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Abstract

Bilevelprobleme sind komplexe, zweistufige Optimierungsprobleme, die ver-
wendet werden können, um hierarchische Entscheidungsprozesse zu modellieren,
wie sie z.B. in Energiemärkten, in der Planung militärischer Verteidigung von
Infrastruktur oder in Pricing-Modellen vorkommen. Selbst die einfachste Art
von Bilevelproblemen, bei denen nur lineare Zielfunktionen und Nebenbedingun-
gen vorkommen, sind bereits nicht-konvexe Optimierungsprobleme. Äquivalente
einstufige Formulierungen ersetzen das Optimierungsproblem der unteren Stufe
durch seine nichtkonvexen Optimalitätsbedingungen. Daher sind lineare Bilevel-
programme von Natur aus schwierig zu lösen.
Das Vereinfachen von gemischt-ganzzahligen linearen Programmen, genannt Pre-
solve, konnte das Lösen dieser Probleme signifikant beschleunigen. Jedoch gibt es
nur sehr wenig Literatur, die sich mit dem Presolve von Bilevelproblemen befasst.
In dieser Arbeit bereiten wir genannte Literatur im Kontext linearer Bilevelprob-
leme auf, leiten neue theoretische Grundlagen für das Presolven von linearen
Bilevelprogrammen her. Wir verwenden diese Resultate, um zu analysieren, in-
wiefern gängige Presolve-Techniken für lineare und gemischt-ganzzahlige Pro-
gramme auf linearen Bilevelprogramme angewandt werden können.
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Abstract

Bilevel programs are complex optimization problems that can be used to model
hierarchical decision processes, which occur e.g. in energy markets, critical in-
frastructure defense or pricing models. Even the most simple bilevel programs,
where only linear objective functions and constraints appear, are non-convex op-
timization problems and equivalent single level formulations replace the lower
level problem by its non-convex optimality constraints. This makes linear bilevel
programs inherently difficult so solve.
The simplification of mixed-integer linear programs before solving them, called
presolve, significantly accelerated the solving of these problems. However, there
is only very few literature on the topic of presolve of bilevel programs. In this
thesis we review said literature on presolve of bilevel programs in the context of
linear bilevel programming, derive new theoretical foundations for presolve of
linear bilevel programs and then apply these results to analyze how common pre-
solve techniques for linear and mixed integer programs can be used to presolve
linear bilevel programs.
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1 Introduction to Linear Bilevel Optimization

Bilevel programs are optimization problems where the ultimate outcome also depends
on the reaction of another party rather than just your own decision. In this sense, the
goal is to provoke the reaction that is most beneficial for yourself. These problems
are also called Stackelberg games [30, 29], where the initial decision is made by the
leader and the reaction made by the follower. The reaction of the follower is assumed
to be deterministic based on the leaders decision, such that the leader can anticipate
the reaction. Practical applications that can be modeled with bilevel programs occur
for example in energy markets [2, 10, 17, 18, 19, 20, 22, 25], critical infrastructure
defense [9, 13] and pricing models [26].
In bilevel programs the goals of the leader and the follower are expressed through
single-level optimization problems. In the simplest case, i.e. where both the leader
and the follower problem are linear programs, the bilevel program is already NP hard,
as shown in [11, 21]. Approaches for solving bilevel programs include, but are not lim-
ited to, reformulations into single level mixed integer programs [15], reversed search
tree algorithms [5] and heuristic approaches for finding local optima [24].
In order to improve the computational performance of optimization problems of dif-
ferent kinds, numerous presolve techniques have been developed. The presolve tech-
niques that have the most impact on linear programs but also work well on mixed
integer programs reduce the size, i.e. the number of variables and constraints of the
model, as well as improve numerical stability, for example by removing parallel or
almost parallel rows and columns. On top of that, presolve techniques for mixed inte-
ger programs also aim to improve the formulation of the model in order to bring the
polyhedron described by the constraints closer to the actual convex hull of the feasi-
ble points. In [3] we see how beneficial presolve can be for linear programs and in
[1, 8, 6] we see the significant improvements on solvers for mixed integer programs
due to presolve.
However, to the best of our knowledge, no presolve techniques for bilevel programs
have been developed. In [27, 12] some fundamental properties of optimization prob-
lems, that enable certain single level presolve techniques and other single level solver
improvements such as so called Cutting Planes Methods, have been investigated with
the result that these properties are generally not present in bilevel programs.
The outline of this thesis is a follows. In Section 2 we present the basic formulation of
linear bilevel programs and their components, as well as three approaches for finding
solutions to the programs. In Section 3 we review the existing, yet sparse, literature on
the presolve of linear bilevel programs. In Section 4 we present essential theoretical
results on the modification of linear bilevel programs, which we will use in Section 6
to prove the correctness of various heuristic presolve approaches. Section 5 contains a
heuristic method that uses information gathered by the Kth-best algorithm to presolve
the linear bilevel program.
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2 Mathematical Modeling of Linear Bilevel Programs

In order to model the hierarchical structure of bilevel programs the variables will be
split into two subsets, namely the vectors x and y , where the leader operates x and
the follower operates y . Both the leader’s and the follower’s goals are formulated as
optimization problems, the follower problem being a parametrized problem with the
leader’s decision x as a parameter.

Example 2.1. Consider the parameterized linear program

min
y∈R

y

s. t. y ≥ 4− 2x ,

y ≥ 3− x ,

y ≥ −6+ 2x ,

y ≤ 4+ x ,

y ≤ 6,

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

(2.1f)

where x ∈ R is given. We can visualize this program the same way we would visualize a
regular two dimensional linear program, but instead of a single optimal solution we get
an optimal solution for each possible value of x:

x

y

1

1

The thick green outline shows all points optimal for (2.1). We now create a linear bilevel
program from this by maximizing 4y − x among all (x , y) ∈ R2 where y is optimal for
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the linear program (2.1). This leads to the model

max
x ,y

4y − x

s. t. y ∈ argmin
y

y

s. t. y ≥ 4− 2x ,

y ≥ 3− x ,

y ≥ −6+ 2x ,

y ≤ 4+ x ,

y ≤ 6.

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)

(2.2g)

We can now draw this new objective function 4y − x into the figure to get

x

y

1

1

max 4y − x(6,6)

and we already see that this linear bilevel program is not convex, since the green outline
represents the points feasible to (2.2). For example, the point (0, 4) is a local but not a
global optimal solution. We now introduce two leader constraints:

max
x ,y

4y − x

s. t. y ≥ 1,

y ≤ 5,

y ∈ argmin
y

y

s. t. y ≥ 4− 2x ,

y ≥ 3− x ,

y ≥ −6+ 2x ,

y ≤ 4+ x ,

y ≤ 6.

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

(2.3f)

(2.3g)

(2.3h)

(2.3i)
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Visualized, some sections of the former green outline are now not feasible anymore:

x

y

1

1

max 4y − x

(0, 4)

The thick outline (red and green) now describes all points optimal for the follower while
the green part are the ones also feasible for the leader. We can see that this thick green
outline is not only not convex, but not even connected.

2.1 Components of a Linear Bilevel Program

A general linear bilevel program can be written in the form

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

y ∈ argmin
y

e> y

s. t. D y ≥ b− C x .

(2.4a)

(2.4b)

(2.4c)

(2.4d)

This definition of a bilevel program goes by the optimistic assumption because we
assume that whenever the follower problem has multiple optimal solutions, the one
that is best for the leader will be chosen. In the course of this thesis we will only cover
optimistic linear bilevel programs.

The model has these basic components:

• x ∈ Rn are the leader variables.

• cT x + dT y is the leader objective with c ∈ Rn and d ∈ Rm.

• Ax + B y ≤ a are the leader constraints with A∈ Rk×n, B ∈ Rk×m and a ∈ Rk.

6



• y and y are the follower variables.

• eT y is the follower objective with e ∈ Rm.

• D y ≥ b− C x are the follower constraints with C ∈ Rl×n, D ∈ Rl×m and b ∈ Rl .

We say that the program has n leader variables (leader columns), m follower variables
(follower columns), k leader constraints (leader rows) and l follower constraints (fol-
lower rows).

We will now declare several other components of (2.4) that will be important through-
out the course of this thesis:

• The parametric linear program

min
y

e> y

s. t. D y ≥ b− C x ,

(2.5a)

(2.5b)

where x is given, is called the follower problem. The set

ΩF = {(x , y) | C x + D y ≥ b}

is called the follower’s constraint region or follower polyhedron. This is not exactly
the feasible set of (2.5), since the follower problem is parametric in x and only
operates on y . Analogously, we define

ΩL = {(x , y) | Ax + B y ≤ a}

as the leader’s constraint region or leader polyhedron.

• The set of optimal solutions of the follower problem

Ψ(x) := argmin
y
{e> y | D y ≥ b− C x}

is functionally dependent on x and is called the rational reaction set. The linear
bilevel program (2.4) can then equivalently be formulated as

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

y ∈ Ψ(x).

(2.6a)

(2.6b)

(2.6c)

In the plots in Example (2.3) the rational reaction set for each choice of x is
represented by the red and green outline.

• The set of feasible points of (2.4) is given by

IR := {(x , y) ∈ Rn×m | Ax + B y ≤ a, y ∈ Ψ(x)}
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and is called the inducible region or the set of bilevel feasible points. In Example
2.1 we saw that the inducible region is generally not convex and indeed not
even connected, which makes linear bilevel programs generally non-convex. In
the plots in Example 2.1 the rational reaction set is represented by the green
outline.

• Beside the follower problem, another important linear program is associated
with (2.4):

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

C x + D y ≥ b

(2.7a)

(2.7b)

(2.7c)

Starting from the formulation (2.6), the constraint y ∈ Ψ(x) is replaced by
C x + D y ≥ b. Since C x + D y ≥ b is part of the follower problem, y ∈ Ψ(x)
implies C x + D y ≥ b. Hence, (2.7) is rightfully called the high point relaxation
and its feasible set

Ω= ΩL ∩ΩF = {(x , y) | Ax + B y ≤ a, C x + D y ≥ b}

is called the combined constraint region or combined polyhedron. The high point
relaxation of (2.3) looks like this:

x

y

1

1

max 4y − x

(1, 5)

Here we already see that the high point relaxation can generally have a better
solution than the original bilevel program.
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We summarize these components in the following figure:

x

y

1

1

max 4y − x

(0,4) Follower polyhedron ΩF

Combined polyhedron Ω
⋃

x∈R
{x} ×Ψ(x) with rational reaction set Ψ(x)

Inducible region IR= ΩL ∩
⋃

x∈R
{x} ×Ψ(x)

2.2 Approaches for Solving Linear Bilevel Programs

We will now present three different approaches for finding optimal or feasible solutions
to linear bilevel programs.

2.2.1 KKT Reformulation

The Karush-Kuhn-Tucker-constraints (KKT) can be used to reformulate a given linear
bilevel program into a linear mixed integer single-level program (MIP), which can be
solved using common MIP-solvers. As far as we know, this approach for solving linear
bilevel programs generally performs the best. In this section we will present the KKT
reformulation in order to understand which components of the linear bilevel program
are "more expensive" than others.

We reformulate the linear bilevel program given by (2.4). The dual of the follower
problem (2.5) is

max
λ

(b− C x)Tλ, (2.8a)

s.t. DTλ= e, (2.8b)

λ≥ 0. (2.8c)

By applying strong duality we can replace the follower problem (2.4c) in (2.4) by the
primal and dual constraints of the follower problem together with the complementar-
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ity constraint and get the following single level reformulation of (2.4):

max
x ,y,λ

cT x + dT y, (2.9a)

s.t. Ax + B y ≤ a, (2.9b)

C x + D y ≥ b, (2.9c)

DTλ= e, (2.9d)

λ≥ 0, (2.9e)

(C j x + Dj y − b j)λ j = 0 ∀ j. (2.9f)

While this is single level, it is not convex because the complementarity constraints
(2.9f) are bilinear and non-convex. However, these complementarity constraints can
be reformulated into linear integer constraints, as presented in [15]. The meaning of

(C j x + Dj y − b j)λ j = 0

is that
C j x + Dj y − b j = 0 ∨ λ j = 0.

We can introduce a binary variable s j that controls which of these two terms has to be
0. To do this, we need an arbitrarily large number M j of which we know that neither
C j x + Dj y − b j nor λ j are going to be bigger than M j when looking at an optimal
solution. These large-enough Ms are bluntly called big-Ms. Then we can reformulate
(2.9f) into

0≤ C j x + Dj y − b j ≤ M js j,

0≤ λ ≤ M j(1− s j),
s j ∈ {0, 1}.

This forces one of the terms to be 0, depending on the state of s j. Note that the non-
negativity constraints on the left are already provided by (2.9b) and (2.9e). Now we
can summarize the reformulation:

max
x ,y,λ

cT x + dT y, (2.10a)

s.t. Ax + B y ≤ a, (2.10b)

C x + D y ≥ b, (2.10c)

DTλ= e, (2.10d)

λ≥ 0, (2.10e)

C j x + Dj y − b j ≤ M js j, (2.10f)

λ j ≤ M j(1− s j), (2.10g)

s j ∈ {0,1}. (2.10h)

This is a linear mixed integer program that is, in theory, solvable by common solvers.
However, the selection of the big-Ms poses problems. First of all, they cannot just
be as big as possible since too large big-Ms cause numerical problems. This narrows
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down the feasible interval for the big-Ms. In [28] it is shown that the wrong selection
of big-Ms can lead to highly suboptimal solutions. Furthermore, in [23] it is shown
that finding appropriate big-Ms can be as hard as solving the non-reformulated model
itself. The practical solvability of this reformulated model heavily relies on a good way
of determining the big-Ms through the structure of the problem this model was based
on.

Next up we will analyze the dimensions of (2.10) depending on the dimensions of the
original linear bilevel program, which has n leader variables, m follower variables, k
leader constraints and l follower constraints. (2.10) has n+m+l continuous variables,
l binary variables and k+ l +m+ 3l = m+ k+ 4l linear constraints. To summarize:

• Each leader variable produces one continuous variable (x).

• Each leader constraint produces one linear constraint (2.10b).

• Each follower variable produces one continuous variable (y) and one linear con-
straint (2.10d).

• Each follower constraint produces one linear variable (λ), one integer variable
(s) and four linear constraints (2.10c), (2.10e), (2.10f) and (2.10g).

Here we can see clearly that, with respect to model dimensions, leader variables as
well as leader constraints produce no additional variables or constraints while fol-
lower variables and follower constraints do so. The follower constraints impact the
reformulated model size more than any of the other three components.

With respect to non-zeroes in the coefficients, we see that e matters twice as much as
c and d, C matters twice as much as A and B and D matters three times as much as A
and B.

This analysis is important in the context of presolve since it shows removing which
components through presolve is most beneficial. It also justifies the following corollary,
which we will frequently refer to during the course of this thesis.

Remark 2.2. When solving a linear bilevel program using the KKT-reformulation, moving
variables and constraints from the follower to the leader beforehand decreases the size of
the KKT-reformulated model.

2.2.2 Kth-best Algorithm

The Kth-best algorithm, as proposed in [5], traverses the extreme points of the high
point relaxation, starting with the best and then descending with respect to the ob-
jective value, until it finds an extreme point that is bilevel feasible. Consequently, this
point must also be bilevel optimal. We will explain this algorithm in detail in Section
5.
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2.2.3 A Penalty-Alternating-Direction-Method-Based Primal Heuristic

Penalty alternating direction methods (PADM) are algorithms that attempt to solve an
optimization program by splitting the variables into two sets, for example into x and
λ. Then, e.g. x is fixed to some initial value and the program is solved for λ resulting
in a solution λ0. Afterwards λ = λ0 is fixed and the program is solved for x resulting
in x0 which is then used to solve for λ again resulting in λ1 and so on.

In [24] a heuristic which employs a penalty alternating direction method to find bilevel
feasible points in a bilevel program is developed and analyzed. It uses a single-level
reformulation similar to (2.9), but instead of the complementary constraints (2.9f) it
enforces optimality through the strong duality constraint e> y = (b − C x)>λ. Since
e> y ≥ (b−C x)>λ is already given by weak duality for linear programs, we only need
to add e> y ≤ (b− C x)>λ to enforce strong duality. This leads to the reformulation

max
x ,y,λ

cT x + dT y, (2.11a)

s.t. Ax + B y ≤ a, (2.11b)

C x + D y ≥ b, (2.11c)

DTλ= e, (2.11d)

λ≥ 0, (2.11e)

e> y ≤ (b− C x)>λ. (2.11f)

The strong duality constraint (2.11f) is then relaxed by introducing it into the objective
function as a penalty term (hence the penalty in PADM):

max
x ,y,λ

cT x + dT y +ρ(e> y − (b− C x)>λ), (2.12a)

s.t. Ax + B y ≤ a, (2.12b)

C x + D y ≥ b, (2.12c)

DTλ= e, (2.12d)

λ≥ 0. (2.12e)

The penalty term is weighted with ρ > 0, which will be increased during the process
of solving (more on that later on). Now the variables are split into the subsets (x , y)
and λ and an alternating direction method is applied by alternatively solving

λi ∈ argmin
λ

(b− C x i)>λ, (2.13a)

s.t. DTλ= e, (2.13b)

λ≥ 0, (2.13c)

and

(x i+1, y i+1) ∈ argmax
x ,y

cT x + dT y +ρ(e> y − (b− C x)>λi), (2.14a)

s.t. Ax + B y ≤ a, (2.14b)

C x + D y ≥ b (2.14c)
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for some initial values (x0, y0). This leads to a series (x i, y i). While [24] provides no
hard proof that (x i, yi) converges at all, it is shown, however, that if it converges then
it converges to a bilevel feasible point. Precisely how ρ needs to be increased in order
to achieve this conversion is described in [24]. The evaluation of this method showed
that it is very likely to converge and generally provides a good solution, in numerous
cases even an optimal solution.

Similarly to Remark 2.2, we can argue that the size of model (2.13) depends on the
size of the follower problem (2.5). It is therefore more beneficial to reduce the size of
the follower than the size of the leader.

2.2.4 Implementation

Both the KKT reformulation and the PADM heuristic have been implemented by Martin
Schmidt and Thomas Kleinert in a C++ framework as solvers for bilevel programs.
These solvers were used for testing several techniques. However, the thesis does not
cover a computational evaluation of the presented techniques.
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3 Dependence of Linear Bilevel Programs on Irrelevant
Constraints

The only existing literature that is related to the presolve of linear bilevel programs
are the different publications on the topic of independence of irrelevant constraints,
or short, IIC. In this chapter we will first examine what independence of irrelevant
constraints is, what it has to do with presolve and why it is taken for granted when
working with single level programs, as stated in [27]. Afterwards, we present the most
significant publications on independence of irrelevant constraints and put them in the
context of linear bilevel programs.

3.1 Independence of Linear Programs of Irrelevant Constraints

Consider a general linear program of the form

maxx cT x , (3.1a)

s.t. Ax ≤ b. (3.1b)

Furthermore, let aT
0 x ≤ b0 be an arbitrary new constraint and

maxx cT x , (3.2a)

s.t. Ax ≤ b, (3.2b)

aT
0 x ≤ b0 (3.2c)

a modified version of (3.1) that includes the new constraint. It is easy to see that every
optimal solution x∗ of (3.1) that satisfies

aT
0 x ≤ b0

is also an optimal solution to (3.2). Also, no new optimal solutions can be found in
(3.2). Hence, adding a constraint to (3.1) that is satisfied by all optimal solutions of
(3.1), namely an irrelevant constraint, will result in a modified (3.2) with the same
set of optimal solutions. In that sense, linear programs are independent of irrelevant
constraints.

3.2 Implications of Independence of Irrelevant Constraints for Lin-
ear Bilevel Programs

While linear programs are IIC, this is generally not the case for bilevel programs. While
it is easy to see that irrelevant constraints can be added to the leader of a bilevel
program since that will only remove non-optimal solutions from the inducible region,
they can however change the outcome of the program when they are added to the
follower problem. The following example illustrates this.
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Example 3.1. Consider the linear bilevel program

max
x ,y

y

s. t. − 1≤ x ≤ 2,

y ∈ argmin
y

y

s. t. y ≥ x ,

y ≥ −x .

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

x

y

1

1

max y
(2,2)

x + y ≥ 2
not present

x

y

1

1

max y

(−1,3)

x + y ≥ 2
follower constraint

which has the optimal solution (2, 2). The arbitrary constraint x + y ≥ 2 is satisfied by
this optimal solution. However, adding this constraint to the follower limits the follower
in such a way that he now responds with y = 3 for x = −1, which is a better solution for
the leader.

In paper [27] it was established that independence of irrelevant constraints is a very re-
strictive property that makes the problem trivial to a certain degree. In this subsection
we will put the contents of said paper in the context of linear bilevel programming.

We consider the linear bilevel program P given by (2.4). Let eP(u, v, w) be the modified
version of P given by

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

y ∈ argmin
y

e> ȳ

s. t. D ȳ ≥ b− C x ,

v> ȳ ≥ w− u>x .

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(3.4e)

15



for any u ∈ Rn, v ∈ Rm, w ∈ R. We call u>x + v> y ≥ w an arbitrary constraint.
Furthermore, let Opt(P) and Opt(eP(u, v, w)) be the sets of optimal solutions of P and
eP(u, v, w) respectively.

Now we define independence of irrelevant constraints:

Definition 3.2. P is independent of irrelevant constraints (IIC), if

(x∗, y∗) ∈ O
�

eP(u, v, w)
�

∀(x∗, y∗) ∈ O(P) : u>x∗ + v> y∗ ≥ w, ∀u, v, w.

This means that a linear bilevel program is IIC if, after modifying the program by adding
any arbitrary constraint to the follower, every optimal solution of the original program
that satisfies the arbitrary constraint is also an optimal solution of the modified program.

At this point it is important to note that in [27] a bilevel program (which could be a
linear bilevel program) is IIC, if any irrelevant constraint, and not just irrelevant linear
constraints, can be added without changing the optimal solution. However, later on
we will see that these two variants for the definition of IIC are equivalent.

To investigate necessary and sufficient conditions for a bilevel problem to be IIC, [27]
introduces the unconstrained follower problem,which is the problem of minimizing
the follower objective (2.4c) without any of the constraints (2.4d):

min
y

e> y. (3.5)

Obviously, this is a rather redundant problem in the linear case: If e> 6= 0, then (3.5)
is unbounded (and therefore unsolvable). If e> = 0, then any solution y ∈ Rm is
optimal. [27] then defines bilevel problems as degenerate if a solution (x , y) to its
high point relaxation exists, for which the gradient of the follower objective equals
zero. However, a gradient of zero in the linear case means e> = 0. This leads to the
following definition:

Definition 3.3. The linear bilevel program (2.4) is degenerate, if the high point relax-
ation is infeasible (which makes (2.4) infeasible in the first place) or if

e> = 0.

If we apply e> = 0 to (2.4) then (2.4c) becomes redundant and we can rewrite the
problem to

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

C x + D y ≥ b.

(3.6a)

(3.6b)

(3.6c)

which is exactly the high point relaxation (2.7). It follows that a degenerate linear
bilevel program can be replaced by its high point relaxation, since either both are
unsolvable or both have the same solution. Since the high point relaxation is a single
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level problem, it is also IIC and therefore all degenerate linear bilevel programs are
IIC.

For the next theorem, [27] only considers bilevel problems where the KKT conditions
of the follower problem are necessary and sufficient for its optimality. In the linear
case, the follower problem is a linear program and all linear programs satisfy this KKT
requirement.
This leaves us with the following linear version of Theorem 1 of [27]:

Theorem 3.4. If (2.4) is not degenerate then it is IIC if and only if there is a solution to
the high point relaxation (2.7) that is feasible to (2.4).

Technically, the version of this theorem in [27] requires the supposedly stronger defi-
nition for IIC that also includes irrelevant non-linear constraints. However, the proof
of this theorem only makes use of irrelevant linear constraints to show that an IIC
program has a solution to the high point relaxation that is feasible to the bilevel pro-
gram. Thus, defining the IIC property only with linear constraints is equivalent to the
definition with general constraints.

As the high point relaxation (2.7) is a relaxation of (2.4), every solution to (2.7) that
is feasible to (2.4) also is an optimal solution to (2.4). This means a linear bilevel
program that satisfies Theorem 3.4 can be solved by finding an appropriate solution
of the high point relaxation.

The following example shows that a linear bilevel program that can be solved by one
of the solutions of its high point relaxation, cannot necessarily be solved by every
solution of its high point relaxation.

Example 3.5. The linear bilevel program

min
x ,y

x

s. t. x ≥ 1,

y ≤ 3,

y ∈ arg min
y

y

s. t. y ≥ 2− x ,

y ≥ 0
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x

y

1

1

min x

(1, 1)

linear bilevel program

x

y

1

1

min x

(1, 1)

(1, 3)

high point relaxation

has the optimal solution (1,1) while its high point relaxation

min
x ,y

x

s. t. x ≥ 1,

y ≤ 3,

y ≥ 2− x ,

y ≥ 0

has optimal solutions
{(1, y) | 1≤ y ≤ 3}.

3.3 Independence of Local Optimality of Irrelevant Constraints for
Linear Bilevel Programs

In this chapter [12] it was derived that the local optimality of solutions of bilevel
programs is independent of irrelevant constraints if certain requirements are met. We
will put this paper in the context of linear bilevel programming and we will show that
these requirements are met by linear bilevel programs.

We consider the linear bilevel program (2.4) and the modified version (3.4) that has
an additional follower constraint u>x+v> y ≤ w with u ∈ Rn, v ∈ Rm, w ∈ R. Further-
more, let (x∗, y∗) be an optimal solution to (2.4) and let u>x∗ + v> y∗ > w. Theorem
2.2 of [12] states that (x∗, y∗) is a local optimal solution to (3.4) if Ψ(x) is inner
semicontinuous, which is defined as

Definition 3.6. Let x0 ∈ Rn and y0 ∈ Ψ(x). The mapping x 7→ Ψ(x) is inner semi-
continuous at (x0, y0) if for every sequence

�

x i
�

with Ψ
�

x i
�

6= ;, which converges to x0,
there is a sequence

�

y i
�

with y i ∈ Ψ
�

x i
�

that converges to y0.

We have no hard proof that the rational reaction set mapping x 7→ Ψ(x) is inner semi-
continuous except for that in [31] it is shown that x 7→ Ψ(x) is inner semicontinuous
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(even continuous) if x is 1-dimensional, which suggests that Ψ(x) is generally contin-
uous. Note that it is important that the follower problem is only parameterized in the
right hand sides. We will now present examples that show that the mapping of the
parameter to the optimal solution set is generally not continuous for a parameterized
linear program, if the left hand sides or the objective function are parameterized.

Example 3.7. Consider the linear program

max
x ,y

θ x + y,

s.t. x ≤ 1,

y ≤ 1,

x ≥ 0.

with a parameterized objective function.

x

y

1

1

max y − x
2

(0,1)
max y

max y + x
2

(1, 1)

For θ < 0 the solution set is {(1,1)}, for θ = 0 it is [0, 1] × {1} and for θ < 0 it is
{(0, 1)}. That means for any x ∈ (0, 1) and any sequence θ i− > 0 with θi 6= 0 the
optimal solution sequence (x i, y i) does not converge to (x , 0) because (x i, y i) = (0,1) or
(x i, y i) = (1,1) for all i.

Example 3.8. Consider the linear program

max
x ,y

y,

s.t. x ≤ 1,

θ x + y ≤ 1,

x ≥ 0.

with a parameterized left hand side.
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x

y

1

1 max y
(0, 1)

c > 0
x

y

1

1 max y
(0, 1) (1,1)

c = 0
x

y

1

1

max y
(1,1− c)

c < 0

For c < 0 the solution set is {(1, 1 − c)}, for c = 0 it is [0,1] × {1} and for c < 0 it
is {(0, 1)}. That means for any x ∈ (0,1) and any sequence θ i− > 0 with θi 6= 0 the
optimal solution sequence (x i, y i) does not converge to (x , 0) because (x i, y i) = (0, 1) or
(x i, y i) = (1,1− c) for all i.

While we do not have the continuity of Ψ(x) to work with, we do however know that
the inducible region is piecewise linear as shown in [4], which we can use to provide
an alternative proof for

Theorem 3.9. Let (x∗, y∗) be an optimal solution to (2.4) that satisfies u>x∗+v> y∗ > w.
Then (x∗, y∗) is a local optimal solution of (3.4).

Proof. According to Theorem 4.12, (x∗, y∗) is feasible to (3.4). We now assume that
(x∗, y∗) was not locally optimal in (3.4). Since the inducible region fIR of (3.4) is
piecewise linear, as shown in [4], there must be a (x0, y0) ∈fIR with

c>x0 + d> y0 < c>x∗ + d> y∗. (3.7)

and
θ (x0, y0) + (1− θ )(x∗, y∗) ∈fIR ∀0≤ θ ≤ 1 (3.8)

Furthermore,

u>x + v> y > w (3.9)

with (x , y) = (x0, y0)+(1−θ )(x∗, y∗) is fulfilled for θ = 0 it also must be fulfilled for a
sufficiently small θ > 0 (because of continuity). Since (x , y) ∈fIR, y is optimal for the
follower problem of (3.4) given the leader choice x and u>x + v> y > w is inactive.
Therefore, y is also optimal for the follower problem (2.5) given the leader choice
x and consequently (x , y) is feasible to (2.4) and has a better objective value than
(x∗, y∗). That is a contradiction to (x∗, y∗) being optimal for (2.4). Hence (x∗, y∗) is
a local optimal solution to (3.4).
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Theorem 3.9 does not yield global optimality in the modified problem, even for linear
bilevel problems, as we can see in the following example:

Example 3.10. The linear bilevel program

max
x ,y

x

s. t. 0≤ x ≤ 1,

y ∈ arg min
y

y

s. t. y ≥ x .

(3.10a)

(3.10b)

(3.10c)

(3.10d)

x

y

1

1

max y
(1, 1)

has global optimum (1,1) with objective value 1. The following modified problem that
adds 2x + y ≥ 2 to the follower

max
x

y

s.t. 0≤ x ≤ 1,

min
y

y

s.t. x ≤ y.

2x + y ≥ 2.
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x

y

1

1

max y(0,2)

has global optimum (0,2) with objective value 2. However, 2 · 1+ 1> 2 is satisfied.
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4 Theoretical Foundation for Presolve of Linear Bilevel
Programs

In this chapter we present several theorems we have derived, which justify certain
modifications of linear bilevel programs in a sense that we show that these modifica-
tions do not change the optimal solution.

Remark 4.1. The linear bilevel program (2.4) can be written as

max
(x ,y)∈IR

c>x + d> y

and the inducible region IR of (2.4) can be written as

IR = ΩL ∩
⋃

x∈Rn

�

{x} × argmin
y
{e> y | (x , y) ∈ ΩF}

�

(4.1)

= Ω ∩
⋃

x∈Rn

�

{x} × argmin
y
{e> y | (x , y) ∈ ΩF}

�

. (4.2)

Equation (4.1) shows that the follower constraints indeed only contribute to the linear
bilevel program (2.4) through the polyhedron ΩF they describe and (4.2) shows that the
leader constraints only contribute through the polyhedron Ω they describe together with
the follower constraints.

This remark therefore justifies changes to the leader or follower constraints that do not
change the respective polyhedrons, which in return justifies numerous presolve techniques
applied to these constraints/polyhedrons.

Corollary 4.2. Any changes applied to the follower constraints of (2.4) that do not
change the follower polyhedron, will not change the inducible region of (2.4).

Proof. This corollary directly derives from Remark 4.1.

Next up we present a small but essential theorem on the removal of irrelevant con-
straints. For this, we define the modified follower constraints

C6=i x + D6=i y ≤ b 6=i,

that are missing the i-th row, which is the constraint Ci x +Di y ≥ bi. Furthermore, let

Ψ 6=i(x) := argmin
y∈Rm

{e> y | D6=i y ≥ b 6=i − C6=i x}

be the rational reaction set of said modified follower problem. Lastly,

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

y ∈ Ψ 6=i(x),

(4.3a)

(4.3b)

(4.3c)

is the modified bilevel program that misses the i-th follower constraint and IR 6=i is its
inducible region.

23



Corollary 4.3. Let i ∈ {1, ..., l} be a follower constraint of (2.4d) such that

{(x , y) | C x + D y ≥ b}= {(x , y) | C6=i x + D6=i y ≥ b 6=i}.

In that sense, the i-th constraint is irrelevant for the description of the follower poly-
hedron. Then (2.4) and (4.3) have the same inducible region and therefore the same
optimal solutions.

Proof. This corollary directly derives from Remark 4.1.

This theorem gives us a simple criterion for the removal of follower constraints. Anal-
ogously, we define the program

max
x ,y

c>x + d> y

s. t. A6=i x + B 6=i y ≤ a6=i,

y ∈ Ψ(x),

(4.4a)

(4.4b)

(4.4c)

where the i-th leader constraint is missing and derive the following criterion for the
removal of leader constraints:

Corollary 4.4. Let i ∈ {1, ..., k} be a leader constraint of (2.4b) such that

{(x , y) | Ax + B y ≤ a, C x + D y ≥ b}= {(x , y) | A6=i x + B6=i y ≤ a 6=i, C x + D y ≥ b},

which means that the high point relaxations of (2.4) and (4.4) have the same feasible
sets. Then (2.4) and (4.4) have the same inducible region and therefore the same optimal
solutions.

Proof. This corollary directly derives from Remark 4.1.

4.1 Independence of Inactive Constraints for Linear Programs

We will now present a concept similar to the independence of irrelevant constraints
that is also taken for granted in linear programs, which we call independence of inactive
constraints.

Example 4.5. Consider the linear program

min
x ,y

y

s. t. y ≥ x ,

y ≥ −x ,

y ≤ 2,

y ≤ 2x + 3,

y ≤ −x + 2.

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)

(4.5f)
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This program has the optimal solution (0,0). The active constraints for that solution are
(4.5b) and (4.5c). It is easy to see that we can remove all the inactive constraints and
the optimal solution remains the same.

x

y

1

1

min y(0,0)
x

y

1

1

min y(0, 0)

This independence of inactive constraints holds true for all linear programs, or gener-
ally for all optimization problems where local optimality implies global optimality.

However, linear bilevel programs are generally not convex, which is why local opti-
mality does not imply global optimality as we saw in Example 2.1. Once again, the
following examples illustrate that linear bilevel programs generally are not indepen-
dent of inactive constraints.

Example 4.6. The linear bilevel program

min
x ,y

y

s. t. y ≥ 1+
x
2

,

y ≥ 2−
x
2

,

y ∈ argmin
y

y

s. t. y ≥ x ,

y ≥ −x .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

(4.6f)
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x

y

1

1

min y

(2,2)

y ≥ 2− x
2

leader constraint

x

y

1

1 min y

(−2
3 , 2

3)

y ≥ 2− x
2

removed

has the optimal solution (2, 2), for which the leader constraint y ≥ 2 − x
2 is inactive.

However, removing this constraint will result in the better optimal solution (−2
3 , 2

3).

Example 4.7. The linear bilevel program

min
x ,y

x − y

s. t. y ≤
5
2
+

3
2

x ,

y ∈ arg min
y

y

s. t. y ≥ 4x ,

y ≥ −x ,

y ≤ 2.

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

(4.7f)

has the optimal solution (−1, 1), for which the follower constraint y ≤ 2 is inactive.
Removing this constraint will result in the better optimal solution (1, 4).
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x

y

1

1

min x − y

(−1,1)

y ≤ 2
follower constraint

x

y

1

1

min x − y

(1,4)

y ≤ 2
removed

x

y

1

1

min x − y

(−1, 1)

y ≤ 2
leader constraint

Observation 4.8. It is noteworthy that the constraint y ≤ 2 in Example 4.7 could be a
leader constraint instead of a follower constraint and the solution to (4.7) would remain
the same. This arouses the suspicion that inactive follower constraints could be moved to
the leader, which we will investigate in Section 4.4.

4.2 Consequences of Removing Inactive Constraints and Adding
Irrelevant Constraints

In this section we investigate the consequences of removing inactive constraints from
a linear bilevel program. For this we consider the general linear bilevel program P
given by (2.4). Let PL(i) be the modification of P where the i-th leader constraint has
been removed given by

PL(i):

max
x ,y

c>x + d> y

s. t. A 6=i x + B 6=i y ≤ a6=i,

y ∈ argmin
y

e> ȳ

s. t. D ȳ ≥ b− C x .

(4.8a)

(4.8b)

(4.8c)

(4.8d)

and PF( j) the modification of P where the j-th follower constraint has been removed
given by

PF( j):

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

y ∈ argmin
y

e> ȳ

s. t. D6= j ȳ ≥ b6= j − C6= j x .

(4.9a)

(4.9b)

(4.9c)

(4.9d)
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Furthermore, let IR(P), IR(PL(i)) and IR(PF( j)) be the inducible regions and Opt (P),
Opt (PL(i)) and Opt (PF( j)) be the sets of optimal solutions of the three programs.

Example 4.7 has shown that linear bilevel programs are generally not independent
of inactive constraints. However, the following theorem states that, when removing a
follower constraint that is inactive for an optimal solution to the linear bilevel program
that solution remains bilevel feasible.

Theorem 4.9. Let (x∗, y∗) ∈ IR(P) and j ∈ {1, ..., l} with

C j x
∗ + Dj y

∗ > b j.

Then (x∗, y∗) ∈ IR(PF( j)).

Proof. Consider the follower program of P for x = x∗:

min
y

e> y

s. t. D y ≥ b− C x∗.

(4.10a)

(4.10b)

By requirement, y∗ is an optimal solution to this problem and C j x + Dj y ≥ b j is an
inactive constraint for y∗. Theory on linear programs now tells us that y∗ is also
optimal for

min
y

e> y

s. t. D6= j y ≥ b 6= j − C6= j x
∗.

(4.11a)

(4.11b)

Therefore, y∗ is optimal to the follower problem of PF( j) under the choice of x∗. Since
the leader constraints of P and PF( j) are the same, (x∗, y∗) is also bilevel feasible.
Hence, (x∗, y∗) ∈ IR(PF( j)).

This tells us that removing inactive follower constraints preserves bilevel feasibility.
Obviously, removing any leader constraint (not just inactive ones) will also preserve
bilevel feasibility:

Corollary 4.10. Let (x∗, y∗) ∈ IR(P) and i ∈ {1, ..., k}. Then (x∗, y∗) ∈ IR(PL(i)).

The following example shows that removing active follower constraints generally does
not preserve bilevel feasibility:

Example 4.11. Consider the linear bilevel program

min
x ,y

x

s. t. x ≥ 0,

y ∈ argmin
y

y

s. t. y ≥ 0.

(4.12a)

(4.12b)

(4.12c)

(4.12d)
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x

y

1

1
min x

(0, 0)

both present

x

y

1

1

y ≥ 0
removed

x

y

1

1

x ≥ 0
removed

All (x∗, 0) with x∗ ≥ 0 are bilevel feasible and have y ≥ 0 as an active constraint. Re-
moving that constraint makes the follower problem unbounded and the whole program
infeasible. However, removing the constraint x ≥ 0, which is active for the optimal solu-
tion (0, 0) preserves the feasibility of (0, 0), it just makes the bilevel program unbounded
by adding new feasible solutions.

For the sake of completeness, we can derive a theorem similar to Theorem 4.9 but for
adding irrelevant constraints.

Theorem 4.12. Let (x∗, y∗) ∈ Opt(P) and u>x + v> y ≥ w be an arbitrary new con-
straint with

u>x∗ + v> y∗ ≥ w.

When modifying P by adding the constraint u>x + v> y ≥ w as a follower constraint,
(x∗, y∗) will still be a bilevel feasible solution. Therefore, the optimal objective value of
the modified P is either the same or better.

Proof. The new follower problem with x = x∗ is

min
y

e> y

s. t. D y ≥ b− C x∗,

v> y ≥ w− u>x∗.

(4.13a)

(4.13b)

(4.13c)

Since y∗ must still be feasible, it also is optimal for this problem. Furthermore, the
new linear bilevel program

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

y ∈ argmin
y

e> ȳ

s. t. D ȳ ≥ b− C x ,

v> y ≥ w− u>x∗.

(4.14a)

(4.14b)

(4.14c)

(4.14d)

(4.14e)

has the same leader constrainst. Hence, (x∗, y∗) must still be bilevel feasible.
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While we saw that we can neither easily add irrelevant constraints nor remove inactive
constraints, we at least know that in either case the old optimal solution will still be
feasible.

4.3 Independence of Inactive Constraints for Linear Bilevel Pro-
grams

Analogously to Definition 3.2 we define

Definition 4.13 (Independence of inactive constraints). P is independent of inactive
constraints if for all i ∈ {1, ..., k} and j ∈ {1, ..., l}

(x∗, y∗) ∈ Opt (PL(i)) ∀(x∗, y∗) ∈ Opt(P) : Ai x
∗ + Bi y

∗ < ai

and
(x∗, y∗) ∈ Opt (PF( j)) ∀(x∗, y∗) ∈ Opt(P) : C j x

∗ + Dj y
∗ > b j

hold.

This means that a linear bilevel program is independent of inactive constraints if, after
modifying the program by removing a constraint, every optimal solution of the original
program that strictly satisfies the arbitrary constraint is also an optimal solution of the
modified program.

We now introduce the following lemma that we use to derive a connection between
independence of irrelevant constraints and independence of inactive constraints.

Lemma 4.14. If (4.6) is IIC, then every optimal solution to (4.6) is an optimal solution
of its high point relaxation.

Proof. If (4.6) is not degenerate, then we know by Theorem 3.4 that there is an optimal
solution (x∗, y∗) to (4.6) that is also an optimal solution to its high point relaxation.
Since (4.6) and its high point relaxation have the same objective function, all optimal
solution to (4.6) must be optimal solutions to its high point relaxation.

If (4.6) is degenerate either both the program and its high point relaxation are infea-
sible (in which case the lemma trivially holds) or

e = 0,

in which case (4.6) is equivalent to its high point relaxation and the lemma trivially
holds, again.

We can now derive that independence of irrelevant constraints is stronger than inde-
pendence of inactive constraints:

Theorem 4.15. If (4.6) is independent of irrelevant constraints then it is also indepen-
dent of inactive constraints.
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Proof. Let (x∗, y∗) ∈ Opt(P), j = 1, ..., l and C j x
∗ + Dj y

∗ > b j. Since Opt(P) ⊂ IR(P)
we know by Theorem 4.9 that (x∗, y∗) ∈ IR(PF( j)). Furthermore, we know by Lemma
4.14 that (x∗, y∗) is optimal for the high point relaxation of P given by (2.7). The high
point relaxation of PF( j)) is given by

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

C6= j x + D6= j y ≥ b6= j.

(4.15a)

(4.15b)

(4.15c)

Since C j x
∗ + Dj y

∗ > b j holds, (x∗, y∗) must also be optimal for (4.15). As (x∗, y∗) is
bilevel feasible for PF( j) and optimal for its high point relaxation, it must be optimal
for PF( j). Hence, (x∗, y∗) ∈ Opt(PF( j)).

For i ∈ {1, ..., k} and Ai x
∗ + Bi y

∗ < ai the proof goes analogously with Corollary 4.10
instead of Theorem 4.9.

Example 4.16. Now we will show that the inverse implication of Theorem 4.15 is gen-
erally wrong by considering the linear bilevel program

max
x ,y

y

s. t. x ≤ 1,

y ∈ arg min
y

y

s. t. y ≤ x ,

y ≥ −x .

(4.16a)

(4.16b)

(4.16c)

(4.16d)

(4.16e)

The only optimal solution to this program is (0,0), for which the only inactive constraint
is x ≤ 1. Removing the constraint still results in the same solution. Hence, the program
is independent of inactive constraints. However, the solution to the high point relaxation
of the problem is (1,1) and not (0,0). Since the program is also not degenerate, it cannot
be IIC according to Theorem 3.4. Specifically, the new follower constraint y ≥ x that is
satisfied by (0, 0), would produce the better bilevel optimal solution (1,1).

In conclusion, independence of irrelevant constraints is a stronger property than in-
dependence of inactive constraints.

4.4 Moving Inactive Constraints from the Follower to the Leader

While we have seen that we cannot remove inactive constraints, we will now show
that inactive follower constraints can be moved to the leader. For this we consider the
linear bilevel program P given by (2.4). Let eP(i) be the modified version of P where
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the j-th follower constraint has been moved to the leader. eP(i) is given by

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

C j x + Dj y ≥ b j,

y ∈ argmin
y

e> y

s. t. D6= j ȳ ≥ b 6= j − C6= j x .

(4.17a)

(4.17b)

(4.17c)

(4.17d)

(4.17e)

While inactive constraints generally cannot be removed, they can actually be moved
to the leader instead:

Theorem 4.17. Let IR(P) and IR(eP( j)) be the inducible regions of P and eP(i).

1. If (x∗, y∗) ∈ IR(P) with C j x
∗ + Dj y

∗ > b j, then

(x∗, y∗) ∈ IR(eP( j)).

This means that moving a constraint from the follower to the leader preserves the
bilevel feasibility of points that strictly satisfy the constraint.

2. If (x∗, y∗) ∈ IR(eP( j)), then
(x∗, y∗) ∈ IR(P).

This means that no new bilevel feasible points can occur because a constraint was
moved to the leader.

Proof. 1. Let PF( j) be given as in (4.9). Then Theorem 4.9 implies

(x∗, y∗) ∈ IR(PF( j)).

Furthermore, we obtain eP by adding C j x + Dj y ≥ b j to PF( j) as a leader con-
straint. Therefore,

(x∗, y∗) ∈ IR(eP(i)),

since (x∗, y∗) satisfies C j x + Dj y ≥ b j by requirement.

2. The follower problem of P for x = x∗ is

min
y

e> y

s. t. D y ≥ b− C x∗.

(4.18a)

(4.18b)

and the follower problem of eP( j) for x = x∗ is

min
y

e> y

s. t. D6= j y ≥ b 6= j − C6= j x
∗.

(4.19a)

(4.19b)
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Since (x∗, y∗) is optimal for (4.19) by requirement and satisfies C j x
∗+Dj y

∗ ≥ b j

(which is a leader constraint of eP( j), it is also optimal for (4.19). Furthermore,
(x∗, y∗) also satisfies all leader constraints of P since they are a relaxation of the
leader constraints of eP( j). Therefore,

(x∗, y∗) ∈ IR(P).

Theorem 4.17 directly implies that every follower constraint that is not active for op-
timal bilevel solutions can be moved to the leader while sustaining these optimal so-
lutions. In that sense, every linear bilevel program is independent of whether inactive
follower constraints are in the follower or the leader.

Example 4.18. The linear bilevel program

max
x ,y

y

s. t. x ≤
5
2

,

y ∈ arg min
y

y

s. t. y ≥ 1− x ,

y ≥ −2+ x ,

y ≤ 1+ x ,

0≤ y ≤ 2

(4.20a)

(4.20b)

(4.20c)

(4.20d)

(4.20e)

(4.20f)

(4.20g)

x

y

1

1 max y
(0, 1)

original program

x

y

1

1 max y
(0, 1)

inactive constraints in the leader

has the optimal solution (0,1) for which the follower constraint y ≥ −2 + x and the
bounds of y are inactive and can therefore be moved to the leader without changing the
optimal solution. This example also shows that IR∗ and IR are not generally the same in
Theorem 4.17.
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In linear programs, inactive constraints can be added or removed without changing
the optimal solution. Therefore, one can remove any constraint of a linear program,
solve the relaxed linear program, test if the solution violates the removed constraints
and add them again to cut off the infeasible solution. This is called separation.

A similar approach for linear bilevel programs could be to start with all follower
constraints as leader constraints and then successively move them to the follower as
needed. However, this method will not work because moving inactive constraints from
the follower to the leader removes suboptimal solutions while removing inactive con-
straints from a linear program adds suboptimal solutions. This illustrates that linear
bilevel programs actually have more bilevel feasible solutions when more constraints
are moved from the leader to the follower.

Example 4.19. Consider the program

min
x ,y

x
2
+ y

s. t. y ≥ 1,

y ∈ argmin
y

y

s. t. y ≥ x ,

y ≥ −x ,

(4.21a)

(4.21b)

(4.21c)

(4.21d)

(4.21e)

which has the optimal solution (−1,1). However, starting with the constraint y ≥ −x as
a leader constraint yields

min
x ,y

x
2
+ y

s. t. y ≥ 1,

y ≥ −x ,

y ∈ argmin
y

y

s. t. y ≥ x ,

(4.22a)

(4.22b)

(4.22c)

(4.22d)

(4.22e)

x

y

1

1

min x
2 + y

(−1, 1)

y ≥ −x
follower constraint

x

y

1

1

min x
2 + y

(1,1)

y ≥ −x
leader constraint
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which has the optimal solution (1,1). This solution is also bilevel feasible in the original
program and there is no direct way to tell that the original program that had y ≥ −x
in the follower, has a better solution, since the constraint y ≥ −x is not even active for
(1,1).

To summarize this chapter, we defined the property independence of inactive con-
straints, which is similar to the classic IIC property as both are taken for granted in
linear programs, but are not the same since IIC implies independence of inactive con-
straints but not vice versa. We also showed that both operations, namely adding ir-
relevant and removing inactive constraints, bear a certain monotony in the objective,
because they both do not invalidate existing solutions but possibly introduce better
ones. While we generally cannot expect to be able to remove inactive constraints, we
at least saw that we can move these constraints to the leader. We will derive presolve
techniques based on this idea in the next chapters.
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5 Finding Inactive Constraints with the Kth-best Algo-
rithm

While the Kth-best algorithm can find a quick solution, it is generally a lot slower than,
for example, solving the KKT reformulation with a MIP solver. However, we will now
present a concept that shows how the Kth-best algorithm can be used for presolve.
Specifically, the idea is to terminate the Kth-best when it does not find an optimal
solution in an appropriate amount of time and then use the information on the visited
vertices to find inactive constraints.

First, we present the algorithm itself. For this, we consider the linear bilevel program
(2.4), its follower problem (2.5) and its high point relaxation (2.4).

Furthermore, we define

(x∗, y∗) ∈ argmax
x ,y

{c>x + d> y | Ax + B y ≤ a, C x + D y ≥ b}

as an optimal solution of (2.7) and

G = (V, E)

as the undirected graph representing the basis structure of the combined polyhedron
Ω. This means that V are the extreme points of Ω and {v, w} ∈ E if and only if v and w
are adjacent in Ω in the sense that their basis representations differ by only one basis
variable. For convenience we define

Adj(v) = {w ∈ V | {v, w} ∈ E}

as the neighbours of v in G for any v ∈ V and

Ver( j) = {(x , y) ∈ V | C j x + Dj y = b j}

as the vertices that have j as an active constraint for any j ∈ {1, ..., l}.

The Kth-best algorithm, as first proposed in [5], is a solver for bilevel problems that
makes use of the fact that there is always an optimal solution to the bilevel problem
that is also an extreme point of Ω. This was shown in [4].

The algorithm iterates over the extreme points of said feasible set starting with an
optimal solution to the high point relaxation and then continues to the second best
extreme point and so on. Each extreme point is tested for follower optimality and if
it is follower optimal, it means that it is bilevel feasible and, due to the descending
order in which the extreme points are traversed, also bilevel optimal.

The Kth-best algorithm for the linear bilevel program (2.4) works like this:

36



Algorithm 1 Kth-best algorithm
Require: (2.7) is solvable

S is a sorted list of variable vectors (x , y), sorted by cT x + dT y descending
S← {(x∗, y∗)}
i← 1
while i ≤ |S| do
(x i, yi) = S[i]
if yi is optimal for (2.5) with x = x i then

return (x i, yi) is optimal for (2.4)
else

S← S ∪Adj(x i, yi) (keep S sorted)
i← i + 1

end if
end while
return (2.4) is infeasible

Example 5.1. Consider the linear bilevel program

max
x ,y∈R

y

s. t. y ≥ −2+ x ,

1≤ x ≤ 4,

y ∈ argmin
y

y

s. t. y ≤
3
2
+ x ,

y ≤ 6−
x
2

y ≥ 2− x ,

y ≥ 0.

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

(5.1f)

(5.1g)

(5.1h)

The iteration order for the Kth-best applied to this program looks like this:
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x

y

1

1

max y1st
2nd

3rd
4th

5th

6th

Note that the 6th node is never visited.

We will now present how the information gathered during the execution of Algorithm
1 can be used to find active constraints in the follower.

Let S and i be the respective variables of Algorithm 1 after an early termination. That
means that the first i elements of S have been determined as not bilevel feasible.
Accordingly, we split S into the bilevel infeasible points

P := {S[1], ..., S[i]}

and the unchecked points
Q := {S[i + 1], ...}.

We now want to find follower constraints j ∈ {1, ..., l} with

Ver( j) ⊂ P,

since these constraints do not contain any bilevel feasible vertices and are therefore
inactive for all bilevel feasible solutions and can be moved to the leader according to
Theorem 4.17. Rather than calculating Ver( j) for every j ∈ {1, ..., l} we can deduce a
better approach to find these inactive constraints.

Theorem 5.2. Let j ∈ {1, ..., l} with

Ver( j)∩Q = ; (5.2)

and
Ver( j)∩ P 6= ;. (5.3)

Then
Ver( j) ⊂ P.
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Proof. Since all points in P were determined to be bilevel infeasible and subsequently
their neighbors in G were added to S, we can deduce that

Adj(x , y) ⊂ S ∀(x , y) ∈ P. (5.4)

Aside from that, polyhedron theory tells us that the set of vertices Ver(j) is connected
in G for any j ∈ {1, ..., l}.

We now assume that
Ver( j) 6⊂ P.

Since (5.3) holds and Ver( j) is connected in G, there must be a (x , y) ∈ Ver( j) ∩ P
which has a neighbor

(ex , ey) ∈ Adj(x , y) \ P.

Furthermore, (5.4) holds and we deduce that

(ex , ey) ∈Q,

which implies
Ver( j)∩Q 6= ;,

in contradiction to (5.2). Consequently,

Ver( j) ⊂ P.

Theorem 5.2 gives a criterion for follower constraints to be inactive. The requirements
for theorem 5.2 are easily confirmed by testing C j x + Dj y = b j for every (x , y) ∈ S.
On top of that, basis information on the nodes that was used to traverse the graph G
can be used to reduce the amount of constraints the node has to be tested against.

Example 5.3. We illustrate the S, P and Q at every iteration of Algorithm 1:

i S P Q
start {1} ; {1}

after 1 {1,2, 3} {1} {2,3}
after 2 {1,2, 3,4} {1,2} {3,4}
after 3 {1, 2,3,4, 5} {1, 2,3} {4,5}
after 4 {1,2, 3,4, 5,6} {1, 2,3,4} {5,6}
after 5 {1,2, 3,4, 5,6} {1,2, 3,4, 5} {6}

When we apply Theorem 5.2 to Example 5.1, visiting node 2nd determines that the con-
straint y ≥ 6− x

2 is inactive, visiting node 3rd determines that y ≤ 3
2 + x is inactive and

visiting node 4th determines that 1≤ 4 is inactive (which already is a leader constraint,
however).

The Kth-best algorithm was implemented in the course of this thesis involving around
2000 lines of code including two different approaches for traversing the extreme
points. The latest state of the code is stored in Martin Schmidt’s GitLab repository
in Trier under the GitHash ffe75810bf32f36e76d43423455ba19c9125fdac.
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6 Presolve Techniques for Linear Bilevel Programs

In this chapter we will go over several presolve techniques that are successfully em-
ployed in linear programming and mixed integer programming and will determine, if
and how they can be used to presolve linear bilevel programs.

6.1 Bound Strengthening

This presolve technique, as explained in [1], tries to tighten variable bounds without
cutting off any feasible points, so that they can be achieved by at least one feasible
point instead of being unachievable.

6.1.1 Bound Strengthening on Linear Programs

Before we investigate this technique in the context of linear bilevel programming, we
will give a short explanation of the essentials by applying the method called bound
strengthening as seen in [1] to a linear program.

Example 6.1. Consider the R2-polyhedron given by the constraints

y ≥ 3−
x
2

,

y ≤ 6− 2x ,

y ≥ 1,

x ≤ 3.

(6.1a)

(6.1b)

(6.1c)

(6.1d)

By inserting y ≥ 1 into y ≤ 6− 2x one finds that

1 ≤ 6− 2x (6.2)

⇐⇒ x ≤
5
2

. (6.3)

The bound of x can now be tightened to x ≤ 5
2 , which effectively moves the bound on x

to the intersection of the constraint y ≤ 6− 2x and the bound y ≥ 1:

40



x

y

1

1

y ≥ 1
x ≤ 3

x

y

1

1

y ≥ 1
x ≤ 2.5

The same procedure can now be applied to the constraint y ≥ 3− x
2 and the bound x ≤ 5

2
to tighten the bound y ≥ 1 to y ≥ 1.75. Afterwards, the bound on x can be tightened
even further using the new bound on y and so on:

x

y

1

1

y ≥ 1.75
x ≤ 2.5

x

y

1

1

y ≥ 1.75
x ≤ 2.125

x

y

1

1

y ≥ 1.9375
x ≤ 2.125

Ultimately, this converges to the tight bounds x ≤ 2 and y ≥ 2. Obviously, in this
example the intersection point (2,2) of the two constraints could have been calculated
straight away, but that does not work in higher dimensions.

We generalize this technique to the linear program

max
x

c>x

s. t. Ax ≤ b,

l ≤ x ≤ u.

(6.4a)

(6.4b)

(6.4c)
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Let Ai x ≤ bi be a single constraint, let x j be the variable whose bounds we want to
strengthen, let Ai j 6= 0 and S = {1, ..., n} \ { j}. Then we rewrite the constraint as

AiS xS + Ai j x j ≤ bi

and solve by x j to get

x j ≤ (bi − AiS xS)/Ai j if Ai j > 0, (6.5)

or
x j ≥ (bi − AiS xS)/Ai j if Ai j < 0. (6.6)

In either case we can now estimate

liS :=
∑

p∈S
Aip>0

Aip lp +
∑

p∈S
Aip<0

Aipup ≤ AiS xS.

liS is also called the minimal activity of AiS xS. If we apply this to (6.5) and (6.6) we
get

x j ≤ (bi − liS)/Ai j if Ai j > 0,

or
x j ≥ (bi − liS)/Ai j if Ai j < 0

which leads to the new bounds

u′j :=min{u j, (bi − liS)/Ai j} if Ai j > 0,

or
l ′j :=max{l j, (bi − liS)/Ai j} if Ai j < 0.

We call this procedure strengthening the bound u j or (l j) using the constraint Ai x ≤ bi.

As seen in Example 6.1, this scheme can be applied in an iterative fashion where one
alternates between the bounds of different variables. In some cases, this process would
need to be repeated infinitely in order for the bounds to converge, which we saw in
Example 6.1. In [1] it is covered in detail how this infinite conversion is avoided. The
basic idea is to stop iterating when the bounds improve too little within each step.

6.1.2 Bound Strengthening on Linear Bilevel Programs

We will now put bound strengthening in the context of linear bilevel programming.
From a theoretical point of view a single bound strengthening step can be seen as
adding a new constraint (the improved bound) while afterwards removing an obsolete
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constraint (the old bound). We consider the linear bilevel program

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

L ≤ x ≤ U ,

l ≤ y ≤ u,

y ∈ arg min
y

e> y

s. t. D y ≥ b− C x

l ≤ y ≤ u.

(6.7a)

(6.7b)

(6.7c)

(6.7d)

(6.7e)

(6.7f)

(6.7g)

with explicit bounds. Note that it can have bounds for y in the leader as well as in the
follower.

First we present a theorem that we can strengthen variable bounds appearing in the
leader without any restriction.

Theorem 6.2. Strengthening the bounds (6.7c) and (6.7d) using any constraint of (6.7)
will not change the inducible region IR of (6.7).

Proof. We consider the combined polyhedron

Ω= {(x , y) | Ax + B y ≤ a, C x + D y ≥ b, L ≤ x ≤ U , l ≤ y ≤ u, l ≤ y ≤ u},

which is the domain of the high point relaxation of (6.7). We now apply bound
strengthening to the bounds (6.7c) and (6.7d) using any constraint describing Ω,
which is any constraint of (6.7). This bound strengthening technique as it is de-
scribed in [1] leaves Ω unchanged. By Remark 4.1 the inducible region IR remains
the same.

We will now show which constraints can be used to strengthen follower bounds and
which cannot be used.

Theorem 6.3. Strengthening the bounds (6.7g) using any constraint in (6.7f) will not
change the inducible region of 6.7.

Proof. We consider the follower polyhedron

ΩF = {(x , y) | C x + D y ≥ b, l ≤ y ≤ u}

We can now apply bound strengthening to the constraints and bounds describing ΩF .
Since the bound strengthening technique as it is described in [1] leavesΩF unchanged,
the inducible region IR remains the same by Remark 4.1 .

While using follower constraints to strengthen follower bounds works fine, we now
present an example where using leader constraints to strengthen follower bounds
changes the optimal solution.
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Example 6.4. The linear bilevel program

min
x ,y∈R

x

s. t. y ≥
x
2
+ 1,

x ≥ 0,

y ∈ arg min
y

y

s. t. y ≥ 2x − 2,

y ≥
1
2

x

y

1

1

min x

(2, 2)

y ≥ 1
2

x

y

1

1

min x

(0,1)

y ≥ 1

has the optimal solution (2,2). When strengthening the bound y ≥ 1
2 using the constraint

y ≥ x/2 + 1, one finds that the minimal activity of x/2 + 1 is 1 due to x ≥ 0, which
raises the bound of y to y ≥ 1. This leads to the program

min
x ,y∈R

x

s. t. y ≥
x
2
+ 1,

x ≥ 0,

y ∈ arg min
y

y

s. t. y ≥ 2x − 2,

y ≥ 1

with the optimal solution (0,1).
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6.2 Substitution

In this section we will investigate the possibility of substituting variables by equations.
Specifically, if you have an equation a>x = b in a linear program then you can solve
it for any x i where ai 6= 0 and then replace any occurrence of x i. Generally, while
reducing the dimension of the problem, it also introduces a lot of new non-zero coef-
ficients, which generally outweighs the benefits of the reduced dimensions. However,
in certain cases it can be beneficial.

We now want to determine in which cases it is possible to substitute a variable in a
linear bilevel program by an equation without changing the optimal solution. The rule
for that is simple:

Remark 6.5. If the equation used for substitution is a follower constraint, then any one
variable (leader or follower), whose coefficient within said equation is not zero, can be
substituted by that equation. This is done in two steps:

1. Replace every occurrence of the variable by the equation. This operation is justified
by (4.1).

2. Remove the variable, which now does not appear in the program at all, from the
program.

If the equation used for substitution is a leader constraint, then any one leader variable,
whose coefficient within said equation is not zero, can be substituted by that equation.
We justify this the same way as we did above.

However, substituting a follower variable by an equation that is a leader constraint
basically means to first introduce that equation as a follower constraint, which gen-
erally cannot be done without changing the optimal solution. The following example
illustrates that:

Example 6.6. The linear bilevel program

max
x ,y

y

s. t. y = x + 1,

0≤ x ≤ 1,

y ∈ arg min
y

y

s. t. y ≥ 1− x .

(6.8a)

(6.8b)

(6.8c)

(6.8d)

(6.8e)
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x

y

1

1 max y

has the optimal solution (0, 1). When we substitute the follower variable y by the leader
constraint y = x + 1 we get the linear program

max
x

x + 1

s. t. 0≤ x ≤ 1,

(6.9a)

(6.9b)

which has the optimal solution 1. Substituting back, we get the two-dimensional solution
(1,2).

6.3 Duality Fixing

Another important presolve technique for single level programs is duality fixing as
seen in [1] for MIPs and in [14] for bilevel programs. Consider the following linear
program:

min x1 − x2

s.t. x1 + 2x2 ≤ 2,

2x1 − x2 ≤ 1,

x1, x2 ≥ 0.

From the perspective of optimization we want to minimize x1. This also applies to the
two constraints. If we did not have a lower bound for x1, this would show that the
problem was unbounded. However, the lower bound x1 ≥ 0 prevents us from making
x1 as small as we want and thus we fix x1 = 0. This fixing only removes non-optimal
solutions, since for every feasible point (x1, x2) with x1 > 0 the point (0, x2) is also
feasible and has a better objective value.
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For a general linear program of the form

max c>x
s.t. Ax ≤ b,

where the bounds (if any exist) are included in Ax ≤ b, this can be generalized as
follows:
Find a variable where all constraint coefficients are inverse to the objective coeffi-
cient except for one constraint coefficient and use that odd one out to fix the variable.
Precisely, let i ∈ {1, ..., k} and j ∈ {1, ..., l} so that

A ji > 0,

Api ≤ 0 ∀p 6= j,
ci > 0

or

A ji < 0,

Aπ ≥ 0 ∀p 6= j,
ci < 0.

Then substitute

x i =
1

A ji

 

bi −
∑

p 6=i

A jp xp

!

.

Note that potential variable bounds are included in Ax ≤ b. If row j is e.g. a lower
bound x i > li, then 1

A ji

�

bi −
∑

p 6=i A jp xp

�

shrinks down to li since A ji = 1, bi = li and
A jp = 0 ∀p 6= i.

This effectively removes the variable from the problem, thus reducing its dimension.
If a variable has only non-negative or only non-positive coefficients (which includes
that it has no lower/upper bound), then the problem is unbounded.

Now we look at a similar bilevel example where one leader variable only has non-
negative coefficients:

min
x

x − y,

s.t. 3x − y ≤ 3,

0≤ x ,
miny y,

s.t. 2x − y ≤ 0.

However, the follower problem is

min
y

y,

s.t. y ≥ 2x ,
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which translates to
y = 2x .

Substituting y with this equation in the original problem yields the linear program

min
x

−x ,

s.t. x ≤ 3,

0≤ x ,

where x does not have non-negative coefficients anymore. We see that the optimal
solution to the original problem is (3, 6), which means that fixing x to its lower bound
was wrong in the first place. This is due to the fact that we did not consider the
follower optimality constraint on y , which generally cannot be seen as a positive or
negative constraint on y since it is non-convex.

However, we can use duality fixing to fix follower variables. For this we are going to
consider linear bilevel program given by (2.4) and its follower problem (2.5). The fol-
lowing theorem shows that we can use duality fixing on the follower problem without
any consideration of the leader variables, leader constraints or leader objective.

Theorem 6.7. Let i and j such that either

Dji > 0,

Dpi ≤ 0 ∀p 6= j,
ei > 0

or

Dji < 0,

Dpi ≥ 0 ∀p 6= j,
ei < 0.

Then adding the constraint

yi =
1

Dji

 

ei − C j,·x −
∑

p 6=i

Djp yp

!

(6.10)

to the leader of (2.4) will not change the set of bilevel feasible points.

Proof. Without loss of generality we can assume the first case, i.e.

Dji > 0,

Dpi ≤ 0 ∀p 6= j,
ei > 0.

For the sake of convenience we define

li :=
1

Dji

 

ei − C j,·x −
∑

p 6=i

Djp yp

!

.
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Furthermore, let y be feasible to (2.5) for some leader decision x , therefore

yi ≥ li,

which justifies the nomenclature of li.

Assume a point y that feasible to (2.5) for some leader choice x and that satisfies
yi > li. Then by with

byk =

¨

yk, if k 6= i
li, if k = i

is also feasible to (2.5) since Dki ≥ 0 ∀k 6= j. Furthermore, by has a better objective
value in (2.5) than y since ei > 0. Consequently, y cannot have been optimal.

Conversely, all optimal solutions y of (2.5) must satisfy (6.10). Since the bilevel fea-
sible set only contains solutions optimal for the follower, adding constraint (6.10) to
the leader will not change the bilevel feasible set.

Since Theorem 6.7 allows us to introduce equation (6.10) into (2.4), all occurrences
of yi can now be substituted through this equation as shown in Remark 6.5.

A simple example where we can apply this technique:

Example 6.8.

min
x

y2 − 4y1,

s.t. x − y1 ≤ 3,
miny y1 + y2,

s.t. y2 − y1 ≤ −2,
y1 ≥ 0,
−y2 ≤ −2x .

Since y2 has positive follower coefficients except for the last constraint, where its coefficient
is negative, we can substitute y2 = 2x. This simplifies the problem to

min
x

−4y1,

s.t. x − y1 ≤ 3,
miny y1 + 2x ,

s.t. y1 ≥ 2+ 2x ,
y1 ≥ 0.

The 2x in the follower objective can be removed since that term is constant from the
follower’s point of view.

6.4 Parallel and Anti-Parallel Rows

In this chapter we will examine the occurrence of parallel rows in a linear bilevel pro-
gram and how these can be used to simplify the program. The methods we use are
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taken from [1], where they were established in a single-level context. We put them
into the bilevel context which includes distinguishing between where the parallel rows
occur (e.g. both in the follower, both in the leader, one and in the leader and one in the
follower). In [1] they consider inequalities as well as equations for parallel columns.
However, the methods applied to equations can be expressed through subsequent ap-
plication of methods for inequalities.
In [7] an algorithm to efficiently detect parallel rows is presented.

Example 6.9. Consider the linear program given by

min
x

x

s. t. x + y ≥ 1,

− 2x − 2y ≤ −3,

y ≤ 1+
x
2

,

y ≥ −2+
x
2

.

(6.11a)

(6.11b)

(6.11c)

(6.11d)

(6.11e)

x

y

1

1

The constraints x + y ≥ 1 and −2x − 2y ≤ −3 are parallel and by comparing the right
hand sides one finds that x + y ≥ 1 is redundant.

The constraints y ≤ 1+ x
2 and y ≥ −2+ x

2 are anti-parallel and by comparing the right
hand sides one could find that the problem is infeasible because they contradict each other,
which is not the case here.

In this section we assume a linear bilevel program of the form

max
x ,y

c>x + d> y

s. t. Ax + B y ≤ a,

y ∈ argmax
y

e> y

s. t. D y ≤ b− C x ,

(6.12a)

(6.12b)

(6.12c)

(6.12d)
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where the follower objective is maximized and the follower constraints are phrased
D y ≤ b − C x instead of D y ≤ b − C x , since that makes it easier for us to compare
leader and follower constraints.

Let α>x + β> y ≤ µ and γ>x + δ> y ≤ ν be any two constraints (or rows) of (6.12)
that satisfy

sα= γ, sβ = δ

for some s ∈ R 6=0. If s > 0, we call them parallel, otherwise anti-parallel.

6.4.1 Presolve of Parallel Rows

If α>x + β> y ≤ µ and γ>x +δ> y ≤ ν are parallel, we get

γ>x +δ> y ≤ ν (6.13)

⇐⇒ sα>x + sβ> y ≤ ν (6.14)

⇐⇒ α>x + β> y ≤ ν/s (6.15)

Now we can state which of the two inequalities implies the other one:

1. If ν/s < µ then γ>x +δ> y ≤ ν is stronger than α>x + β> y ≤ µ.

2. If ν/s > µ then α>x + β> y ≤ µ is stronger than γ>x +δ> y ≤ ν.

3. If ν/s = µ then α>x + β> y ≤ µ and γ>x +δ> y ≤ ν are equivalent.

We can now derive the following rules for handling parallel rows in a linear bilevel
program:

1. Parallel leader rows:
Let Ai x + Bi y ≤ ai and A j x + B j y ≤ a j be two parallel leader constraints of
(6.12). If either of them is stronger than the other one, then the other one can
be discarded using Theorem 4.4. If they are equivalent, any one of them can be
discarded using Corollary 4.4 (but obviously not both).

2. Parallel follower rows:
Let Ci x + Di y ≤ bi and C j x + Dj y ≤ b j be two parallel follower constraints of
(6.12). If either of them is stronger than the other one, then the other one can
be discarded using Corollary 4.3. If they are equivalent, any one of them can be
discarded using Corollary 4.3 (but obviously not both).

3. Parallel leader and follower row:
Let Ai x + Bi y ≤ ai be a leader constraint and C j x + Dj y ≤ b j be a follower
constraint, which are parallel. If C j x + Dj y ≤ b j is stronger than or equivalent
to Ai x + Bi y ≤ ai then the latter one can be discarded using Theorem 4.4.
If, however, Ai x + Bi y ≤ ai is stronger than C j x + Dj y ≤ b j we can argue that
every point in the inducible region, i.e. (x , y) ∈ IR, satisfies Ai x + Bi y ≤ ai and
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therefore C j x + Dj y < b j. That means that C j x + Dj y < b j is inactive for every
point in the inducible region and C j x + Dj y < b j can be moved to the leader
according to Theorem 4.17 without changing the inducible region. Now we can
remove the new leader constraint C j x + Dj y < b j by applying Corollary 4.4.

6.4.2 Presolve of Anti-Parallel Rows

If α>x + β> y ≤ µ and γ>x +δ> y ≤ ν are anti-parallel we get

γ>x +δ> y ≤ ν (6.16)

⇐⇒ α>x + β> y ≥ ν/s (6.17)

and therefore
ν/s ≤ α>x + β> y ≤ µ.

If ν/s > µ then the combined polyhedron, which incorporates both the leader and the
follower constraints, is empty. Since the inducible region is a subset of said polyhe-
dron, it is empty as well and (2.4) is infeasible. Therefore, anti-parallel can be used
to find very basic infeasibility.

6.5 Rows that are Anti-Parallel to the Objective Coefficients

Alternatively to looking for two rows that are parallel, one could also look for rows
that are parallel to one the objective functions. We consider the following example,
which is a slightly modified version of Example 2.1:

Example 6.10. The linear bilevel program

max
x ,y

4y − x

s. t. y ≥ 1+
x
4

,

y ≤ 5,

y ∈ argmin
y

y

s. t. y ≥ 4− 2x ,

y ≥ 3− x ,

y ≥ −6+ 2x ,

y ≤ 4+ x ,

y ≤ 6.

(6.18a)

(6.18b)

(6.18c)

(6.18d)

(6.18e)

(6.18f)

(6.18g)

(6.18h)

(6.18i)
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x

y

1

1

(0,4)

x

y

1

1

(0, 4)

The constraint y ≥ 1+ x
4 represents a lower bound for the leader objective, which will be

maximized anyway. Since the whole problem is feasible, y ≥ 1+ x
4 is redundant (if the

program was infeasible then removing y ≥ 1+ x
4 could make it feasible).

The follower constraints y ≤ 4+ x and y ≤ 6 are upper bounds for the follower objective,
which will be minimized anyway. Consequently, they are redundant for the follower
problem as long as the follower problem is feasible. Since the feasibility of the follower
problem also depends on the choice of x, these constraints might be redundant for some
choices of x and make the follower problem infeasible for other choices of x. This means
that we cannot remove them, but we will show that we can move them to the leader.
Removing them would result in a better optimal solution:

x

y

1

1

max 4y − x

(−1
2 , 5)
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In a linear bilevel program we have two objective functions a constraint can be parallel
or anti-parallel to, as well as two locations (leader or follower) where that constraint
can be. We will derive results for the different cases. Constraints parallel to the objec-
tive are the opposite of redundant, since they pose bounds on the objective function.
We therefor focus on anti-parallel rows, which point in the opposite direction of the
objective coefficients.

We will consider the linear bilevel program given by (6.12) again, where leader and
follower constraints are oriented the same way and oppose the respective objectives.
For starters, we will handle the simplest case, where a leader constraint is anti-parallel
to the leader objective, that is

Ai = −λc>, Bi = −λd>

for some i ∈ {1, ..., k} and λ > 0. Now we assume a bilevel feasible point (x∗, y∗) ∈ IR.
Analogously to the single-level case, we can argue that for any (x0, y0) with

Ai x0 + Bi y0 > ai

we get

c>x0 + d> y0 = −(Ai x0 + Bi y0)/λ (6.19a)

< −ai/λ (6.19b)

≤ −(Ai x
∗ + Bi y

∗)/λ (6.19c)

= c>x∗ + d> y∗, (6.19d)

which means that (x0, y0) has a worse objective value than (x∗, y∗). This shows that
points, which become bilevel feasible when the constraint Ai x + Bi y ≤ ai is removed
from (6.12), must have a worse objective value than any existing bilevel feasible point.
This allows us to remove the constraint in the process of presolve.

Note that this argument assumes that there is at least one bilevel feasible point. If
there is none, removing the constraint might make an infeasible program feasible.
For that reason, any solution one finds after removing the constraint has to be tested
against that constraint. If it violates the constraint, the program was infeasible in the
first place.

The next example shows that follower constraints anti-parallel to the leader objective
cannot generally be removed without falsifying the program.
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Example 6.11. The linear bilevel program

max
x ,y

y

s. t. y ≤ −
1
2
+ x ,

x ≤
7
2

,

y ∈ argmin
y

y

s. t. y ≥ 1,

y ≥ 2− x ,

y ≥ −3+ x

(6.20a)

(6.20b)

(6.20c)

(6.20d)

(6.20e)

(6.20f)

(6.20g)

x

y

1

1
max y

(3
2 , 1) (7

2 , 1)
x

y

1

1 max y

(5
4 , 3

4)

has the follower constraint y ≥ 1 that is anti-parallel to the leader objective. Removing
it changes the optimal solution.

Now we head on to follower constraints that are anti-parallel to the follower objective,
that is

Dj = −λe>

for some j ∈ {1, ..., l} and λ > 0. Note that we do not require C j = 0 as technically
the objective coefficients of leader variables in the follower objective are 0. We will
see that this requirement is not needed.

We consider the follower problem of (6.12) given by

max
y

e> y

s. t. D y ≤ b− C x .

(6.21a)

(6.21b)
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Let x∗ ∈ Rn so that (6.21) is feasible for x = x∗, let y∗ ∈ Rm be an optimal solution to
(6.21) for x = x∗ and y0 ∈ Rm with

Dj y0 > b j − C j x .

Then we can derive (analogously to (6.19)) that

e> y0 < e> y∗.

Again, removing constraint Dj y ≤ b j−C j x from the follower problem only introduces
worse feasible points as long as the problem was feasible for x = x∗ before removing
the constraint. Let Ψ(x) be the rational reaction set of (6.21) before removing the
constraint and let eΨ(x) be the rational reaction set after removing the constraint.
Then we summarize

eΨ(x) = Ψ(x) ∀x where (2.5) is feasible

and
C j x + Dj y > b j ∀y ∈ eΨ(x) ∀x where (2.5) is infeasible.

This shows that all formerly bilevel feasible points are still bilevel feasible (and satisfy
C j x +Dj y ≤ b j) and the new bilevel feasible points all violate Dj y ≤ b j−C j x . Hence,
we introduce C j x+Dj y ≤ b j as a leader constraint to cut off these new bilevel feasible
points and we ultimately did not remove the constraint but moved it from the follower
to the leader.

6.6 Parallel Columns

The detection and handling of parallel columns is an important part of presolve, es-
pecially for mixed integer programs, since parallel columns occur more often there,
as seen in [16]. First, we are going to review the core mechanic of merging parallel
columns as it is described in [1]. The following example is taken from [1]:

min 2x1 + 4x2 + x3,

s.t. −x1 − 2x2 − x3 ≤ −10,

0≤ x1 ≤ 3,

0≤ x2 ≤ 4,

0≤ x3 ≤ 5.

Here, all coefficients of x2 are exactly twice as big as the coefficients of x1. By substi-
tuting xnew = x1+2x2, the columns x1 and x2 can be merged into xnew. Note that the
coefficients of xnew are the ones of x1 and the bounds of xnew are

lnew = l1 + 2l2 = 0,

unew = u1 + 2u2 = 11.
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We get the new model

min 2xnew + x3,

s.t. −xnew − x3 ≤ −10,

0≤ xnew ≤ 11,

0≤ x3 ≤ 5.

Let M be an arbitrary coefficients matrix. In the case of a linear program of the form

min c>x
s.t. Ax ≤ b,

l ≤ x ≤ u,

this would be

M =
�

c
A

�

.

Furthermore, let i and j be parallel columns in M . That means,

M·, j = λM·,i

for some λ 6= 0. Variables x i and x j can now be merged through

bx i = x i +λx j

into a new variable with coefficients M·,i. The new coefficient matrix ÒM is the same
as M except that the j-th column is missing. Accordingly, the new variable vector
bx misses the j-th column while the i-th column represents the new merged column.
Furthermore, the bounds for bx i are

bli = li +λl j,

bu j = ui +λu j.

Next up we will identify equivalent solutions of the reduced and the original problem:

Definition 6.12. Variable vectors x and bx for the original problem M and the reduced
problem ÒM are equivalent if they satisfy

bxk = xk ∀k 6= i, j,
bx i = x i +λx j,

li ≤ x i ≤ ui,

l j ≤ x j ≤ u j.

For equivalent variable vectors x and bx we get

ÒM bx = M x .
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This leads to the conclusion that, if bx and x satisfy Definition 6.12, evaluating the
respective matrices yields the same result and each of the solutions satisfies its bounds
exactly when the other solution satisfies its bounds.
Note that x i and x j satisfying their bounds implies that bx i satisfies its bounds but not
the other way round. That is why the bounds of x i and x j have to be included in the
definition.

If M represents a linear program, for example, then Definition 6.12 provides an iden-
tity for solutions of the original and the merged linear program under which both
solutions have the same objective value and are either both feasible or both infeasible.
This ultimately proves that merging variables, as proposed in [1], delivers an equiva-
lent linear program.
However, if M represents a linear bilevel program, its possible that one of these equiva-
lent solutions satisfies the follower optimality constraint while the other one does not.
In the following chapter we will investigate under which circumstances the aforemen-
tioned identity preserves follower optimality.

From here on, M will represent the linear bilevel program (2.4). Therefore

M =







c> d>

0 e>

A B
C D






.

We assume that two columns i and j of M are parallel. These columns will be merged
and the resulting column will either be put into the leader or the follower, resulting
in the matrix ÒM .

• the leader, resulting in the matrix ÒM ,

• the follower, resulting in the matrix M .

Furthermore, let z =
�

x
y

�

, bz =
�

bx
by

�

and z =
�

x
y

�

be variable vectors for the linear

bilevel programs represented by the respective matrices. Assume that these vectors
satisfy (6.12) and are therefore considered equivalent points for the respective pro-
grams. Since these variable vectors have the same objective values and share feasibility
in regards to the inequalities, the question arises whether they share feasibility in re-
gards to follower optimality. If either of bx and x share this feasibility with x then the
respective matrix ÒM or M represents a linear bilevel program equivalent to the one
represented by M .

6.6.1 Both Columns represent Leader Variables

We assume that two columns i and j of M are parallel. These columns will be merged
and the resulting column will be put into the leader, resulting in the matrix ÒM . Since
both variables are leader variables, putting the new variable into the leader is the
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obvious choice. Then, the leader decisions x and bx are equivalent if they satisfy (6.12).
Since the set of follower variables stays the same, follower decisions y and by are
equivalent if y = by . Furthermore, the follower objectives and left hand sides are
identical for M and ÒM . While the right hand sides vary due to the merging of the
leader variables, the right hand side values are still identical for equivalent leader
decisions. This proves the following corollary:

Corollary 6.13. When merging two parallel leader columns into a new leader column
the follower problem remains identical for equivalent leader decisions.

We can now summarize:

Theorem 6.14. Two entirely parallel leader columns in a linear bilevel program can be
merged into a new leader column.

Proof. Since the follower problem remains the same for equivalent leader decisions,
equivalent bilevel points z and bz are either both optimal solutions of the follower
problem or neither of them is. They therefore share follower optimality. Beside that,
they also share bilevel objective value and feasibility in the leader constraints. There-
fore, the resulting linear bilevel program with the merged column is equivalent to the
original one.

As mentioned before, putting the new variable into the leader was the obvious choice
and led to the desired result. Putting it into the follower instead is equal to first putting
it into the leader and then moving a variable from the leader to the follower, which is
a change to a bilevel problem that generally cannot be expected to sustain the same
optimal solution.

6.6.2 Both Columns represent Follower Variables

If both variables are follower variables, putting the new variable into the follower is
the obvious choice. The leader decisions x and x are now equivalent if x = x , while
the follower decisions are equivalent if y and y are equivalent according to Definition
6.12. Since coefficients of leader variables do not change, the right hand sides of the
follower problem stay the same for equivalent choices of the leader after merging the
variables.

Theorem 6.15. Two entirely parallel follower columns in a linear bilevel program can
be merged into a new follower column.

Proof. Since the objective values, left hand side values and right hand side values, are
the same in the leader and the follower for equivalent bilevel points z and z, both of
these or neither of these is feasible in the follower and they have the same objective
value. Hence, either both or neither of them is an optimal solution of the follower.
Furthermore, either both or neither of them is feasible to the leader and they have
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the same leader objective value. We can conclude that bilevel optimality is sustained
among equivalent bilevel points which shows that the merged linear bilevel program
is equivalent to the original one.

Again we can note that merging the new variable into a leader variable is the same
as merging it into a follower variable and then moving that variable into the leader,
which is generally not possible without changing the optimal solution.

6.6.3 Columns with just Parallel Follower Coefficients

In this section we will investigate follower columns where only the follower coeffi-
cients are parallel. Accordingly, we define

M =
�

e>

D

�

.

We are now looking for parallel columns i and j in M . The idea is to introduce a new
column ynew that replaces i and j in the follower, so that i and j can become leader
columns. That means that i and j are being merged in the follower linear program
the same way as columns are merged in a general linear program as proposed in [1].
However, yi and y j stay in the bilevel problem by becoming leader variables instead
(they just disappear from the follower). This means that the bounds for yi and y j also
move to the leader and a new equation ynew = λyi + y j is added to the leader.

Example 6.16. Consider the linear bilevel program

min
x ,y1,y2

2y1 + y2

s. t. y1 + y2 ≤ 5,

0≤ x ≤ 4,

y ∈ argmin
y

y1 + 3y2

s. t. 2y1 + 6y2 ≥ x ,

y1 ≥ 1, y2 ≥ 0.

(6.22a)

(6.22b)

(6.22c)

(6.22d)

(6.22e)

(6.22f)
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becomes
min

x ,y1,y2,ynew
2y1 + y2

s. t. y1 + y2 ≤ 5,

ynew = y1 + 3y2,

0≤ x ≤ 4,

y1 ≥ 1, y2 ≥ 0,

ynew ∈ argmin
ynew

ynew

s. t. 2ynew ≥ x ,

ynew ≥ 1.

(6.23a)

(6.23b)

(6.23c)

(6.23d)

(6.23e)

(6.23f)

(6.23g)

(6.23h)

Furthermore, either y1 or y2 can be removed. For example, all occurrences of y2 can be
replaced by 1

3(ynew − y1) resulting in the following linear bilevel program:

min
x ,y1,ynew

2y1 +
1
3
(ynew − y1)

s. t. y1 +
1
3
(ynew − y1)≤ 5,

0≤ x ≤ 4,

y1 ≥ 1, ynew − y1 ≥ 0,

ynew ∈ argmin
ynew

ynew

s. t. 2ynew ≥ x ,

ynew ≥ 1.

(6.24a)

(6.24b)

(6.24c)

(6.24d)

(6.24e)

(6.24f)

(6.24g)

This gets rid off the equation ynew = y1 + 3y2.

Theorem 6.17. A linear bilevel program where two columns of the follower problem are
parallel (except for their bounds) can be reformulated so that one follower variable gets
removed in return for a new leader variable.

Proof. To prove this we will consider the linear bilevel program in the following single-
level formulation:

min
x ,y

c L · x + d L · y

s.t. AL x + BL y ≤ qL,

y is optimal for F(x).

Let F(x) be the follower problem of the linear bilevel program. This is a linear program
with parameterized right hand sides. Since the merging of two columns in a linear
program has no requirements on the right hand sides, the two parallel columns can
be merged according to Section 6.6, resulting in a new follower variable vector y and
a new follower problem F(x).
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In preparation for replacing the follower problem, we first introduce the new variable
ynew, the constraint yi +λy j = ynew and the bounds for y to the problem:

min
x ,y,ynew

c L · x + d L · y

s.t. AL x + BL y ≤ qL,

yi +λy j = ynew,

li ≤ yi ≤ ui,

l j ≤ y j ≤ u j,

y is optimal for F(x).

Obviously, this does not change the optimal solution to the problem except for a re-
dundant column. However, we now have two sub-vectors of variables y and y that
share all follower variables except for yi, y j and ynew. However, for points that satisfy
all constraints of this problem except for the optimality constraint, the vectors y and
y are equivalent according to (6.12). Therefore y is optimal for F(x) if and only if y
is optimal for F(x). Now we can replace the follower problem:

min
x ,y,ynew

c L · x + d L · y

s.t. AL x + BL y ≤ qL,

yi +λy j = ynew

li ≤ yi ≤ ui,

l j ≤ y j ≤ u j,

y is optimal for F(x).

Note that if yi and y j both have finite lower bounds, only one of them is required,
since the other one is satisfied through the lower bound for the new merged follower
variable and the equation yi +λy j = ynew. Same goes for the upper bounds.

Lastly, we can solve equation yi + λy j = ynew for yi or y j and substitute the variable
using Remark 6.5.
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7 Conclusion and outlook

In the course of this thesis we reviewed the existing literature on independence of
irrelevant constraints of bilevel programs and we showed that for linear bilevel pro-
grams, existing theory implies that adding irrelevant constraints global optimality only
for trivial problems.
We then introduced the term independence of inactive constraints and showed that
this property is weaker than independence of irrelevant constraints since the latter one
implies the former one but not vice versa. While independence of inactive constraints
would let us remove inactive constraints, it still is a property we generally cannot
expect to find in linear bilevel program. However, we proved that inactive follower
constraints can always be moved to the leader. This is important, since classic solution
approaches benefit from exactly this modification of the program.
The idea of moving constraints carried on to chapter 5, where we saw that information
gathered by the Kth-best algorithm algorithm can be exploited to find inactive con-
straints, and to chapter 6, where we discussed several common presolve techniques for
linear programs and mixed integer programs in the light of linear bilevel programs.
We generally had to distinguish between applying these techniques to leader com-
ponents or to follower components. There was usually at least one case where the
common presolve technique could not be applied to linear bilevel programs or just in
a modified way that, for example, only allowed us to move a constraint to the leader
instead of removing it.
For future studies, we see great value in a computational study of these discussed tech-
niques, especially by evaluating the benefits of presolve for classic solution techniques
for linear bilevel programs like the KKT reformulation, the Kth-best algorithm or the
PADM heuristic.
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