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Abstract. Linear complementarity problems are a powerful tool for modeling
many practically relevant situations such as market equilibria. They also
connect many sub-areas of mathematics like game theory, optimization, and
matrix theory. Despite their close relation to optimization, the protection of
LCPs against uncertainties—especially in the sense of robust optimization—is
still in its infancy. During the last years, robust LCPs have only been studied
using the notions of strict and Γ-robustness. Unfortunately, both concepts lead
to the problem that the existence of robust solutions cannot be guaranteed.
In this paper, we consider affinely adjustable robust LCPs. In the latter, a
part of the LCP solution is allowed to adjust via a function that is affine in
the uncertainty. We show that this notion of robustness allows to establish
strong characterizations of solutions for the cases of uncertain matrix and
vector, separately, from which existence results can be derived. Our main
results are valid for the case of an uncertain LCP vector. Here, we additionally
provide sufficient conditions on the LCP matrix for the uniqueness of a solution.
Moreover, based on characterizations of the affinely adjustable robust solutions,
we derive a mixed-integer programming formulation that allows to solve the
corresponding robust counterpart. If, in addition, the certain LCP matrix is
positive semidefinite, we prove polynomial-time solvability and uniqueness of
robust solutions. If the LCP matrix is uncertain, characterizations of solutions
are developed for every nominal matrix, i.e., these characterizations are, in
particular, independent of the definiteness of the nominal matrix. Robust
solutions are also shown to be unique for positive definite LCP matrix but
both uniqueness and mixed-integer programming formulations still remain open
problems if the nominal LCP matrix is not positive definite.

1. Introduction

Linear complementarity problems (LCPs) are an important tool both in mathe-
matical theory as well as in applied mathematics. On the one hand, they serve as a
bridge between mathematical fields such as optimization, game theory, and matrix
theory—on the other hand, they provide one of the main modeling concepts for
market equilibrium problems in energy applications like power or gas networks. For
an overview of these connections, we refer to the seminal textbook [13]. Most likely,
its strongest connection can be drawn to quadratic programming (QP) via the fact
that the Karush–Kuhn–Tucker (KKT) conditions of many QPs can be represented
as LCPs, which is also the key aspect for the applicability of LCPs in contexts such
as energy markets; see, e.g., [15–17, 25].

One very active sub-area of mathematical optimization in the last decades was
and is optimization under uncertainty, i.e., the study of optimization problems in
which all or a certain number of parameters of the model are unknown or subject to
perturbations. In order to hedge against uncertainties, two major approaches have
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been established: stochastic optimization (see, e.g., [8, 18]) and robust optimization
(see, e.g., [3, 5, 30]). While the former assumes knowledge about the distributions
of the uncertain parameters and considers, e.g., the maximization of expected
returns or the minimization of expected costs, the latter makes no distributional
assumptions but protects against the worst-case uncertainty realization within a
prescribed uncertainty set.

Although the relation between LCPs and optimization is pretty close, comparably
few research papers focus on LCPs under uncertainty. Most of the related papers
tackle the stochastic case and consider the minimization of the expected residual
gap function of the LCP; see, e.g., [10–12, 23] and the references therein. In contrast
to stochastic LCPs, the robust treatment of LCPs under uncertainty is still in its
infancy. To the best of our knowledge, the first paper on robust LCPs is [31], in
which the authors consider strict robustifications of LCPs. The same concept has
been studied in [32, 33]. In these contributions, the authors consider strictly robust
counterparts of uncertain LCPs for the case of different uncertainty sets such as
box or ellipsoidal uncertainties. In particular, these papers focus on tractability
of the corresponding robust counterparts. The results are applied to the case of
Cournot–Bertrand equilibria in power networks in [24]; see also [9, 20] for related
studies of Nash–Cournot and perfect competition equilibria in comparable settings.

The concept of strict robustness in optimization has received criticism due to
the high degree of conservatism of the solutions that it may deliver. Consequently,
several less conservative notions of robustness have been developed during the last
twenty years; see, e.g., [6, 7, 29] for Γ-robustness, [14] for light robustness, [3, 4,
34] for adjustable robustness, or [2] for deciding robustness in a fully adjustable
setting with an empty first stage. Following the idea of studying less conservative
notions of robustness, the concept of Γ-robustness has been applied to LCPs in [22]
for the case of `1-and box-uncertainty sets and in [21] for the case of ellipsoidal
uncertainties. Applications of Γ-robust LCPs in the area of power markets or traffic
equilibrium problems can be found in [9, 20, 21]. To the best of our knowledge, the
given and rather short list of papers on robust LCPs is complete.

Besides the study of algorithms for their solution, the most classic topic regarding
LCPs is the consideration of characterizations, existence, and uniqueness of solutions.
These topics closely link the field to the area of matrix classes in applied linear
algebra; see again [13] and the many references therein. Unfortunately, almost all
the papers on robust LCPs cited above make the observation that strong characteri-
zations and, thus, existence of robust solutions to LCPs cannot be ensured because
the requirement that a point is a complementarity solution for all realizations of
uncertainty is very strong. This observation is made in [32] for strict robustness and
in [21, 22] for Γ-robustness. As a remedy, the authors study the LCP’s quadratic gap
function and consider the existence and uniqueness of solutions or the tractability
of problems in which the complementarity condition is not strictly demanded but in
which its violation is penalized in the LCP’s gap function. Thus, there is one major
gap in the existing literature on robust LCPs, namely:

Is there a robustification concept that (i) allows to derive strong
characterizations of solutions of the uncertain LCP itself—instead
of the LCP’s gap formulation—and that (ii) allows to establish non-
trivial robust solutions of an uncertain LCP?

To the best of our knowledge, only the concepts of strict and Γ-robustness have
been studied for robust LCPs. Both do not satisfy the conditions in the question
above.

In order to cure this, it is necessary to go beyond single-stage robustness concepts—
in particular, to go to two-stage robust models. Thus, in this paper, we carry over
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the concept of adjustable robustness to the field of LCPs under box uncertainty.
The main rationale of doing so is that the split of variables into here-and-now
as well as wait-and-see variables that can be adjusted to the uncertainty indeed
allows to characterize robust LCP solutions and to establish non-trivial solutions.
In adjustable-robust optimization, one usually first needs to specify the class of
functions that can be used to adjust the wait-and-see variables in dependence of
the uncertainty. The easiest functions to tackle are affine functions. Although this
may be a rather restrictive choice, it is a natural modelling approach that can lead
to algorithmically tractable robust counterparts [1, 26, 28]. It already gives us
enough flexibility to derive strong characterizations of robust LCP solutions as well
as existence results. Thus, we first focus on affine adjustability in this paper and
postpone more complicated uncertainty-dependent decision rules to our future work.
The class of adjustable robust LCPs is introduced in Section 2 and an illustrating
example is given in Section 3. Afterward, we consider the cases of uncertain LCP
vector and LCP matrix separately. Our main results are given in Section 4 for the
case of uncertain LCP vector. We derive strong characterizations of robust solutions,
from which an existence result is derived. The used characterizations do not require
any further assumptions on the LCP matrix. This holds both for the case of full- and
lower-dimensional uncertainty sets. Moreover, we illustrate exemplarily the existence
of non-trivial robust LCP solutions. Uniqueness of solutions is shown for the case
of positive (semi-)definite LCP matrix, in which we also obtain polynomial-time
solvability. We additionally present a mixed-integer programming formulation that
can be used to compute affinely adjustable robust LCP solutions by using standard
solvers. Characterizations of solutions can also be derived in the case of uncertain
LCP matrix; see Section 5. Here, uniqueness and tractability are shown for the
case of positive definite nominal LCP matrix, whereas both remain open problems
for arbitrary matrices. The paper closes with some concluding remarks and a brief
discussion of possible topics of future work in Section 6.

2. Problem Statement

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the linear complementarity
problem LCP(q,M) is the problem to find a vector z ∈ Rn satisfying the conditions

z ≥ 0, Mz + q ≥ 0, z>(Mz + q) = 0 (1)

or to show that no such vector exists. In the following, we use the standard
⊥-notation and abbreviate (1) as

0 ≤ z ⊥Mz + q ≥ 0. (2)

In real-world applications, the parameters M and q may be uncertain. In order to
model this, we define uncertainty sets UM ⊆ Rk1 as well as Uq ⊆ Rk2 with suitable k1
and k2. We then consider M(ζ) and q(u) with ζ ∈ UM and u ∈ Uq. The specific
definition of the uncertainty sets will be given in the corresponding sections. Since
these definitions will be qualitatively different for M and q we choose to use a Greek
letter to parameterize M and a Latin letter to parameterize q.

We follow the robust paradigm for dealing with such uncertain parameters. In
the strictly robust model, we want to find a vector z ∈ Rn that fulfills the conditions
in (2) for every possible realization of uncertainty (ζ, u) ∈ UM × Uq, i.e.,

0 ≤ z ⊥M(ζ)z + q(u) ≥ 0 for all (ζ, u) ∈ UM × Uq.
We call such a vector z a strictly robust solution of the uncertain LCP. This

approach is discussed in [32, 33]. The Γ-robust approach is discussed in [21, 22].
The main conceptual problem with strictly as well as Γ-robust LCPs is that one
usually cannot prove the existence of a solution.
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The goal of this paper is to study the well established and typically less con-
servative approach of (affinely) adjustable robustness in the context of LCPs. For
adjustable robustness, a part of the solution is allowed to adapt to a given realization
of uncertainty. The task thus is to find a vector r ∈ Rn, which can be adjusted for
all uncertainties (ζ, u) ∈ UM × Uq by a vector y(ζ, u) so that z(ζ, u) := r + y(ζ, u)
satisfies

0 ≤ z(ζ, u) ⊥M(ζ)z(ζ, u) + q(u) ≥ 0 for all (ζ, u) ∈ UM × Uq. (3)

We call such a point z(ζ, u) an adjustable robust solution of the uncertain LCP. In
many applications, further restrictions need to be imposed on the adjustable solution.
For instance, one usually has to distinguish between adjustable and non-adjustable,
or “here-and-now”, variables. To this end, we introduce a parameter h ∈ {0, . . . , n}
and require that the first h entries of y(ζ, u) are zero. This means that the first
h entries are non-adjustable here-and-now decisions.

In general, the adjustable robust approach without further assumptions on the
adaptability leads to intractable problems; see, e.g., [4], where this is shown for
the easiest possible case of uncertain linear programs. In this paper, we impose an
assumption that is often used in adjustable robustness. Namely, we restrict ourselves
to consider affinely adjustable robust solutions, i.e., we restrict the solutions to be
of the form

z(ζ, u) = D1ζ +D2u+ r with D1 ∈ Rn×k1 , D2 ∈ Rn×k2 , r ∈ Rn.

We call an affine function z(ζ, u) = D1ζ +D2u+ r solving Problem (3) an affinely
adjustable robust (AAR) solution of the uncertain LCP. Hence, we search for affine
decision rules given by D1, D2, and r that specify how to react to a given realization
of uncertainty. To model h here-and-now variables, we w.l.o.g. require that the first
h rows of D1 and D2 are zero.

We close this section by briefly introducing some notation that is required in
the remainder of this paper. Let A ∈ Rn×n, b ∈ Rn, and index sets I, J ⊆ [n] :=
{1, . . . , n} be given. Then, AI,J ∈ R|I|×|J| denotes the submatrix of A consisting
of the rows indexed by I and the columns indexed by J . Moreover, bI denotes the
subvector with components specified by entries in I. If I = J , we also write AI

instead of AI,I . For i, j ∈ [n] let δij be the Kronecker delta, i.e., δij = 1 if i = j and
δij = 0 otherwise. Finally, the identity matrix of size k × k is denoted by Ik.

3. Illustrating Example: Adjustable Robust Energy Market
Equilibrium Modeling

In this section, we consider a stylized energy market equilibrium problem to illus-
trate the applicability of adjustable robustness in a practically relevant application
of market modeling. To this end, we start with a simple market model based on the
one given in [13] and we also follow the notation used there. First, let the production
sector of our energy market model be given by the linear program

min
x∈Rn

c>x (4a)

s.t. Ax ≥ b, (4b)
Bx ≥ r∗, (4c)
x ≥ 0, (4d)

with vectors c ∈ Rn, b ∈ Rm, r∗ ∈ Rk as well as matrices A ∈ Rm×n and B ∈ Rk×n.
The variable vector x models production levels that should be cost-minimal but that
also need to satisfy certain technological constraints (4b) and demand satisfaction
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constraints (4c). The demand r∗ itself depends on market prices p∗, which is modeled
by an affine demand function, i.e.,

r∗ = Dp∗ + d with D ∈ Rk×k, d ∈ Rk.

In many applications, one assumes that the matrix D is negative semi-definite to
model that demand is non-increasing in dependence of the prices. For diagonal
matrices D this then leads to monotonically decreasing and univariate demand
functions, which is a very classic economic modeling. As usual in standard micro-
economic settings, we need the additional equilibrating condition p∗ = π∗ with π∗
being the optimal dual multiplier of the demand constraint (4c). By using this
condition as well as the (necessary and sufficient) Karush–Kuhn–Tucker (KKT)
conditions of Problem (4), the market equilibrium can be modeled using the LCP

0 ≤ x ⊥ c−A>λ−B>p∗ ≥ 0,

0 ≤ λ ⊥ −b+Ax ≥ 0,

0 ≤ p∗ ⊥ −Dp∗ − d+Bx ≥ 0,

which is obtained by simplifying the KKT complementarity conditions and solving
for r∗ and π∗. The dual multiplier of the technology constraint (4b) is denoted by λ.
The corresponding LCP data is given by

z =

xλ
p

 , M =

 0 −A> −B>
A 0 0
B 0 −D

 , q =

 c
−b
−d

 .

If this rather general market equilibrium problem is considered as an abstract setting
for an energy market, adjustable robustness in the context of LCPs shows up rather
naturally. Here, the electricity demand r∗ depends on prices but also has a price-
insensitive part d. This vector can, for instance, be estimated from historical data.
However, the demand parameter d is uncertain due to, e.g., unknown future weather
conditions, which leads to an uncertain LCP vector q = q(u) with u in some properly
chosen uncertainty set Uq. These uncertainties in demand can usually be tackled by
adjustments in production, i.e., not the “nominal” market equilibrium production
is used but production is adjusted in dependence of the realization of demand
uncertainty. Since, on the other hand, certain generators such as wind or solar power
plants cannot be adjusted as easily as, e.g., coal power plants, this additionally
leads to a rather natural split between adjustable and non-adjustable LCP variables.
Note that for D being negative semidefinite, the bisymmetric matrix M is positive
semidefinite. Thus, this practically relevant example belongs to the class of robust
LCPs for which we present the strongest theoretical results in this paper—namely
robust LCPs with uncertain vector q and positive semi-definite matrix M .

Similarly, uncertainty in the coefficients of the (technological as well as demand
satisfaction) constraints leads to an uncertain LCP matrix, where again some part
of the solution corresponds to variables that can be adjusted, the other to those
that are non-adjustable.

4. Uncertainty in q

Throughout this section we assume that the matrixM is fixed and not affected by
uncertainty. For a given nominal vector q̄ ∈ Rn and an uncertainty set U = Uq ⊆ Rn,
we define q(u) := q̄ + u for every u ∈ U . The uncertain LCP (3) then reads

0 ≤ z(u) ⊥ Mz(u) + q(u) ≥ 0 for all u ∈ U . (5)
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We are interested in determining AAR solutions of (5) of the form z(ζ, u) = z(u) =
Du+ r with D ∈ Rn×n and r ∈ Rn. To this end, we consider a box uncertainty set

U := {u ∈ Rn : − ūi ≤ ui ≤ ūi}
that is, w.l.o.g., centered around zero. Moreover, we split the index set [n] into the
set of uncertain entries

U :={i ∈ [n] : ūi > 0},
and the set of certain entries

S :={i ∈ [n] : ūi = 0},
i.e., [n] = U ∪ S. For notational reasons we do not remove the columns in D
corresponding to S but fix D·,S = 0.

Recall that we require D[h],· = 0 in an AAR solution, since the first h variables
are non-adjustable. For a given affine function z(u) = Du+ r, we define the sets

I := {i ∈ [h] : ri 6= 0},
J := {i ∈ [n] \ [h] : ri 6= 0},
K := {i ∈ [n] : ri 6= 0} = I ∪ J,
N := {i ∈ [n] : ri = 0} = [n] \K.

The assumption that the uncertainty is centered around zero immediately leads to
the following key observations.

Observation 1. Let z(u) = Du + r be an AAR solution of (5). Then, r is a
solution of the nominal LCP(q̄,M).

Observation 2. Let z(u) = Du + r be an AAR solution of (5). Since z(u) ≥ 0
holds for all u ∈ U , the inclusion

{i ∈ [n] : Di,U 6= 0} ⊆ J
holds because, otherwise, there would exist an index i /∈ J and an uncertainty u′ ∈ U
with zi(u′) = Di,·u

′ < 0.

These observations and notations will be helpful to derive the results in the
following sections.

4.1. Characterization and Existence of Solutions. In this section, we show
some general properties and characterizations of AAR solutions. In Lemma 2, we
derive a system of equations that has to be satisfied by every AAR solution. This
system of equations will be used to obtain more specific characterizations under
further assumptions on the uncertainty set. Moreover, it admits an algorithmic
approach to compute an AAR solution, which is addressed in Section 4.2.

First, we prove a basic lemma that reformulates the constraints in the uncertain
LCP.

Lemma 1. Let z(u) = Du+ r and assume D[h],· = 0. Then, the function z(u) is
an AAR solution of (5) if and only if

zK(u) ≥ 0 for all u ∈ U , (6a)
(Mz(u) + q(u))K = 0 for all u ∈ U , (6b)
(Mz(u) + q(u))N ≥ 0 for all u ∈ U . (6c)

Proof. We show that the conditions in (6) are equivalent to the uncertain LCP. By
definition of N and Observation 2, zN (u) = 0 holds for all u ∈ U . Thus, (6a) is
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equivalent to z(u) ≥ 0 for all u ∈ U . If z(u) satisfies (6b) and (6c), this implies
Mz(u) + q(u) ≥ 0 for all u ∈ U . Additionally, for all u ∈ U we have

z(u)>(Mz(u) + q(u)) = zK(u)>(Mz(u) + q(u))K + zN (u)>(Mz(u) + q(u))N = 0,

where the last equality is due to (6b) and zN (u) = 0. Thus, z(u) satisfies (5).
It remains to show that (6b) is a necessary condition. To this end, let z(u) =

Du+ r be an AAR solution. As noted before, zK(u) ≥ 0 holds for all u ∈ U . Let
us now assume that there is an index i ∈ K such that there exists u′ ∈ U with
zi(u

′) = 0. This implies that u′ minimizes zi(u) = Di,·u+ ri. Since Di,·u+ ri is an
affine function in u, the minimum is attained at the boundaries, i.e.,

u′j =

{
ūj , if Di,j < 0,

−ūj , if Di,j > 0,

for all j with Di,j 6= 0. As rK > 0, we obtain zK(u) > 0 for all u contained in
the relative interior relint(U). Furthermore, the uncertain LCP conditions imply
(Mz(u) + q(u))K = 0 for all u ∈ relint(U), which immediately yields (6b) since
(Mz(u) + q(u))K is an affine function in u as well. �

In the following, we use Condition (6b) to derive characterizations and properties
of AAR solutions. In Lemma 2, we reformulate the LCP conditions and obtain a
system of equations that needs to be satisfied by D and r.

Lemma 2. The function z(u) = Du+ r satisfies (6b) if and only if D and r satisfy
the system of equations

MK∩S,JDJ,U = 0, (7a)
MK∩U,JDJ,K∩U = −IK∩U , (7b)
MK∩U,JDJ,N∩U = 0, (7c)

MKrK = −q̄K . (7d)

Proof. Let i ∈ K. We show that (Mz(u) + q(u))i = 0 holds for all u ∈ U if and
only if (7) are satisfied. We have

(Mz(u) + q(u))i = Mi,·z(u) + qi(u)

= Mi,·Du+Mi,·r + q̄i + ui

= Mi,JDJ,·u+Mi,·r + q̄i + ui,

where the last equality follows from Di,· = 0 for all i /∈ J by Observation 2. If
i ∈ K ∩ S, we have ui = 0 and thus

(Mz(u) + q(u))i = Mi,JDJ,·u+Mi,·r + q̄i = 0

holds for all u ∈ U if and only if

Mi,JDJ,U = 0 and Mi,·r = −q̄i.
If i ∈ K ∩ U ,

(Mz(u) + q(u))i = Mi,JDJ,·u+Mi,·r + q̄i + ui = 0

holds for all u ∈ U if and only if

Mi,JDJ,j = −δij for all j ∈ U,
Mi,·r = −q̄i. �

If the uncertainty set U is full-dimensional, i.e., S = ∅, the system of equations (7)
is rich enough to derive a complete characterization of an AAR solution as we will
show in the following. To this end, we first assume S ⊆ [h], meaning that only
the entries of q(u) corresponding to the non-adjustable variables might be certain.
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Thus, the entries of q(u) corresponding to adjustable variables are all uncertain.
Under this assumption, we derive conditions that are equivalent to (7a)–(7c) in the
following lemma.

Lemma 3. Let S ⊆ [h]. Then, D and r satisfy (7a)–(7c) if and only if they satisfy
the conditions

DJ = −M−1J , (8a)
DJ,i = 0 for all i ∈ N ∩ U, (8b)
I ∩ U = ∅, (8c)
MI,J = 0. (8d)

Proof. We first note that S ⊆ [h] implies J ⊆ U and thus J ⊆ K ∩ U . Let D
and r satisfy (7a)–(7c). We show that they satisfy (8a)–(8d). Since J ⊆ K ∩ U ,
(7b) implies MJDJ = −IJ and thus DJ = −M−1J , which is (8a). Furthermore, (7b)
and (7c) imply MJDJ,i = 0 for all i ∈ (I ∪N)∩U . Since MJ has full rank, it follows
DJ,i = 0 for all i ∈ (I∪N)∩U and thus (8b) holds as well. To show (8c), we assume
that there exists an i ∈ I ∩ U . However, I ⊆ K and (7b) imply Mi,JDJ,i = −1 and
thus DJ,i 6= 0, contradicting the previously proved statements. From I ∩ U = ∅ and
S ⊂ [h] it follows I = K ∩ S and thus (7a) implies MI,JDJ,U = 0. In particular,
MI,JDJ = 0 holds. Since rank(DJ) = |J |, from MI,JDJ = 0 we obtain MI,J = 0
and thus (8d).

Now, let D and r satisfy (8a)–(8d). By direct insertion, it is easy to verify that D
and r satisfy (7a)–(7c). �

We can now combine Lemma 3 and Condition (7d) in Lemma 2 to obtain the
desired results for the case of full-dimensional uncertainty sets, i.e., for S = ∅. The
first one states that all non-adjustable variables necessarily need to have a value of
zero.

Corollary 1. Let S = ∅ and suppose that z(u) = Du+ r is an AAR solution of (5).
Then, all non-adjustable variables are zero, i.e., I = ∅ and K = J .

Moreover, we can use the characterizations of D and r from Lemma 2 and
Lemma 3 to obtain a complete characterization of AAR solutions for the case of
full-dimensional uncertainty sets.

Theorem 1. Let S = ∅. Then, z(u) = Du+ r is an AAR solution of (5) if and
only if D and r are given by

DJ = −(MJ)−1, DJ,i = 0, Di,· = 0 for all i /∈ J,
rJ = −(MJ)−1q̄J , ri = 0 for all i /∈ J

and if the following conditions are fulfilled:
(a) MJ is invertible,
(b) −(MJ)−1qJ(u) ≥ 0 for all u ∈ U ,
(c) −MN,J(MJ)−1qJ(u) + qN (u) ≥ 0 for all u ∈ U .

The last theorem establishes a one-to-one correspondence between an AAR
solution and the set of indices of nonzero variables J . Hence, to compute an AAR
solution, it suffices to find a set J that fulfills the conditions (a)–(c) of the theorem.
Moreover, this characterization also allows to establish a finite and compact existence
result for AAR solutions.

Corollary 2. Let S = ∅. For every J ⊆ [n] \ [h], for which MJ is invertible, we
define

AJ
i,j := −|(M−1J )i,j ūj |
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for all i, j ∈ J and
CJ

i,j := −|Mi,·(M
−1
J )·,j ūj |

for all i ∈ N, j ∈ J . If there exists a subset J ⊆ [n] \ [h] such that MJ is invertible
and ∑

j∈J
AJ

J,j − (M−1J )q̄J ≥ 0,

∑
j∈J

CJ
N,j − ūN −MN,J(M−1J )q̄J + q̄N ≥ 0,

holds, then there exists an AAR solution.

The uniqueness, however, of an AAR solution is not given in general as shown
in the following example, which also illustrates the existence of non-trivial AAR
solutions.

Example 1. Consider the uncertain LCP with parameters

M =

[
4 10
1 2

]
, q̄ =

(
−100
−22

)
, U = [−1, 1]2, h = 0.

There are two different AAR solutions corresponding to different index sets. For
J1 = {1}, we obtain

D =

[
− 1

4 0
0 0

]
, r =

(
25
0

)
and for J2 = {2}, we have

D =

[
0 0
0 − 1

2

]
, r =

(
0
11

)
.

Note that the matrix M is not positive semidefinite. We later show in Section 4.3
that being positive semidefinite is a sufficient condition for an AAR solution to be
unique in the case of S = ∅.

4.2. A Mixed-Integer Programming Formulation. In this section we make
use of the reformulations given in Lemma 2 and state a mixed-integer feasibility
problem with binary variables that can be used to compute an AAR solution of the
uncertain LCP (5).

Theorem 2. Let B ∈ R be sufficiently large and consider the mixed-integer feasibility
problem

Find x ∈ {0, 1}n, r ∈ Rn, A,C,D ∈ Rn×n (9a)
s.t. Bxi ≥ ri ≥ 0, i ∈ [n], (9b)

B(1− xi) ≥Mi,·r + q̄i ≥ 0, i ∈ [n], (9c)
D[h],· = 0, D·,S = 0, (9d)
B(1− xi) ≥Mi,·D·,j ≥ −B(1− xi), i ∈ S, j ∈ U (9e)
B(1− xj)− 1 ≥Mj,·D·,j ≥ −B(1− xj)− 1, j ∈ U, (9f)
B(1− xi) ≥Mi,·D·,j ≥ −B(1− xi), i 6= j ∈ U, (9g)
Ai,j ≤ −Di,j ūj , i ∈ [n], j ∈ U, (9h)
Ai,j ≤ Di,j ūj , i ∈ [n], j ∈ U, (9i)∑
j∈U

Ai,j + ri ≥ 0, i ∈ [n], (9j)

Ci,j ≤ −(Mi,·D·,j + δij)ūj , i ∈ [n], j ∈ U, (9k)
Ci,j ≤ (Mi,·D·,j + δij)ūj , i ∈ [n], j ∈ U, (9l)
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j∈U

Ci,j +Mi,·r + q̄i ≥ 0, i ∈ [n]. (9m)

If (9) is feasible, it returns an AAR solution of the form z(u) = Du+ r to (5). If
it is infeasible, then no AAR solution exists.

Proof. It suffices to show that every solution of (9) corresponds to an AAR solution
and vice versa. First, let (x, r,A,C,D) be a solution of (9). Note that D fulfills the
basic requirements D[h],· = 0 and D·,S = 0 by (9d). We now show that z(u) = Du+r
is an AAR solution. The inequality∑

j∈U
Ai,j ≤ min

u∈U
{Di,·u}

holds for all i ∈ [n] by (9h) and (9i). It follows

min
u∈U
{zi(u)} ≥

∑
j∈U

Ai,j + ri ≥ 0

for all i ∈ [n], where the last inequality follows from (9j). This implies z(u) ≥ 0 for
all u ∈ U . In particular, since rN = 0, we also obtain DN,U = 0 and hence zN (u) = 0
for all u ∈ U . Due to (9b), we have xi = 1 if i ∈ K. Thus, (9c) implies (7d) and
(9e)–(9g) imply the conditions (7a)–(7c). Hence, (6b) holds due to Lemma 2, i.e.,
(Mz(u) + q(u))K = 0 for all u ∈ U . From zN (u) = 0 and (Mz(u) + q(u))K = 0 for
all u ∈ U it immediately follows z(u)>(Mz(u) + q(u)) = 0 for all u ∈ U .
It remains to show that (Mz(u) + q(u))N ≥ 0 holds for all u ∈ U . The inequalities
(9k) and (9l) imply

Ci,j ≤ min
u∈U
{Mi,·D·,juj + δijuj}

for all i ∈ [n], j ∈ U . Hence, we obtain∑
j∈U

Ci,j ≤ min
u∈U
{Mi,·Du+ ui}

for all i ∈ N ⊆ [n]. It follows

min
u∈U
{(Mz(u) + q(u))i} ≥

∑
j∈U

Ci,j +Mi,·r + q̄i ≥ 0

for all i ∈ N , where the last inequality follows from (9m). Thus, (Mz(u)+q(u))N ≥ 0
holds for all u ∈ U .

Now, let z(u) = Du + r be an AAR solution of (5). Next, we construct x, A,
and C such that (x, r, A,C,D) is a solution of (9). For all i ∈ K, we set xi = 1
and for all i ∈ N we set xi = 0. Since r is a nominal solution, the constraints (9b)
and (9c) are satisfied for sufficiently large B. Since D fulfills the basic requirements
Dh,· = 0 and D·,S = 0, Condition (9d) is satisfied. Furthermore, D is a solution of
the equations (7a)–(7c) in Lemma 2 and, thus, D satisfies (9e)–(9g) for sufficiently
large B. Next, we define Ai,j := −|Di,j ūj | for all i, j ∈ [n]. Then, (9h) and (9i) are
satisfied, implying ∑

j∈U
Ai,j + ri = min

u∈U
{zi(u)} ≥ 0

for all i ∈ [n]. Hence, (9j) is satisfied. Lastly, we define

Ci,j := −|(Mi,·D·,j + δij)ūj |
for all i, j ∈ [n]. Then, (9k) and (9l) are satisfied, implying∑

j∈U
Ci,j +Mi,·r + q̄i = min

u∈U
{(Mz(u) + q(u))i} ≥ 0

for all i ∈ [n]. Hence, (9m) is satisfied. �
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Remark 1. One crucial aspect regarding the correctness of the binary feasibility
problem in Theorem 2 is that the constant B needs to be sufficiently large. For
general LCPs, it can be computationally expensive to compute this constant; see,
e.g., [27]. However, for specific instances, problem-specific structure can often be
exploited to obtain such constants; see, e.g., [19], where similar constants are derived
by using the specific structure of a market equilibrium problem that can also be
modeled as a complementarity problem.

4.3. Positive SemidefiniteM . In the remainder of this section, we assume that the
matrix M is positive semidefinite. In this case, we attain polynomial-time solvability
and uniqueness results under further assumptions on the uncertainty set U . First, we
review the following well established theorem on linear complementarity problems.

Lemma 4 (Theorem 3.1.7 (a), (c) in [13]). Let M ∈ Rn×n be positive semidefinite
and let q ∈ Rn be chosen arbitrarily. Then, the following assertions hold.

(a) If z1 and z2 are two solutions of the LCP(q,M), then

(z1)>(q +Mz2) = (z2)>(q +Mz1) = 0.

(b) If the LCP(q,M) has a solution, then the set SOL(q,M) of solutions is
polyhedral and given by

SOL(q,M) = {z ∈ Rn
≥0 : q +Mz ≥ 0, q>(z − z̄) = 0,

(M +M>)(z − z̄) = 0},
where z̄ is an arbitrary solution.

For what follows, we define

P := {j ∈ [n] : ∃z ∈ SOL(q̄,M) : zj > 0} , L := [n] \ P.
For the following results, we need to know the index set P explicitly. Note that
SOL(q̄,M) can be explicitly stated via Part (b) of the previous lemma since the
special solution z̄ can be computed by solving a single convex quadratic program.
The set P can then be obtained by solving n linear programs in which zj , j ∈ [n], is
maximized over the polyhedral feasible set SOL(q̄,M) and by checking afterward,
whether the solution is strictly positive. Thus, P can be computed in polynomial
time.

We now use Lemma 4 to strengthen Lemma 2.

Lemma 5. Let M be positive semidefinite. If z(u) = Du+ r is an AAR solution
of (5), the system of equations

MP∩S,PDP,U = 0, (10a)
MP∩U,PDP,P∩U = −IP∩U , (10b)
MP∩U,PDP,L∩U = 0. (10c)

is satisfied.

Proof. From Observation 1 we know that r is a nominal solution. Thus, due to
Lemma 4 (a), MP,·r + q̄P = 0 holds. Since z(u) = Du+ r is an AAR solution, we
know

Mz(u) + q(u) = MDu+Mr + q̄ + u ≥ 0

for all u ∈ U . In particular, we have

(MDu+Mr + q̄ + u)P = MP,·Du+MP,·r + q̄P + uP = MP,·Du+ uP ≥ 0

for all u ∈ U . Since we set D·,S = 0, we have DP,·u = DP,UuU and from Observa-
tion 2 it follows MP,·D = MPDP,·. Hence, the inequality

MP,PDP,UuU + uP ≥ 0
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holds for all u ∈ U .
For i ∈ P ∩ S, we have ui = 0 and, thus, Mi,PDP,UuU ≥ 0 holds for all u ∈ U .

This implies Mi,PDP,U = 0 as otherwise there would exist an element u′ ∈ U from
the uncertainty set defined by u′U = −λ(Mi,PDP,U )> for some λ > 0 and u′S = 0 so
that Mi,PDP,Uu

′
U = −λ||Mi,PDP,U ||2 < 0. Thus, (10a) holds.

Next, for i ∈ P ∩ U we have Mi,PDP,UuU + ui ≥ 0 for all u ∈ U . For the
same reasons as in the previous case, this implies Mi,PDP,UuU = −ui, as otherwise
we could again construct an uncertainty u′ in the box uncertainty set U so that
Mi,PDP,Uu

′
U + u′i < 0. We obtain (10b) and (10c). �

We now combine Lemma 4 and 5 to obtain a linear feasibility problem that can
be used to solve the uncertain LCP with positive semidefinite M . Thus, in this case,
there is no need to solve the mixed-integer feasibility problem from Theorem 2.

Theorem 3. Let M be positive semidefinite and suppose further that z̄ is a solution
of the nominal LCP(q̄,M). Consider the linear feasibility problem

Find r ∈ Rn, A, C,D ∈ Rn×n

s.t. r ≥ 0, q̄ +Mr ≥ 0, (11a)

q̄>(r − z̄) = 0, (11b)

(M +M>)(r − z̄) = 0, (11c)
DL,· = 0, D[h],· = 0, D·,S = 0, (11d)[
MP∩S,P
MP∩U,P

] [
DP,P∩U DP,L∩U

]
=

[
0 0

−IP∩U 0

]
, (11e)

Ai,j ≤ −Di,j ūj , i ∈ P, j ∈ U, (11f)
Ai,j ≤ Di,j ūj , i ∈ P, j ∈ U, (11g)∑
j∈U

Ai,j + ri ≥ 0, i ∈ P, (11h)

Ci,j ≤ −(Mi,·D·,j + δij)ūj , i ∈ L, j ∈ U, (11i)
Ci,j ≤ (Mi,·D·,j + δij)ūj , i ∈ L, j ∈ U, (11j)∑
j∈U

Ci,j +Mi,·r + q̄i ≥ 0, i ∈ L. (11k)

Every feasible point of (11) corresponds to an AAR solution of the form z(u) =
Du+ r. If (11) is infeasible, then no AAR solution exists.

As parts of the proof of Theorem 3 are similar to that of Theorem 2, we keep the
following proof rather short.

Proof. Let (r,A,C,D) be a solution of (11). We show, that z(u) = Du + r is an
AAR solution. First, we note that D satisfies the basic requirements D[h],· = 0
and D·,S = 0 by (11d). Since r satisfies (11a)–(11c), it is a solution of the nominal
LCP(q̄,M) by Lemma 4 (b). Therefore, we obtain rL = 0 by the definition of P
and L, DL,· = 0 by (11d) and thus zL(u) = 0 holds for all u ∈ U . Furthermore, we
know (Mr + q̄)P = 0 due to Lemma 4 (a). From (11e) it follows (MDu)P = −uP
and thus

(Mz(u) + q(u))P = (MDu)P + uP + (Mr + q̄)P = 0

holds for all u ∈ U . From zL(u) = 0 and (Mz(u) + q(u))P = 0 for all u ∈ U it
follows z(u)>(Mz(u) + q(u)) = 0 for all u ∈ U .

It remains to show that zP (u) ≥ 0 and (Mz(u) + q(u))L ≥ 0 holds for all u ∈ U .
The constraints (11f)–(11h) imply zP (u) ≥ 0 for all u ∈ U and the constraints
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(11i)–(11k) imply (Mz(u) + q(u))L ≥ 0 for all u ∈ U for the same reasons as in the
proof of Theorem 2.

Now, let z(u) = Du+ r be an AAR solution. We construct A and C such that
(r,A,C,D) is a solution of (11). We know that r is a nominal solution and, thus,
(11a)–(11c) are satisfied by Lemma 4(b). By definition of P and L, we have rL = 0
and thus DL,U = 0 due to Observation 2. The requirements Dh,· = 0 and D·,S = 0
hold by definition. Hence, (11d) is satisfied. The constraint (11e) holds due to
Lemma 5. For all i, j ∈ [n], we now define

Ai,j :=− |Di,j ūj |,
Ci,j :=− |(Mi,·D·,j + δij)ūj |.

Then, (11f)–(11k) are satisfied for the same reasons as in the proof of Theorem 2. �

If the matrix M is positive semidefinite, the nominal LCP can be solved by
solving a convex quadratic program. Therefore, a solution z̄ for the nominal LCP,
which we need as a precondition in Theorem 3, can be computed in polynomial
time. Since the linear feasibility problem (11) can be solved in polynomial time as
well, we obtain the following complexity result.

Corollary 3. Let M be positive semidefinite. Then one can find an AAR solution
of (5) or correctly state that there is no AAR solution in polynomial time.

We now use Lemma 5 to obtain uniqueness results under additional assumptions
on the uncertainty set. As in the general case in Section 4.1, we first consider the
case S ⊆ [h].

Lemma 6. Let M be positive semidefinite and S ⊆ [h]. If z(u) = Du + r is an
AAR solution of (5), the matrix D is uniquely determined by DP∩U = −(MP∩U )−1

and Di,j = 0 for all i, j /∈ P ∩ U .

Proof. From Lemma 5 we know[
−IP∩U 0

]
= MP∩U,P

[
DP,P∩U DP,L∩U

]
.

Since D[h],· = 0 and S ⊆ [h] holds, we have DP∩S,· = 0, which implies[
−IP∩U 0

]
= MP∩U,P

[
DP,P∩U DP,L∩U

]
= MP∩U

[
DP∩U DP∩U,L∩U

]
.

Thus, the equation MP∩UDP∩U = −IP∩U implies DP∩U = −(MP∩U )−1. Fur-
thermore, since MP∩U is invertible and MP∩UDP∩U,L∩U = 0 holds, it follows
DP∩U,L∩U = 0. As Di,· = 0 for all i /∈ P due to Observation 2, this finishes the
proof. �

The previous lemma asserts the uniqueness of the matrix D. If we now assume
that all entries of q(u) are uncertain, i.e., S = ∅, Lemma 6 leads to uniqueness of
the entire AAR solution.

Theorem 4. Let M be positive semidefinite and S = ∅.
(a) If there are multiple solutions to the nominal LCP(q̄,M), there is no AAR

solution.
(b) If there exists an AAR solution, it is unique.

Proof. We first note that P ∩ U = P holds since S = ∅. Any solution r to the
nominal LCP(q̄,M) satisfies MP rP = −q̄P due to Lemma 4(a) and the definition
of P . If there are multiple solutions, MP cannot be invertible and, thus, there
cannot exist an AAR solution according to Lemma 6. Hence, if there is an AAR
solution z(u) = Du+ r, r is unique due to the previous argument and D is unique
due to Lemma 6. �
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We close this section with some remarks on the connection between our results
and the classical LCP theory as well as on the limits of affine adjustability. If the
matrix M is positive semidefinite, the nominal LCP can be solved by solving a
convex QP, which can be done in polynomial time. This is also the underlying
reason for our complexity result Corollary 3. As for nominal LCPs, uniqueness of
solutions cannot be guaranteed in the case of an arbitrary matrix M . Under the
assumption that M is a P matrix, i.e., all principal minors of M are positive, the
uniqueness of the solution of the nominal LCP is guaranteed for every q; see, e.g.,
[13, Chapter 3]. This statement directly carries over to uncertain LCPs with general
uncertainty sets. If the solution z(u) for every realization of the uncertainties u ∈ U
is unique, an AAR solution is unique as well. However, Theorem 4 states that, in
the case of full-dimensional uncertainty sets, we only need positive semidefiniteness
of the matrix M to guarantee the uniqueness of an AAR solution, which is a less
strong condition than M being a P matrix.

Note that we illustrated the existence of non-trivial solutions, see Example 1,
and stated conditions for the existence of a solution in Corollary 2. However, let
us also note that there exist uncertain LCPs that have an adjustable but not an
affinely adjustable robust solution as the following example shows.

Example 2. Consider the uncertain LCP given by

M =

[
1 1

2
1
2 1

]
� 0, q̄ =

(
−5
−3

)
, U = [−1, 1]2, h = 0.

Since all principal minors of M are positive, M is a P matrix. Hence, for any
realization u′ ∈ U , there exists a solution of the nominal LCP(q(u′),M). Therefore,
a fully adjustable solution would map every realization to its respective unique
solution. However, the uncertain LCP does not have an AAR solution, which can
be verified by applying Theorem 1.

Solving the uncertain LCP with other decision rules than affine ones is left for
future research.

5. Uncertainty in M

In this section, we assume that the vector q is certain and consider uncertainty
only in the matrixM . In particular, we are given matricesM0,M1, . . . ,Mk ∈ Rn×n

as well as U = UM = [−1, 1]k and define

M(ζ) := M0 +

k∑
i=1

ζiM
i.

The uncertain LCP (3) then reads

0 ≤ z(ζ) ⊥M(ζ)z(ζ) + q ≥ 0 for all ζ ∈ U . (12)

For this problem, we are interested in computing an AAR solution of the form
z(ζ) = Dζ+r with D ∈ Rn×k and r ∈ Rn. As before, we assume that the first h rows
of D are zero for some fixed h to distinguish between adjustable and non-adjustable
variables. However, the results presented in this section are independent of the
specific choice of h.

Remark 2. We can interpret M0 as the nominal matrix that is perturbed by the
matrices M1, . . . ,Mk. This definition of a matrix uncertainty set is considered
in [33] for the first time in the context of LCPs and is also used in [22].

For an AAR solution z(ζ) = Dζ + r we define the sets

J := {j ∈ [n] : rj > 0} , N := [n] \ J.
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As in Observation 2 for the case of uncertain q, we have {j ∈ [n] : Dj,· 6= 0} ⊆ J
and, thus, DN,· = 0. Analogously to the proof of Lemma 1, we have zJ(ζ) > 0 for
all ζ ∈ int(U).

We now prove necessary conditions that every AAR solution satisfies.

Theorem 5. Let z(ζ) = Dζ + r be an AAR solution for (12). Then,

M0
JrJ + qJ = 0, (13a)

M i
JrJ +M0

JDJ,i = 0 for all i ∈ [k], (13b)

M i
JDJ,i = 0 for all i ∈ [k], (13c)

M i
JDJ,j +M j

JDJ,i = 0 for all i, j ∈ [k], i 6= j (13d)

holds.

Proof. Since 0 ∈ U , the vector z(0) = r is a solution of the nominal LCP(q,M0)
and thus (13a) holds. For i ∈ [k], we define

Ui := {ζ ∈ U : ζi ∈ (−1, 1), ζj = 0 for all j 6= i} ⊆ int(U).

We have zJ (ζ) > 0 for all ζ ∈ Ui and thus (M(ζ)z(ζ) + q)J = 0 holds for all ζ ∈ Ui.
We obtain

0 = (M0
J + ζiM

i
J)(rJ + ζiDJ,i) + qJ

= M0
JrJ + ζi

(
M i

JrJ +M0
JDJ,i

)
+ ζ2iM

i
JDJ,i + qJ

for all ζi ∈ (−1, 1). Hence, the conditions (13b) and (13c) follow.
Now, for i, j ∈ [k] with i 6= j, we define

Ui,j := {ζ ∈ U : ζi, ζj ∈ (−1, 1), ζp = 0 for all p /∈ {i, j}} ⊆ int(U).

As before, zJ(ζ) > 0 holds for all ζ ∈ Ui,j and thus

0 = (M(ζ)z(ζ) + q)J

= M(ζ)J(Dζ + r)J + qJ

= M0
J(ζiDJ,i + ζjDJ,j + rJ) + ζiM

i
J(ζiDJ,i + ζjDJ,j + rJ)

+ ζjM
j
J(ζiDJ,i + ζjDJ,j + rJ) + qJ

= (M0
JrJ + qJ) + ζi(M

0
JDJ,i +M i

JrJ) + ζj(M
0
JDJ,j +M j

JrJ)

+ ζ2iM
i
JDJ,i + ζ2jM

j
JDJ,j + ζiζj(M

i
JDJ,j +M j

JDJ,i) = (∗)
for all ζ ∈ Ui,j . The first term is zero due to (13a). Applying (13b) and (13c), all
other terms except for the last one are zero as well. It follows

0 = (∗) = ζiζj(M
i
JDJ,j +M j

JDJ,i)

for all ζ ∈ Ui,j and thus (13d) holds. �

Since the systems of equations of the last theorem might allow for multiple
solutions, they are not sufficient to fully characterize an AAR solution. However,
under the additional assumption that M0

J is invertible, it is possible to derive a
complete characterization. For example, this assumption is satisfied ifM0 is positive
definite as in this case every submatrix M0

I , I ⊆ [n], is invertible.
We first introduce some notation and subsequently present the complete char-

acterization in Corollary 4. To this end, let M0
I be invertible for a subset I ⊆ [n].

Then, we define
M̃ I,i := (M0

I )−1M i
I(M0

I )−1.
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Corollary 4. Let z(ζ) = Dζ + r be an AAR solution for (12). If M0
J is invertible,

then D and r are given by

DJ,i = M̃J,iqJ , i ∈ [k], rJ = −(M0
J)−1qJ , DN,· = 0, rN = 0.

Proof. SinceM0
J is invertible, (13a) is equivalent to rJ = −(M0

J )−1qJ . By using this
equation for qJ , (13b) can be equivalently reformulated as M0

JDJ,i = M i
J (M0

J )−1qJ
for all i ∈ [k]. Thus, for all i ∈ [k] we obtain

DJ,i = (M0
J)−1M i

J(M0
J)−1qJ = M̃J,iqJ . �

In the next example, we illustrate that indeed solutions characterized by this
corollary exist.

Example 3. Let

M(ζ) =

[
4 1
0 4

]
+ ζ

[
0 1
0 0

]
, q =

(
−8
−16

)
, h = 0.

As M0 is invertible, we consider the set J = [n]. It follows

(M0)−1 =
1

16

[
4 −1
0 4

]
and M̃J,1 = (M0)−1M1(M0)−1 =

1

16

[
0 1
0 0

]
.

Using Corollary 4, we obtain

r = −(M0)−1q =

(
1
4

)
, D = M̃J,1q =

(
−1
0

)
.

It is easy to verify that z(ζ) = (1− ζ, 4)> is an AAR solution.

For what follows, let z(ζ) = Dζ + r be an AAR solution and suppose that M0
J

is invertible. The conditions (13c) and (13d) can be reformulated similarly as in
the proof of Corollary 4 by using the characterizations of r and D. We obtain that
(13c) is equivalent to

M i
JM̃

J,iqJ = 0 for all i ∈ [k].

Expression (13d) is equivalent to

(M i
JM̃

J,j +M j
JM̃

J,i)qJ = 0 for all i, j ∈ [k], i 6= j.

We combine these conditions and obtain

qJ ∈
⋂

i,j∈[k]

ker
(
M i

JM̃
J,j +M j

JM̃
J,i
)
. (14)

In the following, we derive a reformulation of the uncertain LCP conditions in (12)
such that they only depend on the LCP parameters M and q. To this end, we use
Corollary 4. The equation

DJ,·ζ =

k∑
i=1

ζiM̃
J,iqJ (15)

holds for all ζ ∈ U . Thus, the requirement that zJ (ζ) ≥ 0 for all ζ ∈ U is equivalent
to ∑

i∈[k]

ζiM̃
J,i − (M0

J)−1

 qJ ≥ 0 for all ζ ∈ U . (16)

Furthermore, (M(ζ)z(ζ) + q)N ≥ 0 for all ζ ∈ U is equivalent to

MN,J(ζ)

∑
i∈[k]

ζiM̃
J,i − (M0

J)−1

 qJ + qN ≥ 0 for all ζ ∈ U . (17)



AFFINELY ADJUSTABLE ROBUST LINEAR COMPLEMENTARITY PROBLEMS 17

The following theorem summarizes that these conditions lead to a full characteriza-
tion.

Theorem 6. Let D and r be characterized as in Corollary 4 for J ⊆ [n] such that
MJ

0 is invertible. Furthermore, suppose that D[h],· = 0 holds. Then, z(ζ) = Dζ + r
is an AAR solution for (12) if and only if M(ζ) and q fulfill the conditions (14),
(16), and (17).

Proof. It only remains to show that (M(ζ)z(ζ) + q)J = 0 for all ζ ∈ U is implied
by (14). For all ζ ∈ U we have

(M(ζ)z(ζ) + q)J = MJ(ζ)zJ(ζ) + qJ

= MJ(ζ)(DJ,·ζ + rJ) + qJ

= M0
JDJ,·ζ +

k∑
i=1

ζiM
i
JDJ,·ζ +M0

JrJ +

k∑
i=1

ζiM
i
JrJ + qJ

= M0
JDJ,·ζ +

k∑
i=1

ζiM
i
JDJ,·ζ +

k∑
i=1

ζiM
i
JrJ = (∗),

where we used M0
JrJ = −qJ . We apply (15) and obtain

(∗) = M0
J

k∑
i=1

ζiM̃
J,iqJ +

k∑
i=1

ζiM
i
J

k∑
j=1

ζjM̃
J,jqJ +

k∑
i=1

ζiM
i
JrJ

=

k∑
i=1

ζiM
i
J(M0

J)−1qJ +
∑

i,j∈[k]

ζiζjM
i
JM̃

J,jqJ +

k∑
i=1

ζiM
i
JrJ = (∗∗).

By (14) we know
∑

i,j∈[k] ζiζjM
i
JM̃

J,jqJ = 0. Thus,

(∗∗) =

k∑
i=1

ζiM
i
J(M0

J)−1qJ +

k∑
i=1

ζiM
i
JrJ

=

k∑
i=1

ζiM
i
J(M0

J)−1qJ −
k∑

i=1

ζiM
i
J(M0

J)−1qJ = 0. �

We conclude this section with some final remarks on the derived results and the
uniqueness of solutions. Corollary 4 shows that we can fully characterize an AAR
solution if the nominal matrix M0

J is invertible. In general, the difficulty lies in
finding the set J of nonzero entries in the solution. Therefore, there might exist
different AAR solutions even if M0

I is invertible for every I ⊆ [n]. However, if
M0 is positive definite, r is unique and therefore the set J is unique, yielding the
uniqueness of an AAR solution if it exists at all.

Note that we do not state a general existence result here for the case of uncertainM
as we did in Corollary 2 for uncertain q. We think that an analogous result can
be obtained, in principle, by using Theorem 6 and by checking all vertices of the
box-uncertainty set for ζ in (16) and (17). Although finite, the number of conditions
in such an existence result most likely would be exponential in the dimension of the
uncertainty set. We think that the same also holds for the size of a corresponding
mixed-integer programming formulation, which is why we omit to state it here.

Finally, let us also comment on the case in which both the LCP vector q as well
as the LCP matrix M are uncertain. The easier setting then is the one in which
both uncertainties are independent. However, already this case is rather challenging
for affinely adjustable robust LCPs. Consider, for instance, Condition (14), which is
also part of the final characterization in Theorem 6. A simultaneous consideration
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of q and M would require that the null-space condition in (14) is satisfied for qJ (u)
for all u ∈ Uq. Our hypothesis is that this extended condition alone would already
be rather hard to satisfy in practically meaningful LCP settings, which is why we
postpone the consideration of uncertainty in q and M to future research.

6. Conclusion

In this paper, we studied affinely adjustable robust linear complementarity
problems with box-uncertainties either in the LCP matrix M or in the LCP vector q.
We addressed the topics of characterization, existence, and uniqueness of solutions
completely for the case of uncertain q. Moreover, we developed a mixed-integer
linear model that allows to compute affinely adjustable robust LCP solutions with
standard solvers. For the case of uncertain M , characterizations are established as
well and uniqueness of solutions is shown under the assumption that the nominal
LCP matrix is positive definite.

While the standard single-stage modeling assumptions of strict as well as of
Γ-robustness both fail to enable the study of robust solutions directly (instead, the
LCP’s gap function formulation is usually considered), imposing the assumption
of affine adjustability in the second stage is sufficient. Thus, adjustable robustness
is the first established concept of robust optimization that has been carried over
to LCPs, which allows for studying the robust LCP solutions directly instead
of considering the gap function formulation as a replacement. However, several
problems remain open. For instance, a compact existence result and a compact
mixed-integer programming formulation for the case of uncertain LCP matrix is
missing. Moreover, the consideration of other uncertainty sets like ellipsoids or the
consideration of non-affine decision rules is part of our future research.
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