

0

α1

N

N∑
k=1

|xR
k − xf |2 +

α2

M

M∑
j=1

|uj |2 +
α3

M

M∑
j=1

|yj − xf |2
 dt. (2.7)

2.3. The RBM for the optimal control problem

In order to find the optimal control of the reduced problem, we need to compute

the gradient of the cost function JR in (2.7) on the reduced RBM model (2.4). The

gradient can be derived, following the Pontryagin maximum principle,32,38 from the

time evolution in the adjoint system of (2.4).

First, we consider the adjoint of the original system (2.1). From the Pontryagin

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

10

maximum principle, if we denote the controlled system (2.1) and the cost (2.3) as
ẋ = Fx(x,v,y),

v̇ = Fv(x,v,y),

ẏ = Fy(x,v,y),

and J =

∫ T

0

L(x,v,y)dt, (2.8)

then its formal adjoint system can be described by the backward equations for

t ∈ [0, T], 
−ṗT = pT∇xF

x + qT∇xF
v + rT∇xF

y +∇xL,

−q̇T = pT∇vF
x + qT∇vF

v + rT∇vF
y +∇vL,

−ṙT = pT∇yF
x + qT∇yF

v + rT∇yF
y +∇yL,

pT(T) = 0, qT(T) = 0, rT(T) = 0,

(2.9)

where the variables p(t) ∈ RNd, q(t) ∈ RNd and r(t) ∈ RMd are the adjoint states

of x, v and y, respectively, and pT denotes the transpose of p.

In our case, the adjoint system (2.9) of the original dynamics (2.1) would take

the following form in the dual variables (p,q, r) corresponding to (x,v,y):

−ṗT
i =

1

N − 1

N∑
k=1,k 6=i

qT
k

[
∇xi

a(xk − xi)(vk − vi)) +∇xi
(g(xk − xi)(xk − xi))

]
− 1

M

M∑
j=1

qT
i ∇xi(f(yj − xi)(yj − xi)) +

2α1

N
(xi − xf), i = 1, . . . , N,

−q̇T
i = pT

i +
1

N − 1

N∑
k=1,k 6=i

qT
ka(xi − xk), i = 1, . . . , N,

−ṙTj = − 1

M

N∑
k=1

qT
k∇yj (f(yj − xi)(yj − xi)) +

2α3

M
(yj − xf), j = 1, . . . ,M,

pT
i (T) = 0, qT

i (T) = 0, rTj (T) = 0, i = 1, . . . , N, j = 1, . . . ,M.

Finally, the total derivative of the cost function J in (2.8) with respect to the control

u(t) is

∇uJ = ∇u[p · Fx + q · Fv + r · Fy + L] = r +
α2

M
u. (2.10)

Therefore, the implementation of the gradient descent method for the original

system (2.1) would lead to an iterative approximation of the optimal control as

below

uk+1 := uk − α∇uJ(uk), k ≥ 0

out of an initial guess u0 (that we could take to be u0 = 0) and with α > 0 small

enough.

But, as we have described in the introduction, this algorithm is computationally

expensive since, in each step of the gradient descent iteration, it requires to solve

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

11

the full state equation and adjoint system taking account of all interactions. We

now present the adaptation of the gradient descent to the RBM reduced model.

We start from the RBM approximation (2.5) in Section 2.2. The corresponding

adjoint system is computed piecewise in each of the time subintervals [tn, tn+1],

reducing the interaction terms to those corresponding to each batch. The adjoint

dynamics of the reduced system for (pR,qR, rR) then reads as follows:

−(ṗR
i)T =

1

P − 1

N∑
k=1

Aki(t)(q
R
k)T

[
∇xR

i
(a(xR

k − xR
i))(vR

k − vR
i)
]

+
1

P − 1

N∑
k=1

Aki(t)(q
R
k)T

[
∇xR

i
(g(xR

k − xR
i)(xR

k − xR
i))
]

− 1

M

M∑
j=1

(qR
i)T∇xR

i
(f(yj − xR

i)(yj − xR
i)) +

2α1

N
(xR

i − xf), i = 1, . . . , N,

−(q̇R
i)T = (pR

i)T +
1

P − 1

N∑
k=1

Aki(t)(q
R
k)Ta(xR

i − xR
k), i = 1, . . . , N,

−(ṙRj)T = − 1

M

N∑
k=1

(qR
k)T∇yj

(f(yj − xR
i)(yj − xR

i)) +
2α3

M
(yj − xf), j = 1, . . . ,M,

(pR
i)T(T) = 0, (qR

i)T(T) = 0, (rRj)T(T) = 0, i = 1, . . . , N, j = 1, . . . ,M.

(2.11)

Remark 2.1. Note that the adjoint system of the reduced RBM model coincides

with the reduced RBM model of the complete adjoint system with the same adja-

cency matrix A(t). Hence, the reduced adjoint system (2.11) can be derived sym-

bolically from (2.5).

As in the forward dynamics, the RBM reduces the computational cost to

O(N(P + M)) in the computation of the adjoint system. The gradient descent

iteration can then be computed similarly to (2.10) in order to find the optimal con-

trol of the reduced model (2.4). From the reduced cost function JR in (2.7), we use

the following iterative scheme:

uk+1 := uk − α∇uJ
R(uk), k ≥ 0. (2.12)

As we mentioned in (2.6), the approximation error accumulates in time, in the

worst case, exponentially on T following the Gronwall’s inequality. Hence, the result-

ing control may not suffice to guide the original system (2.1) in a long-time horizon.

The MPC procedure is now presented to deal with the model approximation error

by observing the original controlled system from time to time.

2.4. The MPC procedure for the approximated model

MPC is aimed to adapt the control obtained for the reduced dynamics (2.5) to

the full system (2.1) in an iterative manner.

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

12

First, we numerically compute the approximated control by minimizing JR in

(2.7) over an auxiliary time interval [0, T̂] ⊂ [0, T]. Moreover, we consider here a

shorter time interval [0, τ] ⊂ [0, T̂] and apply the computed control to the original

system (2.1) only for [0, τ]. The time parameters τ and T̂ need to be chosen a

priori. Then, the final state at time t = τ is used as the initial data of the reduced

dynamics (2.5) for the next interval [τ, τ+ T̂]. We again apply the control computed

on [τ, τ + T̂] only during the time interval [τ, 2τ]. If the final time τ + T̂ is larger

than the original time horizon T , then we can cut down the time interval to [τ, T] or

may still use [τ, τ + T̂] for convenience. In this manner, the MPC strategy updates

the state after each time interval of length τ , and the error from the RBM is not

accumulated. This iterative process is carried out until the final time T .

A proper choice of τ may depend on the error from the RBM. If the reduced

model gets more accurate, then we may choose a bigger τ so that the computation

becomes cheaper. On the other hand, T̂ is rather affected by the nature of the system

(2.1). If T̂ is too short, the computed control would significantly differ from the

optimal control for the whole time interval [0, T]. A conservative choice is T̂ = T ,

however, in many cases smaller T̂ is enough since τ needs to be much shorter.

By setting T̂ properly, MPC can also handle the infinite horizon control problem

(T =∞).

The time parameters τ and T̂ critically affect the performance of the MPC

strategy though there is no general argument to determine them. In the numerical

simulations of Section 3, we set T = 4, τ = 1.5 and T̂ = 3.

The error induced by the MPC strategy has been studied for linear prob-

lems,26,34 however, it is difficult to extend to nonlinear systems as the guiding

problem (2.1). The analysis of the reliability of the MPC-RBM strategy with error

bounds is an interesting and challenging open problem. In the absence of analytical

results on the MPC-RBM algorithm, we present several computational experiments

that confirm the numerical efficiency of the method later in Section 3.

2.5. Implementation of the MPC-RBM algorithm

We now summarize the discussion from Section 2.1 to Section 2.4 on the RBM-

MPC algorithm:

(1) The objective of the algorithm is to control the system (2.1) with a small

computational cost, solving the optimal control problem for the cost JR(u)

associated with the functional (2.3) in a (possibly long) time-interval [0, T].

This is done by combining MPC with the RBM approximated dynamics.

(2) We set a short time length τ > 0 for the control time and a long time

length T̂ ≤ T for the predictive time. Then, we define the discrete times

τm := mτ , m ≥ 0. For each m, we iteratively solve the optimal control

problems on each predictive time interval as follows.

(3) Since the original dynamics is autonomous, the time-interval [τm, τm + T̂]

can be shifted to [0, T̂]. The RBM model (2.5) is implemented, combined

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

13

with the Euler forward time-discretization. Then, the RBM control is com-

puted by a gradient descent method (2.12) employing the corresponding

RBM adjoint system (2.11).

(4) This control is implemented in the original system up to time τ1.

(5) This strategy is iteratively applied in the intervals [τm, τm+T̂] for the whole

time interval [0, T].

This Algorithm 1 has the following features:

(1) The cost function JR monotonically decreases along the iteration of the

gradient method and the algorithm converges to a local minimum. This is

different from other stochastic approaches that guarantee the convergence

only in expectation.

(2) The resulting control is not the (local) minimizer of the cost J for the

original dynamics. But it gives an approximation, which is the minimizer

of the cost JR for the approximated dynamics.

(3) The total computational effort is reduced by a factor O(N(P +

M))/O(N(N + M)), N being the dimension of the original system and

P the size of the batches.

(4) The process of MPC acts in a semi-feedback way, periodically checking the

current state of the original system to update the control.

3. Simulations on the MPC-RBM algorithm

We consider the guiding problem with 36 evaders (N = 36) and 2 drivers (M =

2) in the two-dimensional space (d = 2). The target is chosen to be xf = (0.5, 0.5)

with the final time T = 4 and the time step ∆t = 0.01 in the implementation of

the RBM. Initially the evaders are uniformly distributed in [−0.2, 0.2]2 with zero

velocities, and the drivers start from two points (−1, 0) and (0,−1).

The cost function is given by (2.3) and (2.7) with the regularization coefficients

α1 = 1 and α2 = α3 = 10−4 as follows:

J(u) :=

∫ T

0

 1

N

N∑
k=1

|xk − xf |2 +
10−4

M

M∑
j=1

|uj |2 +
10−4

M

M∑
j=1

|yj − xf |2
 dt.

The numerical simulations are operated in Matlab with a laptop consisting of

CPU i5-4258U 2.4GHz and RAM DDR3L 8GB 1600MHz. The symbolic calculations

on gradients and adjoints are implemented with CasADi.1 The functions on the

forward and adjoint dynamics (RBM-STATE and RBM-COSTATE in Algorithm

1) are also implemented as CasADi symbolic functions for a fast calculation in a

pre-calculated form. The random batches are chosen with the randperm function in

Matlab.

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

14

Algorithm 1 MPC-RBM algorithm for (2.1)

P , τ , ∆t and T̂ are given.

function RBM-State(x0,v0,y0,u(t))

Fix a random seed for the choices of batches.

for n from 0 to [T̂ /∆t] do

Divide {1, 2, . . . , N} into random batches with size P .

for each batch do

Update xR
i and vR

i by solving the reduced model (2.5) from t = n∆t

to t = (n+ 1)∆t.

end for

Update yi from t = n∆t to t = (n+ 1)∆t.

end for

return xR(t), vR(t) and y(t).

end function

function RBM-Costate(p0,q0, r0,x(t),v(t),y(t)))

Fix a random seed, the same one from RBM-State in reverse order.

for n from [T̂ /τ̂] to 0 do

Divide {1, 2, . . . , N} into random batches with size P .

for each batch do

Update pR
i and qR

i (the adjoint of xR
i and vR

i) by solving the adjoint

of the reduced model (2.5) from t = (n+ 1)∆t to t = n∆t.

end for

Update rRi (the adjoint of yi) from t = (n+ 1)∆t to t = n∆t.

end for

return pR(t), qR(t) and rR(t).

end function

function OCP(x0,v0,y0,u0(t)))

Define the cost function JR with (2.7) over [0, T̂].

Initialize the control u(t) with a guess u0(t).

while ‖DuJ
R‖ < ε (or any stopping criteria) do

Operate RBM-State and RBM-Costate.

Calculate the gradient DuJ
R of the cost JR.

Update u(t) using DuJ
R.

end while

return u(t).

end function

procedure MPC-RBM algorithm

Set the initial data x0,v0,y0 for the system (2.1).

Give an initial guess on control u0(t) for t ∈ [0, T].

Let τm := mτ for m = 0, 1, . . . , [T/τ] + 1.

for m from 0 to [T/τ] do

Operate the function OCP with initial data x(τm),v(τm),y(τm) and u0(t)

to get the optimal control u(t) for t ∈ [τm, τm + T̂].

Process the original system (2.1) with the control u(t) for t ∈ [τm, τm+1].

end for

return the trajectories and control over t ∈ [0, T].

end procedure

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

15

0.1 0.2 0.3 0.4 0.5 0.6

Abscissa

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

O
rd

in
a
te

Trajectory of one evader over time

Mean trajectory from RBM

Exact trajectory

Reachable region from RBM

1.8 2 2.2 2.4 2.6 2.8

Abscissa

1.8

2

2.2

2.4

2.6

2.8

O
rd

in
a
te

Distribution of 36 particles at fixed time

Positions from RBM

Exact Positions

Reachable Region from RBM

Fig. 2: Simulation of the evaders’ trajectories using the RBM (P = 2). Left : the blue

line shows the mean trajectory of one evader starting from (−0.2, 0.2) for t ∈ [0, 4],

which is averaged among 200 RBM approximations. The red line represents the

trajectory from (2.1). The reachable region is drawn with 95% reliability from the

standard deviation and the 2D normal distribution. Right : The blue marks show

the final positions of the 36 evaders from the reduced RBM model at t = 10, while

the red marks are the final positions from the original system. The reachable region

draws the area containing more than one particle from 200 RBM approximations,

which represents 99% credible region.

Time-evolution Computation time (Ratio) Interactions (Ratio)

Full system 37.7220 (9.759) 8136 (10.27)

RBM (P = 2) 3.8654 (1.000) 792 (1.000)

RBM (P = 4) 6.6993 (1.733) 1224 (1.545)

RBM (P = 6) 8.9043 (2.304) 1656 (2.091)

RBM (P = 9) 11.3447 (2.935) 2304 (2.909)

RBM (P = 18) 19.4503 (5.032) 4248 (5.364)

Table 1: Computation time (in milliseconds) to calculate the forward dynamics

(controlled trajectories) for t ∈ [0, 10]. For each reduced RBM model, the number

of calculated interactions (per time step) is also described to compare with the

original dynamics. The standard Euler forward method is used and averaged for

1000 simulations.

3.1. Simulations on RBM for the controlled dynamics

First, we explore the performance of the RBM for various values of P in the

controlled dynamics, to discuss its time efficiency and approximation error.

Fig. 2 shows the positions of evaders simulated along time (left) and at fixed time

(right). The trajectories are calculated with the original system and the reduced

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

16

Fig. 3: The comparison between the dynamics from the RBM approximations and

the exact system over time t ∈ [0, 10]. Left : the `2-errors on positions at each time

with 200 independent RBM approximations for various P . The trajectory with

median error is drawn in a thick line. The colored region shows the confidence

interval for each time with 95% reliability. Right : the corresponding `2-errors for

velocities.

RBM model with the same control functions. The controls are given by u1(t) =

(0.2, 0.02) and u2(t) = (0.02, 0.2) for t ∈ [0, 10], where the drivers push the evaders

toward the northeast direction. Note that the motion of the drivers is not optimized

in any sense but follows a constant function toward the direction of the sheep. This

simulation then shows the error between the original and approximated trajectories

from the same control functions.

The left figure shows the trajectory of one evader for t ∈ [0, 4] starting from the

point (−0.2, 0.2). The blue colored reachable region is the confidence region with

radius 1.73σ (95% reliability from the 2D normal distribution) from the standard

deviation σ at each time. In the simulation, the radius of the reachable region at

t = 4 is nearly 0.1, which is too rough compared to the distance between nearby

evaders. However, according to the right figure, the blue markers (evaders from

the reduced model) have a similar distribution to the red dots (evaders from the

original system) at fixed time, t = 10. In particular, the reduced model produces

good approximations for the mean position and the diameter of the herd, which are

critical in the guiding problem.

On the other hand, Fig. 3 shows the approximation errors while the system

evolves in time t ∈ [0, 10]. For each batch size P , 200 independent RBM approxi-

mations are numerically simulated to present the averaged `2 errors on positions,

(Error on positions)(t) :=
1

N

√√√√ N∑
i=1

|xR
i (t)− xi(t)|2, N = 36,

and also for velocities. Among these 200 approximations, a representative one is

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

17

Adaptive GD GD iter. EV comp. Cost J Comp. time (Ratio)

Full system 3123 9415 0.6646 767.96 (8.004)

RBM (P = 2) 2721 7567 0.6665 95.95 (1.000)

RBM (P = 4) 3054 9208 0.6651 164.02 (1.710)

RBM (P = 6) 3027 9127 0.6651 214.05 (2.231)

RBM (P = 9) 2604 7858 0.6648 229.57 (2.393)

RBM (P = 18) 2654 8008 0.6648 392.71 (4.093)

Table 2: The computation time (Comp. time) in the adaptive gradient descent

algorithm for the guiding problem. The stopping criterion is set with tolerance

10−6 on the cost J , which tests the ratio between the difference of the cost and

the previous cost. GD iterations (GD iter.) are the number of iterations in gradient

descent, and EV computations (EV comp.) are the number of calculations on the

time evolution for the adaptive step size.

drawn in a thick colored line, which has the median value of the time-integrated

errors: ∫ T

0

1

N

√√√√ N∑
i=1

|xR
i (t)− xi(t)|2dt.

The colored region represents the confidence interval at each time, showing the

other RBM approximations except for 10 trajectories (hence, 95% reliability) with

5 biggest and 5 smallest errors. Note that the errors on velocities are bounded

and the errors on positions grow linearly on time t, not exponentially. We can also

observe that the errors are reduced and more stable when P gets bigger.

In Table 1, the computation time for the evolution is described with different

values of P , averaged over 1000 simulations. For N evaders and M drivers in a d-

dimensional space, the number of interactions in the derivatives (ẋR, v̇R, ẏ) can be

estimated by Nd(1 +Md+ P (d+ 1)). Therefore, from the full system to the RBM

one with P = 2, the computational cost is divided, roughly, by a factor of 10 (8136

in the original system and 792 in the reduced model). Note that the computational

time is nearly proportional to the number of interactions in Table 1.

3.2. Simulations on RBM for the optimal controls

We now compute the optimal controls both for the original system and the

reduced RBM model. As described above, we fix the choice of random batches

during the optimization process.

In order to find the optimal control, here we use the gradient descent with

an adaptive step size. The initial guess on the control is the constant functions

used in the simulations of Fig. 2. The step size α in (2.12) is initially 0.1. If the

cost JR(uk+1) is not smaller than JR(uk), we try the half step size for (2.12) and

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

18

-1 -0.5 0 0.5 1 1.5

abscissa

-1

-0.5

0

0.5

1

1.5

o
rd

in
a

te

Position error = 0.65467

Drivers

Evaders

0 1 2 3 4

Time

0

5

10

15

20

25

30

A
m

p
lit

u
d

e
 o

f
c
o

n
tr

o
ls

|u

j(t
)|

Control cost = 9.9126

first driver

second driver

-1 -0.5 0 0.5 1 1.5

abscissa

-1

-0.5

0

0.5

1

1.5

o
rd

in
a

te

Position error = 0.65744

Drivers

Evaders

0 1 2 3 4

Time

0

5

10

15

20

25

A
m

p
lit

u
d

e
 o

f
c
o

n
tr

o
ls

|u

j(t
)|

Control cost = 9.039

first driver

second driver

Fig. 4: Controlled trajectories generated by the optimal controls calculated with the

original system (above) and the RBM model with P = 2 (below). The trajectories

are simulated from the original system. Left : the trajectories of the drivers and

evaders for t ∈ [0, 4]. Red lines are for the evaders and blue lines are for the drivers.

Initially the evaders are pushed in the northeast direction. The position error de-

notes the time integration of the averaged squared distance from the evaders to the

target point. Right : the strength of control functions along time. The control cost

is the sum of time integrations, one on the averaged squared norm of the controls

and the other on the averaged squared distance from the drivers to the target.

compute uk+1 again until JR(uk+1) < JR(uk). The algorithm will be terminated

if the step size α is less than 10−15 but still JR(uk+1) ≥ JR(uk). For the next

iteration of the gradient descent, we double the step size of the previous iteration,

to avoid redundant iterations and get a faster convergence to a local minimum. This

adaptive method guarantees the monotonicity of the approximated cost JR during

the optimization process.

Table 2 shows the computation time to find the optimal controls with different

values of P . Note that the optimization steps are not much different in all cases,

hence, the computation time follows similar ratios to Table 1.

In Fig. 4, the controlled trajectories are presented with the different optimal

controls from the original system and the reduced model (P = 2). Both trajectories

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

19

-1 -0.5 0 0.5 1 1.5

abscissa

-1

-0.5

0

0.5

1

1.5

o
rd

in
a

te
Position error = 0.65375

Drivers

Evaders

0 1 2 3 4

Time

0

5

10

15

20

25

30

35

A
m

p
lit

u
d

e
 o

f
c
o

n
tr

o
ls

|u

j(t
)|

Control cost = 11.7005

first driver

second driver

-1 -0.5 0 0.5 1 1.5

abscissa

-1

-0.5

0

0.5

1

1.5

o
rd

in
a

te

Position error = 0.65676

Drivers

Evaders

0 1 2 3 4

Time

0

5

10

15

20

25

30
A

m
p

lit
u

d
e

 o
f

c
o

n
tr

o
ls

|u

j(t
)|

Control cost = 10.0758

first driver

second driver

Fig. 5: The controlled trajectories from the MPC algorithms with τ = 1.5 and T̂ = 3

over the original system (above) and the reduced RBM model with P = 2 (below).

Left : the trajectories of the drivers and evaders for t ∈ [0, 4]. Right : the strength of

control functions along time.

are simulated on the system (2.1). Note that the detailed motion of drivers differs,

however, the overall running costs are similar, as presented in Table 2.

3.3. The effect of MPC in the guiding problem

The simulations in Fig. 4 show the open-loop optimal control, which does not use

the strategy of MPC. Next, we compare the MPC-RBM algorithm with the same

conditions. Fig. 5 shows the simulations using the strategy of MPC, where the con-

trols are calculated from the original system (above) and the RBM approximation

with P = 2 (below).

For the process of MPC, we set τ = 1.5 and T̂ = 3. This implies that the controls

on the intervals [0.0, 1.5], [1.5, 3.0] and [3.0, 4.0] are calculated from the predictive

time intervals [0.0, 3.0], [1.5, 4.5] and [3.0, 6.0], respectively. For the first interval

[0, 3], we used the same initial guess on the control as before. However, for the next

time intervals, we used the control obtained in the previous time intervals. In detail,

for the second interval [1.5, 4.5], we used the optimal control from the time horizon

[0.0, 3.0] to apply it on [1.5, 3.0], and set zero values on [3.0, 4.5].

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

20

Control interval GD iter. Comp. time Cost J

MPC-Full system [0.0, 1.5] 2819 586.94 0.6654

(Fig. 5, above) [1.5, 3.0] 1307 241.98

(Total time: 955.81) [3.0, 4.0] 7006 126.89

MPC-RBM (P = 2) [0.0, 1.5] 1727 47.42 0.6668

(Fig. 5, below) [1.5, 3.0] 216 7.30

(Total time: 82.96) [3.0, 4.0] 1040 28.24

Table 3: The number of iterations and computation time (in seconds) for Fig. 5 to

find the optimal controls with MPC.

One of the differences between Fig. 4 and Fig. 5 is the motion of the drivers near

the final time. In Fig. 5, the drivers move around the evaders to capture them near

the target point (0.5, 0.5). This is due to the effect of T̂ since the control is obtained

with the dynamics on t ∈ [0, 6], not [0, 4]. Therefore, in Fig. 5, the control on the

time interval [3, 4] is vibrating and not ignorablly small compared to the control

in Fig. 4. Roughly speaking, the optimal control manipulates the evaders into a

desired state until the final time T = 4, while the approximated control wants to

keep it for a longer time, t = 6. Due to the unstability of the final state of evaders,

the optimal control with, for example, an infinite horizon, needs to be active for the

whole time.

On the other hand, the computation time for Fig. 5 is described in Table 3. The

MPC algorithm formulates the optimal control problems three times, but the overall

times are similar to Table 2. In particular, the simulation of the MPC algorithm

takes 956 seconds with the original system and 83 seconds with the RBM, while the

open-loop controls are calculated with 768 and 96 seconds, respectively.

Since it differs from case to case, it is difficult to estimate the computation time

with MPC. However, note that the computational cost of the MPC-RBM algorithm

is still in the order of O(N(P +M)), which is much less than O(N2) of the original

system when N is large.

3.4. Simulations of MPC-RBM on a noisy system

As we presented in Section 2.4, the strategy of MPC is adopted to overcome the

errors from the reduced dynamics. This effect can be seen significantly when the sys-

tem has a noisy behavior. We consider a stochastic system by adding multiplicative

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

21

-1 -0.5 0 0.5 1 1.5

abscissa

-1

-0.5

0

0.5

1

1.5

o
rd

in
a

te
Position error = 0.7211

Drivers

Evaders

0 1 2 3 4

Time

0

5

10

15

20

25

30

A
m

p
lit

u
d

e
 o

f
c
o

n
tr

o
ls

|u

j(t
)|

Control cost = 9.9126

first driver

second driver

-1 -0.5 0 0.5 1 1.5

abscissa

-1

-0.5

0

0.5

1

1.5

o
rd

in
a

te

Position error = 0.68211

Drivers

Evaders

0 1 2 3 4

Time

0

5

10

15

20

25

30
A

m
p

lit
u

d
e

 o
f

c
o

n
tr

o
ls

|u

j(t
)|

Control cost = 10.5693

first driver

second driver

Fig. 6: The simulations on a noisy system with the open-loop control (above) and

the control from the MPC-RBM algorithm with P = 2, τ = 1 and T̂ = 3 (below).

The multiplicative noise is added on the evaders’ velocities, where the evaders escape

to the right direction in the case of the open-loop control. Left : the trajectories of

the drivers and evaders for t ∈ [0, 4]. Right : the strength of control functions along

time.

Control interval GD iter. Comp. time Cost J

MPC-RBM, noisy system [0.0, 1.0] 1727 47.42 0.7040

(Fig. 6) [1.0, 2.0] 429 12.27

(Total time: 124.33) [2.0, 3.0] 48 1.59

[3.0, 4.0] 2252 63.05

Table 4: The number of iterations and computation time (in seconds) for Fig. 6 to

find the optimal controls with the MPC-RBM algorithm.

noise vidB
i
t to the time derivatives of the velocities in (2.1):

ẋi = vi, i = 1, . . . , N,

dvi =

 1

N − 1

N∑
k=1,k 6=i

a(xk − xi)(vk − vi)−
1

N − 1

N∑
k=1,k 6=i

g(xk − xi)(xk − xi)

− 1

M

M∑
j=1

f(yj − xi)(yj − xi)

 dt+ σvidB
i
t, i = 1, . . . , N

ẏj = uj(t), j = 1, . . . ,M,

xi(0) = x0
i , vi(0) = v0

i , yj(0) = y0
j , i = 1, . . . , N, j = 1, . . . ,M,

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

22

where (B1
t , . . . , B

N
t) is the N -dimensional Brownian motion and the noise strength

σ is a constant, σ = 0.5. The multiplicative noise is simulated with Milstein method.

Fig. 6 shows the numerical simulations with the open-loop control (above) and

the control from the MPC-RBM algorithm (below). The open-loop control is the

one we calculated in Fig. 4 from the original deterministic system (2.1). The MPC-

RBM algorithm is operated from the RBM reduced model (2.4) with τ = 1 and

T̂ = 3 by updating the controlled trajectories of the noisy system. We set a smaller

τ compared to the Fig. 5 since the difference from the controlled system and the

reduced model is increased.

In the open-loop control, the evaders escape to an unexpected direction near

the final time. Using the MPC-RBM algorithm, the drivers effectively surround the

evaders with the information at t = 1, 2, and 3. The computation time and the

cost functions are described in Table 4, where the cost function is reduced to 0.7040

from the cost of the open-loop control, 0.7561.

4. Conclusion and final remarks

In this paper, we combine the model predictive control (MPC) with the random

batch methods (RBM) to get a reliable control strategy for the guiding problem with

a large number of evaders in a short computation time. The suggested algorithm

finds the optimal control on a reduced model from the RBM, as a predictive model

in the process of MPC.

The RBM simplifies the full system through the random sampling of the in-

teractions. With a given batch size P with 1 < P < N , the computation cost on

the dynamics is reduced to the order of O(N(P + M)) from O(N(N + M)) for

the problem of N evaders and M drivers. Hence, in the MPC-RBM algorithm, the

overall computation time is significantly reduced when there are plenty of evaders.

Though our focus is on a specific situation, the MPC-RBM algorithm works

on a general interacting particle system. For example, the guiding problem can be

simulated in a three-dimensional space or with a restriction on control. However, the

error analysis of the algorithm is still open and leads to several interesting questions

on the guiding problem. First, the error analysis of Ref. 22 only suggests the rough

estimate in (2.6) that grows at most exponentially on the final time. Since Fig. 3

shows a linear growth, the approximation error for the guiding system (2.1) may

be smaller due to the properties of the collective behavior dynamics. Moreover, the

performance of the approximated control looks better than the approximation error

by comparing Fig. 3 and Fig. 4. This seems also related to the fact that, in Fig. 2,

the RBM approximates the density profile much better than one particle trajectory.

The error analysis on the MPC-RBM algorithm will be left as a future work.

Acknowledgment

The authors would like to thank Dr. Umberto Biccari and Dr. Daniel Veldmann

for their helpful comments on this work. This project has received funding from the

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

23

European Research Council (ERC) under the European Union’s Horizon 2020 re-

search and innovation programme (grant agreement No. 694126-DyCon). The work

of D. Ko was supported by the Catholic University of Korea, Research Fund, 2021,

and by National Research Foundation of Korea (NRF-2021R1G1A1008559). The

work of E. Zuazua has been funded by the Alexander von Humboldt-Professorship

program, the European Union’s Horizon 2020 research and innovation programme

under the Marie Sklodowska-Curie grant agreement No.765579-ConFlex, grant

MTM2017-92996-C2-1-R COSNET of MINECO (Spain), ELKARTEK project KK-

2020/00091 CONVADP of the Basque Government, AFOSR Grant FA9550-18-1-

0242, and Transregio 154 Project *Mathematical Modelling, Simulation and Opti-

mization using the Example of Gas Networks* of the German DFG

References

1. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl, Casadi: a software
framework for nonlinear optimization and optimal control, Math. Program. Comput.
11 (2019) 1–36.

2. R. Bailo, M. Bongini, J. A. Carrillo and D. Kalise, Optimal consensus control of the
Cucker-Smale model, IFAC-PapersOnLine 51 (2018) 1–6.

3. U. Biccari, D. Ko and E. Zuazua, Dynamics and control for multi-agent networked
systems: A finite-difference approach, Math. Models Methods Appl. Sci. 29 (2019)
755–790.

4. M. Bongini, M. Fornasier, O. Junge and B. Scharf, Sparse control of alignment models
in high dimension, Netw. Heterog. Media 10 (2015) 647–697.

5. M. Bongini, M. Fornasier, F. Rossi and F. Solombrino, Mean-Field Pontryagin Maxi-
mum Principle, J. Optim. Theory Appl. 175 (2017) 1–38.

6. M. Burger, R. Pinnau, A. Roth, C. Totzeck and O. Tse, Controlling a self-organizing
system of individuals guided by a few external agents – particle description and mean-
field limit, arXiv:1610.01325 [math] .

7. M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and optimal
control of the Cucker-Smale model, Math. Control. Relat. Fields 3 (2013) 447–466.

8. J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek, Sharp conditions to avoid
collisions in singular Cucker–Smale interactions, Nonlinear Anal. Real World Appl.
37 (2017) 317–328.

9. J. A. Carrillo, Y.-P. Choi, C. Totzeck and O. Tse, An analytical framework for
consensus-based global optimization method, Math. Models Methods Appl. Sci. 28
(2018) 1037–1066.

10. J. A. Carrillo, S. Jin, L. Li and Y. Zhu, A consensus-based global optimization method
for high dimensional machine learning problems, ESAIM Control Optim. Calc. Var.
27 (2021) S5.

11. F. Cucker and J.-G. Dong, Avoiding Collisions in Flocks, IEEE Trans. Automat.
Contr. 55 (2010) 1238–1243.

12. F. Cucker and S. Smale, Emergent Behavior in Flocks, IEEE Trans. Automat. Contr.
52 (2007) 852–862.

13. F. Dorfler and F. Bullo, Synchronization and transient stability in power networks
and nonuniform kuramoto oscillators, SIAM J. Control. Optim. 50 (2012) 1616–1642.

14. R. Escobedo, A. Ibañez and E. Zuazua, Optimal strategies for driving a mobile agent
in a “guidance by repulsion” model, Commun. Nonlinear. Sci. 39 (2016) 58–72.

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

24

15. J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle
formations, IEEE Trans. Automat. Contr. 49 (2004) 1465–1476.

16. S. Gade, A. A. Paranjape and S.-J. Chung, Herding a Flock of Birds Approaching
an Airport Using an Unmanned Aerial Vehicle, in AIAA Guidance, Navigation, and
Control Conference (American Institute of Aeronautics and Astronautics, Kissimmee,
Florida, 2015).

17. C. E. Garćıa, D. M. Prett and M. Morari, Model predictive control: Theory and
practice—A survey, Automatica 25 (1989) 335–348.

18. F. Golse, The mean-field limit for the dynamics of large particle systems, Journ. Équ.
Dériv. Partielles (2003) 1–47.

19. L. Grüne and J. Pannek, Nonlinear model predictive control, in Nonlinear Model
Predictive Control (Springer, 2017), pp. 45–69.

20. S.-Y. Ha, S. Jin and D. Kim, Convergence of a first-order consensus-based global
optimization algorithm, Math. Models Methods Appl. Sci. To appear.

21. S.-Y. Ha and J.-G. Liu, A simple proof of the cucker-smale flocking dynamics and
mean-field limit, Commun. Math. Sci. 7 (2009) 297–325.

22. S. Jin, L. Li and J.-G. Liu, Random Batch Methods (RBM) for interacting particle
systems, J. Comput. Phys. 400 (2020) 108877.

23. D. Ko and E. Zuazua, Asymptotic behavior and control of a “guidance by repulsion”
model, Math. Models Methods Appl. Sci. 30 (2020) 765–804.

24. J. M. Lien, O. B. Bayazit, R. T. Sowell, S. Rodriguez and N. M. Amato, Shepherd-
ing behaviors, in IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 (IEEE, New Orleans, LA, USA, 2004), pp. 4159–4164
Vol.4.

25. J. Ma and E. M.-K. Lai, Finite-time flocking control of a swarm of cucker-smale agents
with collision avoidance, in 2017 24th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP) (IEEE, Auckland, 2017), pp. 1–6.

26. P. Mhaskar, Robust model predictive control design for fault-tolerant control of pro-
cess systems, Ind. Eng. Chem. Res. 45 (2006) 8565–8574.

27. S. Motsch and E. Tadmor, A New Model for Self-organized Dynamics and Its Flocking
Behavior, J. Stat. Phys. 144 (2011) 923–947.

28. M. Nikolaou, Model predictive controllers: A critical synthesis of theory and industrial
needs, Adv. Chem. Eng. 26 (2001) 131–204.

29. J. Park, H. J. Kim and S.-Y. Ha, Cucker-Smale Flocking With Inter-Particle Bonding
Forces, IEEE Trans. Automat. Contr. 55 (2010) 2617–2623.

30. B. Piccoli, N. P. Duteil and E. Trélat, Sparse Control of Hegselmann–Krause Models:
Black Hole and Declustering, SIAM J. Control. Optim. 57 (2019) 2628–2659.

31. R. Pinnau and C. Totzeck, Interacting particles and optimization, PAMM 18 (2018)
e201800182.

32. L. S. Pontryagin, Mathematical theory of optimal processes (Routledge, 2018).
33. M. Porfiri and M. Di Bernardo, Criteria for global pinning-controllability of complex

networks, Automatica 44 (2008) 3100–3106.
34. D. M. Prett and C. E. Garcia, Design of robust process controllers, IFAC Proceedings

Volumes 20 (1987) 275–280.
35. V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Com-

put. Phys. 60 (1985) 187–207.
36. D. Strömbom, R. P. Mann, A. M. Wilson, S. Hailes, A. J. Morton, D. J. T. Sumpter

and A. J. King, Solving the shepherding problem: heuristics for herding autonomous,
interacting agents, J. R. Soc. Interface 11 (2014) 20140719.

37. H. G. Tanner, A. Jadbabaie and G. J. Pappas, Flocking in Fixed and Switching

March 24, 2021 16:35 WSPC/INSTRUCTION FILE
Guidance˙RBM˙M3AS(2021-03-24)

25

Networks, IEEE Trans. Automat. Contr. 52 (2007) 863–868.
38. E. Trélat, Contrôle optimal: théorie & applications (Vuibert Paris, 2005).

	Introduction
	The MPC-RBM algorithm
	Optimal control formulation on the guiding problem
	The RBM approximation for the forward dynamics
	The RBM for the optimal control problem
	The MPC procedure for the approximated model
	Implementation of the MPC-RBM algorithm

	Simulations on the MPC-RBM algorithm
	Simulations on RBM for the controlled dynamics
	Simulations on RBM for the optimal controls
	The effect of MPC in the guiding problem
	Simulations of MPC-RBM on a noisy system

	Conclusion and final remarks

