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ABSTRACT. Liberalized gas markets in Europe are organized as entry-exit regimes so that
gas trade and transport are decoupled. The decoupling is achieved via the announcement
of technical capacities by the transmission system operator (TSO) at all entry and exit
points of the network. These capacities can be booked by gas suppliers and customers in
long-term contracts. Only traders who have booked capacities up-front can “nominate”
quantities for injection or withdrawal of gas via a day-ahead market. To ensure feasibility
of the nominations for the physical network, the TSO must only announce technical
capacities for which all possibly nominated quantities are transportable. In this paper,
we use a four-level model of the entry-exit gas market to analyze possible welfare losses
associated with the decoupling of gas trade and transport. In addition to the multilevel
structure, the model contains robust aspects to cover the conservative nature of the
European entry-exit system. We provide several reformulations to obtain a single-level
mixed-integer quadratic problem. The overall model of the considered market regime
is extremely challenging and we thus have to make the main assumption that gas flows
are modeled as potential-based linear flows. Using the derived single-level reformulation
of the problem, we show that the feasibility requirements for technical capacities imply
significant welfare losses due to unused network capacity. Furthermore, we find that the
specific structure of the network has a considerable influence on the optimal choice of
technical capacities. Our results thus show that trade and transport are not decoupled in
the long term. As a further source of welfare losses and discrimination against individual
actors, we identify the minimum prices for booking capacity at the individual nodes.

Key words and phrases. OR in Energy, Entry-Exit Gas Market, Gas Market Design, Multilevel
Optimization, Robust Optimization

1. INTRODUCTION

Starting in the 1990s, the European gas market has been liberalized step by step over the
last decades. The First and the Second Gas Directive [15, 17] paved the way for the Third
Energy Package [16], which was introduced in 2009. This package essentially prescribes
the decoupling of gas trade and transport via an appropriate entry-exit market design
in all member states. Today, European transmission system operators (TSOs) usually
operate under variants of such an entry-exit regime, in which traders sign long-term
capacity contracts—so-called bookings—at entry and exit points of the network. Only
traders who have booked capacities can afterward “nominate” quantities to feed-in (in
the case of suppliers) or withdraw (in the case of consumers) on a daily basis. These
nominations are determined by the trade of gas (up to the individually booked capacity)
on a day-ahead market. To ensure that all nominations are indeed feasible w.r.t. the given
network, the TSO announces so-called technical capacities up-front that limit the long-
term capacity contracts (i.e., the bookings) per entry or exit point. While the entry-exit
market design effectively decouples trade and transport of gas and thus might achieve to
make market interaction more transparent, it clearly comes at a cost. In particular, the
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technical capacity requirement that any possible market outcome must be feasible w.r.t.
the network implies that the usable network capacity significantly lags behind the actual
capacity of the network. Consequently, as compared to a nodal-pricing design, it is likely
that the network capacity is not used optimally.

Our contribution addresses exactly this issue: Does the decoupling of trade and transport
leave network capacity unused and ultimately results in economic inefficiencies? To the
best of our knowledge, a detailed quantitative analysis of this effect is missing in the
literature up to date. The first paper that provides a rigorous modeling of entry-exit-like
systems is [24]. The four-level model developed in that paper comprises a two-stage
market model that captures the booking and the nomination decisions and also includes an
accurate representation of the network. We build on this model to compare three scenarios:
(i) A nodal-pricing regime, (ii) an entry-exit regime, and (iii) a hybrid model in which
technical capacities restrict the trade at the daily gas market, but the requirement is that
only the market solution (instead of all possibly occurring market solutions) needs to be
feasible. We interpret this model as a second-best benchmark, which would be relevant if
the network operator could rely on experience when determining the technical capacities
and therefore would not have to ensure that all possible nominations are feasible.

Note that the considered multilevel problems are a generalization of bilevel optimiza-
tion problems that are known to be NP-hard [27, 34]. Thus, to provide an insightful
quantitative analysis we have to make several assumptions. First, the market model in [24],
which we build on, is based on the assumption of perfect competition among gas traders.
As a matter of fact, the consideration of strategic interaction in markets in combination
with complex physical flow models that restrict decisions makes an insightful analysis
extremely challenging in our context. Our setup, on the contrary, allows for clear insights
into the interplay of market interaction and physical gas transport. Furthermore, note
that even in a perfect competition setup, the interaction of economic agents on a network,
which is characterized by complex physical flow constraints, challenges standard economic
analysis. In [23], for example, it is shown that the usual equivalence between the alloca-
tion in the welfare optimum and under perfect competition no longer holds. Besides the
challenges arising from the multilevel structure of the market model, a correct modeling
of the technical capacities set by the TSO results in an adjustable-robustness constraint in
the upper level of the problem: The TSO must choose technical capacities such that every
possible feasible nomination is transportable. Adjustable-robust optimization problems
can be considered as two-stage optimization problems and are therefore challenging by
themselves [4, 5, 57]. From another perspective, in [39] it is shown, that the problem
of validating the feasibility of a booking—and technical capacities can be interpreted as
bookings—is in coNP for the case of nonlinear (but algebraic) pressure loss functions
and general networks. Going even further, a detailed modeling of gas physics introduces
additional nonlinearities up to differential equations to accurately model pressure losses
in pipes. Thus, and in line with the arguments in [24], we assume some reasonable simpli-
fications for the physical flow modeling to keep the problem computationally tractable:
(i) We consider only stationary gas flow, (ii) we do not include controllable elements like
compressors or (control) valves, and (iii) we consider a potential-based gas flow model in
which pressure losses linearly depend on the flow. We are aware of the fact that these phys-
ical assumptions, especially the linearity of gas flows, are strong assumptions. However,
we are convinced that nonlinear gas flow models are far out of reach due to theoretical
complexity reasons. We will discuss this issue later on in more detail. Nevertheless, we
are convinced that our results shed some interesting light on the economic implications of
the entry-exit gas market system in Europe.

The contribution of this paper is the following. We use the bilevel reformulation
of the four-level entry-exit model presented in [24] and develop an exact single-level
reformulation. To this end, we analyze the primal-dual optimality conditions of the bilevel
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problem’s lower level in detail to derive bounds that can be used as problem-specific big-
Ms. Moreover, we develop problem-tailored linearizations for the occurring nonsmooth
and nonconvex constraints of the single-level reformulation. Finally, we re-state the
challenging robustness constraint, which is needed to specify technical capacities, as a
system of linear constraints by exploiting the characterization given in [39]. By doing so,
we arrive at a model reformulation that can be tackled with state-of-the-art solvers. In a
case study, we compare the results of the entry-exit regime described by this model to a
first-best benchmark as well as a “second-best” regime in which technical capacities are
determined as to make the resulting market allocation feasible, but not all allocations that
might occur given the capacity restrictions at the nodes. Our case study yields several
insights. First, we identify the cost of decoupling trade and transport by showing that
the robustness constraint in an entry-exit market design accounts for significant welfare
losses as compared to first-best and second-best models. Second, the design of the network
has a significant impact on the specification of technical capacities at the individual
nodes. Thus, our results show that, from a long-run perspective, trade and transport are
not decoupled at all. Third, the booking price floors established by the TSO to collect
payments from the traders to reimburse transportation costs may further reduce welfare
and, depending on the used pricing regime, can lead to discrimination against individual
actors. Fourth, the computational effort required to solve the problem mostly stems from
the robustness constraint. Finally, our second-best benchmark captures the situation
in which the network operator sets the technical capacities based on experience, and
therefore, the robustness constraint does not need to be imposed in its strictest form. As
one would expect, the welfare losses are lower than under the strict robustness constraint.
Less restrictive feasibility constraints might also be possible in practice if interruptible
contracts exist for some market participants. However, this case is too complex to be
modeled and solved in the context of our formal analysis and case study.

Up to date, the literature on gas markets has mainly focused on strategic interaction of
suppliers. Typically, stylized two-node networks are used to get insights on the potential
effects of market power in network based industries; see, e.g., Cremer and Laffont [12],
Ikonnikova and Zwart [32], Jansen et al. [33], Meran et al. [42], Oliver et al. [46], and Yang
et al. [56]. Other contributions to the gas market literature analyze strategic interaction
in gas markets using complementarity problems that allow to computationally derive
equilibrium predictions. Those contributions typically rely on less restrictive assumptions
regarding the analyzed network structure. However, they do not provide general analytical
solutions of the market interaction. Examples are Baltensperger et al. [3], Boots et al. [7],
Boucher and Smeers [8, 9], Chyong and Hobbs [11], Egging et al. [13, 14], Gabriel et al. [21],
Holz et al. [29], Huppmann [31], Siddiqui and Gabriel [50], and Zwart and Mulder [59].
Some papers go beyond the classical linear network flow and account for the influence of
pressure gradients between nodes of the network, e.g. Midthun et al. [43], Midthun et al.
[44], and Remo et al. [49]. Those papers focus on the assessment of infrastructure and
dispatch for gas networks based on the so-called Weymouth equation [54]. The inefficiency
of decoupling gas transport and trade due to unused network capacity has been argued by
some authors; see, e.g., Smeers [51]. By now, however, a detailed analysis is missing. Still,
there are some illustrative examples, e.g., in, Alonso et al. [1], Glachant et al. [22], Hallack
and Vazquez [26], Hirschhausen [28], Hunt [30], and Vazquez et al. [52].

The paper is structured as follows. In Section 2, we review each level of the four-level
model from [24] in detail and also state the bilevel reformulation given in [24]. Then, we
develop an equivalent single-level reformulation of the model in Section 3 and propose
further reformulations in Section 4. In Section 5, we tackle the robustness constraint.
Finally, in Section 6 we measure inefficiencies arising in entry-exit-like systems and
conclude in Section 7.
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2. A MULTILEVEL MODEL OF THE ENTRY-EXIT GAS MARKET

In this section, we review the four-level model of the European entry-exit gas market
as it has been developed in [24]. We briefly introduce each level and state an equivalent
bilevel reformulation of the four-level model. All other details and the rationale of the
multilevel modeling are given in [24].

In a nutshell, the four levels of the considered market environment model the following
sequence of actions:

(i) Specification of technical capacities and booking price floors by the TSO.
(if) Booking of capacity rights by gas buying and selling firms.
(iii) Day-ahead nomination by gas buying and selling firms.
(iv) Cost-optimal transport of the realized nominations by the TSO.

Before we formally state the particular optimization problem of each level we introduce
some notation. Gas transport networks are modeled as a directed graph G = (V, A) with
node set V and arc set A. The node set is split up into the set of entry nodes V, C V at
which gas is supplied, the set of exit nodes V_ C V at which gas is discharged, and the set
of inner nodes V; C V without gas supply or withdrawal. Thus, V = V, UV_ U V,. The
model allows for multiple gas selling or gas buying firms i € £, foru € V. oru € V_,
respectively.

Due to the general hardness of the four-level model, we need some important sim-
plifying assumptions. In particular, we do not consider controllable elements such as
compressors or control valves, we consider stationary gas flow, and we assume a linear
pressure loss function. We will discuss these assumptions in more detail later, when they
are formally introduced. We now describe every level in detail.

2.1. Level 1: Specification of Technical Capacities and Booking Price Floors. In
the first of the four levels of the model, the TSO specifies technical capacities and price
floors in order to maximize total social welfare obtained in the market:

q'c, ”book Z (Z Z / " Pi((s)ds — Z Z Varqllﬂotm _¢4(qnom)_c (1a)

teT \ueV_ieP, ueV, ieP,
st. 0<qC 0<% forallueV, UV, (1b)
Z Z book book (p4(qn0m) +C, (1C)
ueVoUv_ ieP,
VG e N(¢™) : F(g™™) + 0, (1d)
q]l’OOk €argmax(3) forallieP,, ueV, UV, (1e)
q;7" € argmax(4) forallie Py, ue V, UV, teT. (1f)

Since we consider multiple time periods of gas trading and transport, total social welfare
is aggregated over all time periods ¢t € T with |T| < co. Gas buying firms are modeled by
strictly decreasing inverse market demand functions P; ;, i € P, u € V_, and gas selling
firms are characterized by pairwise distinct variable costs of production c¢}*,i € P, u € V,.
Throughout the paper, ¢* denotes the optimal value of the kth level of the multilevel
model, i.e., k € {1,2,3,4}. For instance, ¢* denotes the minimum costs of gas transport
obtained in the fourth level. The decision variables of the first level include the technical
capacities gL for every entry and exit node u € V, U V_ of the network. These variables
limit the booking quantities qb‘"’k of the players i, which are decided on the second level;
see Constraint (1e). The second set of first-level decision variables consists of the price
floors 2°°% for booking quantities at every entry and exit node u € V, UV_. Constraint (1c)
models that the booking price floors are chosen such that the transport costs ¢*(q"°™)
arising in level four plus additional exogenously given network costs C, e.g., investment
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costs, are recovered. The actual nominations ;™ are decided on the third level; see (1f).
Note that exactly these nominations are entering the objective function of the first level.
Finally, we consider the Constraint (1d). This constraint claims that in dependence of

the technical capacities ¢'C all balanced nominations that potentially may occur, i.e.,

N(g™) = {q eRY"Vi0<q<q™ Y qu= ) qu},
uevy, uev_

need to be feasible with respect to the network. In other words: Every balanced and
node-wise aggregated nomination that satisfies given technical capacities needs to be
transportable. This is formalized by the condition F(§"°™) # 0, where ¥(§"°™) is the
set of feasible points of the cost-minimization transport problem in the fourth level. We
discuss this feasible set in more detail in Section 2.4. Constraint (1d) corresponds to an
3-V-3 quantifier structure, i.e., there must exist a vector of technical capacities ¢'C such
that for all possible nominations §"°™ € N(g'C) there exists a feasible point in F(¢"°™).
Thus, from the viewpoint of robust optimization (cf, e.g., [4, 6] and the many references
therein), the constraint can be interpreted as an adjustable-robust and thus semi-infinite
constraint [57] with here-and-now decisions g’ and wait-and-see decisions in the feasible
set of the fourth level. As such, Constraint (1d) adds significant difficulty to the overall
model. We will discuss the handling of this constraint in more detail in Section 5 and its
computational implications in Section 6.2. As previously mentioned, Constraint (1d) is
also problematic from an economic point of view. Since every balanced nomination that
is feasible w.r.t. the technical capacities must be guaranteed to be transportable by the
TSO, this constraint is suspect to leave network capacities unused. Thus, it is very likely
that the robustness constraint causes inefficiencies. The analysis of this effect is the main
motivation for this paper and is taken care of in Section 6. Let us mention at this point
that we are aware of that, in practice, the TSO might not respect the Constraint (1d) in
its strictest form. Instead, she might draw on experience and set technical capacities that
guarantee feasibility for likely market outcomes but not for all possible nominations. We
account for this by analyzing a respective scenario in the case study in Section 6. Moreover,
there are further capacity products such as so-called conditional, restrictively allocable, or
interruptible capacities that are used to give the TSO more flexibility to ensure feasibility
of the actually realized loads. The modeling of these capacity products is out of scope of
this paper and we refer to Chapter 3 in the book [38] for additional details.

2.2. Level 2: Booking. At this level, each player i € #, with u € V_ UV, books capacity
rights qll?""k to maximize the anticipated revenue ¢, (realized in the third level; see
Section 2.3) minus booking costs. In line with [24], we assume perfect competition. In
particular, we assume that bookings are not made strategically. This disallows to exclude
competitors from the market by preemptive bookings and to drive up spot-market prices.
The model of each player then reads as follows:

max Z ﬁﬂ?’t(qlim()k _ (ZTBOOk + ﬂBOOk)q]iJOOk

book
i teT

st g%k >0, (2)

D, Bt <al

iePy,
Players potentially compete for scarce technical capacities g'* that are outcome of the first
level. The booking price floor z2°°K, that is also outcome of the first level, always applies
for every booking. The additional markup 7P°°% only occurs in case of scarce technical
capacities, i.e., as the result of a competitive bidding process for the bookings. It is shown
in [24] that the Problems (2) can be aggregated node-wise to obtain a mixed nonlinear
complementarity problem (MNCP) per node under some additional assumptions. In the
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case study in Section 6, we only consider a single player i per node u. We thus refrain
from a discussion of these assumptions here. The reasoning behind the modeling decision
of one player per node is given in Section 6. In Theorem 1 in [24] it is further shown that
the above mentioned MNCP is equivalent to the optimization problem

(Pi(q ”u) — max Z Z 0; t(qll)ook) book book (3a)
q; iePy, teT
st. ¢k >0 forallie®,, (3b)
Z quOk < qzc, (30)
iePy,

in which the markup price 72°°% is exactly the dual variable of Constraint (3c). This

problem is solved at every entry and exit node of the network and all these problems are
independent of each other.

2.3. Level 3: Nomination. At the third level, all players choose nominations restricted
by their bookings of the second level in order to maximize their individual surplus at
the equilibrium market price 7}°®, which results endogenously at the third level. Under
perfect competition, all players act as price takers. Thus, every gas seller i € P, u € V,,
maximizes its surplus in every time period ¢t € T:

qo?’t(qlook) _ max (n,nom _ c:lar q?otm st. 0< ql;l()tm < qbook

i, t
Similarly, every gas buyer i € P, u € V_, maximizes its benefit in every time period t € T:
D =ma [T R as g s o< g s g
it 0
Using first-order optimality conditions for every maximization problem, the nomination
level can be modeled as an MNCP; see [24]. In Theorem 3 in [24] it is further shown that
the resulting MNCP can be recast as an equivalent welfare maximization problem:

0*(q"") : = max (Z Z / " Pii(s)ds - Z Z g (4a)
teT

ueV_ieP, uevV, ieP,

st. 0< @i < g forallie Py, ueV,UV,, teT, (4b)

Z Z qi; = Z Z qi; =0 forallteT. (4c)

ueV_ieP, ueVy ieP,

Constraint (4c) is the market clearing condition. The dual variable of this constraint is the
market price 77°™ in time period t € T.

2.4. Level 4: Cost-Optimal Transport of Nominations. The fourth level is concerned
with the cost-optimal transport of the nominations that are the outcome of the third level.
The TSO solves the minimization problem

min Z e (@™ st (p,q) € F(g™™),
pa T
where c¢;(¢g"°™) is the transportation cost for the given nomination ¢g"°™.
For the specification of the feasible set 7 (¢"°™) that restricts gas pressures p and gas
mass flows g, we follow [25] and [39]. For every node u € V of the gas transport network

and time period ¢t € T we denote the gas pressure by p, ; with bounds
0 <p, <pur Sp, < oco.

Further, gas mass flow on arc a € A in time period ¢ is denoted by g, ;. For an arc a = (u, v),
qa.r > 0 1is interpreted as flow in the direction of the arc, i.e., from u to v, and g, ; < 0
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as flow in the opposite direction. Additionally, the gas mass flow has to satisfy given
capacities

—00<q,<qar<q,<co foralla€A teT, (5)
and mass balance at every node of the network is modeled using the constraints

Z qa,t — Z Ga.t = Z q;;" forallueV,, teT,

aesot aesin ieP,
_ — _ nom
Z 9a,t Z qa,t Z qi.: forallueV., teT, ©)
aeddM™ aesn iePy,
Z %J‘Z%,,=O forallu eV, t €T.

aes™ aesin

In this formulation, 53" represents outgoing edges and " represents incoming edges at
node u.

Further, gas pressure needs to be coupled at the incident nodes of an arc with the arc’s
gas mass flow. In a rather general form, this is achieved by the pressure loss law

pos—Pos =Palqay) forall a=(wv)eA teT,

where ®, denotes the pressure loss function for arc a € A. We can substitute the squared
pressure variables using 7, ; = pi, ,forallu € V, t € T, and obtain the constraints

Turt — ot = Palqay) foralla=(u,v) €A teT, (7)
together with the bounds
0<m, <my,<m, <co forallueV,teT. (8)
We make the following assumption.

Assumption 1. The pressure loss function @, is linear for all a € A.

This assumption renders the transport model of this section linear. Technically, this
assumption is not needed for the bilevel reformulation in Section 2.5 and the single-
level reformulation in Section 3. However, without this assumption, the transport model
occurring in the upper level of the bilevel problem will be nonlinear, which further
complicates an already challenging problem. Moreover, the linear reformulation of the
robustness constraint (1d) stated in Section 5 is not possible without Assumption 1 unless
compact global optimality certificates are available for nonconvex problems. This, however,
is strongly related to the P vs. NP problem, which is why Assumption 1 is needed for
reasons of computational tractability.

Lastly, we need to specify the transportation costs. As mentioned, we only consider
passive gas transport networks in this paper. These are networks that do not contain
controllable network elements like compressors or (control) valves. However, transporta-
tion costs mainly arise from these controllable elements such as compressors. Usually,
transportation costs are driven by pressure losses across the network. In order to mimic
cost-optimal transport in our setting, the objective function in the fourth level minimizes
costs of squared pressure losses in the entire network that are given by the nonsmooth

expression
2 : 2 : t
Ctrans|7ru,t - ”v,tl,

teT a=(u,v)eA
where ¢! > 0 is a parameter. In total, the problem at level four reads

P =min . > > e - ol st (5)-(9) O)

teT a=(u,v)€A
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2.5. Reduction to a Bilevel Problem. The structure of the four-level model presented in
the previous sections is rather complicated. Figure 1 sheds more light on the dependencies
of the levels and the structure of the full model. It can be seen that, e.g., the variables of
the fourth level do not appear in the constraints of any other level. In Section 3 of [24] it
is shown that this structure can be exploited to equivalently re-state the four-level model
as a bilevel model. In particular, in Theorem 5 in [24] it is shown that the original second-
and third-level problem can be merged into an equivalent single-level problem. Thus, the
four-level model can be reduced to an equivalent trilevel one. In addition, in Theorem 7
in [24] it is shown that this trilevel model can be further reduced to the following bilevel
model by merging the original fourth-level problem into the original first-level problem.

max
TC ) Zl.book s

s.t.

T,q

SCEEEDY DI KEICIEDIIE

teT \ueV_ ieP, ueV, ieP,

=2 DL (e — mod) - C

teT a=(u,v)€A
0< qTC 0< ﬂbook forallue V, UV_,

Z Z ﬂ,book book Z Z tran3|ﬂ,u - ”v,tl + C,

ueV,UV_ ieP, teT a=(u,v)€eA
Anom IS N(qTC) jn_-(qnom) + 0

(7[, q) € F(q"°™), i.e., , q fulfill (5)—(8)

book

(g°°°%, ¢"™) € argmax (11),

(10a)

(10b)
(10¢)

(10d)
(10e)
(10f)
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1 & 4: Technical Capacity &
Cost-Optimal Transport

book , ghom TC gbook

q -,

[2 & 3: Booking & Ni ominationj

F1GURE 2. Dependencies between the two levels of the reduced bilevel
problem; taken from [24].

where the lower level is given by

Ky Z(Z > [ a3 5 (1a)

teT \ueV_ieP, uev, ieP,
_ Z Z ZTEOqul;OOk
ueVo,UV_ ieP,
s.t. Z qli’(’Ok <q® forallueV, UV, [JTBO"]‘] (11b)
iePy,
0<q "< % forallie P, ueV, UV, teT, lyii;] (11c)
Z Z qiom — Z Z 9" =0 forallteT, [z2™]  (11d)
uev_ieP, uev, ieP,

The upper level (10) represents the combined first and fourth level of the original four-level
model, i.e., the TSO’s actions, whereas the lower level (11) consists of the original second
and third level and models the market interaction. The lower-level problem has a unique
solution under reasonable assumption, see Theorem 6 in [24], so that we do not have
to consider aspects related to optimistic or pessimistic bilevel solutions. Note that we
omitted the redundant second-level constraint 0 < qll?""k since it is trivially fulfilled due
to Constraint (11c). The dependencies between the two levels are illustrated in Figure 2.
The bilevel structure is one of the major challenges of the problem. Bilevel problems
are inherently nonconvex and even linear bilevel problems are NP hard [27, 34]. Apart
from that the problem is challenging because the upper level itself is challenging due
to at least three reasons. First, the upper level has nonsmooth terms in the objective
function and in Constraint (10c). Second, Constraint (10c) contains nonconvex bilinear
terms gBOqu'l?"Ok. Third, and most importantly, the upper level contains the semi-infinite
robustness constraint (10d), which is, in general, not tractable from a computational point
of view. We tackle the bilevel structure in Section 3, the nonsmooth and bilinear terms
of the upper level in Section 4, and the robustness constraint in Section 5. Finally, we
point out that without Assumption 1, the modeling of the gas transport in Constraint (10e)
would be nonlinear and thus introduce additional difficulties to the upper level of the
bilevel reformulation.

2.6. Benchmark Models. Due to the overall hardness of Problem (10), we introduce two
relaxations that serve as a benchmark in the following.

A first-best benchmark can be obtained by optimizing the total welfare considering both
the network and market interaction constraints. In bilevel programming, this corresponds
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to the so-called high-point relaxation; see [45]. From an economic perspective this first-
best benchmark assumes an integrated gas company that is fully regulated and that takes
all decisions in a welfare-optimal manner. Consequently, we can remove the need for a
prior determination of technical capacities and bookings. This renders also the robustness
constraint (10d) redundant. We thus obtain a model that determines the decisions of the
original third and fourth level, accounting for welfare optimal production and demand as
well as cost-optimal transport simultaneously:

,m) st (g™, 7, q) satisfies (5)—(8). (12)

max (pu(qnom

q"m>0,7,q

Another benchmark model can be obtained by omitting only the robustness con-
straint (10d), which is one of the major difficulties of the bilevel problem (10):

ch,gﬁ?o’f,,r,q @ (@™, ) (13a)
s.t. (10b), (10c), and (10e), (13b)
(qb°°k, q"°™) € arg max (11). (13¢)

From an economic point of view this model assumes that the TSO needs to make sure that
only realized nominations need to be transportable. Thus, this model serves as a direct
benchmark to measure the inefficiencies caused by the robustness constraint (10d). In this
sense, Problem (13) can be interpreted as a second-best model that captures, for instance,
a situation in which the network operator is able to set the technical capacities based on
experience.

It is easy to see that out of the three models, Problem (12) yields the best welfare
outcome and bounds the welfare outcome of Problem (13). The latter, in turn, obviously
bounds the welfare outcome of the bilevel reformulation (10) of the four level entry-exit
model. In Section 6, we use this model hierarchy to measure inefficiencies in entry-exit-like
systems.

3. REDUCTION TO A SINGLE-LEVEL PROBLEM

In the previous section we discussed a four-level model of an entry-exit-like system and
reduced it to an equivalent bilevel problem with a convex lower level as described in [24]. In
recent years, several algorithms evolved for bilevel problems that exploit certain structural
properties. However, most—if not all—bilevel-tailored algorithms whose performance
could be demonstrated in computational studies, e.g., [18, 35, 40, 55], are either only
applicable to (mixed-integer) linear bilevel problems or rely on the property of integer
linking variables (upper-level variables that are present in the lower-level constraints).
All these algorithms are not appropriate for our setting of nonlinear upper- and lower-
level problems and continuous linking variables ¢'¢ and z°°°%. Thus, we resort to the
well-known standard technique of replacing the convex lower level by its necessary and
sufficient first-order optimality conditions to obtain a single-level problem. Note that
this approach requires Slater’s constraint qualification to hold. In the following, we first
perform a single-level reformulation based on the Karush-Kuhn-Tucker (KKT) conditions
and, in a second step, we provide an exact mixed-integer linear reformulation of the KKT
complementarity conditions.

3.1. A KKT-Based Single-Level Reformulation. A single-level reformulation can be
obtained by replacing (10f) either by the strong duality conditions or the KKT conditions
of Problem (11). In any way, we use the following assumption to obtain a computationally
tractable reformulation.

Assumption 2. All inverse market demand functions are linear and strictly decreasing, i.e.,

Pi,t(q?’otm) =daj; + bi’[q?’otm with ai; > 0 and bi,t < 0.
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This yields concave-quadratic upper- and lower-level objective functions w.r.t. the
upper- or lower-level variables, respectively. Thus, with Assumption 2, the lower-level
problem (11) is a concave-quadratic maximization problem over linear constraints and
the strong-duality theorem of convex optimization is applicable. Furthermore, its KKT
conditions are both necessary and sufficient; see, e.g., [10]. Following the strong-duality
approach, one would replace the lower level by primal and dual feasibility as well as the
strong-duality equation. Even for linear objective functions, the strong-duality equation
of the lower level yields nonconvex bilinear terms of primal upper-level variables and
dual lower-level variables; see, e.g., [58]. Thus, we refrain from using the strong-duality
reformulation and instead replace the lower-level problem by its KKT conditions, i.e., by
the stationarity conditions

—hook _ rbook Z yi, =0 forallie P, ueV, UV, (14a)

teT
aie + bt Y, — Yie—mpm =0 forallieP,, ueV_, teT, (14b)
/"ty — y:t +7°" =0 forallieP,, ueV,, teT, (14c¢)

primal feasibility (11b)—-(11d), nonnegativity

7% > 0 forallu eV, UV, (15a)
yi_’t,y:tZO forallieP,, ue V,UV_, teT, (15b)
and complementarity constraints
ook (qzc - Z qlbo‘)k) =0 foralueV,UV_, (16a)
ieP,
YiaGiy =0 forallie Py, ueV, UV, teT, (16b)
Vit (q?"(’k - q?f’tm) =0 forallieP,, ueV,UV_teT. (16¢)
Then, the bilevel problem (10) can be equivalently rephrased as the single-level problem
max gDU(qnom’ ”)
s.t. upper-level feasibility: (10b)-(10e), (17)
lower-level KKT conditions: (11b)—(11d), (14)-(16),

J_Tbook, book’ om’ ﬂbook’

where z = (¢, q q°", m,q, " y*) is the vector of primal upper-level

as well as primal and dual lower-level variables.

3.2. Linearization of KKT Complementarity Conditions. The complementarity con-
ditions (16) are nonconvex but can be linearized using additional binary variables and
big-M constants; see [19]. For a linear constraint a' x < b and its dual variable A > 0, the
complementarity condition reads

Ab-a"x) =0. (18)

For suitable primal and dual big-M constants M,, My and a binary variable u € {0, 1}, (18)
can be linearized as follows:

b—a'x <Myu, A< My(1-u). (19)

Finding suitable values for M, and My is crucial for a correct linearization. Often, these
values are obtained heuristically. In a bilevel context, this may result in suboptimal or
infeasible solutions [47]. In fact, finding correct big-Ms may in general be as hard as solving
the original bilevel problem [36]. Sometimes, however, problem-specific knowledge can be
used to obtain correct big-M values. In our application, finding primal big-Ms M, is easy
because ¢'C, ¢"°°%, and ¢"°™ are bounded by, e.g., the maximum demand of all gas buyers.

Finding dual big-Ms M, is more complicated. In the following, we derive suitable values

nom
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similar to [37]. Therefore, we use the notation P_ = U,y Py, and Py 1= Uyey, Py, as well
as a'" ;== min{a; ; : i € P_}, a7™ := max{a;, :i € P_}, c;x = min{c]* :i € P}, and

min
cre = max{c!* : i € P, } and make the following assumption.

var var

Assumption 3. Foreveryt € T it holds a™™ > e A

coandal™ > ¢

The economic rationale is that every player is eager to participate in the market in
every time period t. The gas buyer with the smallest initial willingness to pay @™ could
potentially buy gas from the seller with the lowest variable costs ¢/ and the seller with
the highest variable costs ¢4, could potentially sell gas to the buyer with the highest initial
willingness to pay a}***. This assumption can be easily checked a priori. Furthermore, we
assume that the network is designed in a way such that in every time period we have

trade.
Assumption 4. For every time periodt € T there exists a playeri € V. UV_ with g;{™ > 0.

We first derive bounds on the free dual variable 7;°™. As described in Section 2.3,
this variable corresponds to the market price for gas in time period ¢t € T. We do not
need bounds on this variable for a correct linearization of the KKT complementarity
conditions (16), but bounds on 7;°™ will help to bound the other dual variables.

var < ﬂ,nom < amax

Lemma 1. Foreveryt € T, it holds ¢}’

Proof. Due to Assumption 4 and the market clearing condition (11d), there must exist
players i_ € #_ and i, € $, with ¢} > 0 and ¢;*! > 0. Applying KKT complementar-
ity (16b) and dual feasibility (14b) to i— and i, one obtains

no: nom max nom var
and 7" =

— var var
" =a;_ + b tqiy — ylt<alt<a, >

+ Yl = Cl+ min’

respectively. O
We now turn to the dual variables y;",. The variable y; , denotes the price range that

the market price 77}°™ would have to decrease (for gas buyers) or increase (for gas sellers)

for player i to enter the market in time period ¢. Contrary, y;, indicates the benefit of
player i when trading a further unit.

Lemma 2. It exists an optimal solution of the single-level reformulation (17) with

Yz t S
for all time periodst € T andi € P, U P_.

var

( max — Var)
min

+ max
Coin)  and y;, <ai™ —c

Proof. We only consider exit nodes u € V_. The case of u € V, can be shown in exactly

the same way. Let t € T and let z be an optimal solution for (17) with g2°°, Qi T zhook,

gnom, gbook ‘and Y.+ being part of this optimal solution. We distinguish two cases:

(i) Xiep, q; book - 0 and

(i) Xiep, CI?O"k 0.
In case of (i), there exists a player i_ € £, with qE?_O"k > 0. If ¢ > 0, KKT complemen-
tarity (16b) yields y;” , = 0 and the stationarity condition (14b) simplifies to

+ . nom m . _ onom max __ ,var
Vit =ait— +bq <a; ;—m" Lay con

by applying b; < 0 and Lemma 1. If on the other hand ¢;*} = 0, KKT complementar-
ity (16¢) yields y;” , = 0 and from KKT stationarity (14b) we obtain

- nom max var
Yi_,t =T —QAi_,t < a; ~ Chin

by using Lemma 1 and Assumption 3. Thus, the claim is fulfilled in Case (i).
We now turn to Case (ii). In this case, qli""’k = ¢;°" = 0 holds. Let i € P,,. We set

~book Z (artnax _ cvaf) and ﬁbook 0

= u min
teT
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as well as

Vi =ar™ —ai +n°" —cys and 7, o= af™ - opn (20)
Now, let z be the vector that we obtain by replacing the corresponding entries of z by

gbook " book "and Vi ¢+ It is easy to see that stationarity (14a) and (14b) as well as comple-

mentanty (16) is fulfilled. Further, nonnegativity (10b) of #°°°% and nonnegativity (15b)

of y yi’ ; hold due to Lemma 1 and Assumption 3. Primal feasibility (11b)-(11d) of the
lower level remains unchanged and the upper-level constraint (10c) still holds because
2iep, T b"qull""’k 2iep, :b°°kqll’°°k = 0 according to qb°°k = 0. All other upper-level
constraints are trivially fulfilled by the modified vector z, and Z is thus feasible for (17).
Since the objective function value is not affected by the modifications, Z is also optimal.

Finally, from (20) we obtain

max Var max var __ max var
Yl <A ~Cpint @ — Oy =2 (at - cmin)
due to Lemma 1 and Assumption 3 and
max var
Yl t = 4 ~ Cmin-
Thus, also in Case (ii) the claim is fulfilled. O

The dual variable 72°°% denotes the markup price for bookings; see the discussion in
Section 2.2. It can be bounded as follows.

Lemma 3. It exists an optimal solution of the single-level reformulation (17) with
srbook
00. < Z max __ ;/ri;
teT
forallue V, UV_.

Proof. From KKT stationarity (14a), the nonnegativity of z2°° (see Constraint (10b)), and

Lemma 2, we obtain
book _ book max var
ﬂu - Z Yi, = < Z - mln N o

teT teT

In total, we can now replace Constraint (16) in the single-level reformulation (17) by its
linearized variant according to (19). Finally, we end up with a single-level problem that is
significantly larger than the bilevel problem (10) due to additional continuous and binary
variables and constraints. As previously mentioned, this single-level problem still contains
nonsmooth and nonconvex terms in the objective function and in Constraint (10c) and
the semi-infinite robustness constraint (10d). In the following Sections 4 and 5 we further
reformulate the single-level problem to obtain a computationally tractable problem.

4. FURTHER REFORMULATIONS OF THE UPPER LEVEL

In this section, we linearize the nonsmooth absolute values |, ;— 7, ;| and deal with the
nonconvex bilinear terms ﬂb""kqb""k that both appear in the single-level reformulation (17).
First, we take care of the former. Without Constraint (10c), the absolute values would only
appear in the objective function (10a). In this case, they could be linearized with standard
techniques by introducing additional continuous variables and constraints. However,
Constraint (10c) couples the absolute values |7, ; — 7y ;| to the bilinear terms ﬁbo"kqll""’k
Thus, besides additional continuous variables Ar, ., > 0 foralla = (u,v) € A, t € T, we

also need additional binary variables x, ; for all a € A, t € T and the constraints
+
ATty vt = Tyt — ot Aty vt < 27, Xt + Tut — Mot (21a)
+
ATty vt = Tp e — Tuts Ay v <21, (1 —Xa,t) + ot — Tuts (21b)

foralla = (u,v) € A, t € T. It is easy to see that for x,, = 0, Constraints (21a) are
active and enforce Ay, o,; = 7y, + — 7w, Whereas Constraints (21b) are inactive due to the
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squared pressure bounds (8). The same holds with flipped roles for x,; = 1. We can thus
replace all terms |7, ; — 7, ¢| by the continuous variables Ax,, ., ; and Constraints (21).
Second, we turn to the bilinear terms in Constraint (10c). Given upper bounds 72°°%
for z0°%k and q?o"k for q'l?“k for everyu € V, UV_ and i € P,, these bilinear terms can be
approximated using a piecewise linearization such as, e.g., the incremental method. See
[53] for a detailed overview and a numerical comparison of existing methods. On the other
hand, modern solvers like, e.g., Gurobi, can handle bilinear terms by using McCormick
envelopes [41] in combination with spatial branching. A preliminary numerical study
revealed that in our case the latter approach using Gurobi 9 works significantly better in
terms of running times. Since the spatial-branching-based approach also requires upper
bounds for both continuous variables 72°°¢ and ¢°°°%, we derive them in the following,

L
We first state bounds for 2%k,

Lemma 4. It exists an optimal solution of the single-level reformulation (17) with

book max var
Ty < Z (at - Cmin)
teT

forallue V, UV_.

Proof. From the lower-level KKT stationarity condition (14a), nonnegativity (15a), and
Lemma 2, we obtain

book __ + book max var
T, = Z Vit — Ty < Z (at - cmin) . o
teT teT
In order to bound q'l.’°°k, we first discuss that it is feasible to express bookings in terms
of maximal nominations, i.e., to set qll.""’k = max;eT{q;°"}.

Lemma 5. Suppose a playeri € P, at a nodeu € V, U V_ with
book
max{g;3"} < q;°"

Then, it holds 7_130"1‘ = 7[3"01‘ =0.

Proof. Leti € P, be a player at node u € V, U V_ with max;er{q} 7"} < @>°°%. Then, we
know from KKT complementarity (16c) that the dual variables y;", must be zero for all

t € T. Thus, KKT stationarity (14a) and nonnegativity (15a) and (10b) give

0< ”BOOk — _J_TEOOk <o,

ie., 7_1'3"01‘ = nBOOk =0. O

This means that player i € £, u € V. UV_, only books above the maximum nomination,
if the booking price floor 72°°% and the markup 72°°% are zero. In other words, the
remaining booking Ali’""k = q?""k —max;er{q}9"} > 0 does not affect the total welfare ¢',

which yields the following corollary.

Corollary 1. Among the optimal solutions of the bilevel problem (10), there exists a solution
for which

nom book
r{leaTX{qi’t }=q
holds foralli e P,u eV, UV_.

Thus, we can bound bookings by bounds for nominations. Since nominations must be
feasible for the physical network, we can bound nominations by the capacity of adjacent
arcs a to the node u.
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Proposition 1. With
q; " = Z max{0, g} } + Z max{0,—q,} forallie P,ucV,,

a=(u,v)€A a=(v,u)€A
G;°o" = Z max{0,—q,} + Z max{0,q.} forallie P,ucV_,
a=(u,v)eA a=(v,u)eA

it holds
0 g s g
forallie Py, uecV,UV_andt e€T.

Since the bounds §}°" are independent of ¢t € T, we directly obtain the following
corollary from Corollary 1 and Lemma 1.

Corollary 2. It holds 0 < g™k < gom = g>°°k foralli € P, u eV, UV

The derived bounds can now be used in a spatial branching approach to tackle the

bilinear terms 7_r}j°°kqll?°°k.

5. HANDLING OF THE UPPER LEVEL’S ROBUSTNESS CONSTRAINT

In this section, we deal with the robustness constraint (10d) that is part of the upper-level
problem of the bilevel reformulation (10), respectively part of the single-level reformula-
tion (17). We briefly recap that this constraint reads

V@m e N(g'C) s F(G™™) # 0,

where

N(qTC) — {q e R%Y-. 0 < q< ch, Z Qu = Z qu}’

uev, uev_
and F(¢"°™) is the set of feasible points (q4)4ea and (), ev, i-€., the points that satisfy
(5)-(8) for a given nomination ¢"°™. As already mentioned in Section 2.1, this can be
seen as an adjustable-robust constraint. As such, it is semi-infinite and one of the major
challenges of the entire problem. One opportunity to deal with this constraint is to leave
it out entirely, which yields a relaxation of the problem; see Section 2.6. On the other
hand, Theorem 10 in [39] gives a characterization for feasible bookings that we can use
to reformulate this constraint. From this characterization it also follows directly that—
in contrast to nonlinear pressure loss functions—feasible bookings can be validated in
polynomial time in case of linear pressure loss functions ®,(-). The reason is that the
characterization incorporates the solution of several optimization problems. In case of
linear pressure loss functions, all these optimization problems are linear. Thus, one can use
a mixed-integer linear reformulation of the optimality conditions of these optimization
problems to obtain a mixed-integer linear reformulation of the robustness constraint (10d).
This is not possible anymore for nonlinear pressure loss functions. Thus, Assumption 1 is
crucial for obtaining a more tractable reformulation. Note that we specify the exact choice
of ®,(-) later in Section 6.

For the sake of self-containment we state Theorem 10 of [39] adapted to our setting in
the following. To this end, we first need some more notation that is taken from [39] as
well. By M € RV*4 we denote the node-arc incidence matrix of the network G, i.e., for
any node u € V and arc a € A, the entry my, is defined by

+1, ifa=(u,v),
Myqa = -1, ifa=(v,u),

0, otherwise.
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By choosing a reference node 0 € V and a spanning tree T of G, the arcs can be decomposed
into basis arcs B := A(T) and nonbasis arcs N := A\ A(T). As a result, by reordering the
arcs of the graph, one obtains the representation

_ |MoB NN
el ]

of the incidence matrix M, where my = (mog mon) € R{®P*B denotes the row vector
corresponding to the reference node 0. In [39], it is shown that the submatrix Mp is
invertible.

We also introduce a vector of nominations ¢" € RY . We thereby comply with the
notation used in [39] and denote nominations at exit nodes u € V_ with a negative sign.
This means, we have

nom nom

qy = q5 foralueV,, gq; =-q, forallueV., and ¢, =0 forallueV,.

Further, g7 € RY~! denotes the vector of nominations without the component correspond-
ing to the reference node 0. In addition, the function g : RY xRN — RY with

0
n — R
9" an) : Mg ®p(M5'(GF — Mngn))

represents the potential, i.e., squared pressure, loss caused by gas flow from the reference
node 0 to any other node in the network. We point out that this potential change depends
on the nomination q” as well as on the nonbasis flows qx. We further use the notation ®p
and ®y that denote vector-valued variants of ®,,.

Theorem 10 of [39] gives a characterization of feasible bookings. A booking is con-
sidered feasible if every balanced and node-wise aggregated nomination that fulfills the
booking bounds is transportable. The robustness constraint (10d) in turn requires every
balanced and node-wise aggregated nomination that satisfies given technical capacities to
be transportable. In this light, we can interpret the technical capacities ¢' as a “booking”
and use Theorem 10 of [39] in our setting.

(22)

Theorem 1 (Labbé et al. [39]). Let G = (V, A) be a network with given potential bounds
0 < 7, < 7} < oo forevery nodeu € V and arc capacities —o < q; < gf < oo for
every arc a € A. Then, technical capacities q'C are feasible with respect to the robustness
constraint (10d) if and only if

NGy, oy S Ty = T, for allwi, wy €V, (23a)
q, < 4, < qs, < 44 foralla € B, (23b)
g, < a, < qn, < qa foralla € N, (23¢)
with
DGy, vy = nax 9w (", qN) — 9w, (q", qN) (24a)

st Dnlgn) = MM ®5(M5'(G) — Mngn)), a] (24b)

[
g €[0,q,°1 forallu € Vi, 5] (24¢)
g € [, .0] forallue V., [BE]  (24d)
qn =0 forallueV, [B.] (24e)
dai=o, [y] (24f)

uev
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and
dp, = max  (Mp'(4 —Myan)a st (24b)~(24), (25)
q, = min  (Mg'(gg —Mnqn))a st (24b)~(24D), (26)
—Pa 979N
gy = max q, st (24b)—(24f), (27)
¢ q"an
q = min gq, st (24b)-(24f) (28)
—=Na q".9N

holds.

All optimization problems (24)—(28) are linear under Assumption 1. In total, we have
|V|2-many LPs (24), |B|-many LPs (25) and (26) and |[N|-many LPs (27) and (28). Thus, we
can replace Constraint (10d) with a total of |V|? + 2|A| LPs. These optimization problems
can be reformulated using their KKT conditions, which are necessary and sufficient for
linear problems. In Problem (24), we denoted the dual variables in brackets. Of course,
since we need the KKT conditions of each of the |V|? + 2|A| LPs, we need a distinguished
set of dual variables per LP.

First, we denote the KKT conditions of Problem (24). We therefore assume without loss
of generality that the reference node 0 is an entry, i.e., 0 € V. Here and in what follows,
we also substitute the dual variables 8, = ff — B, for u € V, with § > 0 for the ease of
presentation. For given (wy, wy) € V X V, the KKT stationarity conditions read

fo=Fi =v
(A)w,u = (Awyu + (AMNa), + B, — i =y forallu e V\ {0}, (29)
—(AMN)s,, + (AMN)5,, — (DY + MAMN)a = 0,
where the matrix A is given by
A= My DEME!
and D(IB? and D% denote the diagonal Jacobian matrices of the vector-valued functions ®p
and ®y. Further, we have KKT primal feasibility (24b)-(24f), nonnegativity
B, >0 forallueV, (30)
and KKT complementarity conditions
Bugi =0 Biq —q)=0 forallueV.,
Bul=qi) =0, Bilgy+q,)=0 forallueV..
Thus, for every pair of nodes (w;, wz), we can replace Problem (24) by its KKT condi-
tions (24b)-(24f) and (29)—-(31).

All other LPs (25)-(28) only differ from Problem (24) in their objective function. Thus,
only the KKT stationarity conditions differ from (29), whereas primal feasibility, nonnega-
tivity, and complementarity are given by (24b)-(24f), (30), and (31) (with a separate set of
primal and dual variables per LP). Hence, for the remaining LPs, we only specify the KKT
stationarity conditions.

For an arc a € B, the corresponding KKT stationarity conditions of Problem (25) are
given by

(31)

By —F -y =0,
Mg!  +(AMya), + B = B3 -y =0 forallueV\ {0}, (32)
~(Mg" M) - (D + M{AMN)a = 0,
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and the KKT stationarity conditions of Problem (26) are given by
Po =P —v =0,
—Mgllm +(AMya), + B, = B —y =0 forallu eV \ {0}, (33)
(Mg'Mn), — (D% + M,AMy)a = 0.
Finally, for every a € N, the KKT stationarity conditions of Problem (27) are given by

Po —Fs —v =0,
(AMya), + B, — Bt —y=0 forallueV\ {0}, (34)
en, — (DY + ML AMy)a = 0,
and for Problem (28) by
Py —Fi —v =0,
(AMya), + B, —Bs —y =0 forallueV\ {0}, (35)

~en, — (Dy + MyAMN)a = 0,
with ey, € RN being the N,th unit vector in RN. In summary, Constraint (10d) is fulfilled
if and only if the following holds:
Agy,. o\, < oy =, forallw,wy, €V,
q, < gBa < qBa < qz for all a € B,
q, < gNa < ‘_INa < q;r foralla € N,
Constraints (24b)—(24f) and (29), (30), (31) for all wy, wy €V,
Constraints (24b)-(24f) and (32), (30), (31) forall a € B,
Constraints (24b)-(24f) and (33), (30), (31) forall a € B,
Constraints (24b)-(24f) and (34), (30), (31) foralla € N,
Constraints (24b)-(24f) and (35), (30), (31) foralla € N.

(36)

We emphasize again that the system (36) contains distinguished variables ¢", gn, @,
f*, and y for every involved LP. We further point out that all KKT complementarity
conditions (31) occurring in (36) can be linearized again with a big-M linearization as
specified in (19). For a provably correct reformulation, we need again primal and dual
bounds M, and M;. However, in the LPs (24)-(28) neither technical bounds, like flow
bounds or squared pressure bounds, nor economic quantities are involved. Furthermore,
apart from [, all other dual variables are free variables. This renders finding provable
bounds for f; way more difficult; the specific numerical values are given in the next
section.

Finally, under Assumptions 1-4 and after all reformulations discussed in this and
the previous sections, we obtained a mixed-integer single-level problem with a convex-
quadratic objective function over linear and bilinear constraints. Although this is still a
very challenging problem class, it can be tackled by modern solvers such as, e.g., Gurobi.
If the big-M constants used to reformulate the robustness constraint are chosen large
enough, then all reformulations are exact. We are now ready to use the derived single-level
problem to measure inefficiencies that occur in entry-exit-like gas markets.

6. THE CosT oF DECOUPLING TRADE AND TRANSPORT

As mentioned throughout the paper it is very likely that the European entry-exit gas
market system leads to inefficiencies due to the decoupling of trade and transport. In
particular, it is reasonable to expect that the robustness constraint (10d) is “expensive” in
this sense. In this section, we measure this cost of decoupling trade and transport for an
exemplary network. For a better understanding of the effects, we analyze inefficiencies
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Entry 1 e } Exit 1 } e } Exit 2

Ficure 3. The 6-node network.

arising (i) for different demand levels, (ii) in dependence of network expansion, and (iii) for
different pricing regimes for the booking price floors 72°°K. To this end, we compare the
welfare outcomes of the entry-exit system (10) with the two benchmark models stated in
Section 2.6. In the following, we label the entry-exit model by Entry-Exit, the single-level
benchmark model (12) by Ist-Best and the bilevel benchmark model (13), which disregards
the robustness constraint, by 2nd-Best. For all our computations, we use the respective
single-level reformulations of Problem (10) and (13) that apply all reformulations derived
in Sections 3-5.

6.1. Data and Economic Setup. For the economic analysis, we consider the 6-node
network depicted in Figure 3 with four time periods, i.e., |[T| = 4. The network has 3 entry
nodes and 3 exit nodes with one player per node, no inner nodes, and 7 arcs (without
the dashed arc). We do not consider strategic interaction in our analysis. The reasons
are manifold. Most importantly, a rigorous analysis of strategic interaction within this
already highly complex setup would impose challenges that are far beyond tractability.
Moreover, the analysis of non-strategic agents at the nodes allows us to clearly pin
down the effects of the market design on efficiency that are present already without the
presence of market power. To better isolate the effects that are caused by the decoupling
of trade and transport, we simplify the physical data as much as possible w.r.t. maintaining
enough granularity to illustrate welfare effects. We assume identical pipes a € A that are
characterized by their length L, = 350 km, diameter D, = 0.5 m, roughness k, = 0.1 mm,
and capacities g- = +435kgs™!. For deriving a linear transport model, see Assumption 1,
we consider stationary gas flow, i.e., we abstract from temporal dependencies. Further, we
only consider horizontal pipes. In such a setting, one can use the following well-known
pressure loss function as given in, e.g., [20].
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The constant ¢ = 340ms™! denotes the speed of sound in natural gas. The friction
coefficient A, can be approximated by the formula of Nikuradse; see [20]:

-2
ST

®(qa) = 194lqa- (37)

a
Equation (37) is a suitable simplification of gas flow physics but is still nonlinear. Thus,
to arrive at a linear approximation, we replace |q,| by a mean flow ¢ **". Preliminary
computational studies showed that ¢7¢®" = 100kgs™! is a reasonable choice. We are
aware that this linearization yields only a coarse approximation of (37) but, as already
discussed, without Assumption 1 the problem is computationally not tractable. In case
the chosen mean flow underestimates the actual flow, the linearization underestimates
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TaBLE 1. Variable costs ¢/*" (in EUR/(1000 Nm® /h)) of entries and inter-
cepts a; ; (in EUR/(1000 Nm?® /h)) and slopes b; (in EUR/(1000 Nm?/h)?)

of exits.
Entries Exits
c/ aio i1 Gz i3 b;
EUR/(1000 Nm?/h) EUR/(1000 Nm?/h) EUR/(1000 Nm? /h)?
1 63 1000 450 850 1700 -4.5
57 800 300 700 1500 -5.0
3 71 3900 2500 3700 5500 -20.0

the pressure loss, which in turn may result in pressure bound violations w.r.t. the more
accurate nonlinear flow model in (37). The situation may be improved by fitting individual
average flows for each arc via a trial-and-error process. On the other hand, the flow varies
over the time periods on each arc. Thus, choosing the average flow as the mean flow over
the time periods does not prevent the existence of time periods, in which the average flow
underestimates the actual flow. Finally, making the average flow time-period dependent
is not feasible w.r.t. the characterization of the robustness constraint as discussed in
Section 5. Consequently, and as expected, a linearization of (37) will be inexact for certain
flow situations. Thus, we use the average flows as given above and check for the resulting
violations ex-post to get an idea of the level of (in)accuracy of the chosen linearization;
see Appendix A for the detailed results of this ex-post check. Let us be as transparent
as possible at this point: Of course, we observe physical errors that are not negligible.
However, the used modeling approach is the best possible due to the already discussed
theoretical complexity reasons. Nevertheless, we are convinced that our results shed light
on the economic implications of the entry-exit gas market system in Europe.

For all entry nodes u € V., we have pressure bounds p;, = 40bar and p; = 65 bar,
and for all exit nodes u € V_, we have pressure bounds p;, = 40bar and p; = 50 bar.
The economic data for every gas seller and buyer is specified in Table 1. The four time
periods t € T model the seasons spring (t = 0), summer (¢ = 1), autumn (¢t = 2), and
winter (¢t = 3). Thus, the willingness to pay a; ; is lowest in time period t = 1 and highest
in time period ¢ = 3. We can also see from Table 1 that Entry 2 is the cheapest gas producer
with the lowest variable costs, while Entry 3 is the most expensive one. Exit 2 has the
lowest willingness to pay but a larger absolute slope than Exit 1. Exit 3 has the highest
willingness to pay and is very inelastic with the largest absolute slope. Finally, we assume
no exogenous network costs, i.e., we set C = 0.

6.2. Computational Setup. We now turn to the computational setup. All optimization
problems used for the economic analysis have been implemented in Python 3 and solved
with Gurobi 9.0.1. All computations have been carried out on a compute cluster; see [48]
for the details about the installed hardware. The big-M constants discussed at the end of
Section 5 are chosen to be 1 x 10°. We now discuss some statistics of the three different
models Ist-Best, 2nd-Best, and Entry-Exit as displayed in Table 2. It reveals that the 1st-Best
model is not challenging at all, which is expected since it is a very small continuous
convex-quadratic problem. The model has 104 continuous variables and 108 constraints.
Note that for the linearization of the absolute pressure losses in the objective function of
the Ist-Best model, only the two left inequalities in (21) and no additional binary variables
are required. In the 2nd-Best, the absolute pressure losses are coupled to bilinear terms; see
Section 4. Thus, the full set of the constraints (21) and |T| - |A| = 28 binary variables are
required. More significantly, the linearization of the bilevel structure of the 2nd-Best model
adds |V| + 2|T| - |V| = 54 binary variables. Still, the 2nd-Best model is not challenging. In
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TaBLE 2. Model statistics of 1st-Best, 2nd-Best, and Entry-Exit for a 6-
node and a 9-node network.

Variables Binaries Constraints Time in s

6-node Network

1st-Best 104 0 108 0.12

2nd-Best 262 82 336 0.42

Entry-Exit 1980 682 2983 43.72
9-node Network

1st-Best 176 0 192 0.05

2nd-Best 421 133 552 1.17

Entry-Exit 6342 2059 9679 5003.07

contrast, introducing the robustness constraint adds noticeable difficulty to the problem
both in terms of problem size and running time. The total number of variables, the number
of binary variables, and the number of constraints all roughly increase by a factor 8. In
fact, the reformulation of the robustness constraint adds 2|V |(|V|? + 2|A|) = 600 binary
variables. As a result, the running time increases by a factor around 100. While the
resulting Entry-Exit model is still neither big nor challenging (around 43 s running time)
for state-of-the-art solvers, this analysis demonstrates that the correct modeling of entry-
exit-like systems introduces significant complexity even for small networks like the 6-node
network of Figure 3. This becomes even more obvious for bigger networks. Although
we stick to the 6-node network for the economic analysis, we analyze the computational
scalability of the Entry-Exit model. Table 2 also displays model sizes and running times
for a 9-node network. Again, the 1st-Best and 2nd-Best models are not challenging, while
the Entry-Exit model requires significantly more variables and constraints. The additional
binary variables (around 15 times more compared to 2nd-Best) are critical, which results in
a running time of over 5000 s. This is almost 5000 times the running time needed for the
2nd-Best model and underlines the hardness that is added by the robustness constraint.
We also carried out some numerical experiments on a 12-node network. For this network,
the first-best model was solved in 0.04 s and the second-best model was solved in 2.01 s.
The entry-exit model, however, was not solved within the time limit of 24 h. In fact, the
gap did not improve anymore after six hours and stayed at 120 %. This again underlines
the tremendous hardness that is introduced by the robustness condition.

6.3. The Effect of Scaling Demand. In this section, we analyze the cost of decoupling
trade and transport in dependence of different demand levels. We compare the standard
demand as specified in Table 1 to a setting with low demand, i.e., the intercepts a; ;
of the standard setting are decreased by 30 %, and to a setting with high demand, i.e.,
the intercepts of the standard setting are increased by 40 %. As already mentioned, the
robustness constraint is suspect to shrink the used capacity in the network because the
TSO might be forced to set the technical capacities too conservatively. In Table 3 we
display the relative reduction of total technical capacities, bookings, and nominations
of the 2nd-Best model and the Entry-Exit model w.r.t. the Ist-Best model. To that aim,
the total “technical capacities” and “bookings” for the Ist-Best model are computed by
IT| - Xy ev,uv. MaXser {qg";“} The table also denotes the relative cost of decoupling trade
and transport, which is given by the relative reduction of total welfare W. For the standard
demand level, the market system associated with the 2nd-Best decreases available technical
capacities and bookings by 10.24 % and nominations by 5.64 %. This yields a moderate
welfare reduction of 1.93 % compared to Ist-Best. The effect is way more pronounced for
the Entry-Exit system, in which technical capacities and bookings are decreased by 27.34 %
and nominations by 21.55 %. As a result, the welfare decreases by 8.34 % compared to the
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TaBLE 3. Relative reduction (in %) of total technical capacities (q*°),
bookings (¢*°°%), nominations (¢"°™), and welfare (W) of the 2nd-
Best model and the Entry-Exit model w.r.t. the Ist-Best model under
low, normal, and high demand. Note that for the Ist-Best model, we

consider qTC = qb°°k =|T| Yuev,uv. MaX e {q’;’;“
Reduction in % 2nd-Best Entry-Exit
qTC qbook qnom w qTC qbook qnom w
Low 7.16 7.16 1.47 0.85 32.00 32.00 16.33 6.72
Normal 10.24 10.24 5.64 1.93 27.34 27.34 21.55 8.34
High 9.03 9.03 4.00 0.84 17.62 17.62 15.05 8.72

TaBLE 4. Relative reduction (in %) of total technical capacities (q'°),
bookings (¢*°°%), nominations (¢™™), and welfare (W) of the 2nd-
Best model and the Entry-Exit model w.r.t. the Ist-Best model for the
standard and the expanded network. Note that for the 1st-Best model,
we consider ¢'C = ¢"°%% = |T| 3, cy, oy, max;er {q‘;"?‘}

Reduction in % 2nd-Best Entry-Exit

qTC qbook qnom w qTC qbook qnom w
Standard 10.24 10.24 5.64 1.93 27.34 27.34 21.55 8.34
Expanded 11.39 11.39 3.33 1.50 13.41 1341 3.85 1.82

1st-Best. When compared to the 2nd-Best, we find that the robustness constraint alone
accounts for more than 6.4 % of welfare loss. In a setting with low demand, these effects
are similar although not as pronounced. The welfare loss caused by the Entry-Exit model
is 6.72 % compared to the Ist-Best and around 5.9 % compared to the 2nd-Best. In a setting
with high demand, the welfare loss caused by the 2nd-Best model is only 0.84 %, which is
lower compared to the normal demand level. This underlines that, even when physics are
modeled in a linear fashion, the welfare effects of different market design choices cannot
be expected to be monotonic. In line with the latter statement, the welfare loss caused by
the Entry-Exit model (8.72 %) is slightly higher compared to the setting with intermediate
demand. For high demand, the robustness constraint alone accounts for a welfare loss of
almost 7.9 %.

Overall, the effects are quite similar throughout the various demand levels: The 2nd-
Best model causes a noticeable drop in available capacities, but results only in a moderate
welfare loss compared to the 1st-Best model. In contrast, the Entry-Exit model causes a
significantly higher drop in available capacities due to the robustness constraint. This
results in severe inefficiencies, i.e., in a high cost of decoupling trade and transport.

6.4. The Effect of Different Network Configurations. We now analyze the cost of
decoupling trade and transport in different network configurations. In particular, we
compare the standard network of Figure 3 without the dashed pipe 8 with an expanded
network that includes pipe 8. Note that this improves the connection of the seller at
Entry 2, who is the seller with the overall lowest cost, with all other agents. We compare
again the relative reduction of total technical capacities, bookings, and nominations of the
2nd-Best model and the Entry-Exit model w.r.t. the Ist-Best model as well as the relative
reduction of total welfare W; see Table 4. For the standard network, the welfare loss caused
by the entry-exit system has already been discussed in Section 6.3. The observations differ
systematically for the expanded network. While the relative reduction in capacities and
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FIGURE 4. Technical capacities (q1€), bookings (qll?oc’k), and nomina-
tions (q?"tm) for the 1st-Best, 2nd-Best, and Entry-Exit models of the
standard network and for the Entry-Exit model of the expanded network.

the relative welfare loss caused by the 2nd-Best model are quite comparable to the standard
network, the Entry-Exit model hardly adds further inefficiencies for the expanded network.
The relative decrease in technical capacities, bookings, and nominations is only slightly
more pronounced compared to 2nd-Best, which results in a moderate relative reduction of
total welfare W by 1.82 % compared to the Ist-Best. This is only 0.32 % more than what
is observed for the 2nd-Best. Thus, the additional loss of relative welfare caused by the
robustness constraint alone is almost negligible.

To shed some more light on this observation, we look at Figure 4, which displays
technical capacities, bookings, and nominations per time period for Ist-Best, 2nd-Best, and
Entry-Exit of the standard network (upper three rows) and for Entry-Exit of the expanded
network (bottom row). Obviously, in the 1st-Best model, it is welfare-optimal to include
the cheapest gas seller Entry 2 into the market. The nominations in the 2nd-Best are a
bit more leveled but quite comparable to the outcomes of the 1st-Best. However, in the
Entry-Exit model, the TSO sets very low technical capacities for Entry 2, which almost
entirely excludes the seller from the market. One explanation for this is that Entry 2 is
connected only poorly to the network, especially to Exit 3. We recap that Exit 3 is the
buyer with the most inelastic demand and the highest willingness to pay. It thus turns out
to be more beneficial with regard to the robustness constraint and the involved physics
to allocate high technical capacities to the more expensive Entry 3, that has a direct link
to Exit 3. The situation changes immediately when pipe 8 is introduced. Entry 2 is now
connected better to the network and can supply Exits 1 and 2 directly. It is now beneficial
to include Entry 2 into the trade by increasing its technical capacities; see Figure 4 (bottom
row).
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The discussion in this section indicates that the network configuration strongly impacts
the market outcomes of the individual players. In this light, trade and transport are not
decoupled after all, which is most obvious in the setting of the standard network, where it
is welfare-optimal to exclude the cheapest producer from the market. The results of this
section also indicate that in more expanded networks, the cost of decoupling trade and
transport is rather small. This low cost however comes at the expense of possibly high
investment costs for building and maintaining an (over-)expanded network.

Finally note that, in this section, we just compared the efficiency losses from an Entry-
Exit model as compared to the Ist-Best and 2nd-Best for different network configurations.
The network design problem that would have to be solved in order to set up the network
optimally cannot be addressed in this paper. Obviously, one would have to account for
the costs and benefits of adding pipes, accounting for all endogenous feedback effects of
network expansion on the market outcome.

6.5. The Effect of Different Pricing Regimes. In the last two sections, we have seen
that entry-exit-like systems can cause severe reductions in total welfare W compared to
the Ist-Best and 2nd-Best models. This cost of decoupling trade and transport is “payed”
by the gas buying and selling firms by decreasing rents. However, in general, this cost
will not be shared equally but some players may be discriminated by the market system,
while others may even benefit from the decoupling of trade and transport.

In this section, we analyze how the individual rents

book _book .
R; = Z(yr?"m =g = m g, i€ Py, ueV,

R; = Z(Pi,t(q?’otm _ ”?om)q?,o[m _ @BOquli)OOk’ i€ Pu’ uev.
teT

are affected by entry-exit-like systems. The two equations above represent the buyers’
and the sellers’ rents, respectively. Note that the price floor £2°°%, that is set by the TSO to
recover transportation and exogenous network costs (cf. Constraint (1c)), directly impacts
the individual rents of the players. The price floors can be chosen by the TSO in various
ways. In this section, we analyze four different such pricing regimes: (i) a regime in which
price floors are chosen efficiently, (ii) a regime with a single uniform booking price floor at
all entry and exit nodes, (iii) a regime in which only exit nodes pay a uniform booking
price floor, and (iv) a regime in which only entry nodes pay a uniform booking price floor.
Note that (i) is assumed implicitly for our modeling in Section 2 and that the other three
regimes can be modeled by additional linear constraints. To better illustrate the effects of
the various pricing schemes we use exogenously given network costs of C = 300 000 EUR
throughout this section. This high value of the investment costs, which must be earned
via the price floors (cf. Constraint (1c)), allows to illustrate the effect of the price floors
on efficiency very clearly. Since the comparison between the different market designs in
the previous sections is not enriched by this assumption about investment costs, we have
not specified the costs there. Note further that we use the standard network without the
dashed pipe 8, see Figure 3, in this subsection.

Table 5 displays the reduction in total welfare W as compared to the 1st-Best model for
each of the four different pricing regimes and shows how the rents R; of all gas sellers and
buyers are affected. All values represent absolute reductions in comparison to the welfare
and rents achieved in the 1st-Best model, which is the same for all four pricing regimes.
In addition, Figure 5 shows the welfare-maximizing price floors 72°°% and payments

u
er""kq'l?o"k for the four pricing schemes. At a first glance, the different pricing regimes
yield diverse price floor patterns, see Figure 5, which is not surprising. Also, the total
welfare is affected by the choice of the pricing scheme; see Table 5. Of course, the efficient
pricing scheme yields the lowest reduction of welfare compared to the Ist-Best because it

shifts payments to agents where they do not induce welfare losses. The same welfare result
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TaBLE 5. Absolute reduction (in 1000 EUR) of rents R; and total wel-
fare W compared to the 1st-Best model for different pricing regimes.

Reduction  Entry1 Entry2 Entry3 Exit1 Exit2 Exit3 w
in 1000 EUR

Efficient 41.87 41.87 -—181.11 122.48 148.41 7.35 180.86
Uniform —36.28 38.94 —113.44 143.75 153.33 0.66 186.96
Only Exit —35.43 39.02 -109.22 142.17 154.53 -1.74 189.33

Only Entry  —19.62 39.58 —-76.63 122.48 148.41 -33.35 180.86

2K in EUR/(1000 Nm?® /h) mbook . gbook in EUR
1400 A * * Y
1200 4 200000
1000 4 * X
150000
go{Y Y Y X X X
* X
600 1000001 Y
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*  Efficient Uniform X Only Exit Y  Only Entry

Ficure 5. Comparison of price floors (left) and products of price floors
times bookings (right) for the pricing regimes efficient, uniform, only
exit, and only entry.

can be obtained by charging price floors for entries only, since obviously those payments
do not induce any effect on the quantity supplied at the market. As long as revenues of gas
sellers are high enough, the TSO can collect his expenses for gas transportation and other
exogenous network costs from the sellers. The fact that Exit 3 receives a price floor of
around 200 EUR/(1000Nm?>/h) in the efficient pricing scheme compared to a price floor of
0EUR/(1000Nm?>/h) in the only entry pricing scheme is an artifact of non-unique welfare-
maximizing price floors. In particular, the only entry pricing scheme, which charges the
same price floor at every entry node, is also a feasible efficient pricing scheme. It can also
be seen in Table 5 that imposing price floors for exit players like it is done in the pricing
regimes uniform and only exit results in additional welfare losses. This is due to the fact
that the players’ marginal units are driven out of the market at Exit 1 and 2 if a booking
fee is charged. We now take a closer look at the implications for the individual players.
From Table 5 it can be seen that Entry 2 is not affected much by changes in the pricing
scheme. The rent of Entry 2 is reduced by around 42 000 EUR compared to the 1st-Best
under the efficient pricing scheme. This reduction decreases slightly, when other pricing
schemes are used. As seen in the previous sections, the reason is the following. Since
Entry 2 is the cheapest seller, it is assigned as much nomination ¢;°" as possible with
respect to physics in the Ist-Best model; cf. Figure 4. However, due to its poor network
access in combination with the robustness constraint of the entry-exit system, Entry 2 is
excluded from the market by having its technical capacities set to zero by the TSO. Thus,
the high price floor that Entry 2 receives is irrelevant and the contribution gBOqull?""k
of Entry 2 to the reimbursement of the TSO for transportation and network expenses is
marginal; see Figure 5 (right). A direct consequence is that the rent of Entry 3 increases
compared to the Ist-Best throughout all pricing schemes. The amount that Entry 1 sells in
Ist-Best but not in Entry-Exit is compensated by Entry 3. In the efficient pricing scheme,
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this results in an increase of the rent of Entry 3 of 181 110 EUR compared to the 1st-Best,
which is significant, taking into account that the reduction of total welfare amounts to
180 860 EUR. In the efficient pricing scheme, the increasing rent of Entry 3 is in parts at
the expense of Entry 1, whose rent is reduced by around 42 000 EUR compared to the first
best. This reduction is also caused by a very high price floor that is set by the TSO. It is
interesting to see that in the efficient pricing scheme, the highest contribution to cover the
expenses of the TSO comes from Entry 1; see Figure 5 (right). The reason is that at Entry 1
the expenses of the TSO can be recovered with the least distorting effects. Note also that
Entry 2 seems to be charged a high fee but in effect pays nothing since the entry receives
no bookable capacity. Using any other pricing scheme than efficient immediately yields an
increasing rent of Entry 1, since the burden is shifted also to other agents. However, this
happens at a cost, in case trade is suppressed.

Similar observations can be drawn when looking at the exit players. Exits 1 and 2 do not
receive a price floor in the efficient and (obviously) in the only entry pricing regime. Thus,
these two regimes yield the lowest rent reduction for the two exits. Still, the reduction
is, compared to the Ist-Best and the reduction of total welfare W, very significant. This
is not the case for Exit 3 in the efficient pricing regime. Since the demand of Exit 3 is
very inelastic, the reduction of the rent compared to the 1st-Best is rather low. The rent
even increases compared to the Ist-Best, when only the entries are charged with a price
floor. It is also noteworthy that the uniform and only exit pricing regimes increase the
rent of Exit 3 compared to the efficient regime, although the former two regimes yield
significantly higher booking price floors and booking payments for Exit 3; see Figure 5.
The reason is that Exit 3 can realize higher nominations, which overcompensates the
increasing payments.

From the analysis in this section, we can draw several conclusions. The actual choice
of the pricing regime for booking price floors can affect both, the total welfare as well
as the individual rents, and can add to the cost of decoupling trade and transport. The
efficient booking price floor regime yields the best overall welfare outcome but is highly
discriminating in the sense that the rent of Entry 3 increases drastically at the expense of
all other players. The regime only entry yields the same welfare outcome but distributes
the reductions of the rents way more evenly. This makes also clear that in all those
considerations one has to account for the fact that the Entry-Exit model might have
multiple solutions.

7. CONCLUSION

In this paper, we analyzed inefficiencies that arise in entry-exit gas markets due to
the decoupling of trade and transport. To this end, we used an existing multilevel model
of the European entry-exit system and an equivalent bilevel reformulation thereof from
the literature [24]. We reformulated this bilevel problem as an equivalent nonconvex
and nonsmooth mixed-integer single-level problem. The major difficulty of the single-
level problem is an entry-exit-market specific robustness constraint that directly results
from a proper modeling of the underlying gas market system: The TSO needs to ensure
that every balanced nomination that is feasible w.r.t. technical capacities is transportable.
This constraint alone renders the problem intractable in general. However, under the
assumption of passive networks (i.e., without active elements such as compressor stations),
and a potential-based but linear flow model, we derived a “more tractable” single-level
reformulation by applying a characterization of the feasible points of the robustness
constraint from [39].

In a case study for a stylized network, we analyzed the inefficiencies caused by entry-
exit systems and identified four major effects. First, the robustness constraint accounts
for significant welfare losses compared to first-best and second-best models. This means
that—under the assumptions made—the cost of decoupling trade and transport can indeed
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be measured by the model and techniques that we propose. Second, the design of the
network has a significant impact on which gas traders receive technical capacities from
the TSO. Thus, our results show that, in fact, trade and transport are not decoupled in a
long run. Third, the booking price floors established by the TSO to collect payments from
the traders to reimburse network costs may be ambiguous and, depending on the pricing
regime used, can be quite discriminatory. Fourth and finally, our computational analysis
revealed that the computational effort required to solve the problem mostly stems from
the robustness constraint.

In practice, the robustness constraint is likely not imposed in its strictest form. To
capture a situation in which the network operator sets the technical capacities based on
experience, we also analyzed a second-best entry-exit model, where only feasibility of
the actually resulting market outcomes is required. As one would expect, we find that for
this model, the welfare losses are lower than under the strict robustness constraint. Less
restrictive feasibility constraints might also be possible in practice if, e.g., interruptible
contracts are used. Although this case can possibly be approximated by our second-best
entry-exit scenario, it is too complex to be modeled and solved in the context of our formal
analysis and case study. Thus, while our contribution for the first time provides a formal
model to asses the efficiency losses that may result from the decoupling of network and
market, it naturally cannot address various other aspects of gas markets that are of practical
relevance. In addition to the interruptible contracts mentioned above, these include, e.g.,
aspects such as market liquidity, security of supply, as well as the implementation cost of
an alternative market mechanism itself.

In order to extend the findings in this paper to instances of real-world size, several chal-
lenges arise. Most importantly, it is not clear how to handle the robustness constraint for
nonlinear flow models on general (cyclic) networks. We discussed theoretical complexity
reasons why the consideration of nonlinear flow models on general networks is out of
reach right now. In our opinion, this legitimates the usage of linear flow models. Note that
this is in analogy to very many electricity market models with DC power flow constraints.
These models are well-accepted in the literature as well although it is known that there
are instances, in which no DC-feasible points exist that are feasible for the nonlinear AC
model [2]. Nevertheless, the development of techniques that allow to better capture the
nonlinear aspects of gas flow is a very reasonable field for future research. Furthermore,
adding active elements would add another layer of complexity to an already very challeng-
ing model. The same holds true for transient gas flow models that take time-dependent
aspects of gas flow such as linepack into a account. Although this increases the complexity
of the modeling, results with these additional aspects will provide even better insights into
the European gas market system. In addition, a more effective solution approach tailored
to bilevel problems with a structure as specified in Section 3 is required. However, this is
out of scope of this paper and will be part of our future research.
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APPENDIX A. APPENDIX: FEASIBILITY CHECK FOR A NONLINEAR FLow MODEL

For the sake of completeness, we discuss possible infeasibilities resulting from the
linear flow model as specified in Section 6.1. For our ex-post analysis, we minimize the
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TAaBLE 6. Results of the nonlinear flow feasibility check.

Instance Model # Viol. Total Viol. Max. Viol. At Node
6 Nodes 1st-Best 10 210.5 341 Entry1
6 Nodes 2nd-Best 6 62.7 243 Entry3
6 Nodes Entry-Exit 11 104.2 174 Entry 3
6 Nodes, Low Demand 1st-Best 8 149.7 34.8 Entry 1
6 Nodes, Low Demand 2nd-Best 7 101.2 19.6 Entry 3
6 Nodes, Low Demand Entry-Exit 2 10.0 6.6 Entry3
6 Nodes, High Demand 1st-Best 14 249.5 24.7 Entry 1
6 Nodes, High Demand 2nd-Best 11 153.4 20.5 Exit3
6 Nodes, High Demand Entry-Exit [ 68.9 15.9 Exit3
6 Nodes, Extended 1st-Best 6 94.4 20.2 Exit3
6 Nodes, Extended 2nd-Best 2 36.8 20.7 Entry3
6 Nodes, Extended Entry-Exit 2 28.9 16.9 Exit3

6 Nodes, Network Investment ~ 1st-Best 10 210.5 341 Entry1
6 Nodes, Network Investment ~ 2nd-Best 5 61.2 243 Entry3
6 Nodes, Network Investment  Entry-Exit 11 104.2 174 Entry 3
6 Nodes, Uniform Pricefloor 2nd-Best 6 57.5 24.6 Entry3
6 Nodes, Uniform Pricefloor Entry-Exit 7 72.8 16.7 Entry 3
6 Nodes, Only Entry Pricefloor 2nd-Best 6 62.9 243 Entry3
6 Nodes, Only Entry Pricefloor Entry-Exit 11 104.2 17.4 Entry 3
6 Nodes, Only Exit Pricefloor ~ 2nd-Best 6 57.5 24.6 Entry3
6 Nodes, Only Exit Pricefloor ~ Entry-Exit 10 82.9 155 Entry 3
9 Nodes 1st-Best 15 293.3 342 Entry 4
9 Nodes 2nd-Best 4 53.6 23.0 Entry3
9 Nodes Entry-Exit 6 62.9 18.2 Entry 3

sum of squared pressure bound violations, i.e., we solve the nonlinear problem

min ZZ(s;t+s;t)
7T,q,57,s* ’ ’

teT uevV
st (5)-(7),

Ty =Syt Sy <y < +sp, forallueV, teT,

u

SprsSy, 20 forallueV, teT,

in which the nominations ¢;™ are fixed to the solution provided by our solution approach.
As a solver, we used the local solver CONOPT4. We also checked for some exemplary
instances with the global solver BARON, if the solution provided by CONOPT4 is a global
optimum. For all our tests, this was the case. In Table 6, we summarize the results for all
instances that we used throughout this paper. The first two columns specify the instance.
The third column lists the number of pressure bound violations (over all nodes in the
network and over all time periods), whereas the fourth column lists the aggregated bound
violation and the fifth one lists the maximum violation. The last column denotes the node
in the network at which the largest violation occurred.

REFERENCES

[1] Alonso, A., Olmos, L., and Serrano, M. “Application of an entry—exit tariff model to
the gas transport system in Spain.” In: Energy Policy 38.5 (2010), pp. 5133-5140. por:
10.1016/j.enpol.2010.04.043.

[2] Baker, K. Solutions of DC OPF are Never AC Feasible. Tech. rep. 2020. URL: https:
//arxiv.org/pdf/1912.00319.pdf.


https://doi.org/10.1016/j.enpol.2010.04.043
https://arxiv.org/pdf/1912.00319.pdf
https://arxiv.org/pdf/1912.00319.pdf

(15]

(16]

REFERENCES 29

Baltensperger, T., Fiichslin, R. M., Kriitli, P., and Lygeros, J. “Multiplicity of equilibria
in conjectural variations models of natural gas markets” In: European Journal of
Operational Research 252.2 (2016), pp. 646—656. po1: 10.1016/j .ejor.2016.
01.032.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust Optimization. Princeton Uni-
versity Press, 2009.

Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. “Adjustable robust
solutions of uncertain linear programs.” In: Mathematical Programming 99.2 (2004),
pp- 351-376. DO1: 10.1007/510107-003-0454-y.

Bertsimas, D., Brown, D. B., and Caramanis, C. “Theory and Applications of Ro-
bust Optimization.” In: SIAM Review 53.3 (2011), pp. 464-501. po1: 10 . 1137 /
080734510.

Boots, M. G, Rijkers, F. A., and Hobbs, B. F. “Trading in the Downstream European
Gas Market: A Successive Oligopoly Approach” In: The Energy Journal 25.3 (2004),
pp. 73-102. URL: http://www. jstor.org/stable/41323043.

Boucher, J. and Smeers, Y. “Economic forces in the European gas market — a 1985
prospective” In: Energy Economics 9.1 (1987), pp. 2—-16. por: 10 . 1016 /0140 -
9883(87)90002-8.

Boucher, J. and Smeers, Y. “Gas trade in the European community during the 1970s”
In: Energy Economics 7.2 (1985), pp. 102-116. po1: 10.1016/0140-9883(85)
90025-8.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University Press,
2004. po1: 10.1017/cb09780511804441.

Chyong, C. K. and Hobbs, B. F. “Strategic Eurasian natural gas market model for
energy security and policy analysis: Formulation and application to South Stream”
In: Energy Economics 44 (2014), pp. 198-211. por: 10.1016/j .eneco.2014.04.
006.

Cremer, H. and Laffont, J.-J. “Competition in gas markets” In: European Economic
Review 46.4-5 (2002), pp. 928-935. po1: 10.1016/S0014-2921(01)00226-4.
Egging, R., Gabriel, S. A, Holz, F., and Zhuang, J. “A complementarity model for
the European natural gas market.” In: Energy Policy 36.7 (2008), pp. 2385-2414. por:
10.1016/j.enpol.2008.01.044.

Egging, R., Holz, F., and Gabriel, S. A. “The World Gas Model: A multi-period mixed
complementarity model for the global natural gas market” In: Energy 35.10 (2010),
pp. 4016-4029. por: 10.1016/j.energy.2010.03.053.

European Parliament and Council of the European Union. Directive 2003/55/EC of
the European Parliament and of the Council of 26 June 2003 concerning common rules
for the internal market in natural gas and repealing Directive 98/30/EC. 2003.
European Parliament and Council of the European Union. Directive 2009/73/EC of
the European Parliament and of the Council concerning common rules for the internal
market in natural gas and repealing Directive 2003/55/EC. 2009.

European Parliament and Council of the European Union. Directive 98/30/EC of the
European Parliament and of the Council of 22 June 1998 concerning common rules for
the internal market in natural gas. 1998.

Fischetti, M., Ljubi¢, I, Monaci, M., and Sinnl, M. “A New General-Purpose Algorithm
for Mixed-Integer Bilevel Linear Programs.” In: Operations Research 65.6 (2017),
pp. 1615-1637. por: 10.1287 /opre.2017.1650.

Fortuny-Amat, J. and McCarl, B. “A Representation and Economic Interpretation
of a Two-Level Programming Problem” In: The Journal of the Operational Research
Society 32.9 (1981), pp. 783-792. JSTOR: 2581394.


https://doi.org/10.1016/j.ejor.2016.01.032
https://doi.org/10.1016/j.ejor.2016.01.032
https://doi.org/10.1007/s10107-003-0454-y
https://doi.org/10.1137/080734510
https://doi.org/10.1137/080734510
http://www.jstor.org/stable/41323043
https://doi.org/10.1016/0140-9883(87)90002-8
https://doi.org/10.1016/0140-9883(87)90002-8
https://doi.org/10.1016/0140-9883(85)90025-8
https://doi.org/10.1016/0140-9883(85)90025-8
https://doi.org/10.1017/cbo9780511804441
https://doi.org/10.1016/j.eneco.2014.04.006
https://doi.org/10.1016/j.eneco.2014.04.006
https://doi.org/10.1016/S0014-2921(01)00226-4
https://doi.org/10.1016/j.enpol.2008.01.044
https://doi.org/10.1016/j.energy.2010.03.053
https://doi.org/10.1287/opre.2017.1650
http://www.jstor.org/stable/2581394

30

(20]

[21]

(22]

(23]

(28]

[29]

(30]

REFERENCES

Fugenschuh, A., Geiiler, B., Gollmer, R., Morsi, A., Pfetsch, M. E., Rovekamp, J.,
Schmidt, M., Spreckelsen, K., and Steinbach, M. C. “Physical and technical funda-
mentals of gas networks” In: Evaluating Gas Network Capacities. Ed. by T. Koch,
B. Hiller, M. E. Pfetsch, and L. Schewe. SIAM-MOS series on Optimization. SIAM,
2015. Chap. 2, pp. 17-44. po1: 10.1137/1.9781611973693.ch2.

Gabriel, S. A., Kiet, S., and Zhuang, J. “A Mixed Complementarity-Based Equilibrium
Model of Natural Gas Markets.” In: Operations Research 53.5 (2005), pp. 799-818. por:
10.1287/opre.1040.0199.

Glachant, J.-M., Hallack, M., and Vazquez, M. Building Competitive Gas Markets in
the EU. Cheltenham: Edward Elgar Publishing, 2013.

Grimm, V., Griibel, J., Schewe, L., Schmidt, M., and Zéttl, G. “Nonconvex equilibrium
models for gas market analysis: Failure of standard techniques and alternative
modeling approaches” In: European Journal of Operational Research 273.3 (2019),
pp. 1097-1108. por: 10.1016/j.ejor.2018.09.016.

Grimm, V., Schewe, L., Schmidt, M., and Zé&ttl, G. “A Multilevel Model of the Euro-
pean Entry-Exit Gas Market” In: Mathematical Methods of Operations Research 89.2
(2019), pp. 223-255. po1: 10.1007/s00186-018-0647-z.

Grof3, M., Pfetsch, M. E., Schewe, L., Schmidt, M., and Skutella, M. “Algorithmic
results for potential-based flows: Easy and hard cases.” In: Networks (2019). por:
10.1002/net.21865.

Hallack, M. and Vazquez, M. “European Union Regulation of Gas Transmission
Services: Challenges in the Allocation of Network Resources through Entry/exit
Schemes” In: Utilities Policy 25 25.5 (2013), pp. 23-32. por: 10 . 1016/ j . jup.
2013.01.003.

Hansen, P., Jaumard, B., and Savard, G. “New branch-and-bound rules for linear
bilevel programming.” In: SIAM Journal on Scientific and Statistical Computing 13.5
(1992), pp. 1194-1217. por1: 10.1137/0913069.

Hirschhausen, C. “Reform der Erdgaswirtschaft in der EU und in Deutschland:
Wieviel Regulierung braucht der Wettbewerb?” In: Perspektiven der Wirtschaftspoli-
tik 7.1 (2006), pp. 89-103. por: 10.1111/j.1465-6493.2006.00200.x.

Holz, F., Hirschhausen, C. von, and Kemfert, C. “A strategic model of European gas
supply (GASMOD).” In: Energy Economics 30.3 (2008), pp. 766—-788. por1: 10.1016/
j.eneco.2007.01.018.

Hunt, P. Entry-Exit transmission pricing with national hubs. Can it deliver a Pan-
European wholesale market in gas? Tech. rep. Oxford Institute of Energy Studies,
2008.

Huppmann, D. “Endogenous production capacity investment in natural gas market
equilibrium models” In: European Journal of Operational Research 231.2 (2013),
pp- 503-506. po1: 10.1016/j.ejor.2013.05.0438.

Ikonnikova, S. and Zwart, G. T. “Trade quotas and buyer power, with an application
to the E.U. natural gas market.” In: Journal of the European Economic Association
12.1 (2014), pp. 177-199. por: 10.1111/jeea.12064.

Jansen, T., Lier, A. van, Witteloostuijn, A. van, and Ochssée, T. B. von. “A modified
Cournot model of the natural gas market in the European Union: Mixed-motives
delegation in a politicized environment” In: Energy Policy 41 (2012). Modeling
Transport (Energy) Demand and Policies, pp. 280-285. por: 10.1016/j . enpol.
2011.10.047.

Jeroslow, R. G. “The polynomial hierarchy and a simple model for competitive
analysis.” In: Mathematical Programming 32.2 (1985), pp. 146-164. po1: 10.1007/
BF01586088.


https://doi.org/10.1137/1.9781611973693.ch2
https://doi.org/10.1287/opre.1040.0199
https://doi.org/10.1016/j.ejor.2018.09.016
https://doi.org/10.1007/s00186-018-0647-z
https://doi.org/10.1002/net.21865
https://doi.org/10.1016/j.jup.2013.01.003
https://doi.org/10.1016/j.jup.2013.01.003
https://doi.org/10.1137/0913069
https://doi.org/10.1111/j.1465-6493.2006.00200.x
https://doi.org/10.1016/j.eneco.2007.01.018
https://doi.org/10.1016/j.eneco.2007.01.018
https://doi.org/10.1016/j.ejor.2013.05.048
https://doi.org/10.1111/jeea.12064
https://doi.org/10.1016/j.enpol.2011.10.047
https://doi.org/10.1016/j.enpol.2011.10.047
https://doi.org/10.1007/BF01586088
https://doi.org/10.1007/BF01586088

(35]

(36]

(38]

(39]

(40]

(42]

[43]

(48]

(49]

[50]

REFERENCES 31

Kleinert, T., Grimm, V., and Schmidt, M. Outer Approximation for Global Optimization
of Mixed-Integer Quadratic Bilevel Problems. Tech. rep. 2020. URL: http: //www.
optimization-online.org/DB_FILE/2019/12/7534.pdf.

Kleinert, T., Labbé, M., Plein, F., and Schmidt, M. “There’s No Free Lunch: On the
Hardness of Choosing a Correct Big-M in Bilevel Optimization” In: Operations
Research (2019). URL: http://www.optimization-online.org/DB_HTML/
2019/04/7172 .html. Forthcoming,.

Kleinert, T. and Schmidt, M. “Global Optimization of Multilevel Electricity Market
Models Including Network Design and Graph Partitioning.” In: Discrete Optimization
33 (2019), pp. 43-69. por: 10.1016/j .disopt.2019.02.002.

Koch, T, Hiller, B., Pfetsch, M. E., and Schewe, L. Evaluating Gas Network Ca-
pacities. STAM-MOS series on Optimization. SIAM, 2015. por: 10 . 1137 / 1.
9781611973693.

Labbé, M., Plein, F., and Schmidt, M. “Bookings in the European Gas Market: Char-
acterisation of Feasibility and Computational Complexity Results” In: Optimization
and Engineering 21.1 (2020), pp. 305-334. po1: 10.1007/s11081-019-09447-0.
Lozano, L. and Smith, J. C. “A value-function-based exact approach for the bilevel
mixed-integer programming problem.” In: Operations Research 65.3 (2017), pp. 768—
786. DOI: 10.1287 /opre.2017.1589.

McCormick, G. P. “Computability of global solutions to factorable nonconvex pro-
grams: Part [-Convex underestimating problems.” In: Mathematical Programming
10.1 (1976), pp. 147-175. por: 10.1007/BF01580665.

Meran, G., Hirschhausen, C. von, and Neumann, A. “Access Pricing and Network
Expansion in Natural Gas Markets” In: Zeitschrift fiir Energiewirtschaft 34.3 (2010),
pp. 179-183. po1: 10.1007/512398-010-0028-7.

Midthun, K. T,, Bjorndal, M., and Tomasgard, A. “Modeling Optimal Economic
Dispatch and System Effects in Natural Gas Networks.” In: The Energy Journal 30.4
(2009), pp. 155-180. URL: https: //ideas . repec.org/a/aen/journl/
2009v30-04-a06.html.

Midthun, K. T., Fodstad, M., and Hellemo, L. “Optimization Model to Analyse Optimal
Development of Natural Gas Fields and Infrastructure” In: Energy Procedia 64 (2015),
pp. 111-119. por: 10.1016/j . egypro.2015.01.014.

Moore, J. T. and Bard, J. F. “The mixed integer linear bilevel programming problem.”
In: Operations Research 38.5 (1990), pp. 911-921. por: 10.1287 /opre.38.5.911.
Oliver, M. E., Mason, C. F., and Finnoff, D. “Pipeline congestion and basis differen-
tials.” In: Journal of Regulatory Economics 46.3 (2014), pp. 261-291. po1: 10.1007/
$11149-014-9256-9.

Pineda, S. and Morales, J. M. “Solving Linear Bilevel Problems Using Big-Ms: Not
All That Glitters Is Gold.” In: IEEE Transactions on Power Systems (2019). po1: 10 .
1109/TPWRS.2019.2892607.

Regionales Rechenzentrum Erlangen. Woodcrest Cluster. URL: https : / / www .
anleitungen . rrze . fau . de / hpc / woody - cluster/ (visited on
06/18/2020).

Remo, F., Tomasgard, A., Hellemo, L., Fodstad, M., Eidesen, B. H., and Pedersen, B.
“Optimizing the Norwegian Natural Gas Production and Transport.” In: Interfaces
39.1 (2009), pp. 46-56. po1: 10.1287/inte.1080.0414.

Siddiqui, S. and Gabriel, S. A. “Modeling market power in the U.S. shale gas market”
In: Optimization and Engineering 18.1 (2017), pp. 203-213. po1: 10.1007/s11081-
016-9310-9.

Smeers, Y. Gas models and three difficult objectives. Tech. rep. Core Discussion Paper,
2008.urL:http://www.uclouvain.be/cps/ucl/doc/core/documents/
coreDP2008_9.pdf.


http://www.optimization-online.org/DB_FILE/2019/12/7534.pdf
http://www.optimization-online.org/DB_FILE/2019/12/7534.pdf
http://www.optimization-online.org/DB_HTML/2019/04/7172.html
http://www.optimization-online.org/DB_HTML/2019/04/7172.html
https://doi.org/10.1016/j.disopt.2019.02.002
https://doi.org/10.1137/1.9781611973693
https://doi.org/10.1137/1.9781611973693
https://doi.org/10.1007/s11081-019-09447-0
https://doi.org/10.1287/opre.2017.1589
https://doi.org/10.1007/BF01580665
https://doi.org/10.1007/s12398-010-0028-7
https://ideas.repec.org/a/aen/journl/2009v30-04-a06.html
https://ideas.repec.org/a/aen/journl/2009v30-04-a06.html
https://doi.org/10.1016/j.egypro.2015.01.014
https://doi.org/10.1287/opre.38.5.911
https://doi.org/10.1007/s11149-014-9256-9
https://doi.org/10.1007/s11149-014-9256-9
https://doi.org/10.1109/TPWRS.2019.2892607
https://doi.org/10.1109/TPWRS.2019.2892607
https://www.anleitungen.rrze.fau.de/hpc/woody-cluster/
https://www.anleitungen.rrze.fau.de/hpc/woody-cluster/
https://doi.org/10.1287/inte.1080.0414
https://doi.org/10.1007/s11081-016-9310-9
https://doi.org/10.1007/s11081-016-9310-9
http://www.uclouvain.be/cps/ucl/doc/core/documents/coreDP2008_9.pdf
http://www.uclouvain.be/cps/ucl/doc/core/documents/coreDP2008_9.pdf

32 REFERENCES

[52] Vazquez, M., Hallack, M., and Glachant, J.-M. “Designing the European Gas Market:
More Liquid and Less Natural?” In: Economics of Energy and Environmental Policy
1.3 (2012). por: 10.5547/2160-5890.1.3.3.

[53] Vielma,].P., Ahmed, S., and Nemhauser, G. “Mixed-integer models for nonseparable
piecewise-linear optimization: Unifying framework and extensions.” In: Operations
Research 58.2 (2010), pp. 303-315. po1: 10.1287 /opre.1090.0721.

[54] Weymouth, T. R. “Problems in Natural Gas Engineering.” In: Trans. Amer. Soc. of
Mech. Eng. 34.1349 (1912), pp. 185-231.

[55] Xu,P.and Wang, L. “An exact algorithm for the bilevel mixed integer linear program-
ming problem under three simplifying assumptions.” In: Computers & Operations
Research 41 (2014), pp. 309-318. por: 10.1016/j.cor.2013.07.016.

[56] Yang, Z., Zhang, R., and Zhang, Z. “An exploration of a strategic competition model
for the European Union natural gas market.” In: Energy Economics 57 (2016), pp. 236—
242.p01: 10.1016/j.eneco.2016.05.008.

[57] Yanikoglu, I., Gorissen, B., and Hertog, D. den. “A Survey of Adjustable Robust
Optimization.” In: European Journal of Operational Research 277.3 (2019), pp. 799—
813.po1: 10.1016/j.ejor.2018.08.031.

[58] Zare, M. H., Borrero, J. S., Zeng, B., and Prokopyev, O. A. “A note on linearized
reformulations for a class of bilevel linear integer problems.” In: Annals of Operations
Research 272.1-2 (2019), pp. 99-117. po1: 10.1007/510479-017-2694-x.

[59] Zwart, G. and Mulder, M. NATGAS: a model of the European natural gas market.
Tech. rep. 144. CPB Netherlands Bureau for Economic Policy Analysis, 2006. URL:
https://ideas.repec.org/p/cpb/memodm/144 . .html.

(T. Bottger) FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN-NURNBERG (FAU), DISCRETE OPTIMIZATION,
CAUERSTR. 11, 91058 ERLANGEN, GERMANY
Email address: tom. tb.boettgerefau.de

(V. Grimm) (A) FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN-NURNBERG (FAU), EconomIC THEORY, LANGE
GASSE 20, 90403 NURNBERG, GERMANY; (B) ENERGIE CAMPUS NURNBERG, FURTHER STR. 250, 90429 NURNBERG,
GERMANY

Email address: veronika.grimmefau.de

(T. Kleinert) (A) FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN-NURNBERG (FAU), DISCRETE OPTIMIZATION,
CAUERSTR. 11, 91058 ERLANGEN, GERMANY; (B) FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN-NURNBERG
(FAU), EconoMIC THEORY, LANGE GASSE 20, 90403 NURNBERG, GERMANY; (C) ENERGIE CAMPUS NURNBERG,
FURTHER STR. 250, 90429 NURNBERG, GERMANY

Email address: thomas .kleinertefau.de

(M. Schmidt) TrRIER UNIVERSITY, DEPARTMENT OF MATHEMATICS, UNIVERSITATSRING 15, 54296 TRIER,
GERMANY
Email address: martin.schmidt@euni-trier.de


https://doi.org/10.5547/2160-5890.1.3.3
https://doi.org/10.1287/opre.1090.0721
https://doi.org/10.1016/j.cor.2013.07.016
https://doi.org/10.1016/j.eneco.2016.05.008
https://doi.org/10.1016/j.ejor.2018.08.031
https://doi.org/10.1007/s10479-017-2694-x
https://ideas.repec.org/p/cpb/memodm/144.html

	1. Introduction
	2. A Multilevel Model of the Entry-Exit Gas Market
	2.1. Level 1: Specification of Technical Capacities and Booking Price Floors
	2.2. Level 2: Booking
	2.3. Level 3: Nomination
	2.4. Level 4: Cost-Optimal Transport of Nominations
	2.5. Reduction to a Bilevel Problem
	2.6. Benchmark Models

	3. Reduction to a Single-Level Problem
	3.1. A KKT-Based Single-Level Reformulation
	3.2. Linearization of KKT Complementarity Conditions

	4. Further Reformulations of the Upper Level
	5. Handling of the Upper Level's Robustness Constraint
	6. The Cost of Decoupling Trade and Transport
	6.1. Data and Economic Setup
	6.2. Computational Setup
	6.3. The Effect of Scaling Demand
	6.4. The Effect of Different Network Configurations
	6.5. The Effect of Different Pricing Regimes

	7. Conclusion
	Acknowledgments
	Appendix A. Appendix: Feasibility Check for a Nonlinear Flow Model
	References

